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We consider m distributions in which the � rst m ƒ 1 are obtained by multiplicative exponential
distortions of the mth distribution, which is a reference. The combined data from m samples, one
from each distribution, are used in the semiparametric large-sample problem of estimating each
distortion and the reference distribution and testing the hypothesis that the distributions are identical.
The approach generalizes the classical normal-based one-way analysis of variance in the sense that it
obviates the need for a completely speci� ed parametric model. An advantage is that the probability
density of the reference distribution is estimated from the combined data and not only from the mth
sample. A power comparison with the t and F tests and with two nonparametric tests, obtained by
means of a simulation, points to the merit of the present approach. The method is applied to rain-rate
data from meteorological instruments.
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1. INTRODUCTION

Statistical techniques based on normal theory have been
central to the development and teaching of statistics. Con-
currently, however, there have been numerous studies of the
consequences of departures from the normal assumption and
of transformation methods that produce nearly normal data.
As examples, we mention in particular the work of Miller
(1986), who discussed situations in which the normal and
other assumptions break down, and the well-known normal-
izing Box–Cox transformation. The present work formulates
an approach to analysis of variance that relaxes the normal
assumption.

This article provides an alternative to the classical normal-
based one-way analysis of variance by modeling the log ratio
of the relevant probability densities with respect to a refer-
ence density. In the classical normal theory with equal vari-
ances, the log ratio takes on the form � + ‚x. However, as
already was observed by Kay and Little (1987), there are
cases in which � + ‚h4x5, for some h4x5, is more appropriate.
For example, for certain lognormal and gamma populations,
h4x5 = log4x5 is precisely the right choice. Simulation results
in Section 3.3 show that, in these cases, the classical F and
t tests, where h4x5 = x is used by default, have less power
than the test provided here and, further, that our test can be,
approximately, as powerful as the classical t and F tests when
the data are normal for moderate and large samples.

The approach presented here provides the mechanism for
a general one-way layout testing for any h4x5, including

nonnormal cases in which we still have h4x5 = x, without
the knowledge of the reference distribution. This problem is
better understood by taking a close look at the classical case
� rst.

Consider the classical one-way analysis of variance with
m = q + 1 independent normal random samples,

x111 : : : 1 x1n1
g14x5

xq11 : : : 1 xqnq
gq4x5

xm11 : : : 1 xmnm
gm4x51

where gj4x5 is the probability density of N4Œj1‘ 25,
j = 11 : : : 1m. Then, holding gm4x5 as a reference,

gj4x5

gm4x5
= exp4� j + ‚jx51 j = 11 : : : 1 q1 (1)

where

� j =
Œ2

m
ƒ Œ2

j

2‘ 2
1 ‚j =

Œj
ƒ Œm

‘ 2
1 j = 11 : : : 1 q0
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It follows that the test H0 2 Œ1 = = Œm is equivalent to
H0 2 ‚1 = = ‚q = 0. Clearly ‚j = 0 implies that �j = 0,
j = 11 : : : 1 q.

An immediate generalization is obtained by eliminating the
normal assumption and regarding each gj4x5, j = 11 : : : 1 q,
directly as an exponential distortion or tilt of a reference
gm4x5,

gj4x5

gm4x5
= exp4� j + ‚jh4x551 j = 11 : : : 1 q1 (2)

where h4x5 is an arbitrary but known function of x. Again,
since gm4x5 is a density, ‚j = 0 implies �j = 0, j = 11 0 0 0 1 q,
and the hypothesis H0 2 ‚1 = = ‚q = 0 implies that all m

populations are equidistributed; namely, gj = gm, j =11 : : : 1 q.
The general unspeci� ed form for gm4x5 constitutes the main
departure from the classical one-way layout with normally
distributed data.

An example of (2) is provided by multinomial logistic
regression. Consider a categorical random variable y such that
P4y = j5 = � j , where f 4x—y = j5 = gj4x5, j = 11 : : : 1 m, andPm

j=1 � j = 1. If

P4y = j—x5 =
exp4� j + ‚jh4x55

1+
Pq

k=1 exp4�k + ‚kh4x55
1

j = 11 : : : 1m1

then an appeal to Bayes theorem shows that (2) holds with
�j = � j + log6� m=� j7, j = 11 : : : 1 q .

Many authors have studied exponential distortions, which
resemble closely the form (2) in regard to goodness of � t,
logistic regression, and classi� cation models. An important
example is the work of Neyman (1937), who introduced
the notion of smooth goodness-of-� t tests. Brie� y described,
suppose we are interested in testing the null hypothesis that
x11 : : : 1 xn is a random sample from a continuous distribution
with probability density function f 4x3‚5, where ‚ is a p 1
vector. The � rst step is to embed the null probability density
function in an order-k alternative,

g4x3 ˆ1‚5 = C4ˆ1‚5 exp

(
kX

i=1

ˆihi4x1 ‚5

)
f4x3 ‚51

where 8hi4x3‚59 are complete and orthonormal with respect
to f4x3 ‚5 with h04x3 ‚5 1 and C4ˆ1‚5 is a normalized
constant. Testing for f4x3 ‚5 is equivalent to testing H0 2 ˆ =
4ˆ11 : : : 1 ˆk5

0 = 0. Thus, we can see that, in testing the equal-
ity of densities in m-sample problems, Model (2) is a natural
extension of Neyman’s smooth goodness-of-� t test, where the
form of the reference density gm is left unspeci� ed. For a
concise description as well as a historical account of the devel-
opment of smooth goodness-of-� t tests, we refer the reader
to Rayner and Best (1989). Other authors who have stud-
ied exponential distortions similar to (2) include Cox (1966),
Anderson (1972, 1982), Prentice and Pyke (1979), Kay and
Little (1987), Efron and Tibshirani (1996), and Qin and Zhang
(1997).

