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In this paper we propose a statistical model for short production runs. We wish to detect 

on line whether the mean of the process has exceeded a prespecified upper threshold value. The 

theoretic development of the model is based on a Bayesian update of a mixture of normal dis­

tributions. Issues of decisions about whether the process is within specification and forecasting 

will be treated. The Kalman filter model is shown to be related to a special case of our model. 

The calculations are illustrated with a clinical chemistry example. Other particularly relevant 

settings include tool wear problems. 

Key Words: Normal Mixtures, Bayesian Statistical Process Control, Kalman Filter, Tool 

Wear. 
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1 Introduction 

A sequence Xi of random variables is observed over time, and as each observation becomes available 

to us we are faced with the question of whether the mean has been crossed an upper threshold 

value. If the values are independent and identically distributed, and if we have a long historical 

series to calibrate the process, then conventional SPC methodologies such as Shewhart or cusum 

charts solve the problem. We however will be concerned with short runs, and will also move away 

from the independence setting. 

There are many proposals for short-run SPC; some are sketched in Wheeler {1992). Bothe 

(1989) and Burr (1989) proposed scaling the quality characteristic by target values. Quesenberry 

(1990) and (1991) also in a purely frequentist way developed the Q-charts, where running process 

estimates of the mean and the variance are used. The Q-charts can be severely affected if assignable 

cause variation is present at the start up. Del Castillo and Montgomery (1992) proposed a control 

chart based upon a first order adaptive Kalman filter model. Wasserman and Sudjianto (1993) 

extended these ideas to a control chart based on the second order dynamic linear model. Wright 

et al. (2001) proposed joint estimation to detect outliers in short run autocorrelated data. Finally 

Woodward and Naylor (1993) addressed the short run problem with a simple Bayesian paradigm. In 

the case where we do not have necessarily short runs and we are not interested in detecting the mean 

drifts on line, Chang and Fricker (1999) proposed use of a CUSUM, while from the Bayesian change 

point methodology Chernoff and Zacks (1964) proposed the use of mixture normal distributions. 

In some circumstances, we need to have a well defined inferential procedure even when we have 

available a single observation, and this leads inevitably to a Bayesian framework. Here, at any 

given time we have available prior information about the mean of the process. As each data point 
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becomes available, through Bayes theorem we get the posterior distribution for the mean and use 

this to draw some inference ( of whether the mean has drifted above the threshold or not). If we 

decide that no 'significant' change has been occurred we use this posterior as prior for the next 

stage. 

2 Statistical Modeling 

At time 0, prior to any process readings, we have a distribution for the parameter of interest: 

where(, a5 are the prior mean and variance, assumed specified. We will use the model that when 

moving from time n - 1 to time n 

{ 

N(0n-I, 
0nl0n-1 rv 

N(0n-I + 8, 

a2) with probability p 

a2) with probability 1 - p 

In other words, the parameter drifts according to a normal random walk, and is also subject to 

occasional shocks. Initially, we assume that a2 , 8 and p are known. The a2 represents the model's 

variability and 8 is the size of a positive jump that occurs with probability 1-p. If 8 = O ( or p = 1) 

then it is a pure random walk with no shocks. 

At each time n of our process we are not able to observe Bn directly, but have a measurement 

Xn with distribution 

Here, r2 (assumed known) represents the variability due to measurement error. 

The accumulated data observed up to time n: x1, x2, ... Xn will be denoted 

Xn = { X1, x2, ... , Xn} 
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At each stage i of our process, once Xi = Xi is available, we can obtain the posterior distribution 

of 0ilXi and draw some inference for the parameter 0i. If the process continues to operate then we 

use the posterior distribution of 0ilXi as a prior distribution for 0i+1 and so on. 

At each stage of the process we have two possible scenarios for 0 (jump or no jump), so the 

posterior distribution of BnlXn is a mixture of 2n distributions. More specifically we have: 

Theorem 1 At time n the posterior distribution of BnlXn is a mixture of 2n Normal distributions. 

All the components have identical variance: 

where Kn= T2/(r2 + a2 + &!_1 ) and a-~_1 is the common posterior variance of the components at 

time n - 1. The 2n Normal components have means given by the formula: 

where Bn = KnBn-1 + (1- Kn)Xn refers to the no jump case at the end of then-th time point and 

f(Ki, o, J, £) is a function depending on Ki, the size of the jump o, the number of previous jumps 

{J = 0, 1, ... , n) and the time points at which they occurred (£ can take as values all the possible 

subsets of the set {1, 2, ... , n} ). The 2n different values off (Ki, o, J, £) are given in Table 1: 

Table 1 about here 

The proof of theorem 1 is given in Appendix 1. 

