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Suppose we wish to investigate the behavior of a response y over a specified region of

interest by fitting a second-order response surface. Standard ridge analysis provides a way

of following the locus of, for example, a maximum response, moving outwards from the

origin of the predictor variable space. Because this approach does not require one to view

the fitted regression surface as a whole, this important technique may be applied even when

visualization of the surface is difficult in several dimensions. The viewing of a ridge trace

enables practitioners to assess and understand the typically complex interplay between the

input variables as the response improves. Sometimes, we may wish to explore a subspace

defined by a linear restriction on the predictors. This has been discussed only infrequently

in the literature and never in the context of mixture experiments. Here we show how a

modification of ridge regression can be used in a very general way to investigate second-

order mixture surfaces with many ingredients, particularly when the experimental mixture

space is itself limited by further linear equalities in addition to the mixture requirement. In

some cases, it is not necessary to move the ridge origin into the mixture space to achieve

the desired results, and any form of the second-order fitted model, whether of Scheffé type,

Kronecker type, or something in between, can be accommodated.

Key Words: Kronecker model; Mixture model; Projections; Response surfaces; Restrictions

on mixture spaces; Ridge analysis; Scheffé model; Second-order model.

1 Introduction

Ridge analysis was first introduced in the context of general response surface methodology

by A.E. Hoerl (1959, 1962, 1964). It was further investigated by Draper (1963), who proved
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results that Hoerl had suggested without proof, and was then extended by Myers and Carter

(1973) for the so called “Dual Response” (DR) problem. Related work has been done by Del

Castillo, Fan and Semple (1997, 1999) and by Semple (1997). For a wide-ranging discussion,

see R. W. Hoerl (1985).

Only one application of ridge analysis to mixture problems has appeared. Typically,

q nonnegative fractional ingredients x1, x2, . . . , xq must satisfy the mixture restriction

x1 + x2 + · · ·+ xq = 1,

(or some linear restriction that can essentially be reduced to that form). In that one appli-

cation by R.W. Hoerl (1987), ridge analysis was applied by first invoking a transformation

that moved from the q-dimensional origin (0, 0, · · · , 0) to the centroid (1q , ,
1
q , · · · ,

1
q ) of the

(q − 1)-dimensional mixture space. Our ridge paths could also begin from such a centroid

but we shall see that ridge analysis can proceed in a mixture space around any point with-

out preliminary transformation. We shall see further that additional linear equalities in the

mixture ingredients are easily incorporated into a very general method which leads to great

flexibility in applying ridge analysis techniques to mixture problems. When linear inequal-

ities are also involved, we can examine the ridge traces and easily determine if the ridges

pass into and/or out of the regions defined by the inequalities, by checking the coordinate

values of the x’s on the paths. When any ingredient value becomes negative, or exceeds the

applicable inequalities, a path has gone outside the region and is then of no interest unless

it returns.

2 A Motivating Experiment

The pharmaceutical mixture example of Anik and Sukumar (1981) is an excellent example

of a mixture problem which entails additional linear equalities and inequalities on the mix-

ture ingredients and which thus might profit from this ridge analysis. This work was also

motivated by our desire to simplify the application of ridge analysis to mixture problems.

Thanks to the help of the reviewers, the method is now very general in its application.

The Anik and Sukumar (1981) paper involved a study of five ingredients, one of which,

x5, was held constant at 0.10 (10% of the mixture) so that the remaining ingredients,
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x1, x2, x3, and x4 were constrained by the requirement that

x1 + x2 + x3 + x4 = 0.9 . (2.1)

As a reviewer commented, Eq. (2.1) could be renormalized via xi = 0.9ui, so that u1 +

u2 + u3 + u4 = 1. We do not do this, because it introduces a step that is not needed and

would have to be undone in later calculations. (However such a renormalization is usually

needed when constructing diagrams as we shall see later in Section 4.2.) The essence of our

method is that the ridge paths are obtained directly (and more easily so) without any such

additional steps.

Anik and Sukumar wanted to examine various combinations of the four ingredients, to fit

a quadratic model to a response variable y, solubility, and to seek the maximum response.

Each of the four ingredients was restricted to a range within [0, 1] as shown in Table 1.

Hence the authors decided to use an experimental design based on the “extreme vertices”

of the restricted region (see Table 1). This excellent method was first suggested by McLean

and Anderson (1966), and Anik and Sukumar (1981) aimed to show how useful the method

can be. To implement it, one generates the extreme points (or “corners”) of the region and

then selects the design points from (a) vertices, (b) edge (one-dimensional) centroids, (c)

face (two-dimensional) centroids, and so on. The last of these groups is the single point

represented by the overall centroid, calculated by averaging all the vertices. The method has

various subtleties (which we do not describe; see McLean and Anderson, 1966 or Cornell,

1990) due to the fact that the number of extreme vertices (and consequently of the various

centroids) depends on the specific ranges of the x’s, which determine the consequent region

shape. Suffice it to say that Anik and Sukumar (1981) were led to use the specific 14 point

experimental design shown in Table 1.