For a binary (0-1) response Y and an explanatory vari-
able X, Kay and Little (1987) observed that if the log ratio
log8f 4x—Y = 15=f 4x—Y = 059 = � + ‚h4x5, the logistic regres-
sion model is the correct model for Y given X . Motivated

by this fact they studied the improvement in the � t of logis-
tic regression by considering models of the form (2) with
transformation h4x5. They tabulated h4x5 for some commonly
used members of the exponential family. Efron and Tibshi-
rani (1996) considered a model that has the form (2) but
in the case of a single sample, where a probability density
is a product of a carrier density and an exponential factor.
Their idea was to estimate � rst the carrier density by a ker-
nel density estimator and then estimate the parameters in the
exponential factor by maximum likelihood, ignoring the fact
that the carrier is data dependent. The resulting hybrid esti-
mator, referred to as a specially designed exponential family,
is a compromise between parametric and nonparametric den-
sity estimators. More recently, Qin and Zhang (1997) tested
the validity of logistic regression under case-control sampling,
where (2) holds with m = 2 and h4x5 = x.

Motivated by the preceding discussion, we shall discuss a
generalization of the classical one-way layout classi� cation by
considering the exponential tilt (2) with g gm,

gj4x5 = exp4� j + ‚jh4x55g4x51 j = 11 : : : 1 q1 (3)

where � j depends on ‚j . For h4x5 = x, � j is determined
explicitly by ‚j through the moment-generating function Mg

corresponding to g,

�j = ƒ log8Mg4‚j591 j = 11 : : : 1 q0

Denote the combined data from the m samples by t,

t = 4t11 : : : 1 tn50
= 4x0

11 : : : 1x0
q1x0

m501

where xj = 4xj11 : : : 1 xjnj
50 and n = n1 + + nq + nm. In this

article, we investigate the following semiparametric estima-
tion/testing problems using the combined data t:

1. Nonparametric estimation of G4x5, the cdf correspond-
ing to g4x5

2. Estimation of the parameters � = 4�11 : : : 1 �q50, ‚ =
4‚11 : : : 1‚q50, and the study of the large-sample properties of
the estimators

3. Test of the hypothesis H0 2 ‚1 = = ‚q = 0

Evidently, the general construction does not require normal-
ity or even symmetry of the distributions, the variances need
not be the same, and the model does not require knowledge
of the reference distribution. The main assumption is the form
of the distortion of the reference distribution, softened by the
choice of the “distortion function” h4x5. Notice that the ref-
erence distribution may be any of the m distributions, leaving
the exponential distortion intact but with shifted parameters.

An Application: Combination of Instruments

A possible application of (3) and the ensuing statistical anal-
ysis is in the combination of several instruments, a special case
of which was discussed by Fokianos, Kedem, Qin, Haferman,
and Short (1997).

Suppose that m instruments I11 : : : 1 Iq1 Im measure the same
quantity with the same resolution, where it is known that Im

is more reliable than the rest. The jth instrument Ij produces
a set of measurements xj , j = 11 : : : 1 q1m, and I11 : : : 1 Iq are
assumed a distortion of Im as expressed by (3). The prob-
lem is to combine the information from all the instruments to
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increase the reliability of Im—that is, to construct an improved
estimate of g from t = 4x0

11 : : : 1x0
q1 x0

m50. Since the data from
each instrument contain information about g, a more precise
estimate of g can be obtained by using the combined data t
and not just xm alone. The deviation of each instrument from
the reference Im can be quanti� ed by the estimation of the �j

and ‚j , and used in calibration. An example in which a radar
and two radiometers are combined, all measuring rain rate,
will be discussed.

2. ESTIMATION AND LARGE–SAMPLE RESULTS

This section follows the construction of Qin and Lawless
(1994) and Qin and Zhang (1997).

A maximum likelihood estimator of G4x5 can be obtained
by maximizing the likelihood over the class of step cdf’s with
jumps at the observed values t11 : : : 1 tn. Accordingly, if pi =
dG4ti5, i = 11 : : : 1 n, the likelihood becomes

¬4�1 ‚1 G5 =
nY

i=1

pi

n1Y
j=1

exp4�1 + ‚1h4x1j55

nqY

j=1

exp4�q + ‚qh4xqj550 (4)

We follow a pro� ling procedure whereby � rst we express each
pi in terms of � 1‚ and then we substitute the pi back into the
likelihood to produce a function of � 1‚ only. When � 1‚ are
� xed, (4) is maximized by maximizing only the product termQn

i=1 pi , subject to the m constraints
nX

i=1

pi = 1

nX

i=1

pi6w14ti5 ƒ 17 = 01 : : :

nX

i=1

pi6wq 4ti5 ƒ 17 = 01

where wj 4t5 = exp4�j + ‚j h4t55, j = 11 : : : 1 q0

The maximization employs the method of Lagrange mul-
tipliers, the � rst of which becomes ‹0 = n, and the rest are
expressed by construction as ‹j = �jn, j = 11 : : : 1 q, for some
�j . It follows that

pi =
1
n

1

1+ �14w14ti5 ƒ 15 + + �q 4wq4ti5 ƒ 15
1 (5)

which together with the constraints gives a set of equations
satis� ed by the �j ,

1
n

nX

i=1

wj 4ti5 ƒ 1

1+ �14w14ti5 ƒ 15+ + �q 4wq4ti5 ƒ 15
= 01

j = 11 : : : 1 q0 (6)

Substituting pi in ¬4� 1‚1G5, the log-likelihood becomes up
to a constant,

l log¬4� 1‚1G5

= ƒ
nX

i=1

log61 + �14w14ti5 ƒ 15 + + �q4wq 4ti5 ƒ 157

+
n1X

j=1

6�1 + ‚1h4x1j57 + +
nqX

j=1

6�q + ‚qh4xqj570

To get expressions for the �j , we set ¡l=¡�j = 0, j = 11 : : : 1 q,
and using Equation (6) we obtain

