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This article examines the role of statistics in the age of information technology (IT). It begins by examining
the current state of IT and of the cyberinfrastructure initiative aimed at integrating the technologies into
science, engineering, and education to convert massive amounts of data into useful information. Selected
applications from science and text processing are introduced to provide concrete examples of massive data
sets and the statistical challenges that they pose. The thriving field of machine learning is reviewed as an
example of current achievements driven by computations and IT. Ongoing challenges that we face in the
IT revolution are also highlighted. The paper concludes that for the healthy future of our field, computer
technologies have to be integrated into statistics, and statistical thinking in turn must be integrated into
computer technologies.

1. INTRODUCTION

“Information technology (IT) is a broad subject concerned with technology and
other aspects of managing and processing information, especially in large or-
ganizations. In particular, IT deals with the use of electronic computers and
computer software to convert, store, protect, process, transmit, and retrieve in-
formation” (Wikipedia).

The roots of information technology (IT) can be traced back at
least to the invention in 1946 of the electronic numerical inte-
grator and computer (ENIAC), the first device able to solve a
large range of computing problems. ENIAC weighed 27 tons
and was a very different creature from what we know today as
a computing device: a compact desktop in offices and homes, a
book-sized laptop at airports and cafes, and a tiny hand-held de-
vice like a cell phone, MP3, and iPod. There have also been ma-
jor advances in network and measurement technologies that al-
low us to collect, store, analyze, and transport massive amounts
of data. These data come in many forms: numerical, text, im-
age, video, audio, multimedia, and so on. Images and videos
are generated by optical sensors on satellites, medical scan-
ners such as position emission tomography and magnetic res-
onance imaging; biological imaging tools with the aim of un-
derstanding macroscale, microscale, and nanoscale activities of
cells and molecules; digital sky surveys; security surveillance
cameras; personal digital cameras and videos; and more. Audio
waveform data, such as those created by human speech, radio
broadcasts, movie sound tracks, and concerts, are stored in dig-
ital form on computers. Multimedia data consist of text, image,
and audio all at once and are the norm for TV programs, movie
DVDs, and websites of major newspapers.

The explosion in both the amount and complexity of data
has been enabled by the exponential rate of increase in com-
puting and measurement capabilities. Gordon Earle Moore,
a cofounder of Intel, predicted in 1964 that the number of
macroscale, microscale, and nanoscale components on a chip
would increase annually by a factor of 1.5 or 2. Moore’s law has
been true not only for component density on chips, but also for
memory and storage technology. Developments in optical fiber
technology have brought the internet into our homes and of-
fices, leading to massive movement and retrieval of data across

the networks. Although we may be meeting physical limitations
that mean the end to Moore’s law, advances in computing (such
as parallel, grid, and virtual computing) will ensure that we con-
tinue to be faced with a data deluge for years to come.

In 2003, a National Science Foundation blue-ribbon advisory
panel on cyberinfrastructure noted in its report (Atkins et al.
2003) that “we now have the opportunity and responsibility to
integrate and extend the products of the digital revolution to
serve the next generation of science and engineering research
and education.” The report “Towards 2020 Science” (Emmott
et al. 2005), written by a dozen prominent scientists invited by
Microsoft, concluded in 2005 that “an important development
in science is occurring at the intersection of computer science
and the sciences that has the potential to have a profound impact
on science. It is a leap from the application of computing to sup-
port scientists to do science (i.e., computational science) to the
integration of computer science concepts, tools, and theorems
into the very fabric of science.” This report lists some specific
areas of science: earth’s life-support systems, biology (cell, im-
mune system, brain), the origin of life, global epidemics, revo-
lutionized medicine, and future energy. It is interesting to note
that the types of data in these areas encompass data from large-
scale simulation and computational models, as well as experi-
ments and observations.

Both reports send the same unmistakable message: The IT
revolution has progressed to a tipping point where a cyber-
infrastructure is needed that is well integrated into the very
fabric of science, engineering, and education and this cyberin-
frastructure is used to convert the massive amounts of data into
useful information. According to Wikipedia, cyberinfrastruc-
ture “describes the new research environments that support ad-
vanced data acquisition, data storage, data management, data
integration, data mining, data visualization, and other comput-
ing and information processing services over the Internet. In
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scientific usage, cyberinfrastructure is a technological solution
to the problem of efficiently connecting data, computers, and
people with the goal of enabling derivation of novel scientific
theories and knowledge.” As we can see, the term “data” plays a
central role in this definition of cyberinfrastructure, suggesting
that statistics—the science of dealing with data—has an indis-
pensable role in these new developments. So, it is natural to
ask: What is the role of statistics? Are we prepared to play a
fundamental role in meeting the challenges of the IT age, or
are we content with making incremental changes to our exist-
ing paradigms? It is obvious that for the healthy existence of
our field, the changes and developments within statistics should
be sufficiently fundamental, commensurate with developments
in computer science and IT, to meet the changing environment.

The field of statistics indeed has been undergoing major
changes over the last few decades. There has been consider-
able discussion and introspection within the statistics commu-
nity regarding the challenges and the future of the discipline
(see, e.g., Lindsay, Kettenring, and Siegmund 2004). In this ar-
ticle, we attempt to answer the foregoing questions by review-
ing our achievements and speculating our future endeavors. Ad-
mittedly, the coverage on existing works is selective, and the
speculations are limited by our imagination. Nevertheless, it
is hoped, that some degree of synthesis is achieved and that
the challenges we face are distilled. At a minimum, the article
might stimulate more exchanges in the statistics community as
well as among the different disciplines to help statistics position
itself properly in the future development of cyberinfrastructure.

The rest of the article is organized as follows. Section 2 de-
scribes three areas of science in which massive data sets arise.
A particular project of ours—arctic cloud detection—is cov-
ered in detail and used to suggest a multicomponent framework
for interdisciplinary statistical investigations. Section 3 reviews
machine learning, a frontier in the field of statistics driven by
computation, a key consideration in cyberinfrastructure. Text
processing and sensor networks are the focus of Section 4. The
discussions give a glimpse of new opportunities brought by IT.
Section 5 provides personal views on where exciting statistics
research is likely to occur and why. The article concludes with
a short discussion section.

2. INTERDISCIPLINARY STATISTICAL RESEARCH:
A MULTICOMPONENT ENDEAVOR

Enormous amounts of data are being collected in many
fields of science, providing numerous opportunities in interdis-
ciplinary research for statisticians. Even though subject matter
varies from one field to another, one statistical challenge is com-
mon: how to extract useful information from massive data. This
challenge demands new ways of data management, visualiza-
tion, statistical investigation, and validation. Meeting this chal-
lenge undoubtedly requires the integration of statistics (think-
ing and methodology) into the cyberinfrastructure.