The experimental design of Anik and Sukumar requires additional explanation to avoid

potential confusion. Figure 1(a) shows the triangular subspace x3 = 0; within it, the other

restrictions create the five-sided figure. The inner triangle and the pentagon in Figure 1(b)

play the same respective roles for the x3 = 0.08 subspace. The outer triangle of Figure 1(b)

is the same triangle as in Figure 1(a), and makes the point that the x3 = 0.08 slice of the four

dimensional simplex is smaller than the x3 = 0 slice. Figure 1(c) shows the two slices super-

imposed as they would be seen in a birds-eye view from the x3 = 0.90 vertex. We further
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Table 1. Experimental Design Used by Anik and Sukumar (1981) Together With the

Lower and Upper Limits Which Define the Mixture Space of Interest, and the

Response Data Obtained From the Experiment

Point no. x1 x2 x3 x4 y

Lower limit 0.10 0.10 0 0.30 −

Upper limit 0.40 0.40 0.08 0.70 −

Vertices

1 0.10 0.10 0 0.70 3.0

2 0.10 0.10 0.08 0.62 7.3

3 0.15 0.40 0 0.35 4.9

4 0.11 0.40 0.08 0.31 8.4

5 0.40 0.15 0 0.35 8.6

6 0.40 0.11 0.08 0.31 12.7

Edge centroids (averages of indicated vertices)

7 (1, 2) 0.10 0.10 0.04 0.66 5.1

8 (5, 6) 0.40 0.13 0.04 0.33 10.8

9 (3, 4) 0.13 0.40 0.04 0.33 6.6

10 (1, 3, 5) 0.216 0.216 0 0.468 4.4

11 (2, 4, 6) 0.203 0.203 0.08 0.414 7.9

12 (4, 6) 0.255 0.255 0.08 0.31 9.4

13 (3, 5) 0.275 0.275 0 0.35 5.8

Overall centroid

14 0.21 0.21 0.04 0.44 6.3

x1 = Polyethylene glycol 400

x2 = Glycerine

x3 = Polysorbate 60

x4 = Water

y = Solubility, mg/ml

Note that x1 + x2 + x3 + x4 = 0.90 for each point.
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note that, for each pentagon, two pairs of vertices are quite close together. Because of

this, Anik and Sukumar (1981, p. 898) averaged these close pairs of points, and called the

resulting averages “vertices” of their region. Thus, in Table 1, “vertex 3,” (0.15, 0.40, 0,

0.35) is the average of true vertices (0.10, 0.40, 0, 0.40) and (0.20, 0.40, 0, 0.30); “vertex

4,” (0.11, 0.40, 0.08, 0.31) is the average of true vertices (0.10, 0.40, 0.08, 0.32) and (0.12,

0.40, 0.08, 0.30); “vertex 5,” (0.40, 0.15, 0, 0.35) is the average of true vertices (0.40, 0.10,

0, 0.40) and (0.40, 0.20, 0, 0.30); and “vertex 6,” (0.40, 0.11, 0.08, 0.31) is the average of

true vertices (0.40, 0.10, 0.08, 0.32) and (0.40, 0.12, 0.08, 0.30).

We shall revisit this example to illustrate how ridge analysis can be applied to mixture

experiments with regions restricted by linear equalities and inequalities in the ingredients.

We follow the approach of the original authors in fitting a second-order (or quadratic)

Scheffé model

y = β1x1+β2x2+β3x3+β4x4+β12x1x2+β13x1x3+β14x1x4+β23x2x3+β24x2x4+β34x3x4+ϵ

(2.2)

via least squares using the data in Table 1; see Scheffé (1958, 1963). A discussion of the

various equivalent second-order model forms that can be fitted in a mixture problem is

given by Prescott, Dean, Draper and Lewis (2000). For purposes of interpretation, it does

not matter which of the several alternative possible models is fitted, because the resulting

response contours will be identical in every case. The ridge paths are exactly the same if

other choices are made; in fact, Anik and Sukumar (1981) fitted a model with a constant

term in it, one of several possibilities. The equation resulting from fitting (2.2) by least

squares is

ŷ = 49.716x1 + 8.414x2 + 29.95x3 + 4.3365x4

−58.671x1x2 − 27.83x1x3 − 74.902x1x4

+10.20x2x3 + 33.81x3x4.

(2.3)

Note that the nonlinear blending term x2x4 is missing in (2.3). When the Scheffé model

is used with the design of Table 1, the resulting X ′X matrix is singular. Regression of

the x2x4 column onto the remaining X-columns produces an exact fit on the columns

x1, x2, x1x3, x1x4 and x2x3. After rearrangement of terms and factorization, the exact fit

equation can be written as

(x1 − x2)(x3 + 2x4 − 0.7) = 0. (2.4)
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For every data point in Table 1, either the first or the second factor of (2.4) is zero. Because

x2x4 enters the surface fit in the last position of the terms mentioned above, we chose to

eliminate it. The contours of the fitted response surface and the associated ridge paths

are not affected by which term is eliminated, but substitution of specific numbers into the

formulas of Section 3 will, of course, change appropriately. Overall, however, the fitted

model is less flexible than it could have been with a better choice of design.

We shall explore the ridges of this surface in two ways, both covered by the theory in

Section 3. First, we seek the ridges that emanate from a selected “focal point” of the space

restricted by (2.1). Later we add boundary restrictions called for by the exploration.