�j =
nj

n
1 j = 11 : : : 1 q0

Substituting these values of �j in Equation (5), we have

pi =
1

nm

1

1+ �1w14ti5 + + �qwq4ti5
1 (7)

where �j = nj=nm, j = 11 : : : 1 q, and the value of the pro-
� le log-likelihood up to a constant as a function of �1 ‚

only is

l = ƒ
nX

i=1

log61+ �1w14ti5 + + �qwq4ti57

+
n1X

j=1

6�1 + ‚1h4x1j57 + +
nqX

j=1

6�q + ‚q h4xqj570 (8)

The score equations for j = 11 : : : 1 q are therefore,

¡l

¡�j

= ƒ
nX

i=1

�jwj4ti5

1 + �1w14ti5 + + �q wq4ti5
+ nj = 0

¡l

¡‚j

= ƒ
nX

i=1

�jh4ti5wj4ti5

1 + �1w14ti5 + + �q wq4ti5

+
njX

i=1

h4xj i5 = 00 (9)

The solution of the score equations gives the maximum like-
lihood estimators O� 1 O‚, and consequently by substitution also

Opi =
1

nm

1

1+ �1 exp4 O�1 + O‚1h4ti55+ + �q exp4 O�q + O‚qh4ti55
1 (10)

and therefore

OG4t5=
1

nm

nX

i=1

I 4ti t5

1+ �1 exp4 O�1 + O‚1h4ti55+ + �q exp4 O�q + O‚qh4ti55
0 (11)

Summarizing, by following a pro� ling procedure, we
obtained a nonparametric estimator (11) for G4x5 and score
estimating equations (9) for the parameters � and ‚. It
is argued in the appendix that the estimators O� 1 O‚ are
asymptotically normal,

p
n

O� ƒ �0
O‚ƒ ‚0

) N401 è5 (12)

as n !ˆ. Here �0 and ‚0 denote the true parameters and
è = Sƒ1VSƒ1, where the matrices S and V are as de� ned in
the appendix.
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2.1 Some Simulation Results

To illustrate empirically the asymptotic normality result
(12), we performed a small simulation study with 500 runs in
each of four cases with h4x5 = x throughout the simulation.

Consider � rst the case of three uniform populations on
401 15; that is, g4x5 = 1 for 0 x 1 and g4x5 = 0, other-
wise, with g14x5 = g24x5 = g4x5 and q = 2. It follows that
�1 = �2 = ‚1 = ‚2 = 0. We generated n1 = n2 = n3 = 200
observations from each population. The combined sam-
ple therefore consists of 600 observations. The theoretical
variance–covariance matrix can be calculated easily (see
Section 3). It turns out that

1
600

è =

0
BBBBB@

0030 0015 ƒ0060 ƒ0030

0015 0030 ƒ0030 ƒ0060

ƒ0060 ƒ0030 0120 0060

ƒ0030 ƒ0060 0060 0120

1
CCCCCA

0

It follows that the corresponding theoretical standard errors
are .1732, .1732, .3464, and .3464 for O�1, O�2,

O‚11 and O‚2,
respectively. The � rst row of Table 1 summarizes our simula-
tion results in this case. The last column gives the estimated
parameters together with their corresponding standard errors
and shows a good agreement between the theoretical and esti-
mated standard errors. The second row of Table 1 reports
results from the same scenario as before, but now n1 = 200,
n2 = 300, and n3 = 100. Consequently, �1 = 2 and �2 = 3. In
this case, we have that

1

600
è =

0
BBBBB@

0045 0030 ƒ0090 ƒ0060

0030 0040 ƒ0060 ƒ0080

ƒ0090 ƒ0060 0180 0120

ƒ0060 ƒ0080 0120 0160

1
CCCCCA

0

Here, the corresponding theoretical standard errors are .2121,
.2, .4242, and .4 for O�1, O�2,

O‚1, and O‚2, respectively. The esti-
mated standard errors are given in the second row of Table 1.

Table 1. Parameter Estimation Where the Respective Reference Distributions are U 0 1 and N(0,1) and No Distortion Occurs for ‚1 = ‚2 = 0

Sample sizes Parameters Estimated parameters

Population n1 n2 n3 �1 �2 ‚1 ‚2 O�1 O�2
O‚1

O‚2

g(x) U(011) 00063 ƒ00006 ƒ00127 00017
200 200 200 0 0 0 0

g1(x) U(011) (01824) (01812) (03569) (03627)
g2(x) U(011)

g(x) U(011) ƒ00026 ƒ00110 00099 00280
200 300 100 0 0 0 0

g1(x) U(011) (02068) (01995) (04161) (04006)
g2(x) U(011)

g(x) N(011) ƒ405527 ƒ200327 300454 200370
200 200 200 ƒ4.5 ƒ2 3 2

g1(x) N(211) (03811) (02169) (02739) (01994)
g2(x) N(311)

g(x) N(011) ƒ405541 ƒ200356 300427 200360
200 300 100 ƒ4.5 ƒ2 3 2

g1(x) N(211) (03851) (02162) (02584) (02173)
g2(x) N(311)

Again, there is a good agreement between the theoretical and
estimated standard errors. The last two rows of Table 1 refer
to the situation in which the reference distribution g4x5 is
N40115, g14x5 is N431 15, and g24x5 is N42115. In this case,
�1 = ƒ405, ‚1 = 3, �2 = ƒ2, and ‚2 = 2. The third row sum-
marizes the results when n1 = n2 = n3 = 200 and the last row
for n1 = 200, n2 = 300, and n3 = 100. In all the cases, we see
that the estimators are close to the true values.