2.1 Tales From Science

2.1.1 Digital Sky Surveys. Data are flooding astronomers
from the next generation of sky surveys such as the 2 Micro
All Sky survey and the Sloan Digital Sky Survey (cf. Welling
and Dearthick 2001; Jacob and Husman 2001). From the SDSS
website (www.sdss.org),

“Simply put, the Sloan Digital Sky Survey (SDSS) is the most ambitious as-
tronomical survey ever undertaken. When completed, it will provide detailed
optical images covering more than a quarter of the sky, and a 3-dimensional
map of about a million galaxies and quasars. As the survey progresses, the data
are released to the scientific community and the general public in annual incre-
ments.”

In a 5-year period, the 2 Micron All Sky Survey and Sloan
Digital Sky Survey produced 550 gigabytes of reduced data and
1 terabyte of cutout images around each detected object. These
volumes surpass humans’ ability to study them in detail, leaving
us to rely on computing power to sift through them in real time.
This real time processing or streaming data analysis must ex-
tract useful information, with the possibility of discarding data
on the fly due to storage limitations. Visualization human inter-
action could be part of this processing, and clustering, classifi-
cation, and multiple testing seem to be useful inference frame-
works within which to address questions raised by these sky
surveys.

2.1.2 Particle Matters. In particle physics, gigantic ex-
periments are undertaken to understand the most elementary
ingredients of matter and their interactions. One such experi-
ment, the Compact Muon Solenoid at CERN in Geneva, gener-
ates about 40 terabytes per second, which must be reduced to
about 10 terabytes per day in real time for subsequent analysis.
This is another example of streaming data. (For more details,
see Knuteson and Padley 2003.)

2.1.3 Arctic Cloud Detection. Arctic cloud detection is a
problem very familiar to us, and we describe it here in detail to
motivate the steps involved in interdisciplinary collaborations.
(See also Speed 2005 for more discussions on interdisciplinary
research.)

Arctic cloud detection falls in the increasingly important
realm of atmospheric science. Much of the remotely sensed
observation data in atmospheric science are publicly available
and provide a good resource for statistical research (Braver-
man et al. 2006). Data are also generated by large-scale com-
putational models, such as Mesoscale Model version 5, a
joint effort of the National Center for Atmospheric Research
(NCAR) and Penn State University (Berk et al. 2002), and
the Weather Research and Forecast Model (http://www.wrf-
model.org/index.php), a joint effort of five agencies, includ-
ing NCAR. Both models use atmospheric observations as ini-
tial values and solve partial differential equations regarding
physical thermodynamic and microphysical processes on a
three-dimensional grid. Complex computational and simulation
models are also common in many other areas, including mete-
orology, wildfire control, transportation planning, and immune
system function, as evident in the workshop on this topic (Berk
et al. 2002). There are also important issues related to model
validation, prediction, and other topics. (See Berk et al. 2002
for a discussion of these topics.)

Shi, Yu, Clothiaux, and Braverman (2006b) dealt with the
arctic cloud detection problem. This investigation was moti-
vated by the fact that “global climate models predict that the
strongest dependence of surface temperatures on increasing at-
mospheric carbon dioxide levels will occur in the Arctic, and
this regional temperature increment can lead to global temper-
ature increase. A systematic study of this relationship requires
accurate global scale measurements, especially the cloud cover-
age, in the Arctic regions. Ascertaining the properties of clouds
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in the Arctic is a challenging problem, because liquid and ice
water cloud particles often have similar properties to the snow
and ice particles that compose snow- and ice-covered surfaces.
As a result, the amount of visible and infrared electromagnetic
radiation emanating from clouds and snow- and ice-covered
surfaces is often similar, which leads to problems in the detec-
tion of clouds over these surface types. Without accurate char-
acterization of clouds over the Arctic we will not be able to
assess their impact on the flow of solar and terrestrial electro-
magnetic radiation through the Arctic atmosphere and we will
not be able to ascertain whether they are changing in ways that
enhance or ameliorate future warming in the Arctic” (Shi et al.
2006b).

The Multiangle imaging spectroradiometer (MISR) is a sen-
sor aboard NASA’s EOS satellite Terra launched in 1999. MISR
takes novel electromagnetic radiation measurements at nine dif-
ferent viewing angles at wavelengths (red, green, blue, and
near-infrared) collected initially at 275 × 275 m resolution
(leading to about 1 million pixels per image). Due to the high
data rate, all other bands except the red are aggregated to the
coarser 1.1 × 1.1 km resolution before transmission to the base
station on Earth.

It was known to the MISR team that the MISR operational
Arctic detection algorithms had not worked very well in the
Arctic (or the polar regions). We were invited to work on this
problem by Dr. Braverman from JPL and later were fortunated
to have an atmospheric scientist Eugene Clothiaux join us. Our
goal in this project was to provide better cloud labeling for
each pixel based on MISR’s red band nine-viewing angle data.
(Other bands have a coarser resolution and do not seem to offer
more information for the cloud label.) For MISR operational
purposes, we would like to have an online algorithm that out-
puts a label while data come in from the MISR sensor. The first
step in obtaining data from NASA data center turned out to be
lengthy (more than 3 months). The data format could not be
read directly into Matlab at that time, so that we borrowed a
special program from the MISR team to convert the data into
a suitable form to allow Matlab. Because the data volume was
too large to allow Matlab to carry out computations in a timely
manner, we programmed a graphical user interface just to ob-
tain some very simple summary statistics. Thanks to the ad-
vancing computer technology, stereo-visualization of MISR im-
ages is now available through the Leica photogrammetry suite
(LPS) by Leica Geosystems (www.leica-geosystems.com), with
a customized interface for MISR data. This provides the nec-
essary means to obtain validation data from experts to estimate
the cloud heights, the next goal of our project.

The MISR red-band data is nine-dimensional per pixel cor-
responding to nine angles, and there are about three million
pixels per image block (which consists of three original im-
ages). The MISR operational algorithm is called stereo-derived
cloud mask (SDCM), which uses the red-band data to first re-
trieve cloud height based on matching of clouds in images of
different angles. The cloud mask, or estimated cloud-or-not la-
bel, is obtained by thresholding the cloud height based on the
terrain height. The matching step is computationally expensive
and error-prone in the polar regions.

Our first breakthrough came 6 months after we embarked
on the project. We realized that we could look for “snow/ice”

pixels, bypassing the error-prone cloud height retrieval under-
lying the MISR operational algorithm. The next 3 years wit-
nessed our interactions with the MISR team: presentations at
MISR science meetings, e-mail exchanges, and visits. As a re-
sult, a simple and effective cloud detection algorithm called en-
hanced linear matching clustering (ELCMC) (Shi et al. 2006b)
has been devised and tested. The cornerstone of our algorithm is
three physically meaningful features from the MISR red-band
measurements. We then fused the MISR–ELCMC labels with
MODIS cloud labels (MODIS is another sensor on Terra that
is hyperspectral but one angle) to get the training data to apply
quadratic discriminant analysis (QDA) for a probability label
of a pixel (Shi, Clothiaux, Yu, Braverman, and Groff 2006a).
When compared with the best “ground truth” data (expert la-
bels), our algorithm gives an average of 94% accuracy on la-
beled pixels of 60 blocks of data of millions of pixels (whereas
MISR–SDCM gave only 80%). Moreover, our algorithm is able
to give a label for every pixel, whereas SDCM has a label for
only 27% of the pixels. Finally, it is noteworthy that two expert
labels typically differ by about 5%, so our method is basically
reproducing expert labels automatically.