3 Ridge Analysis with Multiple Linear Restrictions, Includ-

ing Applications to Mixture Experiments

3.1 Ridge Analysis; Basic Method

In its original, unrestricted form (Hoerl 1959, 1962, 1964), ridge analysis was used on

a second-order fitted response to obtain a set of paths, going outwards from the origin

(x1, x2, . . . , xq) = (0, 0, . . . , 0) of the factor space. Two of these paths provided the maximum

response (path of steepest ascent) and the minimum response (path of steepest descent) on

spheres of increasing radius R, beginning at the origin. Other paths, where the response

was neither a maximum nor a minimum, but was locally (on the sphere) stationary, could

also be found. These other paths, which might be of interest in practical problems, for

example, if they provide good, but not optimum, response values at lower cost, typically

do not start at the origin, but appear suddenly when certain radii values (which depend on

the specific response surface under study) are attained.

The basic ridge analysis method goes as follows. Suppose the fitted second-order surface

is written as

ŷ = b0 + x′b+ x′Bx (3.1.1)

where

x′ = (x1, x2, . . . , xq), b′ = (b1, b2, . . . , bq),
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and where

B =



b11
1
2b12 . . . 1

2b1q

b22 . . . 1
2b2q

. . .
...

sym bqq


, (3.1.2)

is symmetric. Then (3.1.1) is the matrix format for the second-order fitted equation

ŷ = b0 + b1x1 + b2x2 + . . .+ bqxq + b11x
2
1 + b22x

2
2 + . . .+ bqqx

2
q (3.1.3)

+b12x1x2 + b13x1x3 + . . .+ bq−1,qxq−1xq.

The stationary values of (3.1.5) subject to being on a sphere, centered at the origin,

x′x ≡ x21 + x22 + · · ·+ x2q = R2 (3.1.4)

are obtained by considering the Lagrangian function

F = b0 + x′b+ x′Bx− λ(x′x−R2). (3.1.5)

Differentiating (3.1.5) with respect to x (which can be achieved by differentiating with

respect to x1, x2, . . . , xq in turn and rewriting these equations in matrix form) gives

∂F

∂x
= b+ 2Bx− 2λx. (3.1.6)

Setting (3.1.6) equal to a zero vector leads to

2(B − λI)x = −b. (3.1.7)

We can now select a value for λ. If (B − λI)−1 exists, which will happen as long as λ is

not an eigenvalue of B, we obtain a solution x for a stationary point of ŷ,

x = −1

2
(B − λI)−1b, (3.1.8)

and can then find the radius R, from (3.1.4), associated with the solution x from (3.1.8).

Both R and x are functions of λ.

The theory in Draper (1963) tells us that, if we select values of λ from +∞ downwards,

we shall be on the “maximum ŷ” path. Values of λ from −∞ upwards give us the “minimum

ŷ” path. Intermediate paths lie in the ranges of λ between the eigenvalues of B.

We next discuss how these methods can be widened in general to facilitate, among other

applications, their use in mixture experiments.
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3.2 Ridge Analysis Around a Selected Focus

Ridge analysis can be started from any selected “focal point”, or “focus”, which we denote

here by f. (In mixture experiments, for example, f could be chosen as a central point, perhaps

even the exact centroid, of some pre-defined restricted region in which the experimental runs

were confined.) When f ̸= 0, Eq. (3.1.4), x′x = R2, would be replaced by

(x− f)′(x− f) = R2. (3.2.1)

Note that, if f were an unconstrained mixture region centroid with all coordinates iden-

tical, that is, if f = (1/q, 1/q, . . . , 1/q)′ = (1/q)1′, then

R2 = (x− f)′(x− f) = x′x− 2f ′x+ f ′f

= x′x− 2/q + 1/q

= x′x− 1/q.

(3.2.2)

In this special case, there would be no need to move to the focus at all, as the restriction

is now x′x = R2 + 1/q, essentially a redefinition of the radius value. The physical meaning

of this is that any sphere centered at the origin (0, 0, . . . , 0) eventually expands so that its

intersection with the mixture space is a subsphere centered at the mixture space centroid.

(For a diagram, see Draper and Pukelsheim 1998, p. 135.)

3.3 Adding Linear Restrictions

Suppose we wish to perform ridge analysis subject to a set of linear restrictions of the form

Ax = c (3.3.1)

where A is a given m×q matrix of linearly independent rows, normalized so that the sum of

squares of each row is 1, and c is a given m×1 vector. For example, if we were investigating

a mixture problem with ingredients (x1, x2, . . . , xq) restricted by

1′x ≡ x′1 ≡ x1 + x2 + . . .+ xq = 1, (3.3.2)

we could choose A = (1/q1/2)(1, 1, . . . , 1) and c = 1/q1/2. If this mixture space were further

restricted to the plane

(α1, α2, . . . , αq)x = α, (3.3.3)
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where all α’s were pre-specified and α2
1 + α2

2 + . . .+ α2
q = 1, then m = 2,

A =

 1/q1/2 1/q1/2 . . . 1/q1/2

α1 α2 . . . αq

 , and c =

 1/q1/2

α

 (3.3.4)

and so on. (Of course, any set of non-contradictory, linearly independent linear restrictions

can be adopted. We are not confined only to mixture problems adding to 1, although

mixtures are our emphasis here.) The dimension m of A must be such that m < q in

general. When m = q we are reduced to a single point in the x-space and no paths are

possible, or rather, all paths coalesce into a single point. Note that, because f must lie in

the restricted space, Af = c.