2.2 The Case m = 2

The case m = 21 q = 1 requires a slight change in notation.
For k = 01112, de� ne

Ak =
Z hk4t5 exp4� + ‚h4t55

1+ �exp4� + ‚h4t55
dG4t5

and

A =
A0 A1

A1 A2
0

With � �1, Qin and Zhang (1997) showed that

è = Sƒ1VSƒ1 =
1 + �

�

"
Aƒ1 ƒ

³
1 + � 0

0 0

#́

so that, under some regularity conditions and regardless
of h4x5,

p
n

³O� ƒ �0

O‚ ƒ ‚0

´
) N401è51 (13)

where �01‚0 are the true parameters.
As an illustration, consider the case in which x2 is uni-

formly distributed in 60117 so that g4x5 = 110 x 1, and
g4x5 = 0 otherwise. Assume � = 1, � = ‚ = 0, and h4x5 = x,
and observe that when � = ‚ = 0 the two populations are
identical. As n !ˆ, the asymptotic covariance matrix è can
be obtained exactly from

Ak =
Z 1

0

tk exp4� + ‚t5

1+ �exp4� + ‚t5
dG4t5

=
1

24k + 15
1 k = 0111 21
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so that

A =

³
1=2 1=4

1=4 1=6

´

and

è =
1 + �

�

"
Aƒ1 ƒ

³
1 + � 0

0 0

#́
=

³
12 ƒ24

ƒ24 48

´
0

2.3 Mean Estimation

Consider h4 5 appearing in (3). The � rst two moments of
h4t5 with respect to g are needed for hypothesis testing in the
next section. The mean of h4t5,

Z
h4t5dG4t51

can be estimated from the combined data using the estimatorPn
i=1 h4ti5 Opi, or by taking the average of h4xm151 : : : 1 h4xmnm

5.
Interestingly, the two estimates are identical. To see this,
notice from (10) that we can get an expression for h4ti561 ƒ
nm

Opi7. Summing this over i and invoking (9) for ‚j ,
j = 11 : : : 1 q , we have

nX

i=1

h4ti561 ƒ nm
Opi7 =

n1X

i=1

h4x1i5 + +
nqX

i=1

h4xqi5

=
nX

i=1

h4ti5 ƒ
nmX

i=1

h4xmi51

since 4t11 : : : 1 tn5 = 4x0
11 : : : 1 x0

q 1x0
m5. Therefore,

nX

i=1

h4ti5 Opi =
1

nm

nmX

i=1

h4xmi50 (14)

This, however, is not the case for higher-order moments
of h4t5, and the combined estimate is not the same as the
corresponding estimate from the mth sample (see also the
discussion by Efron and Tibshirani 1996).

3. HYPOTHESIS TESTING

We are now in a position to test the hypothesis H0 2 ‚ = 0
that all the m populations are equidistributed. Several possibil-
ities exist; perhaps the simplest is to use the score test using
the score equations (9) for the ‚j , j = 11 : : : 1 q, thus elimi-
nating the need to evaluate O‚. Accordingly, under H0 2 ‚ = 0,
the score equations reduce to

¡l

¡‚j ‚=0

= nj8h4xj5 ƒ h4t591 j = 11 : : : 1 q0

The basis for the test is the fact that E6¡l=¡‚7 = 0, which
implies that the score equations should themselves be close
to 0 as well. However, having gone through the estimation
and large-sample study, we opt for the more direct and more
intuitive alternative, which relies on the asymptotic properties
of O‚.

We shall use the following notation for the moments of h4t5

with respect to the reference distribution:

E4tk5
Z

hk4t5dG4t5

var4t5 E4t25 ƒ E24t50

Under H0 2 ‚ = 0—so that all the moments of h4t5 are taken
with respect to g—consider the q q matrix A11, whose jth
diagonal element is

�j61+
Pq

k 6=j �k7

61+
Pq

k=1 �k7
2

1

and otherwise for j 6= j 0, the jj 0 element is
ƒ�j�j 0

61 +
Pq

k=1 �k7
2
0

The elements are bounded by 1 and the matrix is nonsingular,

—A11— =

Qq

k=1 �k

61+
Pq

k=1 �k7
m

> 01

and can be used to represent S,

S =

³
1 E4t5

E4t5 E4t25

´
† A111

with † denoting the Kronecker product. It follows that S is
nonsingular,

—S— = 8var4t59q —A11
—21

and

Sƒ1 =
1

var4t5

³
E4t25 ƒE4t5

ƒE4t5 1

´
† Aƒ1

11 0

On the other hand, V is singular,

V = var4t5

³
0 0

0 A11

´
1

as is

è = Sƒ1VSƒ1 =
1

var4t5

³
E24t5 ƒE4t5

ƒE4t5 1

´
† Aƒ1

11 0

Luckily the right component is nonsingular, and we � nally
have from (12)

p
n O‚ ) N 01

1

var4t5
Aƒ1

11 0 (15)

It follows under H0 2 ‚ = 0 that

¸1 = nvar4t5 O‚0A11
O‚ (16)

is approximately distributed as �24q5, and H0 can be rejected
for large values of nvar4t5 O‚0A11

O‚.

3.1 Some Comments About A11

Due to their importance in testing H0 2 ‚ =0, it is instructive
to consider some special cases of A11. For m = 21 q = 1, A11

reduces to a scalar �1=41+ �15
2. For m = 31 q = 2,

A11 =
1

41 + �1 + �25
2

M21

where

M2 =

³
�141 + �25 ƒ�1�2

ƒ�1�2 �241+ �15

´

=

³
�1 0

0 �2

³́
1+ �2

ƒ�2

ƒ�1 1+ �1

´
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and the eigenvalues of the matrix on the right are 111 +
�1 + �2. For m = 4, q = 3,

A11 =
1

41 + �1 + �2 + �35
2

M31

where

M3 =

0
BB@

�141+ �2 + �35 ƒ�1�2
ƒ�1�3

ƒ�1�2 �241 + �1 + �35 ƒ�2�3

ƒ�1�3
ƒ�2�3 �341+ �1 + �25

1
CCA 0

Note that M3 can be decomposed as

M3 =

0
BB@

�1 0 0

0 �2 0

0 0 �3

1
CCA

0
BB@

1 + �2 + �3
ƒ�2

ƒ�3

ƒ�1 1 + �1 + �3 ƒ�3

ƒ�1
ƒ�2 1 + �1 + �2

1
CCA 1

where the eigenvalues of the matrix on the right are 1, 1 +
�1 + �2 + �3, 1 + �1 + �2 + �3. In general

A11 =
1

41 +
Pq

k=1 �k52
Mq1

where Mq can be decomposed into a diagonal matrix
diag4�11 : : : 1 �q5 times a q q “matrix on the right” that has
eigenvalues 1 and 1 +

Pq

k=1 �k with multiplicity q ƒ 1.