2.2 A Multicomponent Framework for
Interdisciplinary Research

The cloud detection experience reveals several considera-
tions that arise in interdisciplinary research involving large
amounts of data:

1. Access to good scientific or subject problems and exper-
tise

2. Collection and management of large data sets (including
effective transmission and storage and possibly data re-
duction or feature selection)

3. EDA (visualization and descriptive statistics and possibly
also data reduction or feature selection)

4. Processing mode: offline or online (streaming data)
5. Formal modeling with computation and accuracy consid-

erations (estimation and uncertainty assessment)
6. Data fusion from various sources
7. Validation using information from outside statistics (quan-

titative test data or qualitative validation based on subject
matter).

The first step could be the most challenging for mathemat-
ically trained people. Good problems rarely fall from the sky.
Finding them takes open-mindedness, interpersonal skills, and
good luck, and solving them requires teamwork. Yet not all col-
laborations, as not all relationships, end well. We feel blessed
to have assembled an excellent multidisciplinary team for the
cloud problem.

Another example of successful multidisciplinary collabora-
tion that we should mention is the probabilistic weather fore-
casting project at the University of Washington with a mixed
team of statisticians (Adrian Raftery and Tilmann Gneiting)
and meterologists (Susan Joslyn and Earl Hunt) (Ban, Andrew,
Brown, and Changnon 2006). In particular, it is worth noting
their use of cognitive science to decide on how to best display
uncertainty information.
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3. DRIVEN BY COMPUTATION: MACHINE LEARNING

Problems from fields of science were the driving force be-
hind paradigm developments in Statistics. In 1922 Fisher pub-
lished his foundational work (Fisher 1922). As a scientist him-
self working on problems from genetics and agriculture, Fisher
identified three “types” of statistical investigation: (1) problems
of specification; (2) problems of estimation, and (3) problems
of distribution. Fisher then builds a mathematical framework
based on the assumption that data are random samples from an
underlying population. Consequently, he relies on the available
mathematical tools, probability theory and calculus, to define
the concepts of consistency and efficiency and prove results
about them. Comparing Fisher’s list with ours described ear-
lier, it is easy to see that the differences come from the impact
of computer technology broadly and the consideration of com-
putation narrowly.

Machine learning is at the frontier of statistics because of its
serious utilization of computation in statistical inference. In a
most interesting and thought-provoking work, Breiman (2001)
called it algorithmic modeling and argued that we have to aim
at solving real-data problems and consider more diverse tools
often driven by computation than those dependent on data mod-
els.

Retrospectively, we might view the development of compu-
tation in statistics in three phases. The first phase was precom-
puter, where we depended on closed-form solutions. The sec-
ond phase used computers, but not in an integrated manner; we
would design a statistical method and then worry about how
to compute it later. Frequently calling a numerical optimization
routine was the solution, and we relied on the routine to deter-
mine how numerical convergence would be achieved; that is,
convergence parameters were tuned for numerical reasons, and
the optimization routine was used as a black box by statisti-
cians. The third phase is the IT phase, where the data volume
is so gigantic that procedures designed without computational
considerations might not be implementable. This is also the cy-
berinfrastructure phase. Machine learning methods and Markov
chain Monte Carlo (MCMC) algorithms are examples of ap-
proaches that intrinsically integrate computation.

3.1 The Loss Function Approach

Two machine learning methodologies stand out: boosting
(Freund and Schapire 1997; Hastie, Tibshirani, and Freeman
2001) and support vector machines (SVM) (Scholkopf and
Smola 2002). These both have impressive empirical perfor-
mance on data sets that could have very high dimensions in
terms of sample size and/or the number of predictors. Recently
much theoretical understanding also has been obtained.

The current view of boosting is that it fits an additive model
through gradient descent (or its variant) to minimize an objec-
tive or loss function. It is stopped early by monitoring the gener-
alization or prediction error of the fitted model either estimated
by cross-validation or assessed over a proper test set. That is,
minimization of the loss function is a “pretense”; we are re-
ally interested in the solutions along the way to the minimum,
not the minimum itself, and are prepared to stop early. In this
way, the numerical convergence is not important at all, but the

prediction performance is. SVM is based on a penalized opti-
mization of a hinge loss function and computation is also the
main focus through the “kernel trick.” An implicit reproducing
Hilbert space is induced by a kernel function, and a linear model
is fitted in this space. However, all of the computation is done
conveniently through the kernel function.

The machine learning approach based on minimizing a loss
function can be viewed as a natural extension of the maximum
likelihood approach where the loss function is the negated log-
likelihood function. The penalized version is an extension of the
maximum a posteriori (MAP) approach in Bayesian inference.
What is new is the liberation from the negated log-likelihood
function to a general loss function, in a way reminiscent of M-
estimation. The motivation is not the same. In M-estimation,
the goal is to obtain robust estimators in a parametric setting. In
loss function machine learning, the goal is to have computation-
ally feasible loss functions (often convex) to optimize over large
data sets. Because robustness also can be desirable in the ma-
chine learning context, we now see some of the convex Huber
functions being integrated into the machine learning literature.

This loss-function machine learning approach has been very
successful in building up models for prediction. The measure
of uncertainty has been based on perturbing the data in one way
or another (permutation, resampling, and cross-validation). But
a fundamental assumption to justify these perturbations to the
original data is the iid assumption underlying most of the cur-
rent machine learning methods.

3.2 Graphical Models

Graphical models represent another important development
in statistics and machine learning. These models are widely
used in the engineering and science communities. (See Lau-
ritzen 1996 for a systematic treatment and Jordan 2004 for a
recent review from the algorithmic stand point and graphical
model applications.) Graphical models are effective in dealing
with intricate dependencies and structures in the thousands or
more variables present in today’s large data sets. Examples in-
clude spatiotemporal modeling of temperature and precipitation
in atmospheric science, image processing in the multiresolu-
tion framework of wavelets, gene network discovery based on
gene expression and other modes of data, hidden Markov mod-
els in speech recognition, hierarchical models in information
retrieval, and error-correction codes in communication. Obvi-
ously, models for dependent structures existed long before the
formalism of graphical models that use the graph representa-
tion with variables as nodes so that general algorithms can be
devised to compute marginal and conditional probabilities of
interest.