Under conditions (3.2.1) and (3.3.1), we now consider the Lagrangian function

G = b0 + x′b+ x′Bx− λ[(x− f)′(x− f)−R2]− θ′(Ax− c) (3.3.5)

where λ, and the elements (θ1, θ2, . . . , θm) forming θ′ are Lagrangian multipliers. Differen-

tiation with respect to x leads to

∂G

∂x
= b+ 2Bx− 2λ(x− f)−A′θ, (3.3.6)

and setting (3.3.6) equal to a zero vector implies

2(B − λI)x = A′θ − b− 2λf . (3.3.7)

For many given values of λ (the specific choices will be discussed below) we can write a

solution for x as

x =
1

2
(B − λI)−1(A′θ − b− 2λf). (3.3.8)

This x must satisfy (3.3.1), which implies that

c =
1

2
A(B − λI)−1A′θ − 1

2
A(B − λI)−1(b+ 2λf), (3.3.9)

whereupon

θ =

{
A(B − λI)−1A′

}−1 {
2c+A(B − λI)−1(b+ 2λf)

}
. (3.3.10)

This leads us into the following solution sequence:

1. Choose values of λ appropriate for the desired path (to be explained below).

2. Solve (3.3.10) for θ.

3. Obtain x from (3.3.8).
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4. Evaluate R2 as in (3.2.1).

Then the point x will be on the desired path of stationary values and will lie on a sphere

of radius R. The question is now whether the chosen value of λ places us on the maximum

path, the minimum path, or some intermediate path.

3.4 Determining the Ridge Paths Under Linear Restrictions

In the unrestricted ridge analysis described in Section 3.1, the matrix of second derivatives{
∂F

∂xi∂xj

}
= 2(B − λI) (3.4.1)

is key in determining which path is selected. The eigenvalues of B, that is, the values that

result from solving

|B − λI| = 0 (3.4.2)

form the dividing points for the various paths of stationary values. In general, there are

q eigenvalues and 2q paths, see Draper (1963). Those eigenvalues are not appropriate for

the restricted problem, however. What are needed instead are the eigenvalues of a lower

dimension matrix which makes allowance for the linear restrictions.

We recall that, if there are m restrictions, as in (3.3.1), A is a given m× q matrix with

m linearly independent rows of length q, normalized to make the sum of squares of each

row equal to l.

Let T be a (q−m)× q matrix each of whose (q−m) rows is orthogonal to every row of

A, and such that TT ′ = Iq−m. Another way of saying this is that the columns of A′ form

a basis for the restriction space, and those of T ′ form an orthonormal basis for the space

orthogonal to A′. It follows that

TA′ = 0, (of size (q −m)×m)

AT ′ = 0, (of size m× (q −m))

TT ′ = Iq−m.

(3.4.3)

The combined matrix,

Q =

 A

T

 ,

is then a q×q matrix which provides a transformation of the coordinate system (x1, x2, . . . ,

xq) into coordinates z1, z2, . . . , zq, via z = Qx, whereupon x = Q−1z.
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If we partition z′ = (z1, z2, . . . , zm, zm+1, . . . , zq) into z′ = (u′, v′), where u′ = (z1, z2,

. . . , zm) and v′ = (zm+1, . . . , zq),

z =

 u

v

 =

 A

T

x =

 Ax

Tx

 =

 c

Tx

 (3.4.4)

under the restrictions (3.3.1). Consider the inverse of Q. This is of the form

Q−1 =

[
A′(AA′)−1, T ′

]
. (3.4.5)

AA′ is nonsingular because of our assumption below (3.3.1) that the restrictions are linearly

independent. We verify (3.4.5) by writing

QQ−1 =

 A

T

 [
A′(AA′)−1, T ′

]
= Iq (3.4.6)

as a result of conditions (3.4.3). It follows that Q−1Q = I also, since the inverse is unique.

The first quadratic portion of the Lagrangian function (3.3.5) is thus, using x = Q−1z,

with z from (3.4.4) and Q−1 from (3.4.5),

x′Bx = z′(Q−1)′BQ−1z

= [c′,v′]

 (AA′)−1A

T

 B

[
A′(AA′)−1, T ′

]  c

v

 (3.4.7)

= [c′(AA′)−1A+ v′T ]B [A′(AA′)−1c+ T ′v] (3.4.8)

= v′TBT ′v + 2v′TBA′(AA′)−1c+ c′(AA′)−1ABA′(AA′)−1c , (3.4.9)

after reduction. From the result (3.4.9), if we set B = I as a special case and apply (3.4.3),

we obtain for the second quadratic portion of (3.3.5)

λx′x = λv′v + 0+ λc′(AA′)−1c . (3.4.10)

Differentiating the transformed version of (3.3.5) twice with respect to v, noting that con-

stants and terms linear in v drop out, we obtain{
∂G

∂vi∂vj

}
= 2 (TBT ′ − λI), (3.4.11)

in place of (3.4.1).
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Note that the size of this square matrix (3.4.11) is (q−m), not q, because T is (q−m)×q.