3.2 Testing the Linear Hypothesis

We can further test the general linear hypothesis Hˆ = c,
where H is a p 2q predetermined matrix of rank p (p <

2q), ˆ = 4�11 : : : 1 �q1‚11 : : : 1‚q50, and c is a vector in Rp .
Then, using (12), we have under the hypothesis

p
n4H Ô ƒ

c5 ) N401HèH05. Thus, the random variable

¸2 = n4H Ô ƒ c504HèH05ƒ14H Ô ƒ c5 (17)

has an asymptotic chi-squared distribution with p df provided
the inverse exists (Sen and Singer 1993, p. 239). A consistent
estimator of è can be obtained by replacing all the parameters
by their maximum likelihood estimates.

Note that in general the results obtained from (16) and (17)
are different, since in (16) we substitute the exact value ‚ = 0
in è, while (17) requires the maximum likelihood estimate of
ˆ instead.

Table 2. Power Comparison With the t Test as a function of ‚1

Normal Lognormal Gamma

‚1 �1 t test W test �1 t test W test �1 t test W test

01 0093 0087 0086 0147 0027 0066 0100 0047 0046
02 0140 0133 0133 0173 0093 0100 0127 0067 0060
03 0247 0240 0200 0247 0140 0226 0140 0087 0120
04 0387 0367 0326 0360 0287 0346 0240 0153 0160
05 0473 0447 0466 0506 0347 0493 0253 0160 0213
07 0793 0787 0700 0760 0587 0706 0493 0380 0393
08 0840 0813 0806 10000 0687 0813 0513 0340 0480

100 0987 0987 0966 10000 0860 0953 0693 0527 0520

NOTE: m = 2, nominal level = 005, n1 = n2 = 30. The reference distributions are N(0,1), LN(0,1), and gamma(3,1), respectively.

3.3 Power Comparison With the t and F Tests

We report here simulation results in which the power of �1

de� ned in (16) is compared with the power of the two-sample
t and Wilcoxon rank sum (W) tests for m = 2, and with the F

and Kruskal–Wallis (K–W) tests for m = 3; see Randles and
Wolfe (1979). As is the case in practice, var4t5 needed for �1

and de� ned previously as the variance of h4t5 [not of t unless
h4t5 = t] is estimated from

nX

i=1

h24ti5 Opi
ƒ

³
nX

i=1

h4ti5 Opi

2́

0

Three cases are considered—normal, lognormal, and gamma—
in which the respective reference distributions are N(0, 1),
LN(0, 1), and gamma(3, 1).

Consider � rst the two-sample case, m = 2, q = 1. In the
normal case, x1 N4‚1115, x2 N401 15; in the lognormal
case x1 LN4‚11 15, x2 LN40115; and in the gamma case,
x1 gamma 43 + ‚11 15, x2 gamma 43115. Under our for-
mulation we test H0 2 ‚1 = 0, while under the t test we test
the equivalent hypothesis H0 2 Œ1 = Œ2. Both hypotheses imply
that the respective distributions are identical.

The power results as a function of ‚1 are given in Table 2
for a nominal level of .05. Each power entry in the table
was obtained from 150 independent runs. The fact that the �1

test displays more power than the t test in the lognormal and
gamma cases shows that a departure from the classical normal
and variance equality assumptions can weaken the t test con-
siderably. Apparently, our test dominates the Wilcoxon rank
sum test in all the cases considered. Interestingly, the �1 test
is not dominated by the t test in the present normal example
with equal variances. More precisely, if p is a power entry in
Table 2 corresponding to the t test under normality, then the
standard error

p
p41 ƒ p5=150 ranges from 0023 (p = 0087) to

0009 (p = 0987). Differences in power between the �1 test and
the t test in the normal case are largely insigni� cant, but those
for lognormal and gamma data are signi� cant.

Very similar power results were obtained in the normal case
even after making sure that the observed size was identical
for both the �1 and t tests. Thus, for an observed size of
.05333333 in both cases, the power corresponding to the ‚1

values in Table 2 was .08(.1), .167(.1), .273(.207), .38(.267),
.487(.56), .847(.76), .833(.867), .98(.98), where the power for
the t test is given in parentheses. Again, the difference in
power is largely not signi� cant.
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Table 3. Power Comparison With the F Test as a Function of ‚1 ‚2

Normal Lognormal Gamma

‚1 ‚2 Sample size Level �1 F K–W �1 F K–W �1 F K–W

.2 .2 n1 = n2 = n3 = 15 .05 .087 .060 .026 .067 .047 .046 .093 .060 .053

.1 .4 .253 .193 .106 .180 .127 .173 .167 .087 .060

.2 .5 .313 .260 .140 .247 .113 .200 .233 .093 .100

.5 .5 .300 .260 .240 .293 .107 .220 .246 .093 .146

.7 .5 .420 .360 .346 .393 .200 .333 .287 .140 .113

.2 .2 n1 = n2 = n3 = 30 .01 .053 .047 .046 .073 .027 .066 .047 .000 .020

.1 .4 .207 .147 .080 .153 .073 .106 .067 .020 .060

.2 .5 .207 .180 .160 .240 .093 .140 .127 .033 .026

.5 .5 .307 .273 .300 .287 .067 .246 .113 .060 .053

.7 .5 .447 .380 .373 .413 .160 .400 .227 .120 .106

NOTE: m = 3. The reference distributions are N(0,1), LN(0,1), and gamma(3,1), respectively.