One popular inference tool in graphical models is sampling
algorithms, of which MCMC is the most prominent. If the
Markov chain converges, then the MCMC method yields an es-
timate of the posterior distribution that provides an uncertainty
measure. The design of an MCMC scheme to ensure a good
mixing speed or convergence must be taken into account when
laying out the distributions/conditional distributions for such a
model. This is another example of third-generation computa-
tion. For many graphical models of high dimension, which are
increasingly common, MCMC methods are more easily trapped
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in local modes of a posterior distribution, and convergence is
difficult to guarantee. Adaptive sampling algorithms are more
effective in these situations. (See Liu 2003 for MCMC and other
sampling methods.)

On the other hand, the maximum likelihood principle turns a
graphical model inference problem into an optimization prob-
lem. When the graphical model corresponds to a tree graph,
we could use efficient message passing algorithms (or junc-
tion trees) for exact ML parameter estimation. This algorithm is
very efficient when only local dependence exists in the graph-
ical model and is very expensive otherwise (when a general
graphical model gets embedded in a tree structure on an en-
larged space). In general, the optimization function from the
log-likelihood often is not convex, so that direct optimization
is difficult. Searching for approximate loss functions that are
more computationally feasible has been a focus of current re-
search (cf. Yedidia, Freeman, and Weiss 2001; Wainwright and
Jordan 2005). In particular, Wainwright (2006a) showed that
for a specific graphical (mixture) model, computationally ef-
ficient algorithms also can have estimation advantages, as we
have seen in the case of boosting and other methods discussed
earlier.

Obtaining uncertainty measures through data perturbation is
much harder than in the iid case, however. Parametric bootstrap
seems to be a reasonable solution, but theoretical studies are
needed to validate this approach, especially because optimizing
an approximate loss function may lead to inconsistent estimates
(cf. Wainwright 2006a).

3.3 Incorporating Auxiliary Information

For many massive data sets, the number p of predictors is
much larger than the sample size n—the so-called “p � n”
phenomenon. Furthermore, the cost of obtaining labeling or re-
sponse information can be high (as in website classification).
Therefore, using auxiliary information in the unlabeled data
or the predictors is crucial for implicit regularization and in-
creased well-posedness of our statistical inference problem.
Semisupervised learning has emerged to incorporate classifi-
cation information in the unlabeled data. Intuitively, if the pre-
dictor distribution is multimodal, then knowing the valleys of
this distribution will help find the classification boundary if the
classification boundary coincides with some of the valleys; oth-
erwise, not. (For more information, see Chapelle, Scholkopf,
and Zien 2006.)

In the loss function optimization approach of machine learn-
ing (Sec. 3.1.2), information on groupings of predictors has
recently been built into the penalized loss function approach
(see Yuan and Lin 2006; Kim, Kim, and Kim 2006; Zou and
Hastie 2005). Zhao, Guilherme, and Yu (2006) proposed a gen-
eral composite absolute penalty (CAP) framework to include
the grouping structure and at the same time extend to the hier-
archical structure among predictors. The CAP framework can
facilitate group selection and enforce selection orders of pre-
dictors.

3.4 Sparsity and Interpretability

Interpretability of a statistical model is always desirable in
any investigation, and it is indispensable for model building
in science. One computationally efficient means of obtaining
sparsity or interpretable models is through Lasso or the L1-
penalized least squares (Chen and Donoho 1994; Tibshirani
1996). Fast algorithms to produce the whole Lasso path are
known (Osborne, Presnell, and Turlach 2000; Efron, Hastie,
and Tibshirani 2004). Moreover, connections between Lasso
and L2Boosting are observed and understood (Efron et al. 2004;
Zhao and Yu 2004) and provide understanding into the spar-
sity property of the boosting estimates. Sparsity is also a well-
known principle in low-level vision, as discussed by Wu, Li,
Liu, and Zhu (2007). To capture sparsity of variables in a
nonparametric setting, Rodeo (Laffterty and Wasserman 2005)
combines boosting (or gradient descent) with kernel estimation
to build sparse nonparametric models.

Because of its usefulness in practice, Lasso also has been
the focus of much recent theoretical research in statistics (i.e.,
machine learning) and applied mathematics (Chen and Donoho
1994; Donoho 2004; Tropp 2004; Candes and Tao 2005; Mein-
shausen and Bühlmann 2006; Zhao and Yu 2006; Wainwright
2006b; Zou 2006; Greenshtein and Ritov 2004; Vander Geer
2006; Meinshausen and Yu 2006; Zhang and Huang 2006).
Lasso is attractive because the L1 penalty has a dual role: It si-
multaneously regularizes prediction and selects variables. What
emerges from these studies is an incoherence or irrepresentable
condition required for Lasso to select the correct variables if
they exist and are sparse. This condition asks for the “irrel-
evant” variables to not be too correlated with the relevant or
correct variables in the sparse model. These results also hold
for the case of p � n, which has emerged as a valuable as-
ymptotic setup for deriving analytical results relevant to high-
dimensional data. Our recent work (Meinshausen and Yu 2006)
indicates that when the irrepresentable condition is violated,
Lasso still behaves sensibly in the sense that the Lasso estimates
keep the order of the original coefficients with high probabil-
ity, and the number of nonzero Lasso estimates cannot be too
much larger than the nonzero “true” coefficients. This results
hold in the p � n case, and the sparsity assumption for the true
model can be lq for some q ∈ [0,1], suggesting the robustness
of sparse model estimation through Lasso relative to the depar-
ture from the l0 assumption that has been imposed convention-
ally in previous work.

All of the four aforementioned areas require some necessary
eigenanalysis or convex optimization. It is of great interest to
investigate parallel computation to mitigate the high demand
on computation for large n or large p cases. However, as argued
in Section 5.5, an “imprecise” parallel computation of eigen-
analysis and convex optimization might be sufficient and actu-
ally may improve the statistical accuracy of the fitted models in
terms of such tasks as parameter estimation and prediction.

4. NEW OPPORTUNITIES

Advances in cyberinfrastructure have helped energize some
scientific disciplines as well as form new ones. In this section
we describe two such fields: text processing (in detail) and sen-
sor networks (briefly).
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4.1 Text Processing

Texts are the data for information retrieval (e.g., web search),
information extraction (e.g., title extraction from documents),
natural language processing (e.g., machine translation), and
question answering (e.g., “what is the distance between Berke-
ley and San Francisco?”). Research in text processing is being
done mostly outside the traditional statistics community in such
areas as signal processing, machine learning, and artificial in-
telligence. However, statisticians are getting involved, as illus-
trated by Genkin, Lewis, and Madigan (2007) in this special
issue.

4.1.1 Information Retrieval. Information retrieval (IR) is
the science and practice of indexing and searching data, espe-
cially in text or other unstructured forms. A typical IR task is
searching for an image with horses in an image database, or
searching for a document with a specific name on a computer.
The volume of data is daunting, and the data structure is not
traditional for statisticians.