We see that, when λ is such that (3.4.11) is positive definite, we have a minimum, while

if (3.4.11) is negative definite, we have a maximum. If (3.4.11) is indefinite, intermediate

stationary values are indicated. In fact, the theory at this point is a complete parallel of

that in Draper (1963). If the eigenvalues of TBT ′ are µ1 ≤ µ2 ≤ . . . ≤ µq−m, arranged in

order with due regard to sign then, subject to the restrictions Ax = c:

(a) Choosing λ > µq−m provides a locus of maximum ŷ as R changes;

(b) Choosing λ < µ1 provides a locus of minimum ŷ as R changes;

(c) Choosing µ1 ≤ λ ≤ µq−m gives intermediate stationary values.

As in the unrestricted case, when λ = µi exactly for i = 1, 2, . . . , q −m,R is infinite. See

Draper, 1963.

Note that we do not need these eigenvalues to obtain the paths, but only to distinguish

between paths. For the loci of maximum ŷ and the minimum ŷ, the eigenvalues are not

necessary at all since choosing λ values decreasing from ∞ gives the path of maximum ŷ,

while using values increasing from −∞ gives the path of minimum ŷ. However, knowing

the eigenvalues helps us in selecting appropriate λ values for intermediate paths.

We now apply these results to the mixture problem described by Anik and Sukumar

(1981).

4 Generalized Ridge Analysis of the Experiment

The foregoing section describes, in a very general context, the calculation details necessary

to find the ridge paths as they stream from a selected focus. The important sequence of

operations for this lies below equation (3.3.10). We now apply this theory to the Anik and

Sukumar (1981) data set. For this, we have q = 4, and from (2.3) and (2.1)

b0 = 0, (4.1)

b =



49.716

8.414

29.95

4.3365


(4.2)
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B =



0 −29.3355 −13.915 −37.451

−29.3355 0 5.1 0

−13.915 5.1 0 16.905

−37.451 0 16.905 0


(4.3)

A = (
1

2
,
1

2
,
1

2
,
1

2
), c = 0.9/2 = 0.45. (4.4)

4.1 The First Set of Ridge Paths

We choose, as the focus f of the ridge system, the centroid of the points 1–6 in Table 1,

namely f = (0.21, 0.21, 0.04, 0.44)′. The distances from f to the six points 1, 2, . . . , 6 of Table

1 are respectively 0.966, 0.763, 0.703, 0.773, 0.703, and 0.804; these values will give some

comparative perspective to the R values in Table 2. The eigenvalues of B are not relevant

here because of the restriction (4.4). Instead, we need the eigenvalues of the matrix TBT ′

in (3.4.11). An appropriate T takes the form

T =


−0.6708204 −0.2236068 0.2236068 0.6708204

0.5 −0.5 −0.5 0.5

−0.2236068 0.6708204 −0.6708204 0.2236068

 . (4.5)

The reasoning behind this calculation is explained in Section 3. The rows of T consist of

the first-, second- and third-order orthogonal polynomials, normalized so that the sum of

the squared elements in each row equals 1. (See, for example, Draper and Smith, 1998, p.

466.) The three rows of T are orthogonal to one another, the sum of their squares equals 1,

and are all orthogonal to 1
21

′ = (12 ,
1
2 ,

1
2 ,

1
2) which is the normalized vector of coefficients of

the x’s in the mixture restriction x1 + x2 + x3 + x4 = 0.90. The three eigenvalues of TBT ′

are (−20.04, 2.52, 46.87) and the radius R becomes infinite when λ takes these eigenvalues.

The ridge path of maximum ŷ (path A) will be given by choosing λ values from ∞ (where

the solution will be x = f , and where R = 0) to 46.87 (where the solution will be x = ∞).

The ridge of minimum ŷ (path F) will be given by choosing λ values from −∞ (where the

solution will be x = f) to −20.04 (where the solution will be x = −∞). Other λ values

between the eigenvalues will deliver four more paths B,C,D, and E of stationary values of

ŷ (see Draper, 1963).

Table 2 shows a selected representative set of values of λ (which we choose initially), of

(x1, x2, x3, x4) on the paths designated, and of the resultant R and ŷ values, derived from
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the calculations given in Section 3. Path A, the maximum ŷ path begins at the selected

focus f , where R = 0 and ŷ = 6.27, and moves quickly (see the x3 values) to the x3 = 0.08

boundary and beyond, while the values of x1, x2 and x4 change only slowly. This clearly

shows the importance of variable x3 and, unless the range of x3 can be extended past the

x3 = 0.08 value, indicates that further exploration of the fitted surface needs to be carried

out on the x3 = 0.08 face of the restricted region.

Figure 2, derived from the A path details in Table 2, shows how the coordinates x1, x2, x3

and x4 and the predicted maximum response value ŷ change versus R. Such a diagram could

be drawn also for any of the ridge paths we provide, and is considered by many scientists to

be the best way to view the ridge results. It enables practitioners to assess and understand

the typically complex interplay between the mixture ingredients as the response improves.