Next we consider the power results in the three-sample
case m = 31 q = 2, comparing the �1 with the F test (F ) and
the Kruskal–Wallis (K–W) tests. In the normal case, x1

N4‚1115, x2 N4‚2115, x3 N401 15; in the lognormal case,
x1 LN4‚1115, x2 LN4‚2115, x3 LN401 15; and in the
gamma case, x1 gamma43+ ‚11 15, x2 gamma43 + ‚2115,
x3 gamma431 15. The hypothesis is now H0 2 Œ1 = Œ2 = Œ3

or H0 2 ‚1 = ‚2 = 0. The power results as a function of ‚11‚2

are given in Table 3, where again each power entry in the
table was obtained from 150 independent runs. Again, the �1

test displays more power than the F test in the lognormal and
gamma cases, although it is not dominated by the F test in
the normal example. Evidently, the nonparametric test has less
power than the �1 test in all the simulated cases.

4. TESTING IN RADAR/RADIOMETER DATA

This section uses space-time colocated independent radar
and radiometer data of rain rate spatially averaged to a
12.5-km resolution, described in detail by Fokianos et al.
(1998). The data consist of 500 radar and 700 radiometer
observations. For illustration purposes, we consider both large
and moderate sample sizes. In the � rst two cases h4x5 = x,
in the third h4x5 = log4x5. Although the testing conclusions
using either h4x5 = x or h4x5 = log4x5 are the same, there is
an indication, as expressed by more pronounced �1 and �2

values, that h4x5 = log4x5 is more suitable, re� ecting the fact
that the data are highly skewed; see Fokianos et al. (1998).

4.1 Large-Sample Results

In this subsection we use h4x5 = x throughout.
Let the radar data with n1 = 500 be the � rst sample. The

radiometer data are now divided into two samples so that
there are three samples, m =3, where the two radiometer sam-
ples are from the same population by construction. The � rst
sample from the radiometer data has n2 = 400 observations
and the remaining n3 = 300 radiometer observations serve
as the “reference sample” from the reference distribution. In
essence, we can think of the data as coming from three dif-
ferent instruments, all measuring rain rate, that may or may
not perform similarly. By construction, the two radiometers
perform equally giving rise to data from the same distribution.

The resulting estimates are O�1 = 0508, O‚1 = ƒ0463, O�2 =
ƒ0113, O‚2 = 0066. The relatively small value of O‚2 indicates

that the reference sample and the second sample most likely
come from the same distribution, which is the case by con-
struction. The matrix è is estimated by

è =

0
BBBBB@

50580 20914 ƒ40852 ƒ10791

20914 50325 ƒ10836 ƒ30130

ƒ40852 ƒ10836 40665 10112

ƒ10791 ƒ30130 10112 10849

1
CCCCCA

0

In the following, we discuss some hypotheses of interest. We
� rst consider H0 2 ‚1 = ‚2 = 0. This hypothesis implies that
all the instruments are alike. By using

H =

³
0 0 1 0

0 0 0 1

´

and c = 401050, �2 in (17) is equal to 78.94 with p value 0 at
2 df. By using (16), �1 = 31072, giving a very small p value at
2 df. Both tests correctly reject, rather strongly, the hypothesis
that all the populations are identical; that is, the instruments
do not perform in the same manner.

Next we test H0 2 ‚2 = 0, meaning that the second and third
samples were drawn from the same distribution. Now we use
H = 40 0 0 15 and get from (17) that the test statistic �2 is
equal to 2.860. The p value, using the chi-squared distribution
with 1 df, is .091. Thus we do not reject the hypothesis, as
should be the case because the second and third populations
are the same by construction. The value of the test statistic �1

in (16), properly modi� ed to account for a single parameter,
is .139 with p value equal to .709, consistent with the result
from (17).

To test the hypothesis that the � rst and third populations
are alike, consider H0 2 ‚1 = 0. We now use H = 40 0 1 05.
The value of the test statistic (17) is �2 = 67088, which rejects
the hypothesis, as it should, giving a p value close to 0, while
from (16), �1 = 80953 with p value .002, consistent with the
previous test.

Next we use the radar data for reference; that is, n3 = 500,
partitioning the radiometer data into two independent samples,
where n1 = 400 and n2 = 300. The maximum likelihood esti-
mates are O�1 = ƒ0555, O‚1 = 0492, O�2 = ƒ0595, O‚2 = 0514.
Note that O‚1 is close to O‚2 since they correspond to identical
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populations. The matrix è is now estimated by

è =

0
BBBBB@

40817 20677 ƒ40289 ƒ30038

20677 50688 ƒ30034 ƒ40721

ƒ40289 ƒ30034 40280 30550

ƒ30038 ƒ40721 30550 40497

1
CCCCCA

0

We again tested the same hypotheses as before, obtaining the
expected results in all cases. For example, the hypothesis H0 2
‚2 = 0, which implies that the second and third populations
are identical, was correctly rejected. Another hypothesis of
interest, in this setting, is H0 2 ‚1 = ‚2. By choosing H =
40 0 1 ƒ 15, the test statistic (17) is equal to .363 (p value =
0546), with 1 df. Therefore we do not reject the hypothesis.
This should be the case since the � rst and second populations
are identical.

4.2 Moderate Sample Results I

The exact same analysis was repeated with h4x5 = x and
m = 3 using much smaller samples.

We � rst sampled n1 = 25 observations from the radar data.
Next we obtained two samples of size n2 = n3 = 25 from the
radiometer data. Again, we � rst keep the second radiome-
ter sample as the “reference sample” from the reference
distribution.

The resulting estimates are O�1 = 10227, O‚1 = ƒ10254, O�2 =
0031, O‚2 = ƒ0017, and

è =

0
BBBBB@

100238 30607 ƒ110067 ƒ20056

30607 70284 ƒ10950 ƒ40143

ƒ110067 ƒ10950 140293 10137

ƒ20056 ƒ40143 10137 20356

1
CCCCCA

0

Again, the relatively small value of O‚2 indicates that the
reference sample and the second sample most likely come
from the same distribution, which is the case by construction.