At time n we can easily show that Bn will be given by: 

Therefore Bn is a convex combination of the prior mean ( and the data points x1, x2, .•. , Xn. The 

coefficients in the convex combination are determined by the constants Ki, {1 ~ i ~ n), which turn 
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out (see the Appendix 1) to satisfy 

T2 
Ki = 

2 
,. 2 , where a;_1 = {1 - Ki-1)r2 

r2 + a + ai-I 

These constants depend only on the values of the variances r2, a2 and the initial prior variance 

a20• First of all we will show that this sequence converges. 

Define c = r2 / a2. Then 

K _ r2 = ca2 _ c _ cp(K 
1

) 
n - r2 + a2 + {1 - Kn-1)r2 ca2 + a2 + {1- Kn-1)ca2 - 1 + {2 - Kn-1)c - n-

where Ki E [O, 1], v'i. 

It is easy to see that the function cp : [O, 1] -+ [O, 1] satisfies a Lipschitz condition. Thus the 

sequence of Kn has a unique fixed point in [O, 1] (Kress {1998)) K* E [O, 1] satisfying cp(K*) = K*. 

A closed-form expression for K* (see Appendix 2) is: 

K*=l+}:__-v 1 +~ 
2c 4c2 c 

The convergence of the sequence of Kn 's to a value K* is of particular interest, because it connects 

our model to the familiar Exponentially Weighted Moving Average {EWMA) technique (Roberts 

{1959)). Following Montgomery {1997) or Montgomery and Mastrangelo (1991), the EWMA is 

defined as: 

zo = µo 

i = 1, 2, ... 

where µo is the starting value, 0 < ,.\ ~ 1 is a constant. 

In our model convergence of Kn 's to K* gives the asymptotic recursion 

Bn = K*Bn-1 + (1 - K*)Xn 
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which is an EWMA. Therefore as n increases On approaches an EWMA and so our model gives an 

EWMA with special start-up and with smoothing parameter an explicit function of the ratio of the 

drift to the measurement variances. 

Turning to the unconditional process mean, we have 

thus we have: 

{ 

N(O, a2) with prob. p } 
Bn = Bn-1 + Un where Un rv 

N(o, a2) with prob. 1 - p 

n 

Bn=Bo+Lui 
i=l 

from which it follows that 

and 

but 

Thus 

n n 

E(Bn) = E(0o) + L E(ui) = ( + L(l - p)o = ( + n(l - p)o 
i=l i=l 

Var(0n) = Var(0o) + Var (tu;) = uo2 + nVar(u;) 

= pa2 + (1 - p)(a2 + 82) - (1- p)2o2 

= pa2 + a2 - pa2 + 82[(1 - p) - (1- p)2] 

= a2 + o2p( 1 - p) 

Var(Bn) = ao2 + n[a2 + 82p(l - p)] 

So we have that as n -+ oo we get E(Bn) -+ oo and Var(Bn) ~ oo. Clearly our model can not 

describe a system that tends to a steady state, and it not suitable for all correlated processes 
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{Tsiamyrtzis (2000)). It is however attractive as a model for tool wear problems in which the wear 

incorporates a random step change as well as drift. 

Of course, in short run processes, the lack of an asymptotic distribution may be academic and 

then the model will be successful to the extent that it reasonably describes actual process readings. 

3 Inference 

3 .1 Action rules 

In problems with random deterioration, the concern at each time point is whether the mean has 

degraded to the point that some corrective action is needed. We will make this specific as the 

decision of whether the parameter of interest Bn has crossed some upper threshold value M. This 

leads to the sequence of decisions between 

{ 

Ho: Bn ~ M} 

H1: Bn > M 

If Ho is not rejected at time n, the process continues to operate, while if it is rejected some corrective 

action is taken. 

In a Bayesian framework we can make this decision using the posterior distribution of BnlXn. 

Once the data Xn is available, calculate the posterior probability Pn = P(Bn ~ MIXn) and accept 

Ho iff Pn ~ c where c is a specified cutoff value. 

A helpful chart can be made by plotting a suitable function of the posterior probabilities Pn -

such as a normal deviate - in time order. This chart functions much like a conventional Shewhart 

chart. 

