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ABSTRACT

An important problem in spatial statistics is to predict a spatial quantile and its

associated exceedance region. This has applications in environmental sciences, nat-

ural resources, and agriculture, since unusual events tend to have a strong impact

on the environment. In this dissertation, we first review loss-function approaches to

quantify exceedances. We then develop a method for the prediction of the spatial

exceedance region involving a class of loss functions based on image metrics. We

give special attention to Baddeley’s loss function, for which we calibrate the choice

of a tuning parameter. We then propose a joint-loss approach for the prediction of

both a spatial quantile and its associated exceedance region. The optimal predictor

is obtained by minimizing the posterior expected loss, given the spatial-trend, noise,

and spatial-covariance parameters. In practice, the parameters are estimated and

the minimization involves simulated annealing. We compare various predictors’ per-

formances through a simulation and apply our methodology to a spatial dataset of

decadal temperature change over the Americas.
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tor versus λ for SNR = 0.5; Fig 2.2(a) shows results for r = 0.5, Figure
2.2(b) shows results for r = 1.5, and Figure 2.2(c) shows results for
r = 5. Dashed lines show the corresponding results for CMCK-based
predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 The proportion of a predicted process below the inverse ACDF of the
process; data were obtained from a single realization with r = 0.5,
and SNR= 2. The quantile α = 0.9 (and hence λ = 6) was chosen.
The vertical solid line shows the target quantile 0.9. The horizontal
solid line shows the 0.9-empirical quantile using the proportion of a
predicted process below the target quantile of the ACDF. The 45◦

solid line represents the unbiased prediction of IWQSEL predictor for
quantiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 The relative efficiency of the Baddeley-loss-based predictor and the
posterior-mean-based predictor, for different tapers, range parameters,
r, and values of α (used to set the threshold), for SNR = 2.0. The solid
line is for the sample-averaged relative efficiency. The dashed line is for
the 95% confidence interval for the sample-averaged relative efficiency. 62

x



3.2 The relative efficiency of the Baddeley-loss-based predictor and the
posterior-mean-based predictor, for different tapers, range parameters,
r, and values of α (used to set the threshold), for SNR = 0.5. The solid
line is for the sample-averaged relative efficiency. The dashed line is for
the 95% confidence interval for the sample-averaged relative efficiency. 63

3.3 Boxplots of difference of the sensitivity and specificity between the
Baddeley-loss-based predictor and the posterior-mean-based predictor,
when the grid size is M = 20. . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Boxplots of difference of the sensitivity and specificity between the
Baddeley-loss-based predictor and the posterior-mean-based predictor,
for a grid size of M = 40. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 The bias in estimating the α-quantiles (α = 0.5, 0.75, 0.9) of the SCDF
using the WQSEL, versus the calibration quantity λ. . . . . . . . . . 80

4.2 Boxplots of difference of bias in estimating α-quantiles using the joint-
loss-based approach and the posterior-mean-based plug-in approach,
and boxplot of difference of SSB values. The 20 values in each boxplot
are generated by the 20 realizations of the Y (·) process. The signal-
to-noise ratio, SNR, is 0.5 for this experiment. . . . . . . . . . . . . . 85

4.3 Boxplots of difference of the sensitivity (Se), the specificity (Sp), and
the average of Se and Sp with the α-quantile. The 20 values in each
boxplot are generated by the 20 realizations of the Y (·) process. The
signal-to-noise ratio, SNR, is 0.5 for this experiment. . . . . . . . . . 86

4.4 Boxplots of difference of bias in estimating α-quantiles using the joint-
loss-based approach and the posterior-mean-based plug-in approach,
and boxplot of difference of SSB values. The 20 values in each boxplot
are generated by the 20 realizations of the Y (·) process. The signal-
to-noise ratio, SNR, is 2 for this experiment. . . . . . . . . . . . . . . 87

4.5 Boxplots of difference of the sensitivity (Se), the specificity (Sp), and
the average of Se and Sp with the α-quantile. The 20 values in each
boxplot are generated by the 20 realizations of the Y (·) process. The
signal-to-noise ratio, SNR, is 2 for this experiment. . . . . . . . . . . 88

xi



5.1 Spatial analysis of the average temperature change from the 1980s to
the 1990s on the Celsius scale: (a) grayscale map of the temperature
change over the prediction region D∗ with observation sites B shown
as crosses, (b) spatial trend of temperature change versus latitude, (c)
spatial trend of temperature change versus longitude, (d) histogram of
temperature change. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Spatial analysis of the detrended residuals of the observed averaged-
temperature change in B from the 1980s to the 1990s on the Celsius
scale : (a) spatial trend of detrended temperature change versus lat-
itude, (b) spatial trend of detrended temperature change versus lon-
gitude, (c) histogram of detrended temperature change, (d) empiri-
cal and fitted semivariograms: circles for the empirical semivariogram,
solid line for the fitted exponential model, and dashed line for the fitted
spherical variogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Prediction of exceedance regions with a change in mean temperature
above K, for K = 0.05, 0.10, 0.15, 0.20◦C. The left column shows the
Baddeley-loss-function-based predictor and the right column shows the
posterior-mean-based plug-in predictors. . . . . . . . . . . . . . . . . 97

5.4 Prediction of spatial regions with extremely positive mean-temperature
change (0.9-quantile of the SCDF), as shown by the gray shading:
(a) the joint-loss-based predictor, (b) the posterior-mean-based plug-
in predictor, (c) the plug-in predictor from all the data over D∗. . . . 100

5.5 Prediction of spatial regions with mean-temperature change above the
0.75-quantile of the SCDF, as shown by the gray shading: (a) the joint-
loss-based predictor, (b) the posterior-mean-based plug-in predictor,
(c) the plug-in predictor from all the data over D∗. . . . . . . . . . . 100

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation

An exceedance region is the set of all spatial locations where the process of interest

has values larger than some threshold. Scientists pay close attention to the locations of

exceedance events where they are may help answer why they occur Environmentalists

are interested in how severe pollution is and where it is. Epidemiologists wish to

know the location of large or small disease incidence rates. Meteorologists track

strong winds and where the affected areas are. The adhoc, but usual way, to find the

exceedances and their locations is to make predictions of the process of interest using

spatial methods, and then plug in those predictions to obtain the exceedance region.

The problems with plug-in methods are twofold: first, spatial methods such as kriging

are known to smooth out the peaks and fill in the valleys of the distribution of the

process (e.g., Louis, 1984), so that the prediction for the exceedance region above

some high thresholds based on the predicted process is biased; second, optimality of

a predicted surface is not preserved under nonlinear functionals of the surface, such

as the exceedance region.
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This dissertation uses a series of loss functions to tackle the problem of prediction

of the spatial exceedance and the corresponding exceedance region. The first loss

function of interest is the integrated weighted quantile squared error loss (IWQSEL)

(Craigmile et al., 2006), which attempts to avoid the underdispersion of exceedances

that kriging suffers from. Until now, the prediction of the exceedance region in the

IWQSEL approach has been plug-in based. An important contribution of this disser-

tation is to introduce a loss function that depends directly on the exceedance region,

which yields an optimal predictor. We feature Baddeley loss function in our research.

The third loss function we consider combines both the integrated weighted quantile

squared error loss (IWQSEL) for quantifying spatial quantiles of interest, and Badde-

ley’s loss function for predicting the exceedance region. The optimal predictor based

on this joint loss will predict the exceedances and locate the associated exceedance

region simultaneously.

1.2 Model and parameter estimation

Suppose that Y (·) ≡ {Y (s) : s ∈ D} is a hidden geostatistical process of interest,

defined in a domain D ⊂ R
d such that it has a positive d-dimensional volume, |D|.

Let Z(·) ≡ {Z(s) : s ∈ D} be the process of observed and potentially observed values.

Then the hierarchical model can be described by the following data model and process

model.

The data model:

Z(s) = Y (s) + ε(s); s ∈ D, (1.1)

where ε(·) is a zero-mean white noise process with measurement-error variance, σ2
ε >

0. We assume that ε(·) is independent of Y (·).

2



The process model:

Y (s) = µ(s) + δ(s); s ∈ D. (1.2)

Here the function µ(·) captures the large-scale, deterministic mean structure (spatial

trend) of Y (·), and δ(·) is a stationary stochastic process that models the small-scale

spatial structure in Y (·). We assume that the spatial trend, µ(·), follows a linear

model given by

µ(s) = x(s)′β, (1.3)

where the vector x(s) ≡ (x1(s), . . . , xp(s))
T is a collection of covariates at s, and

β ∈ R
p is the spatial-trend parameter. We also assume that δ(·) is a zero-mean,

second-order stationary spatial process with a parametric covariance function, CθY
(·).

That is,

E[δ(s)] = 0, and cov[δ(s), δ(s′)] ≡ CθY
(s − s′); s, s′ ∈ D, (1.4)

where θY is the spatial-covariance parameter that at least consists of the micro-scale

variation τ 2, the partial sill σ2, and the range parameter r. Here τ 2 is assumed to be

zero because it is impossible to estimate the micro-scale variation and noise variation

separately from spatial data that have one observation per location. Henceforth,

θY ≡ (σ2, r)T .

Let eYK denote the exceedance region of Y (·) above a threshold K, defined by

eYK ≡ {s ∈ D : I(Y (s) > K) = 1}. (1.5)

The process eYK inherits its randomness from the process Y (·). Suppose that we

have n observations, Z = {Z(s) : s ∈ B}, taken at a collection of n locations in

B ≡ {s1, . . . , sn} ⊆ D. Then, our interest is to predict the exceedance region, eYK ,
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which is a nonlinear functional of Y (·), based on the observations, Z. This problem

is formulated in terms of the hierarchical model described above, where we choose to

estimate unknown parameters (an empirical Bayes approach). That is, we look for

the optimal Bayes predictor for the exceedance region based on a given loss function,

where the parameters for noise variance, spatial covariance, and spatial trend are

estimated and plugged in.