4.1.2 Web Search. We all rely on web search for seeking
information on almost anything and everything. Searches for
articles on a topic, documents with specific titles, show times
and locations of a particular movie, mortgage rates, e-mail ad-
dresses and telephone numbers of colleagues are just a few ex-
amples of web searches. Web search is the hottest topic in IR,
but its scale is gigantic and requires a huge amount of compu-
tation. First, the target of web search is moving; the contents
of websites change within 1 week for 30–40% of the web (Fet-
terly, Manasse, Najork, and Wiener 2004). A crawler is the tool
that a search engine uses to collect websites into its database
to answer queries. Because the web content is interlinked, very
clumpy, and very diverse, random sampling to crawl cannot be
easily carried out. Thus the crawling results, or search results
for given queries, might be biased. Worse yet, the content of a
website can include more than just text; images and videos, as
well as interactive content, are common. Web data are highly
unstructured, and its processing or data reduction/feature ex-
traction is very challenging. (See Henzinger 2003 and Hen-
zinger, Motwani, and Silverstein 2003 for more details on data
collection and algorithm issues related to web search.)

Based on the websites collected in a database by a crawler,
when a query is entered, the relevant websites are found and
ranked. This fuels a very active research area in machine learn-
ing, ranking function estimation. A ranking function in web
search usually depends on weighting the content of websites
and links among the sites, as in the PageRank algorithm used
by Google (Brin and Page 1998). When a weighting scheme
is open to the public, however, opportunities arise for the so-
called “search engine optimizers” (SEOs) to mislead the search
engine to irrelevant websites of an SEO’s customers. Therefore,
search engines have to outwit SEOs in their search and ranking
strategies, while also dealing with the fast-changing and grow-
ing world of websites.

4.1.3 Information Extraction. Information extraction (IE)
attempts to do more than IR. Its goal is to extract useful facts
for users in electronic documents (in most natural languages);
that is, it aims to use text as a demonstration of understanding.
IE had already existed early in natural language processing, but
its potential is boosted dramatically by the IT revolution. For

example, Lloyds of London, a shipping company, has been per-
forming an IE task with human analysts for hundreds of years.
The company wants to know all ship-sinking incidents around
the world and put the information in a database. The IE ques-
tion in the IT age is whether we can replace human analysts by
computer algorithms automated to collect this information from
data such as newspapers, web broadcasts, and government doc-
uments, possibly in different languages.

4.1.4 Question Answering. Question answering (QA)
takes open-domain questions and searches over a collection of
documents to find concise answers to the questions. It takes IR
and IE further to deal with natural language sentence queries
and return answers that need to be precise. Current QA systems
can answer simple questions about facts like the one about the
distance between San Francisco and Berkeley, but have dif-
ficulty answering complex questions requiring reasoning or
analysis, such as determining the differences between a private
university and a public university.

The data collection issue is present in information retrieval
(web search), information extraction, and question answering,
all of which rely on various databases. The most interesting
is web search, in which web crawling is data collection. Web
crawling is a difficult but exciting area for statisticians. Be-
cause of the dynamic nature of the web, new research might
be called for in experimental design on how and when to se-
lect websites to crawl and what content and how much to take
to store. Text data sets are often huge; for example, the sample
size was 36 million and the dimension of features was 860,000
in the study of Gao, Suzuki, and Yu (2006). Transmitting and
storing such data nontrivial. Often sending media such as DVDs
through postal mail is the best route. Visualization also can be
very useful, but cannot be readily done at this time.

Most of the time texts need to be represented by numeric
forms before further actions. Programming skills are needed to
process these text data, and statistical thinking in natural lan-
guage processing is needed to keep the key information in the
numeric form (or forming the feature vector) for downstream
comparisons between data units. In addition, statistical model-
ing is often used to relate the feature vector to the goal of the
task through a loss function formulation (Collins 2000).

Streaming data and data fusion are also issues of great in-
terest. Collecting data online from a particular user for in-
putting Chinese or Japanese characters by typing in phonetic
strings (Gao, Suzuki, and Wen 2002) would require streaming
data algorithms. Fusing information across languages would be
useful for Lloyds of London. For a web search, certainly dif-
ferent modes of data (e.g., text, image, audio) at a webpage
should be integrated to form the feature vector for the web-
page. Search engines like Google use these multimode data
(e.g., local.google.com).

Some resources to help readers follow up on these top-
ics beyond this article are as follows. For information re-
trieval, information extraction, and natural language process-
ing, see Manning and Schütze (1999), Jurafsky and Martin
(2000), and Manning, Raghavan, and Schütze (2007). For in-
formation retrieval and question answering, read TREC pub-
lications at http://trec.nist.gov/pubs.html. For current develop-
ments in these areas, see websites of the following conferences:
StatNLP: Association for Computational Linguistics (ACL),
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North American ACL (NAACL), Empirical methods for NLP
(EMNLP), European ACL (EACL), ICASSP, ICSLP, SIGIR,
and WWW, and http://trec.nist.gov/pubs.html.

4.2 Sensor Networks

Sensor networks are self-networked small devices engi-
neered to collaborate with one another and to collect infor-
mation concerning the environment around them. Their flex-
ibility greatly extends our ability to monitor and control the
physical environment from remote locations. Their applications
range from seismic, natural environmental monitoring to indus-
trial quality control and to military uses. The primary func-
tions of the sensors are data collection, communication (data
transmission), and, to a much lesser extent, computation. But
the sensors are constrained by the battery power. So far, sen-
sor network research has been dominated by researchers from
computer science and electrical engineering, but nonetheless it
provides an ideal platform from which to integrate statistical
analysis with computation, data compression, and transmission
because the overriding power constraint forces us to consider
all of the players in the same framework to maximize the util-
ity of the limited battery energy. It would be interesting to try
to devise a framework that encompasses components 2 (trans-
mission and compression) and 4 (formal modeling) to answer
optimality questions. Distributed algorithms are also very de-
sirable because data transmission among the sensors is expen-
sive. For up-to-date information on sensor networks, interested
readers can follow research presented each year at the Infor-
mation Processing in Sensor Networks (IPSN) series website:
(http://www.cse.wustl.edu/lu/ipsn07.html).

5. LOOKING AHEAD

Atmospheric science, text processing, and sensor networks
provide windows into the spectrum of opportunities offered by
the IT revolution. In this section we examine statistical issues
encountered in both new and old fields flooded with data and
that have yet to be addressed adequately by the statistics com-
munity. We begin with a brief overview on the distributed trend
of computing, and then offer some personal (possibly ignorant)
views on how massive data and this trend might inspire new
core research directions in statistics.