If we will use the 'generalized O - 1 loss' with 01 and 011 being the costs of type I and type II 
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error respectively then the test of the form: 

accept Ho : 0n 5 M, if P(0n 5 MIXn) > c
1
~b 

and 

reject Ho: 0n 5 M, if P(0n 5 MIXn) < c
1
~b 

is a Bayes rule, or Bayes test (Casella and Berger (1990)). 

We could also implement the decision rule using Bayes factors (Jeffrey (1948)). If we denote 

P(Hilx), i = 0, 1 the posterior probabilities of the hypothesis Hi, i = 0, 1 when the data x were 

observed and P(Hi) denote the prior probabilities of Hi, i = 0, 1 then the Bayes factor, B, is defined 

as the ratio of the posterior odds of Ho to the prior odds of Ho: 

B = P(Holx)/P(H1lx) 
P(Ho)/P(H1) 

Jeffreys (1948) provides a table of cutoff values for B, to be used when we decide about rejecting 

Ho or not. In our study at every time n we have available both the posterior 1r(0nlXn) and the 

prior 1r(8n) which we can use to calculate the Bayes factor B and decide whether the mean has 

been shifted above the upper threshold value M or not. 

3. 2 Forecasting 

Another interesting issue that we will develop is forecasting. More precisely based on the available 

observations Xn-1 we can obtain the predictive distribution of a future observation Xn and use it 

to do forecasting (Geisser (1993)). The predictive distribution of XnlXn-1 is given by: 

where/ (Xnl0n) is the likelihood N(0n, r2) at stage n and 1r(0nlXn_i) is the prior distribution of 0n 

at stage n. Under the original model the form of 1r(0nlXn-d was derived in the proof of Theorem 
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1 (Appendix 1). Using that distribution we can easily show that the predictive distribution of Xn 

given the available data Xn-l is a mixture of 2n Normal components. The distribution function is 

given in Appendix 3. 

4 Relationship of the Model to Kalman Filter 

The Kalman filter method (Kalman 1960) is a visibly somewhat related method with potential use 

in short-run problems. Meinhold and Singpurwalla (1983) described the Kalman filter methodology 

as follows: 

We wish to infer a parameter On at time n of a running process. We are not able to observe Bn 

directly, but observe Yn which is related to 0n by the observation equation: 

where Fn is known and the observation error Vn is assumed N(O, Vn), with known variance Vn. 

The parameter of interest Bn is not constant over time, but is characterized by the system 

equation 

where Gn is known and the error Wn is assumed N(O, Wn), with Wn being known. 

The two error terms Vn and Wn are assumed internally and mutually independent. The major 

assumptions in the Kalman Filter is that the observation error Vt and the system equation error Wt 

are both independently Normally distributed with known variances Vt and Wt respectively. 

Comparing Kalman filter model with our model we observe that they share the observation 

equation but the system equation is different. The Kalman filter does not allow any jumps of the 
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parameter of interest 0n, but does allow the coefficient Gn to differ from 1. In the special case 

where p = I or 8 = 0 and Gn = 1, the two models are the same. 

5 Numerical Example 

We illustrate the methodology with a data set of size 10 (Table 2), kindly provided by Dr Daniel 

Schultz of the Rogasin Institute, which illustrates a common laboratory quality control situation. 

Table 2 about here 

The laboratory performs routine blood chemistry assays on patients. As part of the quality control 

procedures, a weekly measurement is made of the cholesterol level of a control sample. Because of 

sample deterioration with age, the true cholesterol level of the control sample changes drifts over 

time. It is also possible for shocks (such as environmental stresses) to add a jump to the true 

mean. In addition to the variation in the true mean, there is an independent measurement random 

variability. Once the true cholesterol level of the control sample has drifted 'too much', then that 

sample needs to be discarded and replaced with a fresh one. The quality control scheme therefore 

has to check each week's reading to come to a decision whether the control sample has exceeded 

the level indicating the end of its useful life. 

To put this problem within the framework of the current methodology, we need values for 

the model parameters. By a combination of statistical analysis of historical measurements and 

judgment of how large a drift would have to be to necessitate replacing the control sample, we 

arrived at the following values: 

( = 144, ao2 = a2 = 12, r2=4, p = 0.9, 8=4a 
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Finally, we set the upper threshold defining unacceptable deterioration to M = 150mg / dL. Then 

applying the original model to the data we obtained the following posterior probabilities {Table 3): 

Table 3 about here 

For the first eight data points the posterior probabilities suggest confidently that the mean 0i is 

below the upper threshold. At the ninth observation we get an indication that the mean may be 

approaching the threshold. The tenth data point confirms this suggestion. It implies that the 

threshold has been crossed and it is time for a new standard cholesterol sample. 