Let φ ≡ (βT , σ2
ε ,θ

T
Y )T be the parameters that characterize the hierarchical model

in (1.1) and (1.2). If the noise variance, σ2
ε , and the spatial parameter, θY , are known,

then the best linear unbiased estimator (BLUE) of the spatial trend, β, is

β̃ ≡ (XTΣ−1X)−1XTΣ−1Z, (1.6)

where X ≡ (x(s0), . . . ,x(sn))
T is a n × p design matrix for the observation sites,

and Σ ≡ var[Z] = var[(Y (s1), . . . , Y (sn))
T ] + σ2

ε I is the covariance matrix of the

observations. Let h denote the distance matrix between the observation sites, where

the (i, j)-element hij = si − sj, i, j ∈ {1, . . . , n}. Then var[(Y (s1), . . . , Y (sn))
T ] ≡

CθY
(h), and hence Σ = CθY

(h) + σ2

ε I, and is parameterized by θZ ≡ (σ2
ε ,θ

T
Y )T .

There are several estimators available for θZ , such as the maximum likelihood esti-

mator (MLE), the restricted maximum likelihood (REML) estimator, and the weighted

least squares (WLS) estimator. In this dissertation, we estimate θZ through the

WLS estimator based on the empirical semivariogram of the data (Cressie, 1993b,

pp. 96-98). The semivariogram is a commonly used measure of spatial dependence.

Let γZ(s, s′) denote the semivariogram of the data between Z(s) and Z(s′). Then

2γZ(s, s′) is the variogram of the data, defined by

2γZ(s, s′) ≡ var[Z(s) − Z(s′)] = var(Z(s)) + var(Z(s′)) − 2cov[Z(s), Z(s′)], (1.7)

4



for sites s and s′ in D. The spatial covariance function for Z(·) defined by (1.1) is

cov[Z(s), Z(s′)] ≡
{
σ2
ε + σ2, s = s′;
CθY

(s − s′), s 6= s′,
(1.8)

where σ2 ≡ CθY
(0). Hence, the variogram of the data in this case is given by

2γZ(s, s′) =

{
0, s = s′;
2(σ2

ε + σ2 − CθY
(s − s′)), s 6= s′.

(1.9)

We see that the semivariogram of the data, γZ(s, s′), is only a function of relative

displacement s−s′; henceforth write it as γZ(s−s′). The nugget of the semivariogram

of the data is the limit of γZ(s − s′) as s − s′ approaches zero, and is equal to σ2
ε in

this case. Hence, the estimated nugget effect from observations Z is the estimate of

σ2
ε .

Suppose that θ̂Z ≡
(
σ̂2
ε , θ̂

T

Y

)T
is the WLS estimator of θZ . In (1.6), we plug in

θ̂Z for θZ in Σ, to obtain Σ̂, and β is estimated by

β̂ = (XT Σ̂
−1

X)−1XT Σ̂
−1

Z, (1.10)

where Σ̂ ≡ CbθY
(h) + σ̂2

ε I.

1.3 Optimal prediction of spatial exceedances and spatial ex-

ceedance regions

There are several approaches to predict the spatial exceedance and its associated

exceedance region. One approach is via loss functions. The other approach focuses

on building probability models for the distribution of extreme values. The latter ap-

proach includes classical extreme value theory as well as a method called the threshold

method.
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1.3.1 Loss functions for spatial exceedances

Loss functions to quantify exceedances

The well known loss function for quantifying the hidden geostatistical process,

Y (·), is the squared error loss (SEL) function. The kriging predictor (Matheron, 1963;

Cressie, 1993b) is the best linear unbiased predictor (BLUP) in terms of squared error

loss. With a Gaussian assumption for the hidden process and the error process, it can

be shown that the (simple) kriging predictor minimizes the Bayes risk based on the

squared error loss function (e.g., Gotway and Cressie, 1993). In the Bayesian context,

the optimal Bayes predictor under squared error loss is always the posterior mean.

These two predictors (kriging predictor and Bayes predictor) preserve their optimality

when predicting linear functionals of the hidden process. If we are interested in

prediction of some linear functional of Y (·), the same linear functional with the kriging

predictor plugged in is the BLUP and the optimal Bayes predictor under squared error

loss, under the same assumptions as given above.

The squared error loss function focuses on the center of the empirical distribu-

tion of Y (·), not the tail of empirical the distribution that characterizes exceedances.

Louis (1984) and Ghosh (1992) show that the sample variance of the posterior mean

is smaller than the posterior expected sample variance of Y (·). This is because the

posterior mean has a tighter distribution, having smoothed out the tails of the distri-

bution of Y (·). Cressie et al. (2000) and Wright et al. (2003) proposed the weighted

ranks squared error loss (WRSEL) function, based on the order statistics of the

observed process of interest. This was designed to avoid squared error loss’ underdis-

persion of predictors where the setting was a finite-dimensional Markov random field.
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Craigmile et al. (2006) extended the WRSEL to uncountable-index geostatistical pro-

cesses. They proposed the integrated weighted quantile squared error loss (IWQSEL)

function, which assigns more weight to values of Y (·) that are spatially extreme as

determined by the averaged spatial cumulative distribution function (ACDF) of Y (·).

Loss functions to estimate the exceedance region

The exceedance region, as defined by (1.5), is a nonlinear functional of the hidden

process Y (·). Although the posterior mean of Y (·) is the optimal Bayes predictor

under squared error loss, using a plug-in predictor, based on plugging in for the

exceedance region is no longer optimal. The estimated exceedance region is under-

estimated because of the shorter tails for the empirical distribution of the posterior

mean as compared to the distribution of the hidden process. However, there is no

theory to justify a plug-in predictor for the exceedance region based on IWQSEL

function either, although it does have a more dispersed empirical distribution than

that of the posterior mean.

There have been several predictors for nonlinear functionals of the process Z(·) in

the geostatistic literature. Indicator kriging (Journel, 1983), indicator cokriging (La-

jaunie, 1990), and disjunctive kriging (Matheron, 1976) are appropriate for nonlinear

functionals at point level, like I(Z(s) ≥ K), but they are not good at predicting

the nonlinear functionals over blocks like I(Z(A) ≥ K), where A is a block in D.

Constrained Bayes predictors (Louis, 1984; Cressie, 1988; Ghosh, 1992) are designed

to predict nonlinear functionals of Y (·) at both point and block support. However,

because of imposed variance constraints, these predictors have larger expected sum-

of-squared-error loss than Bayes predictors. Moreover, they are designed to predict

functionals of Z(·), not those of the hidden process Y (·). Aldworth and Cressie
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(2003) proposed a constrained kriging method, covariance matching constrained krig-

ing (CMCK), where both covariance and variance constraints augment the classical

kriging equations. These constraints force the entries of the covariance matrix of a

vector of linear predictors to match those from the corresponding predictands. As-

suming the existence of the second derivative (generally, matrix derivative) of the

nonlinear functionals, the CMCK predictor is approximately unbiased for prediction

of these nonlinear functionals, and it has approximately optimal mean squared pre-

diction error among predictors satisfying the given constraints. In Chapter 2, we

show that the CMCK predictor is obtained by minimizing a loss function involving a

squared error loss plus two constraints.

1.3.2 Other approaches for inferences on exceedances

Other approaches for inferences on exceedances are mostly based on modeling the

probability distribution for extremes and exceedances. This section mainly reviews

generalized extreme value (GEV) theory and the threshold methods that use probabil-

ity distributions to describe extremes and exceedances for univariate and multivariate

random quantities, and it mentions some extensions to an uncountable-index domain.

Most conventional statistical methods focus primarily on the characteristics of the

center of the distribution of random variables (RV), and pay less attention to tails of

the RVs. The GEV method was developed to explore the distribution of the maximum

of RVs. Later, the threshold method and the related Poisson-Generalized Pareto

Distribution (GPD) model was proposed to model exceedances over thresholds. It has

been applied in fields of insurance and finance (Embrechts et al., 1997), engineering

(Castillo, 1988), hydrology (Katz et al., 2002), and environmental sciences (Gilleland
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and Nychka, 2005). The max-stable method (Smith, 1990; Schlather and Tawn,

2003; Cooley et al., 2006), an uncountable-index version of multivariate extreme

value theory, has application to the extremes of dependent geostatistical processes,

and we shall review this below.

Classical extreme value theory

Classical extreme value theory arises from the limiting distributions of the max-

imum or minimum of a series of independent random variables (RVs). This theory

was first identified by Fisher and Tippett (1928), and then developed as a broadly

used approach by Gumbel (1958). Out of the most, important results in the literature

(the “three-types theorem”) shows that, under very general conditions, the maximum

is approximately distributed as the generalized extreme value distribution. This dis-

tribution has three forms: (1) Gumbel (light tail), (2) Fréchet (heavy tail), and (3)

Weibull (bounded tail).

More precisely, suppose we have a sequence of RVs, {R1, . . . , Rn}, that are in-

dependently and identically distributed (IID) with a common distribution function

F (·). Let Mn ≡ max{R1, . . . , Rn}. Then, by independence, the distribution of Mn is

given by

P (Mn ≤ r) = P (R1 ≤ r, . . . , Rn ≤ r)

= P (R1 ≤ r) × · · · × P (Rn ≤ r)

= (F (r))n. (1.11)

For each valid r in the domain of the distribution, F (r) is between 0 and 1. Hence

(F (r))n → 0 as n→ ∞, which means that the limiting distribution of the maximum

of a sequence of IID random variables degenerates to a point mass. To obtain a
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non-degenerate distribution, Mn needs to be shifted and scaled appropriately. In par-

ticular, the extremal-types theorem, equivalently, the “three-types theorem” (Coles,

2001, p. 46), says that if there exist sequences of constants {an > 0} and {bn} that

satisfy the limit,

P ((Mn − bn)/an ≤ r) → G(r), as n→ ∞, (1.12)

where G(·) is a non-degenerate distribution function, then G(·) belongs to one of the

three following families.