It also permits the addition of a “cost” curve for the ingredients, or of any other curves

measuring selected qualities of the changing mixture. For reasons of space, however, we

provide only this one example, since it duplicates the information in the corresponding

table. We recall that closed form expressions for the dependency of xi and ŷ upon R are

not available. However numerical computer calculations are feasible and these provided the

details for constructing the smooth lines of Figure 2. Alternatively, a satisfactory working

diagram can be obtained by plotting the values given in Table 2.

Intermediate paths B and C have no points of practical interest. The x1 values are

negative from the eigenvalue λ = 46.87 until about λ = 41.5, where the x3 value reaches a

minimum of about x3 = 0.358, well above the x3 upper limit for the experimental region.

The minimum R value of about 0.379 is attained at about λ = 40.

Intermediate paths D and E are also of no practical interest, having negative x1 and x4

values throughout. Their minimum radius lies beyond the range of R shown in Figure 2.

The minimum ŷ path F begins, like path A, at the selected focus f , where λ = −∞, R =

0 and ŷ = 6.27. As might be anticipated from the behavior of path A, path E goes quickly

to the (opposite) x3 = 0 boundary, after which it is of no practical interest because x3 must

be non-negative. We show selected λ values, to a point where the predicted ŷ has turned

negative, in Table 2.
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Table 2. Ridge Paths for the Anik and Sukumar (1981) Data, Applying Only the

Mixture Restriction x1 + x2 + x3 + x4 = 0.9

Path λ x1 x2 x3 x4 R ŷ

A (max) ∞ 0.210 0.210 0.040 0.440 0 6.27

2000 0.209 0.207 0.048 0.436 0.010 6.64

1000 0.208 0.204 0.056 0.432 0.020 7.02

750 0.207 0.202 0.062 0.429 0.026 7.27

500 0.206 0.199 0.072 0.423 0.038 7.75

400 0.205 0.196 0.080 0.419 0.048 8.10

300 0.204 0.191 0.092 0.413 0.062 8.66

250 0.203 0.187 0.102 0.408 0.074 9.10

100 0.201 0.152 0.181 0.366 0.170 12.48

62 0.230 0.107 0.243 0.320 0.259 15.40

50 0.441 0.020 0.244 0.195 0.437 21.94

48 0.920 −0.131 0.168 −0.057 0.940 55.58

B,C,D,E: Do not occur within the experimental region

F (min) −90 0.248 0.273 −0.194 0.573 0.279 −6.26

−100 0.243 0.266 −0.165 0.556 0.244 −4.55

−200 0.224 0.238 −0.052 0.490 0.109 1.69

−436 0.216 0.223 0.000 0.461 0.048 4.32

−500 0.215 0.221 0.005 0.459 0.041 4.58

−700 0.213 0.218 0.016 0.453 0.029 5.08

−900 0.213 0.216 0.021 0.450 0.023 5.35

−∞ 0.210 0.210 0.040 0.440 0.000 6.27
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4.2 The Second Set of Ridge Paths

Because we are interested in maximizing ŷ, we now need to explore the surface on the

x3 = 0.08 plane. (Had we been interested in minimizing ŷ we would have gone to the

x3 = 0 plane instead.)

The theory of Section 3 can again be applied, but now with the addition of the linear

equality x3 = 0.08. This means that Eq. (4.4) is replaced by

A =

 1
2

1
2

1
2

1
2

0 0 1 0

 , c =

 0.45

0.08

 . (4.6)

Repeating the calculations with these new restrictions requires us to use a new T ,

T =

 0.267261 0.534523 0 −0.801784

0.771517 −0.617213 0 −0.154303

 (4.7)

which leads to the eigenvalues of TBT ′ being (−0.49, 45.01). (The two rows of T are

(1, 2, 0,−3) and (5,−4, 0, 1) renormalized to have sum of squares 1.) There are now four

ridge paths which we designate A (maximum ŷ), B,C and D (minimum ŷ). A new focus

needs to be chosen.

The current restricted region is shown in Figure 1(b). The design points 2, 4 and 6 from

Table 1 lie on this pentagon and we choose f = (0.203, 0.203, 0.08, 0.413)′, their centroid.

This point lies at distances R = 0.253, 0.241, 0.241 from points 2, 4, 6 respectively, and these

numbers can be compared with the values of R that we see on the ridge paths shown in Table

3. We recall that x3 = 0.08 throughout, and we show the paths in Figure 3. The maximum

ŷ path crosses the x4 = 0.30 boundary when λ is about 65.95. As in all steepest ascent

studies when a boundary is met, one must now move along this boundary. We postpone

this for the moment to discuss the other three ridge traces. Neither path B nor path C

lies within the restricted region and their details are not given. The minimum ŷ path D

moves downward until x1 is about 0.16 and then turns, crossing the x2 = 0.10 boundary at

roughly this x1 = 0.16 level; see Figure 3.