Testing H0 2 ‚1 = ‚2 = 0, and with H as previously, �2 in
(17), with 2 df, is equal to 8.479, giving a p value of .014.
Also with 2 df, �1 from Equation (16) is equal to 66.794,
giving a very small p value. Again both tests correctly reject
the hypothesis.

In testing H0 2 ‚2 = 0, H = 40 0 0 15, �2 = 0010. The p value,
using the chi-squared distribution with 1 df, is .919. Thus we
do not reject the hypothesis, as should be the case because
the second and third populations are the same by construction.
The value of the test statistic �1 in (16), properly modi� ed to
account for a single parameter, is .281 with p value equal to
.596, consistent with the result from (17).

To test the hypothesis that the � rst and third populations are
alike, H0 2 ‚1 =0, H = 40 0 1 05, �2 = 80257 with p value .004,
and �1 = 130719 with p value .0002, both rejecting correctly
under a single degree of freedom.

With the radar data as the “reference” third distribution, the
estimates are O�1 = ƒ10408, O‚1 = 10659, O�2 = ƒ10488, O‚2 =
10706; and

è =

0
BB@

100502 60799 ƒ120977 ƒ100833
60799 100674 ƒ100639 ƒ120867

ƒ12097 ƒ100639 200025 180729
ƒ10083 ƒ120767 180729 100957

1
CCA 0

Again O‚1 is not far from O‚2 since they correspond to identical
populations. We again tested the same hypotheses as before,
obtaining the expected results in all cases. For example, con-
sider H0 2 ‚1 = ‚2. By choosing H = 40 0 1 ƒ 15, the test
statistic (17) is equal to .064 (p value = .799), with 1 df.
Therefore we do not reject the hypothesis. This should be the
case because the � rst and second populations are identical.

4.3 Moderate Sample Results II

We repeat the analysis in the previous subsection with three
samples of size n1 = n2 = n3 = 25, but this time with h4x5 =
log4x5.

With the � rst sample from the radar and the other two from
the radiometer, we let the second radiometer sample represent
the reference distribution. The resulting estimates are O�1 =
ƒ0709, O‚1 = ƒ10336, O�2 = 0001, O‚2 = ƒ00006; and

è =

0
BBBBB@

120067 30663 ƒ90374 ƒ10906

30660 70328 ƒ10888 ƒ30816

ƒ90374 ƒ10888 100192 0986

ƒ10906 ƒ30816 0986 10988

1
CCCCCA

0

Again O‚2 is relatively small, as it should be coming from a
radiometer sample.

In testing H0 2 ‚1 = ‚2 = 0, �2 = 130749 with p value .001
at 2 df, and �1 = 2002 with p value .00004 also at 2 df, both
rejecting correctly.

In testing H0 2 ‚2 = 0, �2 = 0001, giving a p value of .968 at
1 df. Moreover, �1 = 00092 with a p value of .924, consistent
with the result from (17). Thus both tests correctly do not
reject the hypothesis.

For H0 2 ‚1 = 0, �2 = 13015, giving a p value of .0002, and
�1 = 15022 with p value .0001, consistent with the previous
test. Thus both tests reject correctly.

With the radar data as reference, the estimates are O�1 =
10382, O‚1 = 20212, O�2 = 10415, O‚2 = 20108, and

è =

0
BBBBB@

120067 30663 ƒ90374 ƒ10906

30660 70328 ƒ10888 ƒ30816

ƒ90374 ƒ10888 100192 0986

ƒ10906 ƒ30816 0986 10988

1
CCCCCA

0

Note that O‚1 is close to O‚2 since they correspond to identical
populations. We again tested the same hypotheses as before,
obtaining the expected results in all cases. In particular, in
testing H0 2 ‚1 = ‚2, �2 = 0326 with a p value of .567 at
1 df, echoing the fact that the � rst and second populations are
identical.

5. SUMMARY

We have outlined a method for testing the similarity of m

populations given m independent random samples, where the
� rst q = m ƒ 1 populations deviate from the mth one by an
exponential distortion as in (3). The analysis was illustrated
using radar/radiometer rain-rate data. The same development
goes through for deviations of a more general form including,
for example, gj4x5 = exp4� j + h4‚j1 x55g4x5, j = 11 : : : 1 q,
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with h401 x5 = 0, or even gj4x5 = �4�j + h4‚j1 x55g4x5,
j = 11 : : : 1 q . These and related problems will be investigated
presently.

Finally, we would like to touch upon the following points
and in doing so provide some additional useful references:

1. Under (3) with m = 2 and h4x5 = x, it can be shown that
the score-based test reduces to a test in terms of the statistic
Nx1

ƒ Nx2. But this is precisely the test statistic obtained from the
score-based test derived under the normal assumption. This
shows that tests based on Nx1 ƒ Nx2 are appropriate also for
some nonnormal distributions that give rise to the exponential
tilt (3).

2. Again under (3) with h4x5 6= x, tests based on Nx1
ƒ Nx2,

such as the t test, may not necessarily perform well relative to
tests derived from the pro� le likelihood, such as the �1 test,
as our simulation results indicate.

3. Apparently, (3) provides a semiparametric alternative to
the Cox proportional-hazards model and location-shift mod-
els, with the added advantage that the reference distribution is
estimated.

4. Another advantage of the present approach is that it
provides different tests of similarity or “sameness” of k distri-
butions by using different distortion functions h4x5, an exam-
ple of which we saw in the radar/radiometer example. This
is a generalization of Neyman’s smooth goodness-of-� t test
advocated by Rayner and Best (1989).