1. Gumbel type:

G(r) = exp{− exp(−r)}, −∞ < r <∞. (1.13)

2. Fréchet type:

G(r) =

{
0, if r < 0;
exp{−(r)−a}, if 0 < r <∞,

(1.14)

where a is some fixed positive constant.

3. Weibull type:

G(r) =

{
exp{−(−r)a}, if −∞ < r < 0;
1, if r > 0,

(1.15)

where a is some fixed positive constant.

These three types of limiting distribution can be combined into a single family of

distribution functions, given by

G(r;µG, ψ, ξ) = exp

{
−
(

1 + ξ
r − µG
ψ

)−1/ξ
}
I

(
1 + ξ

r − µG
ψ

> 0

)
. (1.16)

This is known as the generalized extreme value (GEV) family of distributions. There

are three parameters in the GEV family: a location parameter, µG ∈ (−∞,∞); a
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scale parameter, ψ ∈ (−∞,∞); and a shape parameter, ξ ∈ (0,∞). This shape

parameter determines the nature of the tail of the distribution. The GEV family

given by (1.16) has as a special case the Fréchet-type family defined by (1.14) with

a = 1/ξ, and the Weibull-type family defined by (1.15) with a = −1/ξ. The Gumbel-

type family defined by (1.13) corresponds to the limiting case of the GEV family as

ξ tends to zero.

Estimation of the parameters in a GEV model can be obtained by maximum

likelihood estimation (MLE). A numerical solution is required to find MLEs, with

some care needed when ξ is close to zero because of numerical difficulties in the

neighborhood of ξ = 0. Suppose (µ̂G, ψ̂, ξ̂) is the MLE for (µG, ψ, ξ). With some

limitations on ξ (Coles, 2001, pp. 54-55), the asymptotic distribution of the MLE is

multivariate normal with mean (µG, ψ, ξ) and covariance matrix equal to the inverse

of the Fisher information matrix. In practice, this is replaced by the observed Fisher

information matrix.

This GEV theory for the maximum requires an assumption of independence for

the underlying random process. However, there exist analogous results for non-IID

processes. Leadbetter et al. (1983, p. 53) show that if a dependent stationary process

satisfies the distributional mixing condition (“conditionD” or “conditionD(un)”), the

limiting distribution of the maximum of a dependent stationary process also follows

the GEV distribution. The distributional mixing condition assumes that for sets of

variables that are far enough apart, the difference between a joint distribution for all

the random variables and a product of the CDFs of each separate set of variables is

small.
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In practice, to estimate the parameters in the GEV distribution of a maximum,

multiple observations for the maximum (block maxima) are necessary. Suppose

R1, . . . , Rn is a sequence of possibly dependent observations. To generate block max-

ima, series of observations are blocked into b blocks with m observations in each block.

Usually m is large enough to guarantee that the maximum in each block represents a

realization of the maximum. Denoting these block maxima by Mm,1, . . . ,Mm,b, then

by classical GEV theory, they can be modeled as a sequence of IID observations from

a GEV distribution. This practical approach requires the number of blocks to be

balanced with the length of each block. Blocks with short lengths violate the inde-

pendence assumption or the distributional mixing condition for these block maxima,

and hence introduce biases in the parameter estimation. On the other hand, less

blocks of longer length make the assumptions for the GEV distribution valid, but

they introduce larger variation in the parameter estimation because less block max-

ima are available. The block choice is made by trading off bias and variance when

estimating the GEV parameters (Coles, 2001, p. 54).

Threshold method

The threshold method was first developed by hydrologists (Todorovic and Zelen-

hasic, 1970, Todorovic and Rousselle, 1971). These methods assume that the number

of exceedances of a sequence of IID observations above a fixed high threshold is a

random variable distributed as a Poisson process. In addition, the levels of excesses,

conditional on the number of exceedances, is assumed to be independently distributed

as the generalized Pareto distribution (GPD) (Davison and Smith, 1990). More pre-

cisely, suppose that R is a random variable with distribution function F (·) that falls

into the domain of attraction of the GEV distribution. Let RK be the level of the
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excesses above a threshold K conditional on the fact that R exceeds K.Then we have

P (RK ≤ r |R > K) = P (R−K ≤ r |R > K) =
F (K + r) − F (K)

1 − F (K)
; r > 0. (1.17)

For large enough K, P (RK ≤ r) can be approximated by (e.g., Coles, 2001, pp.

76-77)

H(r; ψ̃, ξ̃) =



1 −

(
1 +

ξ̃r

ψ̃

)−1/ξ̃


 I

(
(1 +

ξ̃r

ψ̃
) > 0

)
I(r > 0), (1.18)

where in the notation of the GEV distribution defined by (1.16), ψ̃ ≡ ψ+ ξ(K−µG).

The distribution function in (1.18) is known as the generalized Pareto distribution

(GPD). Notice that the GPD approximation for exceedances has limited utility be-

cause the GPD variable cannot be less than K.

This Poisson-GPD approach can be used to derive the generalized extreme value

distribution. Let R1, . . . , Rn denote a sequence of IID RVs. Let N be a RV for the

number of exceedances above level K, and RK1 , . . . , RKN
be the corresponding excess

values. Assume that, approximately, N has a Poisson distribution with mean λ and

RK1 , . . . , RKN
are conditionally IID observations from the GPD given that N > 1.

Then for n large, r > K and by (1.17), we have

P (Mn ≤ r) = P (max{Ri : i = 1, . . . , n} ≤ r)

' Pr(N = 0) +
∞∑

j=1

P (N = j, R1 ≤ r, . . . , RN ≤ r)

= Pr(N = 0) +
∞∑

j=1

P (N = j) · P (R1 ≤ r, . . . , RN ≤ r |N = j)

' e−λ +
∞∑

j=1


λ

je−λ

j!
·
{(

1 + ξ̃
r −K

ψ̃

)−1/ξ̃
}j



= exp

{
−λ
(

1 + ξ̃
r −K

ψ̃

)−1/ξ̃
}
. (1.19)
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The final expression in (1.19) is the the GEV distribution given in (1.16) if we re-

parameterize using ψ̃ = ψ + ξ̃(K − µG) and λ =
(
1 + ξ̃(K − µG)/ψ

)−1/ξ̃

.

The Poisson-GPD model given above assumes that the underlying process is IID.

For dependent processes, the occurrence of exceedances tends to appear in clusters.

Hydrologists (e.g., North, 1980) model maxima of the dependent process using the

“peaks over threshold” (POT) method, which separates out the maxima in each clus-

ter and assumes the maxima are approximately independent. In addition, assuming

that the number of exceedances occurs according to a Poisson distribution and the

level of the excess is distributed as a GPD, then the Poisson-GPD model is valid for

the maximum of dependent processes. Statisticians have also derived the asymptotic

distribution for exceedances of dependent processes. For example, Leadbetter et al.

(1983, pp. 102-103) and Hsing et al. (1988, p. 99) show that, under very general

conditions, the number of exceedances over a high threshold in certain stationary

processes occurs according to a a Poisson distribution. Azäıs and Mercadier (2003)

show the asymptotic Poisson character of the occurrence of exceedances for certain

non-stationary Gaussian processes.

We can use maximum likelihood or maximum profile likelihood to estimate pa-

rameters in the Poisson-GPD model. Bayesian inference for the parameters is possible

after imposing a prior on the parameters and computing the posterior via Markov

chain Monte Carlo (MCMC). One difficulty in fitting the GPD to data is the choice

of the threshold K. The difficulty of this choice is analogous to the choice of block pa-

rameters in the GEV models. There should be a trade-off between bias and variance

of the estimator. If a threshold is too low, it will violate the assumption of the model,

leading to biased estimators. If a threshold is too high, it will result in fewer data
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available for the model fitting and parameter estimation, leading to a large estimation

variance. Some simple practical approaches for the choice of the threshold (e.g., Coles,

2001; Gilleland et al., 2006) are based on the fact that for a GPD distribution, the

shape parameter ξ̃ and a certain linear transformation of the scale parameter ψ̃ are

almost constant if threshold choice is sensible. Hence, there should be no significant

change in the GPD parameters. Another way to select sensible thresholds is using a

mean-residual-life plot (Coles, 2001, p. 79). This plot relies on the fact that mean of

the excesses above each threshold is expected to change linearly with the threshold,

if the GPD approximation is valid for that threshold.

Max-stable models for spatial extremes

In previous subsections, we reviewed the GEV and the Poisson-GPD models for

univariate RVs with finite index. Analogous models in uncountable 1-D space are also

possible. In what follows, I shall present an approach to apply max-stable models for

the spatial exceedance in an uncountable-index spatial domain.

Max-stable processes arise from an uncountable-index generalization of extreme

value theory (Smith, 1990; Coles, 2001). Let {M(s) : s ∈ D} be a stochastic process

with an uncountable-index space, D. Suppose that M1(s), . . . ,MN (s) are N indepen-

dent replications of the process at s ∈ D. Then M(s) is said to follow a max-stable

variable if there exist constants ANs
> 0 and BNs

(for N ≥ 1, s ∈ D) that make the

following quantity,

M∗(s) =

(
max

1≤n≤N
Mn(s) −BNs

)
/ANs

; s ∈ D, (1.20)

identical to M(s) in probability. The idea is that if the maximum of a sequence of

independent (transformed) variables is equivalent to the same sequence of variables
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in probability, then the variable is max-stable. If M(s) is max stable for each s ∈ D,

then the process {M(s) : s ∈ D} is said to be max-stable. Both Smith (1990, pp. 5-6)

and Coles (2001, pp. 180-181) derive the joint probability distribution of the max-

stable process {M(s) : s ∈ D}. The calculation assumes that M(s) is distributed

marginally as a standard Fréchet distribution for each s, and then shows that the

joint distribution for {M(s) : s ∈ D} is given by

P (M(s) ≤ K(s),∀s ∈ D) = exp

{
−
∫

Λ

max
s∈D

(
f(s, λ)

K(s)

)
ν(dλ)

}
, (1.21)

where (s, λ) is a latent Poisson process on D × Λ (e.g., Smith, 1990). The function

f(s, λ) is defined on D × Λ, and satisfies

∫

Λ

f(s, λ)ν(dλ) = 1, ∀s ∈ D, (1.22)

where ν(dλ) is a positive intensity function on Λ. Note that if |D| < ∞, the joint

distribution for a max-stable process given by (1.21) degenerates to the multivariate

extreme-value distribution for the maximum. If |D| = 1 and K(s) is a constant as s

ranges over D, the joint distribution for the max-stable process can be approximated

by the classical GEV distribution for the univariate maximum (Smith, 1990). When

measuring bivariate spatial extremes, the extreme coefficient is introduced by the

max-stable representation of the distribution of bivariate extremes. In what follows,

I will introduce the extreme coefficient for a bivariate extreme value distribution.