4.3 The Third Set of Ridge Paths

To move along the boundary x4 = 0.30, we designate a new focus f and a new matrix

T . The end points of the restricted region along the boundary are the corner points
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Table 3. Ridge Paths for the Anik and Sukumar (1981) Data,

Under the Restrictions x3 = 0.08, x1 + x2 + x4 = 0.82.

Path λ x1 x2 x3 x4 R ŷ

A (max) ∞ 0.203 0.203 0.08 0.414 0.000 8.12

1000 0.207 0.203 0.08 0.410 0.005 8.16

500 0.211 0.202 0.08 0.407 0.010 8.21

200 0.225 0.200 0.08 0.395 0.029 8.41

150 0.236 0.197 0.08 0.387 0.042 8.57

125 0.246 0.194 0.08 0.380 0.055 8.74

100 0.265 0.189 0.08 0.366 0.079 9.10

90 0.279 0.184 0.08 0.357 0.097 9.39

80 0.301 0.177 0.08 0.342 0.124 9.90

75 0.317 0.171 0.08 0.332 0.144 10.32

70 0.341 0.162 0.08 0.317 0.173 10.97

66 0.367 0.152 0.08 0.301 0.205 11.80

65.95 0.368 0.152 0.08 0.300 0.206 11.82

60 0.433 0.127 0.08 0.260 0.287 14.31

55 0.549 0.081 0.08 0.190 0.429 20.13

52 0.698 0.021 0.08 0.101 0.613 30.32

B,C: Do not occur within the region x3 = 0.08, x1 + x2 + x4 = 0.82

D (min) −6 0.158 0.028 0.08 0.634 0.286 6.86

−7 0.156 0.058 0.08 0.606 0.245 7.00

−9 0.154 0.098 0.08 0.568 0.194 7.18

−9.15 0.154 0.100 0.08 0.566 0.191 7.19

−10 0.154 0.111 0.08 0.555 0.176 7.23

−20 0.156 0.168 0.08 0.496 0.101 7.51

−30 0.161 0.184 0.08 0.475 0.077 7.62

−40 0.166 0.192 0.08 0.462 0.063 7.69

−50 0.169 0.196 0.08 0.455 0.054 7.73

−70 0.175 0.200 0.08 0.445 0.043 7.80

−100 0.181 0.202 0.08 0.437 0.033 7.86

−500 0.197 0.204 0.08 0.419 0.008 8.05

−1000 0.200 0.204 0.08 0.416 0.004 8.08

−∞ 0.203 0.203 0.08 0.414 0.000 8.12
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(0.40, 0.12, 0.08, 0.30), near design point 6 in Table 1, and (0.12, 0.40, 0.08, 0.30), near design

point 4; see Figure 1. We choose their centroid, namely f = (0.26, 0.26, 0.08, 0.30). T is

now a normalized row vector orthogonal to the rows of A in Ax = c, namely


0.5 0.5 0.5 0.5

0 0 1 0

0 0 0 1





x1

x2

x3

x4


=


0.45

0.08

0.30

 . (4.8)

Necessarily, T = (0.707107,−0.707107, 0, 0), or the vector with signs reversed. The

sole eigenvalue of TBT′ is 29.3355, which is −1
2b12 where b12 is the regression coefficient

associated with x1x2. Only the path A of maximum ŷ (λ > 29.3355) and the path B of

minimum ŷ (λ < 29.3355) exist. On these paths, x3 = 0.08, x4 = 0.30 and so x1+x2 = 0.52.

Thus we can show the paths most simply by quoting only the x1 value, as we have done in

Table 4. Path A is shown only to the point x1 = 0.40 when the first corner point is reached

and we attain the maximum predicted response, ŷ = 12.81, subject to the restrictions. Path

B is shown only to x1 = 0.12 when the second corner point is reached. (It is not, of course,

the minimum region response, which we would find by exploring the x2 = 0.10 boundary,

choosing f = (0.25, 0.10, 0.08, 0.47) and T = (0.707107, 0, 0,−0.707107) or the vector with

signs reversed.) We see that, by a triple application of the ridge analysis technique, we have

come to the predicted maximum response in the restricted region, improving from ŷ = 8.09

in Table 2 to ŷ = 11.82 in Table 3 to ŷ = 12.81 in Table 4.

5 Summary and Discussion

Ridge analysis, due to A.E. Hoerl (1959, 1962, 1964), can be applied to response surfaces,

most usefully those of second-order, to provide a curved direction of steepest ascent for ŷ

in the space of the predictor variables x1, x2, . . . , xq. It is also possible to determine a path

of steepest descent or paths of intermediate stationary values, by finding the stationary

values of the fitted response ŷ on a sphere of radius R, and following the solutions as R

expands. This technique is especially useful on surfaces where q is large, when geometrical

visualization is often difficult. In this paper, the technique is extended to mixture response

surfaces in a very general way. The focus from which the curved paths emanate can be

freely chosen, and any linear equality restrictions, including the usual mixture restriction
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Table 4. Ridge Paths for the Anik and Sukumar (1981) Data,

under the Restrictions x3 = 0.08, x4 = 0.30, x1 + x2 = 0.52.