We investigated the sensitivity of our conclusions to the values of these parameters by repeating 

the calculations while varying the hyperparameters. We can summarize the results of this by noting 

that the conclusions hardly moved if we altered (, ao2, p and 8 but were sensitive to the value 

selected for o-2 and r2. The parameters of the prior at time 0 (( and ao2) have little effect because 

at every stage of the process we are updating our prior using the posterior of the previous stage, 

thus even for very poor choices, the posterior distribution will be affected at the first stage only. 

The probability of not having a jump, p, has also a small effect, as long as it is not getting small 

enough to be almost equal to 0.5. In the context of this problem, we know jumps are rare, so p 

must be well above 0.7. The size of the jump, 8, is not well quantified by historical data, so the 

value chosen was a matter of judgment rather than empirical estimation. We used a multiple of the 

model's standard deviation (a) to be able to discriminate between random variability and jump. 

Using a larger multiple of a would have a very small impact on our analysis. On the other hand the 

posterior probabilities are more sensitive on the choices of the o-2 and r2. If o-2 is large and/or r2 

is small, the results are sensitive to the data while in the opposite situation the prior predominates. 
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6 Concluding Remarks 

We have developed a dynamic model to handle short production runs where our main concern is 

ensuring that the mean stays below an upper threshold. The case of a lower threshold follows 

immediately from symmetry. The use of the Bayesian sequentially updated mixture of normal 

distributions led us to a generalized Kalman filter model (where the model error terms are allowed 

to have jumps). This model has a wide range of applications in quality (new machines, different 

raw materials and tool wear, for example). It is also attractive for such problems as monitoring 

vital signs of patients in intensive care, where we also have short series of measurement, serial 

correlation plausibly modelable by random walks, and upper thresholds for intervention. Apart 

from these short-run scenarios though, this model can be employed at the start up phase of any 

process, where absence of historical data prevents use of the classical charting tools. 
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Appendix 1 

The proof will be given via induction. 

For n = 1 we have: 

{ 

01 l0o r-.J pN(0o, a2) + (1 - p)N(0o + 8, a2) } => 

0o r-.J N((, ao2) 

=> 01 r-.J pN((, a2 + ao2) + (1 - p)N(( + 8, a2 + ao2) 

So after observing X1 = x1 we have: 

01 r-.J pN((, a2 + ao2) +(1- p) N(( + 8, a2 + ao2) 

=> 01IX1 = x1 r-.J a {l)N (r2( + (o-2 + ao2)x1 r2(a2 + o-02) ) 
1 r2+a2+ao2 'r2+a2+ao2 

+a(l) N (r2(( + 8) + (o-2 + ao2)x1, r2(a2 + o-02) ) 
2 

r2 + a2 + ao2 r2 + a2 + ao2 

where o/f> is the weight for the i-th component of the mixture of the Normals, at time j. For this 

first time point we have: 

(1) pm1(x1) 
a 1 = pm1(x1) + (1 - p)m2(x1)' 

where m1 (xi), m2(x2) are the marginal densities of X1 = x1 with respect to the prior densities 

1r1 (01) and 1r2(81) given by: 

If we will call: 

r2 
K1=-----, 

r2 + a2 + ao2 
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then the posterior distribution of 81 IX1 is given by: 

Thus for n = 1 the theorem holds. We will assume that it is true for n - 1, and we will prove it for 

n. We know that: 

BnlBn-1 "' pN(Bn-1, a2) + {1 - p)N(Bn-1 + 8, a2) 

8 Ix (n-1)N{B,. --2 ) 
n-1 n-1 "' a 1 n-1, O"n-1 

(n-l)N(B" K K £ " 2 ) +an n-1 + n-1 · · · 1u, O'n-1 

(n-l)N(B" K £ K K £ " 2 ) +a2n-1 n-1 + n-1° + · · · + n-1 · · · 1u, O'n-1 

Thus the prior distribution of Bn at stage n is given by: 

(n-l)N(B" --2 ) p a 1 n-1, a2 + O'n-1 

(n-1)N(B,. £ --2 ) + P a 2 n-1 + Kn-1u, a2 + O'n-1 

(n-1)N(B" --2 + P an n-1 + Kn-1 · .. K18, a2 + O'n-1) 
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+(1 - p)c/:-l) N(Bn-1 + 8 + Kn-1 ... K18, a2 + a;_i) 