5.1 Parallelism or Distributed (Grid) Computing

As evident from the NSF report (Atkins et al. 2003), paral-
lelism is now being used to increase the power of computation
and storage capacity. Within a computer, multiple chips form
parallel processing units, parallel or clustered high-speed com-
puters are connected to further increase the computing power,
and for storage, because disk prices are falling, many disks are
used to host databases of a few terabytes. Wired and wireless
networks are used for distributed computation. The costs of dis-
plays are dropping, and useful three-dimensional interaction on
possibly many displays at the same time is becoming feasible.
Whereas parallel computing is still useful in the midst these de-
velopments, the exciting new directions are virtual computing
and grid computing. Relative to these modes, parallel comput-
ing is rigid because it specifies how iterative algorithms are to

be cut up and requires a central supervisor. Grid computing at-
tempts to break this bond and allow clusters to determine their
own computation during free-cycle time. Virtual computing fur-
ther abstracts this environment so that different programs and
different operating systems can handle slices of data. In all of
these modes, the greatest difficulty is that it takes more time to
cut up the data than to run the actual computations. True dis-
tributed (peer-to-peer) algorithms can process data locally and
merge their results pairwise. (These descriptions of computing
modes are basically taken from an e-mail exchange with Dr. Le-
land Wilkinson commenting on an earlier version of this man-
uscript.)

Matlab is equipped with a distributed computing engine
and toolbox, which “enable(s) you to develop distributed and
parallel MATLAB applications and execute them on a clus-
ter of computers without leaving your technical computing
development environment” (from http://www.mathworks.com/
products/distribtb/ ). Meanwhile, Apple has developed a grid
computing toolkit installed on all iMacs, called XGrid, that
“turns a group of Macs into a supercomputer, so they can
work on problems greater than each individually could solve”
(http://www.apple.com/macosx/features/xgrid/ ). Sun also pro-
vides grid solutions (http://www.sun.com/software/grid/ ). On a
much larger scale, BOINC (Berkeley Open Infrastructure for
Network Computing) provides “open-source software for vol-
unteer computing and desktop grid computing” to solve prob-
lems in earth sciences, biology and medicine, mathematics,
and physics (http://boinc.berkeley.edu/ ). However, as alluded
to earlier, “carving up the data can take longer than actually
processing it on these (grid) systems. That’s why Google uses
a distributed model in which the data never get consolidated in
one place. That way, computations are local, and the merging
is done in a distributed fashion. Once data are merged into a
single database, parallel architecture is not going to help much
with speeding things up, because most of the time is spent ac-
cessing the data” (excerpt from an e-mail exchange with Dr.
Wilkinson).

These distributed computing developments are examples of
the parallelism used by the computer science community to mit-
igate the limitations of the current computer technology. They
offer the users plug-ins to increase computing power. A first
step is to use existing parallel environments (e.g., Matlab tool-
box and XGrid) in our statistical investigation of data. More
fundamentally, however, we need to devise statistical methods,
exploratory or formal, that are well suited for distributed or grid
computing environments.

With these computing trends in the background, we are ready
to focus on statistical issues at the cutting edge of statistical
research.

5.2 Data Collection and Management

The “Towards 2020 Science” report states that “the way sci-
entists interact with data and with one another is undergoing a
fundamental paradigm shift.” The paradigm is shifting from the
traditional experiment → analysis → publication to the new ex-
periment → data organization → analysis → publication. Data
transmission by moving the data to standard packages (e.g., R
or Matlab) does not deal with the new stage of data organiza-
tion. In this section we broadly interpret this new stage of sci-
ence research and discuss the implied statistical issues in data
collection and management.
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5.2.1 Online or Streaming Data. Online or streaming
data analysis stems from the second characteristic of the IT rev-
olution: high data rate. High-dimensionality has attracted much
attention within the statistics community, as is evident from the
numerous conferences and workshops with this phrase in the ti-
tle. Nonetheless streaming data analysis remains mostly outside
of the research spotlight in statistics, with the exception of the
special 2003 issue of Journal of Computational and Graphical
Statistics from which many references are cited in this article.

Due to the real-time requirement of streaming data analy-
sis and the huge volumes of data coming in, the desired speed
for extracting information from data is much higher than that
in the batch or offline mode. However, designing a fast online
algorithm may require batch data analysis to identify which fea-
tures of the data to retain. On the other hand, before batch data
can be collected, data reduction or feature selection must be
carried out online to reduce the data volume for storage; for
example, down-sampling or aggregation may be necessary for
batch mode analysis.

As in the article of Chambers, Lambert, and Vander Weil
(2006), many online or streaming data algorithms repeatedly
update a low-dimensional feature distribution and identify out-
liers or anomalies relative to this distribution. Other streaming
algorithms deal with records (e.g., of phone calls) and have a
distinctly discrete flavor. (For more discussion of issues related
to streaming data, see Gilbert and Strauss 2007 in this issue.)

5.2.2 Data Fusion. For complex problems (e.g., from ge-
nomics and atmospheric science), multiple data sources must be
used, that is, data fusion is called for. In the arctic cloud detec-
tion project, we implemented a very simple form of data fusion
from two sensors on the same satellite Terra; a consensus label
was given only when our MISR-sensor based algorithm gave
the same label as the MODIS-sensor operational algorithm.
This is a fusion at the decision level. We have also fused the two
sensor data at the feature level by applying quadratic discrim-
inant analysis to the three MISR features and the five MODIS
features for the final MISR–MODIS soft labeling. Dass and Jain
(2007) address fusion of fingerprint with other biometric traits
and mention three fusion levels: feature level, matching score
level and decision level. It is clear that other levels of fusion
might be considered depending on the problem. Data fusion is
also necessary in many other fields, such as genomics research
(fusion of gene expression and sequence data) and climate mod-
eling (fusion of simulation and observation data). These tasks
are often related to large research or government projects and
involve huge amounts of data, online or streaming data, etc. It is
therefore a research frontier for us to get involved in and make
significant contributions to by, for instance, providing a frame-
work to think about data fusion relative to communication and
computation constraints.

5.2.3 Interacting With Database. Reducing the data size
is an important prerequisite to dealing with massive data sets,
but we run the obvious risk of losing important information.
The goal in a digital sky survey is to find very sparse signals
(e.g., quasars). Reducing the size by random sampling is likely
to not include these targeted signals altogether. This dictates the
need for statistical methods to interact with databases.

The recent story of Google’s machine translation success
(Norvig 2006) confirms this point. Google’s translation system

is based on analyzing an incredibly large database of documents
and their human translations to carry out its own translation.
Databases of such a size can only be housed by a few special-
ized companies, such as Google and Microsoft. It is commonly
believed that results from a reduced-sized database housed by a
research unit in a university would not come close to the Google
results. It is also noteworthy that memory constraints prompted
the Google group to use binning (e.g., regularization) on the
character strings to achieve better translation accuracy. This is
an example of how communication constraints and considera-
tions led to better statistical accuracy.