Path λ x1 R ŷ

A (max) ∞ 0.260 0.000 9.45

1000 0.264 0.006 9.51

500 0.268 0.012 9.58

250 0.278 0.025 9.75

100 0.316 0.079 10.51

90 0.325 0.092 10.72

80 0.338 0.110 11.03

75 0.346 0.122 11.25

70 0.357 0.137 11.53

65 0.371 0.157 11.91

60 0.389 0.182 12.45

57.5 0.400 0.198 12.81

B (min) 1.15 0.120 0.198 8.39

0 0.125 0.190 8.38

−10 0.160 0.142 8.45

−20 0.180 0.113 8.56

−40 0.203 0.081 8.74

−100 0.229 0.043 9.02

−200 0.243 0.024 9.19

−750 0.255 0.007 9.37

−∞ 0.260 0.000 9.45
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x1 + x2 + . . .+ xq = 1, can be incorporated into the analysis. In an illustration using data

from Anik and Sukumar (1981), this technique is applied in three stages to take account of

tightening restrictions on the best path caused by factor space limitations, and to find the

point in that space of maximum predicted response. An advantage of this method is that

there is no need to change the initial x-coordinate system, nor to use pseudo-components,

in any of the resulting calculations.

We now briefly discuss points that arise in connection with this work:

1. The exact choice of focus f is not a crucial feature of the restricted steepest as-

cent/descent procedure we have described. After the first stage in our example, one might

have argued that, since the path of maximum ŷ entered the x3 = 0.08 face of the restricted

region at (0.205, 0.196, 0.08, 0.419), we should start again there. However, steepest ascent

is a very flexible procedure, and a rigid method for choosing f would be inappropriate.

Choosing some central point of the region is always safe, barring pathological examples.

2. The formulas we have given also can be applied to steepest ascent subject to linear

restrictions when the model is a first-order mixture model ŷ = b1x1 + . . . + bqxq. In this

case, b0 = 0,B = 0 in (3.3.5) through (3.3.10). The “eigenvalues of B” are all zero and, by

the choice of f, Af = c. The solution reduces to

x = f + (2λ)−1(I −A′(AA′)−1A)b. (5.1)

The choice of λ ∈ [0,∞] gives the straight line steepest-ascent direction, and λ ∈ [−∞, 0]

gives the steepest-descent direction. Note that, when there are no linear conditions on x,

A = 0 and x− f is proportional to b as required.

3. A reviewer pointed out that a move to a selected focus f could be accompanied by

changing to pseudo-components, if desired. This would involve a preliminary transformation

of the form z = ux− v which might improve conditioning for the design used.

4. In our example, the paths of intermediate stationary values were of no practical

interest; in other examples, they may well be. As a reviewer pointed out, “a secondary

maximum, . . . that would give us near-optimal properties . . . may be in a very distant

location in design space . . . [and] could have other advantages in terms of cost, ease of

operation, safety, etc. [and might improve] additional responses”. We fully agree, but

add that, because of the mixture restrictions, such locations often fall outside permissible

operating conditions. Certainly, these other paths need to be examined in all cases.
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5. A reviewer questioned whether the stage-by-stage following of the optimum ŷ path

to, and along, boundaries of the restricted region necessarily leads to the overall optimum.

As a specific check of the example of Table 4, which gives the maximum ŷ = 12.81 value at

the true vertex (0.40, 0.12, 0.08, 0.30), we calculated the predicted response values at all ten

true vertices of the restricted region. Among these ten ŷ values, the second largest is 12.63

and occurs at the vertex (0.40, 0.10, 0.08, 0.32), the vertex closest to the maximum. More

generally it would be possible to use the methods of this paper on any selected subregion,

including the faces of the bounding polyhedron. In cases where boundaries cut off the

path of the maximum ridge quickly, and where secondary paths begin within the restricted

region, it would be possible for the true restricted maximum to lie on another path. in our

example, there are no secondary paths within the restricted region, so this cannot occur.

6. The contours of Figure 3 are drawn here only to show the paths, and thereby display

what the method achieves. One does not actually need the contours, as examination of

the coordinates in Tables 2, 3 and 4 makes clear. This would be especially important in a

high-dimensional mixture space, when contours could be drawn only in sections.
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Captions for the figures

Figure 1. (a) The triangular subspace x3 = 0 contains the pentagon defined by the restric-

tions on the mixture ingredients. (b) The triangular subspace x3 = 0.08 (inner triangle)

contains the (different) pentagon defined by the restrictions. (c) The two slices are super-

imposed as in a view downwards from the x3 = 0.90 vertex of the mixture space. By joining

corresponding pentagon vertices, one defines the entire restricted region.

Figure 2. The maximum predicted response ŷ and its corresponding positional coor-

dinates (x1, x2, x3, x4) are plotted against R, the distance the point lies from the focus

f = (0.210, 0.210, 0.04, 0.440)′ in the space x1 + x2 + x3 + x4 = 0.90. The numerical details

are given in Table 2.

Figure 3. The fitted contours defined by Eq. (2.3) when x3 = 0.08 are shown in the

subspace x1 + x2 + x4 = 0.82. The ridge paths of maximum ŷ and minimum ŷ on spheres

of radius R emanate from the focus f = (0.203, 0.203, 0.08, 0.413)′; numerical details are in

Table 3. The pentagon is the inner one of Figure 1(b).
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