Let R(·) ≡ {R(s) : s ∈ D} denote a strictly stationary process in D. In addition,

let R(s) ≡ {R1(s), . . . , Rms
(s)} denote a collection of ms independent replicates at

site s in D. For example, R(s) might be the sequence of daily temperatures at a

particular station s. Let M(s) ≡ max{R(s)} be the site-wise maximum at the site

s. Then by univariate extreme-value theory, M(s) is asymptotically distributed as a
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GEV distribution. Notice that a RV R, distributed as a GEV distribution given by

(1.16), can be transformed to a RV R∗, distributed as a standard Fréchet distribution,

where R∗ = ψ(Rξ−1)
ξ

+µ. Hence, without loss of generality, let the marginal maximum

M(s) be distributed as the standard Fréchet distribution, with distribution function

given by

P (M(s) ≤ K(s)) = exp(−1/K(s)); K(s) > 0, (1.23)

where K(s) is a location-specific threshold. Then for a collection of all site-wise

maxima {M(s : s) ∈ D}, the joint max-stable distribution is given by

P ({M(s) ≤ K(s) : s ∈ D}) = exp

{
−
∫

Λ

max
s∈D

(
f(s, λ)

K(s)

)
ν(dλ)

}
, (1.24)

where the function f(s, λ) is defined on D × Λ. Therefore, the joint probability for

any bivariate maxima, (M(s),M(s + h)), is given by

P (M(s) < K(s),M(s + h) < K(s + h))

= exp

[
−
∫

max

{
f(s, λ)

K(s)
,
f(s + h, λ)

K(s + h)

}
ν(dλ)

]
. (1.25)

Usually, we assume K(s) ≡ K; s ∈ D. Then, the probability in (1.25) becomes

P (M(s) < K,M(s + h) < K) = exp(−θ(h)/K) = (F (K))θ(h), (1.26)

where F (K) ≡ exp(− 1
K

) and θ(h) is given by,

θ(h) ≡
∫

max{f(s, λ), f(s + h, λ}ν(dλ) (1.27)

=

∫
max{f(0, λ), f(h, λ)}ν(dλ), (1.28)

since R(·) is strictly stationary. The function θ(h), which depends on the spatial

lag h, is known as the extremal coefficient. The extremal coefficient belongs to the
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interval [1, 2]. If two maxima are independent, the left-hand side of (1.26) becomes

P (M(s) < K,M(s + h) < K) = P (M(s) < K)P (M(s + h) < K) = F (K)2, (1.29)

sinceM(s) is distributed as the standard Fréchet distribution for all s inD. Therefore,

θ(h) is equal to 2 if two maxima are independent. If two maxima are perfectly

correlated; that is, M(s) = M(s+h), the left-hand side of (1.26) becomes P (M(s) <

K,M(s + h) < K) = P (M(s) < K) = F (K), which implies that θ(h) is equal to 1.

This coefficient approximates the joint distribution of two correlated bivariate

maxima by a power of the standard Fréchet distribution with the equivalent sample

size equal to θ(h). However, the coefficient does not give complete information about

the dependence structure of bivariate maxima with different thresholds.

Cooley et al. (2006) propose a statistic called the madogram to estimate θ(h).

The madogram is the analog of the variogram in geostatistics (the variogram was

defined in (1.7)), and is defined by

νF (h) =
1

2
E[|F (M(s + h)) − F (M(s))|]; s ∈ D, (1.30)

where recall that F (u) ≡ exp(−1/u). Cooley et al. (2006) shows that the madogram

is related to θ(h) by

θ(h) =
1 + 2νF (h)

1 − 2νF (h)
; h ∈ R

d. (1.31)

The moment-based estimator of νF (h) is given by

ν̂F (h) =
1

2|Nh|
∑

||si−sj ||∈Nh

|F (M(si)) − F (M(sj))|, (1.32)

where Nh is the set of all sample pairs for which ||si − sj|| ∈ [h − δ, h + δ). Just

as for the variogram, we can fit parametric families to the madogram estimates, and

plug ν̂(h) into (1.31) to obtain an estimate θ̂(h) for extremal coefficient θ(h). This
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should be done with care because νF (h) (or θ(h)) has to satisfy certain conditions

(see Cooley, 2005, p. 55, for details of the conditions).

For estimation of the dependence of spatial extremes, the madogram connects

classical geostatistics with extreme value theory. However, it is only applicable to bi-

variate extremes. Spatial measures for exceedances, and spatial interpolation methods

for maxima are still under development.

Applicability of extreme value theory to the prediction of exceedance re-

gions

Extreme value theory and the threshold method is well suited to finite-index

processes in 1-D and 2-D. But, are they useful for spatial maxima with appropriate

extensions to 2-D uncountable-index geostatistical processes? The max-stable process

model attempts to describe the spatial dependence among uncountable-index spatial

maxima based on extreme value theory for the marginal maxima. The max-stable

distribution with the extremal coefficient given by (1.27) is introduced to capture

the dependence for any spatial bivariate maxima via a parametric joint distribution,

but it is not available for uncountable-index spatial extremes. Furthermore, these

extreme-value-theory-based approaches require replications at the same site (for ex-

ample, replication derived from repeatability in time), to allow estimation of the

parameters in the GEV or GPD for the marginal maxima. It makes more sense

to compare extreme-value-theory-based approaches for spatial maxima with conven-

tional space-time models, rather than the single-replicate geostatistical model intro-

duced in Section (1.2). If we do apply extreme-value-theory-based approaches to the

geostatistical model, we can imagine that there are only a few observations available

for the inferring the spatial-extreme and the exceedance process. It is then almost
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impossible to estimate parameters in the GPD or GEV model because of the lack of

observations.

There are other attempts, such as the spatial GPD model (Gilleland et al., 2006),

to introduce spatial dependence among uncountable-index spatial extremes by im-

posing dependence structure on location-specific GPD parameters over space. As

an example of this approach, Gilleland et al. (2006) compared probability maps of

the fourth-highest daily average (FHDA) ozone exceeding 84 ppb using a space-time

model and spatial GPD model. The result shows that the probability that the FHDA

exceeds 80 ppb in a year is similar whether one uses the extreme-value or a space-time

modeling approach, at least for the study region in 1997. The similarity between re-

sults from the spatial GPD and the space-time model suggests that the spatial GPD

probably still underestimates extremes and exceedances, since the space-time model

focuses more on the central part of the distribution.

1.4 Outline of dissertation

In this dissertation, the problem of the prediction of exceedances and the ex-

ceedance region is tackled using a series of loss functions. In Chapter 2, I will

present loss functions for the prediction of the hidden process, exceedances. These loss

functions include squared error loss (SEL), covariance matching constrained kriging

(CMCK), and integrated weighted quantile squared error loss (IWQSEL). The pre-

diction of the exceedance region based on the predicted processes are plug-in and

sub-optimal. In Chapter 3, I will introduce a loss function we call Baddeley’s loss

function, which used to obtain the optimal predictor of an exceedance region, given a
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known threshold. Often, the threshold is itself random, so Chapter 4 presents a com-

bined loss function for the joint prediction of a spatial quantile and the exceedance

region above the quantile. The loss function for quantifying the spatial quantile is

the IWQSEL, while the one for identifying the exceedance region is Baddeley’s loss

function, and the combined loss function is the product of the two. Chapter 5 applies

the methodologies to a climate dataset generated from the Climate System Model

(CSM) of the National Center for Atmospheric Research (NCAR), in order to detect

decadal temperature changes over the Americas (e.g., Shen et al., 2002). Chapter

6 contains a discussion of this area of research, particularly function research that

includes extensions of current methods to multiple thresholds where they might be

fixed, random, or both. In the appendix, I expand the Baddeley’s loss function in

simple 1-D and 2-D cases using asymptotic calculations.
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CHAPTER 2

LOSS FUNCTION ON EXCEEDANCES

2.1 Introduction

The spatial exceedance is defined as a collection of large values of a (hidden)

spatial process. The difficulty of prediction of the spatial exceedance arises from

the unobservability of the hidden process, as well as the rareness of the exceedance.

Loss-function approaches are a well known method used for the prediction of spatial

functionals (Cressie, 1993a, p. 108). Common choices include squared error loss

and weighted squared error loss. The resulting predictors from the squared error

loss are kriging-type predictors, such as simple kriging (SK), ordinary kriging (OK),

universal kriging (UK) (e.g., Cressie, 1993b), and covariance matching constrained

kriging (CMCK) (Aldworth and Cressie, 2003). The predictors from weighted square-

error loss include weighted rank squared error loss (WRSEL) (Cressie et al., 2000,

Wright et al., 2003) and integrated weighted quantile squared error loss (IWQSEL)

(Craigmile et al., 2006) predictors. These predictors focus on different parts of the

distribution of hidden process. For example, the SK, OK, and UK predictors mainly

focus on the center of the distribution of the hidden process, while the IWQSEL

predictor has the flexibility to focus on either the center or the tails of the distribution.
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Before presenting the loss functions in this chapter, we first review the hierarchical

model that we presented in Chapter 1, Section 1.2. We shall consider the same model

here.