The prior distribution of 0n has 2n terms. The order (from first to last) that these Normal 

components were written is increasing as a function of J (number of jumps) and in the class of 

constant values of J they are written in decreasing order as a function of l (the location that the 

jump(s) occurred) from the most recent to the earliest one. So for example when we have J = 2 we 

will write the {;) Normal components in the following order (from first to last) as functions of£: 

{n,n -1} 

{n, 1} 

{n-1,n - 2} 

{2,1} 

respective mean 

Bn-1 + 8 + Kn-18 

At time n the likelihood is: Xnl0n rv N(Bn, -r2). Then: 

2n 

BnlXn rv I: ci:>Pi(BnlXn) 
i=l 

where Pi(BnlXn) are the 2n posterior Normal components of the mixture. So if we define Kn = 

T2/(T2 + a2 + a-~_1), then\/ i = 1, ... , 2n 

Var[p .. (BnlXn)] = r 2(a2 + a~-
2

1) 2 . ------- = Kn(a2 + O"n-1) = (1 - Kn)T2 
r2+a2+an-l 
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If we call 1ri(0n), i = 1, ... , 2n the 2n Normal components of the prior distribution of Bn then 

E[p·(8 IX )] = r2 E[1ri(8n)] + (cr2 + a-~_1)Xn = K E[1r·(8 )] + (1 - K )x 
i n n 2 + 2 + "'2 n i n n n 

'T CT O"n-1 

J 

0 

Bn-1 + Kn-10 

1 

Bn-1 + 0 +···+Kn-I·· · Kn-m+IO 

m 

Bn-1 +Kn-I ... Kmo + ... + Kn-1 ... KI8 

n Bn-1 + 8 +Kn-IO+ ... + Kn-I• .. Kio 

where 2 ~ m ~ n - 1. Therefore we have shown that: 

Appendix 2 

Since K* is the fixed point of Kn it will satisfy: 

C 
K* = cp(K*) => K* = l + (2 _ K*)c => K* + K*(2 - K*)c = c => 

=> K* + 2cK* - c(K*)2 - c = 0 => c(K*)2 - (1 + 2c)K* + c = 0 (I) 
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which is a quadratic. The discriminant is: 

6. = (1 + 2c )2 - 4c2 = 1 + 4c2 + 4c - 4c2 = 1 + 4c 

Since 6. > 0 (c > 0) the equation (I) has two real roots: 

K* = (1 + 2c) ± ,/IT4c = 1+ ]:_ ± J 1 + ~ 1
,
2 2c 2c 4c2 c 

but given that O ~ Kn ~ 1 V n E N we accept only the root 

* 1 ~1 K =1+-- -+-
2c 4c2 c 

as the unique fixed point of cp(Kn) in [0,1], V c E {O, +oo). 

Appendix 3 

An immediate consequence of the mixture distribution of 0nlXn-l (Appendix 1) is the predictive 

distribution of the next observation Xn from the accumulated history up to instant n - 1. This is: 

(n-l)N(0A 2 2 A2 ) p a 1 n-1, r + a + an-I 

+(1 - p)a(~-l) N(Bn-1 + 8, r2 + a2 + a~_i) 

+{1 - p)a<;-l) N(Bn-1 + 8 + Kn-18, r2 + a2 + a~-1) 

( ) ( n-1) (0A ~ K K r 2 ) + 1 - p an N n-1 + u + n-1... 1u, r2 + a2 + an-l 

(n-1) (0" K r 2 + p a2n-l N n-1 + n-lU + ... + Kn-1 ... K18, r2 + a2 + an-d 
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TABLES 

Table 1: The 2n different values of the function f (Ki, 8, J, £) at time n of the original model 

J f, f (Ki, 8, J, £) 

0 0 0 

{n} Kn8 

{n-1} KnKn-18 

1 

{2} Kn ... K20 

{1} Kn ... K18 

{n,n -1} Kno + KnKn-10 

2 {n, 1} 

{2,1} 

n {1,2, ... ,n} 

Table 2: The 10 consecutive measurements of the cholesterol level (in mg/dL) 

Time 1 2 3 4 5 6 7 8 9 10 

Chol. Level 144 146 148 147 146 147 147 146 149 151 
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Table 3: The posterior probabilities that P(Bi ~ M) at the end of the ith stage 

Stage i 1 2 3 4 5 6 7 8 9 10 

P(Bi ~ M) .999 .993 .919 .948 .983 .962 .956 .984 .812 .397 
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