The interaction with data-bases goes both ways. The easier
direction is to understand database structures and design meth-
ods with fast implementation on the databases—the purpose of
data mining. The recent advances of research in machine learn-
ing and statistics make it high time to integrate these areas into
data mining software with the necessary modifications to suit
the database. The harder direction is to influence database de-
sign so that data in a database can be accessed swiftly by a slew
of statistical algorithms. To achieve this, statisticians or data
analysts need to reach consensus on the basic operations that
we need to conduct on a database for most if not all statisti-
cal analysis algorithms. The size of the database might prohibit
the use of any algorithm that is worse than linearly scalable to
the size of the data. This points to the same question of what is
the most efficient statistical method subject to a computational
constraint, which we discuss later.

To help access databases more easily in general, the data sci-
ence group at Keio University (http://www.stat.math.keio.ac.jp/
index.html) has created a front-end data management system,
DandD, to acquire data directly from the web or a database. Its
module DandDR interacts with R directly.

5.3 Expanding Exploratory Data Analysis for
Massive Data

Exploratory data analysis (EDA) is an integral part of every
statisticians’ toolkit. Tukey’s book on EDA in the 1970s (Tukey
1970), and especially his famous article in The Annals of
Statistics in 1962 (Tukey 1962) did much to give the ap-
proach intellectual credibility. The basic tools of EDA are
summary statistics and simple visual displays, such as his-
tograms, boxplots, scatterplots, and time series plots. For high-
dimensional data such as those in computer networks (Denby
et al. 2007), two or three-dimensional visualization abilities be-
come quite limited for understanding complex structures. Ef-
forts have been made by the statistics community to accom-
modate higher dimensions through parallel coordinate plots
(Inselberg 1999; Wegman 1990) and selective projections of
data as in GGobi (www.ggobi.org) for continuous data and
through mosaic plots (Hofmann 2000) for categorical data. Re-
cent work has been done on an enhancement of parallel coordi-
nate plot called textile plot (Kumasaka and Shibata 2007). An
alternative and attractive approach is to use interactive graph-
ics, linking low-dimensional plots to gain higher-dimensional
insights. Paul Velleman’s commercial package Data Desk
(www.datadesk.com) already had consistent and powerful inter-
active graphics in the early 1990s. A number of research soft-
ware packages have taken this approach further, particularly
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Mondrian (stats.math.uni-augsburg.de/Mondrian/ ), which in-
cludes parallel coordinate plots and mosaic plots, and GGobi.
(See Unwin, Theus, and Hofmann 2006 for more on visualiz-
ing large datasets up to one million.) (This paragraph is more
or less taken from an e-mail exchange with Antony Unwin and
improves on the original paragraph in an earlier version.)

For other communities (e.g., machine learning and signal
processing) dealing with similar high-dimensional data, EDA
is not yet part of their education, so few use it before formal al-
gorithmic analysis or modeling. For such areas as information
retrieval and information extraction, the original form of data
is often text, which is not always well formulated or structured.
It is of great value to visualize text data using traditional and
recent EDA tools, and hopefully also with new tools that could
incorporate fast modeling algorithms.

5.3.1 Seeing Helped by Enhanced Computing Power. Da-
ta volume and complexity are one side of the computer technol-
ogy. The other side is the increased parallel computing power to
visualize data (multimedia representation) and fit sophisticated
models. The field of data visualization is advancing rapidly,
mostly outside of statistics. Because visual processing units
take more than one-third of the cortex in human’s brain, it is
necessary to use the superb information gathering ability of our
vision. The efficient use of our vision is even more desirable
for the complex data that we face today. It relies on an under-
standing of our vision from neuroscience and computer vision
to render images from data, using spatial locations, perspec-
tives, color, and ray tracing (e.g., shading). It goes without say-
ing that we should use the existing EDA visualization tools as
much as possible, while at the same time exploring new possi-
bilities offered by the visual arts or multimedia community.

Distributed computing is being used for data visualization
through clusters of graphical processing units and CPUs. For
example, Levit (2006) brought out in real-time different as-
pects of the data coming in from a digital sky survey by paral-
lelizing graphical processing units and hundreds of displays.
The visualization group at Lawrence Berkeley Laboratory
(http://vis.lbl.gov) also conducts research on parallel graphics
and visualization. Moreover, a government agency headed by
Dr. Jim Thomas, the National Visualization and Analytics Cen-
ter (NVAC), chartered by the U.S. Department of Homeland
Security, has set its objective in 2004 “to define a five-year re-
search and development agenda for visual analytics to address
the most pressing needs in R&D to facilitate advanced analyti-
cal insight” to help “counter future terrorist attacks in the U.S.
and around the globe” (http://nvac.pnl.gov/agenda.stm).

It is natural to ask whether we can bring out more quan-
titative information in our data with these new visualiza-
tion tools. Progress has been made in the field of scien-
tific visualization in this direction (e.g., Ben Fry’s website
http://acg.media.mit.edu/people/fry/ ). (See Johnson 2004 for
an overview of the most pressing problems in scientific visu-
alization.) In particular, Wilkinson (2005) has developed the
grammar of graphics to draw graphic displays for statistics. We
can add more to this enterprise, I believe, if we collaborate with
researchers in visualization to represent results from modern
methods, such as machine learning and MCMC, for model re-
vision and validation as we did with residual plots in simple
linear regression.

5.3.2 Simplifying Data to See Through Modeling. Com-
plementary to extending our abilities through computer graph-
ics and visualization to see more in data, we can use comput-
ing power to simplify the data to visualize. Sophisticated mod-
eling methods first can be used on data so that patterns can
present themselves in output plots (after, e.g., some boosting
or SVM fits) which are not possible in displays of the original
data. Residual is an obvious output to investigate, as in classical
statistics, but additional visualizations of other outputs (margin
plots from SVM and fitting error plots along a boosting path re-
ality come to mind) should be added to the routine diagnostics
of a model. We also can search for meaningful low-dimensional
structures in high-dimensional data. If we find these structures,
then the high-dimensional data can be reduced to low dimen-
sions for visualization. Subject knowledge often suggest such
dimensionality reduction or models in low dimensions, as seen
in the cloud project and in the reports by Faraway and Reed
(2007) and Buvaneswari et al. (2007) in this special issue. When
subject knowledge is not adequate, automatic dimensionality-
reduction methods can be tried to suggest possible meaningful
data reduction. These methods aid the search for these struc-
tures at a speed impossible before. Data visualization and model
fitting should be conducted iteratively, however. Seeing sug-
gests models to fit, and model fits give data to see. This is simi-
lar to what we do in residual analysis for regression models, but
residual plots are replaced with multimedia data representation
and regression models are replaced by more general methods.
Admittedly, this is easier said than done, however.