Recall that Y (·) ≡ {Y (s) : s ∈ D} is the hidden geostatistical process of interest,

defined in D ⊂ R
d, with a positive d-dimensional volume, |D|. Let Z(·) ≡ {Z(s) : s ∈

D} be the process of observed and potentially observed values. Then the hierarchical

model can be described by the following data and process models.

The data model:

Z(s) = Y (s) + ε(s); s ∈ D, (2.1)

where ε(·) is a zero-mean white noise process with measurement-error variance, σ2
ε >

0. We assume that ε(·) is independent of Y (·).

The process model:

Y (s) = µ(s) + δ(s); s ∈ D. (2.2)

Here the function µ(·) captures the large-scale, deterministic mean structure (spatial

trend) of Y (·), and δ(·) is a stationary stochastic process that models the small-scale

spatial structure in Y (·). We assume that the spatial trend, µ(·), follows a linear

model given by

µ(s) = x(s)′β, (2.3)

where the vector x(s) ≡ (x1(s), . . . , xp(s))
T is a collection of covariates at s, and

β ∈ R
p is the spatial-trend parameter. We also assume that δ(·) is a zero-mean

second-order stationary spatial process with a parametric covariance function, CθY
(·).

Namely,

E[δ(s)] = 0, and cov[δ(s), δ(s′)] ≡ CθY
(s − s′); s, s′ ∈ D, (2.4)
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where θY ≡ (σ2, r)T is the spatial-covariance parameter that consists of the partial

sill, σ2, and the range parameter, r. In this chapter, we assume that θY and σ2
ε are

known, and we have n observations, Z = {Z(s) : s ∈ B}, taken at a collection of n

locations in B ≡ {s1, . . . , sn} ⊆ D. We are interested in predicting functionals of the

hidden process, Y (·), based on the observations, Z, using a criterion based on loss

functions.

In general, a loss function, L(θ, a), is a real-valued function defined for all (θ, a) ∈

Θ×A , where Θ is the parameter space and A is the action space that contains the

parameter space; L is bounded below and L(θ, θ) = 0 (Berger, 1985). Sometimes,

θ is considered to be random, where the randomness of θ is specified by a prior

distribution on Θ. Specifically, a loss function for the prediction of Y (·) is defined

on Θ × A = R
d × R

d. Given the loss function at hand, the optimal Bayes predictor

is one that minimizes the expected loss over all possible predictors based on data.

When predicting Y (·) by Ŷ (·), the optimal Bayes predictor (OBP) is a value that

minimizes the so-called Bayes risk E[L(Y (·), Ŷ (·))], where E[·] denotes expectation

with respect to the joint distribution of Y (·) and Z. By a well known result from

Bayesian decision theory (e.g., Berger, 1985), the optimal predictor that minimizes

Bayes risk is the same one that minimizes E[L(Y (·), Ŷ (·)) |Z], where E[· |Z] denotes

expectation with respect to the conditional distribution of Y (·) |Z.

We now define the squared error loss and the weighted squared error loss for

the spatial process, Y (·), defined over the domain, D. Then we derive the optimal

Bayesian predictors for each loss function.
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2.2 Squared error loss

2.2.1 Loss function for kriging predictor

The squared error loss (SEL) for predicting Y (s) by Ŷ (s) is given by

LS

(
Y (s), Ŷ (s)

)
=
(
Y (s) − Ŷ (s)

)2

. (2.5)

The Bayes risk of the SEL is then given by

E
[
LS

(
Y (s), Ŷ (s)

)]
= E

[(
Y (s) − Ŷ (s)

)2
]
. (2.6)

By Bayesian decision theory, the optimal Bayesian predictor (OBP) based on the SEL

for site Y (s) is E[Y (s) |Z]. If the prediction of the whole process Y (·) by Ŷ (·) over

D is of interest, we introduce the integrated squared error loss, given by

LIS

(
Y (·), Ŷ (·)

)
=

∫

D

(
Y (s) − Ŷ (s)

)2

ds. (2.7)

The Bayes risk of the ISEL is

E
[
LIS

(
Y (·), Ŷ (·)

)]
= E

[∫

D

(
Y (s) − Ŷ (s)

)2

ds

]
(2.8)

=

∫

D

E

[(
Y (s) − Ŷ (s)

)2
]
ds. (2.9)

Notice that the component-wise Bayes risk of ISEL inside the integral of equation

(2.9) is the Bayes risk of the SEL for each site as given in (2.6). Hence, the optimal

predictor at each site that minimizes the Bayes risk of ISEL given by (2.8) is the

optimal predictor that minimizes the Bayes risk of SEL given by (2.6). Thus, without

loss of generality, for squared error loss, we only need to consider prediction at a single

site s.

The optimal predictor E[Y (s) |Z] coincides with the simple kriging predictor for

Y (s), if Y (·) and ε(·) in the model given by (2.1) and (2.2) are Gaussian (Gotway
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and Cressie, 1993). There are at least three well-known kriging predictors: simple

kriging (SK), universal kriging (UK), and ordinary kriging (OK). Suppose that the

model parameter vector, φ ≡ (βT , σ2
ε ,θ

T
Y )T , is known. Recall that the covariance

matrix for the data, Σ, is defined by Σ ≡ var(Z) = CθY
(h) +σ2

ε I, and the covariance

vector between the prediction site s and the data is given by c(s) ≡ cov(Z, Y (s)) =

(CθY
(s1 − s), . . . , CθY

(sn − s))T . When the mean µ(s) = x(s)Tβ is known, the SK

predictor for Y (s) is given by

ŶSK(s) = µ(s) + c(so)
′Σ−1(Z − µ). (2.10)

When β is unknown, it can be estimated and plugged into the SK predictor (2.10).

The UK predictor for site s is

ŶUK(s) = x(s)T β̃ + c(s)TΣ−1(Z − Xβ̃), (2.11)

where recall that x(s) ∈ R
p is a collection of covariates at s, the matrix X ≡

(x(s0), . . . ,x(sn))
T is a n× p design matrix, and β̃ is the BLUE for the spatial trend

parameter β, given by,

β̃ ≡ (XTΣ−1X)−1XTΣ−1Z. (2.12)

The OK predictor is a special case of the UK predictor with µ(s) ≡ µ; that is a

constant mean.

2.2.2 Loss function for covariance matching constrained krig-

ing

Kriging predictors (SK, UK, and OK) match their first moment with that of the

predictand. However, the variances of kriging predictors are smaller than that of the

predictand. This implies that when predicting large or small quantiles of Y (·), which
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are non-linear functionals of the predictand, g(Y (·)), the plug-in predictor g(ŶSK(s)),

can be biased. This motivates the constrained kriging (CK) predictor (Cressie, 1993a)

and the covariance-matching constrained kriging (CMCK) predictor (Aldworth and

Cressie, 2003). The CK predictor matches both the mean and the variance of the

predicted process with those of the hidden process for each site; and the CMCK

predictor matches the mean and the covariance matrix (including variance) of the

predictor with those of the hidden process, Y (·).

Suppose that a collection of locations, D∗ ≡ {s∗0, . . . , s∗m} ⊂ D, covers the domain

D well, and Y (·) is discretized to Y ≡ {Y (s) : s ∈ D∗}. Let g(Y) denote a predic-

tand of interest, where g(·) is some scalar-valued function that is smooth enough in its

vector-valued argument, Y, to possess two continuous derivatives; that is, the vector

of the first derivatives, g′(Y) ≡
(
∂g(Y)
∂Y (s)

, . . . , ∂g(Y)
∂Y (sn)

)T
, and the matrix of second deriva-

tives with (i, j)-element given by g
′′

ij(Y) = ∂g(Y)
∂Y (si)∂Y (sj)

, both exist and are continuous.

In addition, let Ŷ ≡ ATZ denote a linear predictor of Y, where A ≡ (a1, . . . , am) is

an n ×m matrix. Then the CMCK predictor minimizes a squared-error loss, given

by

LCK

(
Y, Ŷ

)
=
(
g(Y) − g(Ŷ)

)2

=
(
g(Y) − g(ATZ)

)2
, (2.13)

with two additional constraints:

E[ATZ] = E[Y], and var[ATZ] = var[Y]. (2.14)

The Bayes risk of the loss function given by (2.13) for the CMCK predictor is

E
[
LCK

(
Y, Ŷ

)]
= E

[(
g(Y) − g(ATZ)

)2]
. (2.15)
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Aldworth and Cressie (2003) showed that if A satisfies constraints (2.14), then by

the δ-method, the Bayes risk in (2.15) can be approximated by

E
[
LCK

(
Y, Ŷ

)]
' (g′(µm))TMAg

′(µm), (2.16)

where µm ≡ (µ(s1), . . . , µ(sm))T , and MA ≡ var[ATZ−Y]. Let Λ1 be a p×m matrix,

and Λ2 be an m×m symmetric matrix. Then this constrained minimization problem

to obtain the CMCK predictor is equivalent to minimizing an objective function using

Λ1 and Λ2 as Lagrange multipliers, given by

f(A) ≡ −2(g′(µm))TATCg′(µm) − 21Tpλ1(A
TX−Xm)1p − 1Tmλ2(A

TΣA−Σm)1m,

(2.17)

with respect to A. Here, C ≡ cov(Z,Y) = (c(s∗1), . . . , c(s
∗
m)) is an n×m covariance

matrix between the observed data and the hidden process of interest, Σm = var(Y)

is the covariance matrix of the hidden process, 1p is a p× 1 vector with all elements

equal to 1, and 1m is an m× 1 vector with all elements equal to 1. The m× p design

matrix is given by Xm = (x(s∗1), . . . ,x(s∗m))T for all sites in D∗. Define matrices, P

and Q,

P ≡ var[Y] − var[Xmβ̃], and Q ≡ var[ŶUK ] − var[Xmβ̃],

where β̃ is the BLUE for β, given by (2.12). Suppose that P, Q, and Σ = var[Z]

are all positive-definite (p.d.), and P1 and Q1 are square root matrices that satisfy

P = P1P1 and Q = Q1Q1 respectively. Let ŶCM denote the CMCK predictor for

Y. Then ŶCM is given by (Aldworth and Cressie, 2003),

ŶCM = Xmβ̃ + KTCTΣ−1(Z − Xβ̃), (2.18)

where K = Q−1
1 P1.
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The CMCK predictor ŶCM is the optimal linear predictor that minimizes Bayes

risk for the loss given by (2.13), in the class of predictors that satisfy the constraints

given by (2.14). However, the existence of the CMCK predictor requires P, Q, and

Σ to be p.d. It is safe to assume Σ is p.d., but the p.d. condition for P and Q are

not always satisfied. Hence, the CMCK predictor of Y exists if

P ≡ var[Y] − var[Xmβ̃] is p.d., (2.19)

Q ≡ var[ŶUK ] − var[Xmβ̃] is p.d.. (2.20)

If one of these two conditions are violated, one solution is to partition the process

Y into sub-vectors. Suppose that Y is partitioned to r parts, Y ≡ (YT
1 , . . . ,Y

T
r )T .