5. The choice/estimation of h4x5 can be approached in
several ways. One possibility is to approximate h4x5 by a
polynomial or by B splines adopting some of the methods
of Stone (1990). Another possibility is to employ some type
of kernel estimation applied to the log-ratio of probability
densities. In this regard, Tibshirani and Hastie (1987) and Fan
and Gijbels (1996) used a local likelihood procedure, while
Silverman (1978) considered log-ratio estimation using
nonparametric penalized maximum likelihood estimation. For
skewed geophysical data, h4x5 = log4x5 may be helpful.

6. Similarly to Neyman’s goodness of � t applied in testing
for distribution equality, a wrong choice of h4x5 will most
likely lead to a power loss in testing and to a bias in estimation
problems. Yet, as demonstrated in the real data example, our
procedure can still lead to sensible conclusions in testing.

7. In principle, it does not matter which distribution is taken
as the reference distribution g4x5 because the difference in the
beta-values remains constant; the alphas depend on the betas
and g4x5. However, choosing the distribution that gives the
most reliable data as reference is sensible.

8. The fact that the pro� le likelihood for the � nite-
dimensional parameter in a semiparametric setting behaves as
a parametric likelihood was studied theoretically by Murphy
and van der Vaart (1997).
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APPENDIX: ASYMPTOTIC RESULTS

We prove the asserted asymptotic normality (12). First
de� ne

ï
¡

¡�1

1 : : : 1
¡

¡�q

1
¡

¡‚1

1 : : : 1
¡

¡‚q

0

0

Then it is easy to see that E6ïl4� 1‚57 = 0. To obtain the score
second moments, it is convenient to de� ne �m 1, wm4t5 1,

Ej4t5
Z

h4t5wj4t5dG4t5

varj4t5
Z

h24t5wj4t5dG4t5 ƒ E2
j 4t51

and

A04j1 j 05
Z wj4t5wj 0 4t5dG4t5

1 +
Pq

k=1 �kwk4t5

A14j1 j 05
Z h4t5wj 4t5wj 0 4t5dG4t5

1 +
Pq

k=1 �kwk4t5

A24j1 j 05
Z h24t5wj4t5wj 0 4t5dG4t5

1+
Pq

k=1 �kwk4t5

for j1 j 0 = 11 : : : 1 q. Then, the entries in

V var
1p
n

ïl4� 1 ‚5

are

1
n

var
¡l

¡�j

=
�2

j

1 +
Pq

k=1 �k

6A04j1 j5 ƒ
mX

r=1

�r A
2
04j1 r57

1
n

Cov
¡l

¡�j

1
¡l

¡�j 0
=

�j�j 0

1 +
Pq

k=1 �k

6A04j1 j 05

ƒ
mX

r=1

�r A04j1 r5A04j
01 r57

1
n

Cov
¡l

¡�j

1
¡l

¡‚j

=
�2

j

1 +
Pq

k=1 �k

6A04j1 j5Ej4t5

ƒ
mX

r=1

�r A04j1 r5A14j1 r57

1
n

Cov
¡l

¡�j

1
¡l

¡‚j 0
=

�j�j 0

1 +
Pq

k=1 �k

6A04j1 j 05Ej 0 4t5

ƒ
mX

r=1

�r A04j1 r5A14j
01 r57

1
n

var
¡l

¡‚j

=
�2

j

1 +
Pq

k=1 �k

6ƒA24j1 j5 + 2A14j1 j5Ej4t5

ƒ
mX

r=1

�r A
2
14j1 r57+

�j

1 +
Pq

k=1 �k

varj4t5

1
n

Cov
¡l

¡‚j

1
¡l

¡‚j 0
=

�j�j 0

1 +
Pq

k=1 �k

6ƒA24j1 j 05 + A14j1 j 054Ej4t5

+ Ej 0 4t55 ƒ
mX

r=1

�r A14j1 r5A14j
01 r570
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Next, as n !ˆ,

ƒ 1
n

ïï 0l4� 1‚5 !S1

where S is a 2q 2q matrix with entries corresponding to
j1 j 0 = 11 : : : 1 q,

ƒ 1
n

¡2l

¡�2
j

! �j

1+
Pq

k=1 �k

Z 61+
Pq

k 6=j �kwk4t57wj4t5

1+
Pq

k=1 �kwk4t5
dG4t5

ƒ 1
n

¡2l

¡� j�j 0
!

ƒ�j �j 0

1+
Pq

k=1 �k

Z wj4t5wj 0 4t5

1+
Pq

k=1 �kwk4t5
dG4t5

ƒ 1
n

¡2l

¡� j‚j

! �j

1+
Pq

k=1 �k

Z 61+
Pq

k 6=j �kwk4t57h4t5wj4t5

1+
Pq

k=1 �kwk4t5
dG4t5

ƒ 1
n

¡2l

¡� j‚j 0
!

ƒ�j �j 0

1+
Pq

k=1 �k

Z h4t5wj4t5wj 0 4t5

1+
Pq

k=1 �kwk4t5
dG4t5

ƒ 1
n

¡2l

¡‚2
j

! �j

1+
Pq

k=1 �k

Z 61+
Pq

k 6=j �kwk4t57h
24t5wj4t5

1+
Pq

k=1 �kwk4t5
dG4t5

ƒ 1
n

¡2l

¡‚j‚j 0
!

ƒ�j �j 0

1+
Pq

k=1 �k

Z h24t5wj4t5wj 0 4t5

1+
Pq

k=1 �kwk4t5
dG4t50

The entries are obtained by a repeated application of the factsR
dG4t5 = 1 and

R
wj4t5dG4t5 = 1, j = 11 : : : 1 q. It should

be noted that, due to pro� ling, the matrix S is not the usual
information matrix although it plays a similar role.

Thus, when (3) holds with true parameters � 01‚0, it follows
under regularity conditions that O� 1 O‚ are both consistent and
asymptotically normal (see Sen and Singer 1993, chap. 5),

p
n

³O� ƒ�0

O‚ ƒ‚0

´
) N401è51 (A.1)

where è = Sƒ1VSƒ1.
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