Recent years have brought much activity in automatic data
reduction, including Kernel PCA (Scholkopf, Smola, and
Müller 1998), ISOMAP (Tenenbaum, de Silva, and Langford
2000), LLE (Roweis and Saul 2000) and its extension using
the Hessian matrix (Donoho and Grimes 2003) and spectral
clustering (Shi and Malik 2000; Ng, Jordan, and Weiss 2001;
Belkin and Niyogi 2003; Zhou, Bousquet, Weston, Scholkopf,
and Zien 2004). These methods generalize the traditional PCA
and MDS because an eigenanalysis, either local or global, un-
derlies all of them. (See Ham, Lee, Mika, and Scholkopf 2003
for a nice theoretical synthesis of different dimensionality-
reduction techniques from a kernel standpoint.) Before these
dimensionality-reduction methods become routine EDA analy-
sis, much more experience in applying them to real data sets
and theoretical analysis is needed to understand the pros and
cons of each method both in absolute terms and relative to each
other. This brings us naturally to the topic of the next section
on expanding our analytical knowledge.

5.4 Use of Nontraditional Mathematical Tools

Like it or not, we are leaving the comfort of the classical
paradigm founded mathematically on calculus and a large sam-
ple size relative to the dimension of the parameters. The perva-
sive existence of the p � n in massive data sets suggests that
even though we still need asymptotics to see regularity, the as-
ymptotics should not be done with a fixed p. Hence the dimen-
sion of the parameter space is growing with increasing sample
size. Most of our intuition is derived from the three-dimensional
physical space that we live in. To paraphrase Aldous (1989),
because we are at a point with not much intuition to go on,
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analytical derivations might help lead us toward the light. It is
encouraging to see that theoretical results for the p � n case
are appearing in random matrices, linear modeling, Lasso un-
der deterministic and stochastic assumptions, boosting, and co-
variance estimation. Much insight should be gained through
such analysis. Becoming part of the new cyberinfrastructure
demands that the analytical results take into account as much
as possible the algorithmic implementation of the methods, in-
stead of assuming that the entities to be analyzed are the ex-
act maxima of objective functions which in practice cannot be
obtained due to computational reasons. (For comprehensive tu-
torials and new research material, see SAMSI’s recent work-
shop on high-dimensional inference and random matrices at
http://www.samsi.info/programs/2006ranmatprogram.shtml.) It
remains to be seen whether the random matrix results will be-
come equivalent to the central limit theorem in classical sta-
tistics. In any event, much distilling is needed to simplify the
methods used to derive these results before they enter the analy-
sis toolkit of routine statistical investigations of massive data to
provide insight.

5.5 Computation for Data With Uncertainty or Noise

Computation was not a concern of Fisher (1922) but is cen-
tral to a statistical investigation today. There is something very
novel about boosting (and fitting neural networks); the com-
putation parameter, the number of iterations, also serves as a
regularization parameter in statistical estimation. The BLasso
algorithm by Zhao and Yu (2004) has a similar property. This
is a componentwise gradient descent algorithm with a fixed
step to minimize the generalized Lasso loss (convex loss and
penalty functions) simultaneously for different values of λ’s. It
shares many similarities with boosting when a componentwise
gradient descent algorithm, or the forward stagewise regression
(FSR) (Efron et al. 2004), is used. That is, BLasso has a for-
ward step just as in FSR, but with a backward step added to
make sure the combined penalty is minimized, not just the loss
function part, which is the aim of boosting. Moreover, BLasso
solves a sequence of optimization problems corresponding to
different λ’s similar to the barrier method in optimization (Boyd
and Vandenberghe 2004).

The coupling of computation and regularization in boosting
and BLasso is reminiscent of the equivalence of computation
and modeling in K-complexity theory. Relative to a universal
turing machine, the K-complexity of a binary string is defined
as the length of the shortest program that prints out the string
and stops. Because of an equivalence of a (prefix) program
and a probability distribution, there is an equivalence of com-
putation (program) and modeling represented by the distribu-
tion. Despite the fact that K-complexity is not computable, this
equivalence has an intriguing intellectual appeal.

Let us entertain ourselves further by looking into model-
ing and computation practiced today. We know that statistical
model fitting uses scientific computing, but statistical compu-
tation is special. Even in the parametric case there is a well-
known result that only one Newton or second-order step is
needed to make a

√
n-consistent estimator efficient. That is, be-

cause our objective function is a random quantity, we do not

need convergence of the minimization algorithm to get a sta-
tistically satisfying solution, as shown in boosting. In nonpara-
metric methods such as boosting, neural nets, and BLasso, early
stopping before convergence saves computation and regular-
izes the fitting procedure, and hence results in a better statis-
tical model. Again, computation and model fitting seem to be
working in the same direction: less computation and better sta-
tistical accuracy. These facts indicate the intimate relationship
between computation and model fitting. They prompt us to ask
the following question: Is there a minimal amount of computa-
tion needed for a certain statistical accuracy?

It is not clear whether or not this question can be answered,
because fast algorithms in scientific computation often rely on
closed-form equations or relationships derived through ana-
lytical means. Analytical calculations have infinite precision,
whereas scientific computations are of finite precision. Nev-
ertheless, we believe that this is a very interesting intellectual
question, and the pursuit of the answer could lead to useful
practical consequences for modeling IT data.

6. CONCLUSION

The main difference and advantage (and/or disadvantage)
of our time from Fisher’s time is the availability of comput-
ing technology and consequently the availability of massive
amounts of data. We argue that for the healthy existence of our
field, solving real data problems has to be our aim, and we need
to find a way to join the ongoing cyberinfrastructure develop-
ment.

Many exciting challenges must be met to achieve the goal
of solving real problems. In particular, we need to take advan-
tage of the distributed/grid computing trend, interact efficiently
with databases and other data sources such as sensor networks,
design EDA visualization tools, use new or nonconventional
mathematical results, develop new statistical algorithms satis-
fying communication and computation constraints, and devise
new statistical inference paradigms to encompass such endeav-
ors.

At an organizational or cultural level, the statistics commu-
nity also faces many challenges. As described herein, there are
many large scientific projects in which huge amounts of data
are collected and managed, for example, in atmospheric science
(e.g., model simulation and remote sensing data), astronomy
(e.g., digital sky surveys), and biology (e.g., genome or brain
databases across different species). Individual statisticians can
find and are finding collaborative roles in these big projects,
but it is very difficult for individual statisticians to influence the
fundamentals of these projects, for instance, to have a say in
data collection and in the choice of algorithms to use in mining
the huge databases. Collective thinking and leadership from our
community are needed if our discipline is to have the necessary
impact in the IT age.

In addition to statistical skills, social and interpersonal skills
are needed to successfully collaborate with scientists and per-
suade them of the key role of statistics in scientific investiga-
tions. The importance of these nontechnical skills in interdisci-
plinary research suggests the need for a culture change in our
community and for these nontraditional skills to be valued and
recognized in, for example, tenure reviews, promotions, and
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awards. Last but not least, we need to educate our graduate and
undergraduate students with the relevant technical and interper-
sonal skills. Insightful comments and concrete suggestions on
the education front have been given by Madigan and Stuetzle
(2004), a discussion on the NSF Future Statistics Workshop Re-
port.

This is a time of data deluge; we can help build the ark and
ride on it, if we so choose.
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