Then we can relax the constraints given by (2.19) and (2.20) such that only each

of the r sub-vectors satisfies these constraints. There are several ways to partition

Y. For example, Aldworth and Cressie (2003) partitioned Y into sub-vectors in

such a way that each sub-vector not only has equal length, but also has the same

geometry. Cressie and Johannesson (2001) proposed another partition algorithm,

where each sub-vector consists of one element in Y and a largest possible set of

nearest observations to satisfy the constraints given by (2.19) and (2.20). Note that

the number of the nearest observations may vary for each element in Y.

2.3 Integrated weighted quantile squared error loss

Unlike the classical kriging-type predictors (OK, UK, SK) with tighter distribu-

tions than the predictand, the CMCK predictor stretches the prediction distribution

by matching the first (mean) and second moments (covariance matrix) with the corre-

sponding moments of the hidden process Y (·). There are other methods to stretch the

distribution of kriging-type predictors. For example, Wright et al. (2003) introduce
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weighted ranks squared error loss (WRSEL) for finite-index spatial processes. The

WRSEL is a weighted squared error loss, where the weight is related to the rank of

values of hidden process in a finite-index space. If larger values are more important,

the ranks of those values are given more weight than for small values. The optimal

predictor is obtained by minimizing the Bayes risk of the WRSEL.

Craigmile et al. (2006) extend the WRSEL to uncountable-index geostatistical

processes, and introduce integrated weighted quantile squared error loss (IWQSEL).

The weight in the IWQSEL is assigned based on the importance of a value determined

by the averaged spatial cumulative distribution function (ACDF). Before presenting

the IWQSEL, I will first define the ACDF and the inverse ACDF of a geostatistical

process.

For a given spatial trend parameter β and a given spatial covariance parameter

θY , the ACDF of Y (·) in domain D, denoted by FD(y), is defined by

FD(y) ≡ 1

|D|

∫

D

P (Y (s) < y)ds, (2.21)

and the inverse ACDF is defined by

F−1
D (α) ≡ arg min{y : FD(y) ≥ α}, for α ∈ [0, 1]. (2.22)

When predicting Y (·) by Ŷ (·), the IWQSEL function is defined by

LIW

(
Y (·), Ŷ (·)

)
≡
∫

D

wD(Y (s))
(
Y (s) − Ŷ (s)

)2

ds, (2.23)

where the weight function, wD(Y (s)), is defined by

wD(Y (s)) ≡
∫ 1

0

w(p)I
(
Y (s) ∈ [F−1

D (p), F−1
D (p+ dp)]

)
, (2.24)

for some given ”importance function”, w(·) : [0, 1] → [0,∞). Here, I(·) is the indicator

function. The IWQSEL function assigns weights to different values of Y (·) based on
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their importance as determined by the ACDF. The Bayes risk based on the IWQSEL

is given by

E
[
LIW

(
Y (·), Ŷ (·)

)]
= E

[∫

D

wD(Y (s))
(
Y (s) − Ŷ (s)

)2

ds

]

=

∫

D

E

[
wD(Y (s))

(
Y (s) − Ŷ (s)

)2

ds

]
. (2.25)

Then the IWQSEL predictor ŶIW (s), obtained by component-wise minimization of

(2.25), is given by

ŶIW (s) ≡ EY (s) |Z[wD(Y (s))Y (s)]

EY (s) |Z[wD(Y (s))]
, (2.26)

where the expectation EY (s) |Z[·] is with respect to the distribution of Y (s) |Z.

The IWQSEL and related optimal predictor depend on the choice of the “im-

portance function”, w(p). We choose a sigmoid-type importance function (Craigmile

et al., 2006), given by

w(p) =
1

1 + e−λ(p−a)
; p ∈ [0, 1], (2.27)

where λ > 0 is a scale parameter, and 1/2 ≤ α < 1 is a quantile of the ACDF

of interest. Then the IWQSEL-based predictor given by (2.26) for this importance

function is:

ŶIW (s) =
EY (s) |Z

[
Y (s)

∫ 1

0
1

1+e−λ(p−a) I
(
Y (s) ∈ [F−1

D (p), F−1
D (p+ dp)]

)]

EY (s) |Z

[∫ 1

0
1

1+e−λ(p−a) I
(
Y (s) ∈ [F−1

D (p), F−1
D (p+ dp)]

)] . (2.28)

2.3.1 Properties

The IWQSEL predictor given by (2.28) defines a class of predictors that depends

on λ. For a given α, a larger λ puts more weight on values of Y (·) near or above the

α-th quantile. When λ approaches zero, the sigmoid function approaches 0.5 for all

p, which results in an ISEL function, for which the optimal predictor is the posterior
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mean Y (s) given the data Z. When λ approaches ∞, the sigmoid function approaches

the step function, I(p ≥ α). Therefore, λ controls the shrinkage of the IWQSEL-based

predictor. In the finite-index domain, using the WRSEL, Wright et al. (2003) show

that smoother weight functions yield less-biased predictors than do discontinuous

weight functions like the step function. We will use simulation studies to investigate

this question of bias for the continuous-index domain using the IWQSEL function.

We now define the spatial cumulative distribution function (SCDF) (Lahiri et al.,

1999 of the process Y (·), namely

SD(y;Y (·)) ≡ 1

|D|

∫

D

I(Y (s) ≤ y)ds, (2.29)

and the inverse SCDF

S−1
D (p;Y (·)) ≡ arg min{y : SD(y;Y (·)) ≥ p}. (2.30)

The SCDF is a random functional, where the randomness comes from the original

process, Y (·). Note that the expectation of the SCDF, SD(y;Y (·)), with respect

to Y (·), is equal to the ACDF, FD(y). Thus the SCDF of Y (·) is an empirical

estimator of the ACDF. In Figure 2.1, we show an example of an ACDF, FD(y) and

two realizations of the corresponding SCDF, SD(y;Y (·)). Note that for a given y,

SD(y;Y (·)) changes as Y (·) changes. Hence, for a given quantile, the inverse SCDF,

S−1
D (p;Y (·)), also changes as Y (·) changes. Let θ1 denote the αth quantile of the

SCDF of interest, defined by θ1 ≡ S−1
D (α;Y (·)). Further, let δ1(Z) denote a predictor

for θ1 based on data Z. For prediction of only the αth quantile of the SCDF, we use

weighted quantile squared error loss (WQSEL) function, defined by

LW (θ1, δW (Z)) ≡ wD(θ1)(θ1 − δ1(Z))2, (2.31)
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Figure 2.1: The ACDF, FD(y), versus the SCDF, SD(y;Y (·)). The solid curve is the
ACDF, and the dashed curves are the SCDFs for two different realizations of the Y (·)
process.
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where the weight function, wD(θ1) is defined by

wD(θ1) ≡
∫ 1

0

w(p)I
(
θ1 ∈ [F−1

D (p), F−1
D (p+ dp)]

)
, (2.32)

and the corresponding “importance function”, w(·), is same as in the IWQSEL. The

optimal Bayes predictor based on the WQSEL is

θ̃1 ≡ arg min
δ1(Z)∈R

LW (θ1, δ1(Z))

=
Eθ1 |Z

[
θ1

∫ 1

0
w(p)I

(
θ1 ∈ [F−1

D (p), F−1
D (p+ dp)]

)]

Eθ1 |Z

[∫ 1

0
w(p)I

(
θ1 ∈ [F−1

D (p), F−1
D (p+ dp)]

)]

=
EY (·) |Z

[
S−1
D (α;Y (·))

∫ 1

0
w(p)I

(
S−1
D (α;Y (·)) ∈ [F−1

D (p), F−1
D (p+ dp)]

)]

EY (·) |Z

[∫ 1

0
w(p)I

(
S−1
D (α;Y (·)) ∈ [F−1

D (p), F−1
D (p+ dp)]

)] .

(2.33)

2.4 Simulation study

We have designed a simulation study to compare performance of the kriging pre-

dictor, the CMCK predictor based on a partition with nearest observations, and the

IWQSEL predictor (for different values of the tuning parameter λ in the IWQSEL

predictor). The details of the simulation study are now presented.

We consider a unit square domain of D = {s = (x, y) : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1}

(i.e., ω = 1). We will observe data and evaluate each predictor on the gridded domain

D∗ = {s∗ = (x, y) : x = 0 = 0
M−1

, 1
M−1

, . . . , 1; y = 0 = 0
M−1

, 1
M−1

, . . . , 1} that covers

D, with M = 20. Assuming no spatial trend in (2.2) (i.e., β = 0), we let the hidden

process Y be an isotropic mean-zero Gaussian process with an exponential covariance

function. Recall that this process is characterized solely by its variance σ2, and by

the spatial range parameter, r. That is, the exponential covariance function is given

34



by

CθY
(si − sj) = σ2 exp(−||si − sj||/r), (2.34)

where the Euclidean distance function, ||si − sj||, is given by

||si − sj|| =
√

(xi − xj)2 + (yi − yj)2.

In our experiments, we let σ2 = 1, and vary r from 0.5 (weak spatial dependence),

1.5 (moderate spatial dependence), to 5 (very strong spatial dependence). Using a

Cholesky decomposition for the covariance matrix, we simulate 100 realizations of

Y = {Y (s) : s ∈ D∗} for each of the three levels (weak, moderate, strong) for the

spatial dependence parameter. To each Y (s) in D∗, we add independent Gaussian

measurement error generated from N(0, σ2
ε ), to obtain the data over D∗. We then

sample 1/4 of all sites in D∗ as the collection of observation sites B for experiments,

and henceforth fix B. We consider two levels of measurement-error variance: σ2
ε = 0.5

and σ2
ε = 2. Defining the signal-to-noise ratio (SNR) as the ratio of the partial sill

in the hidden process to the measurement-error variance (i.e., SNR≡ σ2/σ2
ε ), this

corresponds to SNRs of 2 and 0.5. This definition of the signal-to-noise ratio ignores

the amount of spatial dependence in the spatial process. In summary, the factors and

levels for our 2-factor design are listed in Table 2.1.

Predictands and responses

In the simulation, given the αth quantile of the ACDF, q(α) = F−1
D (α), we are

interested in predicting α = 0.5, 0.75, 0.9 using a plug-in predictor SD(q(α); Ŷ (·)).

We consider two responses in the experiment: the bias and the root mean square

prediction error (RMSE). The bias of SD(q(α); Ŷ (·)) is

Bias[SD(q(α); Ŷ (·)) ≡ E[SD(q(α); Ŷ (·)) − α], (2.35)
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Factor Number of levels Values of the levels
r 3 0.5

1.5
5

SNR 2 2
0.5

Table 2.1: Levels of factors in simulation studies for the single-loss approach.

and the RMSE of SD(q(α); Ŷ (·)) is

RMSE[SD(q(α); Ŷ (·)) ≡
√
E[SD(q(α); Ŷ (·)) − α]2. (2.36)

The bias and RMSE of each predictor for all combinations of the factors and predic-

tands of the experiment are obtained from the experimental RMSE and the experi-

mental bias, given by averaging over the Monte Carlo samples of the experiment.

Computation in a discrete domain

When the domain of interest is discretized, we approximate integrals over D to

calculate the ACDF and SCDF of the process. Recall that D∗ is a discrete domain

with D, defined by D∗ ≡ {s∗0, . . . , s∗m}, and Y is the discretized process for Y (·) in

D∗, defined by Y ≡ {Y (s) : s ∈ D∗}. Let F̃D(y) denote the discrete version of the

ACDF of Y (·) in D∗, defined by

F̃D(y) ≡ 1

m

m∑

j=1

P (Y (sj) ≤ y). (2.37)

Then, for α ∈ [0, 1], the approximation for the inverse ACDF, denoted by F̃−1
D (α), is

defined by

F̃−1
D (α) ≡ arg min{y : F̃D(y) ≥ α}. (2.38)
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Let S̃D(y;Y) denote an analogous discrete version of the SCDF in D∗, defined by

S̃D(y;Y) ≡ 1

m

m∑

k=1

I(Y (sk) ≤ y). (2.39)

Then the corresponding approximation for the inverse SCDF, S̃−1
D (α), is

S̃−1
D (α;Y) ≡ arg min{y : S̃D(y;Y) ≥ α}. (2.40)

Given the discrete approximation for the ACDF and the integral approximation for

p, we can approximate the weight function wD(y) by

w̃D(Y (s)) =

∫ 1

0

w(p)I
(
Y (s) ∈ [F̃−1

D (p), F̃−1
D (p+ dp)]

)
(2.41)

' 1

G

G∑

g=1

w
( g
G

)
I

(
Y (s) ∈

[
F̃−1
D

(
g − 1

G

)
, F̃−1

D

( g
G

)])
, (2.42)

where G is the total number of values used in the discretization for p.

Gaussianity of both the true process Y (·) and the measurement-error process helps

to simplify the probability calculations in the IWQSEL and the WQSEL predictors.

The first simplification implies that the ACDF of Y (·) is P (Y (s) ≤ y) = Φ
(
y−x(s)T β

σ

)
.

Secondly, the conditional distribution of Y |Z is a known multivariate Gaussian dis-

tribution, Nm(µ∗,Σ∗), with the parameters given by,

µ∗ = Xmβ − F∗Σ−1(Xβ − Z), and Σ∗ = C∗ − F∗Σ−1(F∗)T , (2.43)

where F∗ is an m × n matrix with (i, j)-element; cov(Y (s∗i ), Z(sj)) =

cov(Y (s∗i ), Y (sj)); C
∗ is an m×m matrix with (i, j)-element cov(Y (s∗i ), Y (s∗j)); and Σ

is an n× n matrix with (i, j)-element cov(Z(si), Z(sj)). Hence, both conditional ex-

pectations in the IWQSEL predictor and the WQSEL predictor can be approximated

by averages over Monte Carlo samples from known Gaussian distributions.
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Simulation results

In Figure 2.2, we show the relationship between the bias of the predictor

SD(q(α); Ŷ (·)) given by (2.35), and the tuning parameter λ in the importance func-

tion (2.27), as well as the relationship between the RMSE of the predictor given by

(2.36) and λ, when SNR=2.0. We show the same relationships in Figure 2.3 when

SNR=0.5. In bias plots of Figures 2.2 and 2.3, the circle represents the bias; the

horizontal solid line represents the zero bias; and the dashed line is the bias for the

CMCK predictor. In RMSE plots of Figures 2.2 and 2.3, the circle represents the

RMSE; and the dashed line is the RMSE for the CMCK predictor.

We observe that the SNR is not an important factor in these experiments since

the patterns between results with SNR= 2 and with SNR= 0.5 are almost the same.

The biases of estimating the SD(q(0.5);Y (·)) using SD(q(0.5); Ŷ (·)) based on the SK

and the CMCK predictors are very close to zero since both predictors are good at the

prediction of the center of the distribution of the hidden process. Hence, based on the

bias criterion, for α = 0.5, we should choose λ = 0 in the IWQSEL, which corresponds

to the SK predictor. For higher quantiles, the biases of SD(q(α); Ŷ (·)) based on the

SK predictor increase and are positive since the SK predictor tends to have tighter

distribution in the center, and it has less extreme values. Therefore, the percentage

of the predicted process values below a given high threshold (e.g., the 75th and 90th

percentiles of the ACDF) is over-predicted using SK. Alternatively, CMCK stretches

the distribution of predicted values so that there are more extreme values in the right

(and left) tail of the distribution. For higher percentiles, we see an under-predicted

percentage of the process below a given threshold, and as the percentile of interest,
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α, increases, it gets worse. The RMSE of CMCK increases as the percentile increases

due to the increase of the bias.

By changing λ in the IWQSEL, the bias of SD(q(α); Ŷ (·)) based on the IWQSEL

can be made small, zero in most cases. We observe that the choice of λ that minimizes

the bias tends to increase as α increases, since for larger percentiles the IWQSEL

predictor needs larger λ to put more weight on larger values. For the same level of

α, λ tends to increase as the spatial dependence (expressed in terms of the range

r) tends to be stronger: for stronger dependence, the process tends to have similar

extreme values appearing in subregions of D. Therefore, IWQSEL-based predictor

needs larger λ in order to discriminate large extreme values. We also observe that

the RMSE of SD(q(α); Ŷ (·)) increases as λ increases. Based on the bias criterion, we

propose the following rule, listed in Table 2.2, for the choice of λ in the IWQSEL. In

the table, r is the range parameter that captures the spatial dependence in the hidden

process. Recall that r = 0.5 represents the “weak” dependence, r = 1.5 represents

the “moderate” dependence, and r = 5 represents the “strong” dependence.

SNR r α = 0.5 α = 0.75 α = 0.9
2 0.5 0 2 6

1.5 0 6 6
5 0 6 18

0.5 0.5 0 2 6
1.5 0 6 6
5 0 6 18

Table 2.2: The choice of λ (to the nearest integer) in IWQSEL for minimizing the
bias in estimating quantile α.

39



0 5 10 15 20

−
0.

25
0.

00

(a)

λ
B

ia
s

α=0.50

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

α=0.75

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

α=0.90

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

−
0.

25
0.

00

(b)

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20
0.

0
0.

3
0.

6

λ

R
M

S
E

0 5 10 15 20

−
0.

25
0.

00

(c)

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

Figure 2.2: The bias and the RMSE of SD(q(α); Ŷ (·)) from IWQSEL-based predictor
versus λ for SNR = 2; Fig 2.2(a) shows results for r = 0.5, Figure 2.2(b) shows results
for the r = 1.5, and Figure 2.2(c) shows results for r = 5. Dashed lines show the
corresponding results for CMCK-based predictor.

40



0 5 10 15 20

−
0.

25
0.

00

(a)

λ
B

ia
s

α=0.50

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

α=0.75

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

α=0.90

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

−
0.

25
0.

00

(b)

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20
0.

0
0.

3
0.

6

λ

R
M

S
E

0 5 10 15 20

−
0.

25
0.

00

(c)

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

−
0.

25
0.

00

λ

B
ia

s

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

0 5 10 15 20

0.
0

0.
3

0.
6

λ

R
M

S
E

Figure 2.3: The bias and the RMSE of SD(q(α); Ŷ (·)) from IWQSEL-based predictor
versus λ for SNR = 0.5; Fig 2.2(a) shows results for r = 0.5, Figure 2.2(b) shows
results for r = 1.5, and Figure 2.2(c) shows results for r = 5. Dashed lines show the
corresponding results for CMCK-based predictor.
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After choosing λ, we compute the empirical percentile of the ACDF based on the

predicted process. To illustrate using simulations, we generate data from a spatial

process that has a weak spatial dependence with r equal to 0.5, SNR equal to 2, and

we set the target quantile equal to 0.9. Then from Table 2.2, we choose λ equal to 6.

Figure 2.4 shows the proportion of the predicted process below the inverse ACDF

of the process for one particular realization of the process chosen at random. In Figure

2.4, we observe that the IWQSEL predictor with chosen λ is very good at estimating

of the target quantile 0.9, shown as the horizontal and the vertical lines. Notice that

the 45◦ line in Figure 2.4 represents the unbiased prediction of IWQSEL predictor

for quantiles. Hence, the IWQSEL predictor underestimates quantiles less than the

target quantile 0.9, and overestimates those larger than 0.9. The SK predictor over-

estimates the target quantile, but is best when the quantiles are below 0.7, since the

SK predictor predicts the center of the distribution of the hidden process well. The

CMCK predictor has larger predictions (for this particular realization), and hence

underestimates the quantiles.

2.5 Discussion

In this chapter, we use a loss-function approach to predict exceedances. The SEL

and the resulting kriging predictor mainly focus on the center of the distribution of the

hidden process. Hence, the kriging-type predictors for the hidden process has tighter

prediction distributions than the hidden process, resulting in biased predictors for

the exceedance. The CMCK predictor does a better job of stretching the prediction

distribution by matching the covariance matrix of the predictor and the predictand.

However, the CMCK-based predictor for the exceedance is also biased because of
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Figure 2.4: The proportion of a predicted process below the inverse ACDF of the
process; data were obtained from a single realization with r = 0.5, and SNR= 2. The
quantile α = 0.9 (and hence λ = 6) was chosen. The vertical solid line shows the
target quantile 0.9. The horizontal solid line shows the 0.9-empirical quantile using
the proportion of a predicted process below the target quantile of the ACDF. The
45◦ solid line represents the unbiased prediction of IWQSEL predictor for quantiles.

43



the highly non-linear functionals in the exceedance. IWQSEL-based prediction is

another way to stretch the prediction distribution by using a loss-function approach.

Approximate unbiasedness of the IWQSEL-based predictor for the exceedance can

be achieved by the choice of a tuning parameter, λ, in the weight function. We

have given recommendations for the choice of λ for different exceedance and different

spatial processes via simulation studies.

However, these loss functions are based directly on the process, and they do not

address prediction of the exceedance region above some threshold. Ad-hoc prediction

for the exceedance region using a plug-in approach is not optimal. In the next chapter,

I shall present an approach to predict the exceedance region using a loss function we

call Baddeley’s loss function that is based directly on the exceedance region. The

optimal predictor of the exceedance region is then obtained by minimizing the Bayes

risk of Baddeley’s loss function.
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CHAPTER 3

PREDICTION OF THE EXCEEDANCE REGION ABOVE

ONE THRESHOLD

3.1 Introduction

In Chapter 2, we have reviewed two classes of loss functions for prediction of the

spatial exceedance, including squared error loss and weighted squared error loss. We

demonstrated that the predictors based on squared error loss, such as the kriging-

based predictor and the CMCK-based predictor, are biased for the prediction of a

spatial exceedance. The IWQSEL-based predictor can achieve approximate unbi-

asedness for prediction of the exceedance for a suitable choice of a tuning parameter.

Recall that an exceedance region (exceedance set) is the set of all spatial locations

where the process of interest has values larger than some exceedance value. Even

though the IWQSL is unbiased for the prediction of exceedance values, plugging in

these predictors does not yield the optimal Bayes predictor of the exceedance region.

In this chapter, we are interested in loss functions based directly on the exceedance

region of a spatial process above a fixed threshold. We first review the hierarchical

model that we presented previously. We shall consider the same model here.
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Recall that Y (·) ≡ {Y (s) : s ∈ D} is the hidden geostatistical process of interest,

defined in D ⊂ R
d, with a positive d-dimensional volume, |D|. Let Z(·) ≡ {Z(s) : s ∈

D} be the process of observed and potentially observed values. Then the hierarchical

model can be described by the following data and process models.

The data model:

Z(s) = Y (s) + ε(s); s ∈ D, (3.1)

where ε(·) is a zero-mean white noise process with measurement-error variance, σ2
ε >

0. We assume that ε(·) is independent of Y (·).

The process model:

Y (s) = µ(s) + δ(s); s ∈ D. (3.2)

Here the function µ(·) captures the large-scale, deterministic mean structure (spatial

trend) of Y (·), and δ(·) is a stationary stochastic process that models the small-scale

spatial structure in Y (·). We assume that the spatial trend, µ(·), follows a linear

model given by

µ(s) = x(s)′β, (3.3)

where the vector x(s) ≡ (x1(s), . . . , xp(s))
T is a collection of covariates at s, and

β ∈ R
p is the spatial-trend parameter. We also assume that δ(·) is a zero-mean,

second-order stationary spatial process with a parametric covariance function, CθY
(·).

Namely,

E[δ(s)] = 0, and cov[δ(s), δ(s′)] ≡ CθY
(s − s′); s, s′ ∈ D, (3.4)

where θY ≡ (σ2, r)T is the spatial-covariance parameter that consists of the partial

sill, σ2, and the range parameter, r. In this chapter, we assume that θY and σ2
ε are

known. In practice they need to be estimated from the data (e.g., see Chapter 5).
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Suppose henceforth that we have n observations Z ≡ {Z(s1), . . . , Z(sn)} at a

collection of observation sites, B ≡ {s1, . . . , sn} ⊂ D. A problem of interest is to use

Z to predict the exceedance region of the true process Y (·):

eYK ≡ {s ∈ D : I(Y (s) > K) = 1}, (3.5)

above a threshold value K. There is also an analogous problem where we wish to

predict the region below a threshold; the development that follows can be easily

adapted to this case.

There is a natural link between exceedance regions of a geostatistical process and a

binary image. A binary image is a function f : D → {0, 1}. It is in 1-1 correspondence

with its foreground set:

ef ≡ {s ∈ D : f(s) = 1}. (3.6)

If we apply the thresholding function f(s) = I(Y (s) > K) in (3.5) to each location

in D, we obtain a binary image with the foreground set given by the exceedance set

(3.5). Finally, let Ω = 2D denote the set of all possible exceedance sets in D.

3.2 Image metrics and the resulting predictor

The link between spatial exceedance regions and binary images motivates us to

use image metrics as loss functions to predict the exceedance region. A loss function,

L(θ, a), is a real-valued function defined for all (θ, a) ∈ Θ × A , where Θ is the

parameter space and A is an action space that contains the parameter space; L is

bounded below by 0 and L(θ, θ) = 0. Sometimes, θ is considered to be random, with

the randomness of θ specified by a prior distribution on Θ. Hence, a loss function

for the prediction of eYK is defined on Θ × A = Ω × Ω. The true value of interest,

47



eYK , has a prior distribution, which inherits its randomness from Y (·) (recall that φ

is fixed and to be estimated). Metrics for binary images are usually defined through

foregrounds (since there is a 1-1 map between a binary image and the corresponding

foreground). Let ρ be a metric for binary images, where ρ is a function Ω × Ω to

R
+ ≡ {x : x ≥ 0}. Then a metric (or distance function) on a set S is a function

ρ : S × S → R
+, where for all s1, s2, s3 in S, ρ satisfies:

1. ρ(s1, s2) ≥ 0 ( non-negativity), and ρ(s1, s2) = 0 if s1 = s2,

2. ρ(s1, s2) = ρ(s2, s1) (symmetry),

3. ρ(s1, s3) ≤ ρ(s1, s2) + ρ(s2, s3) (triangle inequality).

Since metrics for binary images are defined on Ω × Ω and satisfy the regularity con-

ditions for loss functions, they can be used as a loss function for prediction of the

exceedance region defined by (3.5).

An example of a metric for binary images is Baddeley’s metric (Baddeley, 1992),

which measures the discrepancy between two binary images through their correspond-

ing foregrounds. Suppose f and g are two binary images on D with corresponding

foreground sets ef and eg, respectively. Then Baddeley’s metric is defined as:

ρBp (ef , eg) ≡
[

1

|D|

∫

D

∣∣(u(d(s, ef )) − u(d(s, eg))
∣∣p ds

]1/p

, (3.7)

for 0 ≤ p <∞. Here the function u : [0,∞] → [0,W ] is any bounded concave function

with u(0) = 0, and d(s, e) is a distance between location s ∈ D and foreground set

e ⊂ D, defined by:

d(s, e) ≡
{

min{ρ(s, s′) : s′ ∈ e}, if e 6= ∅;
ξ, if e = ∅. (3.8)
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In (3.8), ρ(s, s′) is some metric defined between spatial locations s and s′ (e.g., Eu-

clidean, Manhattan), and ξ is the maximum pair-wise distance in the domain D; that

is, ξ ≡ max{ρ(si, sj) : si, sj ∈ D}. When ρ(s, s′) = ||s − s′||, where ||si − sj|| is the

Euclidean metric between sites si and sj, and u(·) is chosen to be the taper function

defined as u(x) ≡ min(x, t), for a fixed taper t > 0 (Baddeley, 1992), the tapered

version of Baddeley’s metric for binary images is

ρBp (ef , eg; t) ≡
[

1

|D|

∫

D

∣∣dt(s, ef ) − dt(s, e
g)
∣∣p ds

]1/p

. (3.9)

In (3.9), the tapered distance is dt(s, e) ≡ min(d(s, e), t), and from (3.8),

d(s, e) =

{
min{||s − s′|| : s′ ∈ e}, if e 6= ∅;
ξ, if e = ∅. (3.10)

The tapered distance limits the effect of global background noise, since the contribu-

tions to the metric (3.9) for locations s further than t units away from ef and eg are

zero.

A special case of the tapered version of Baddeley’s metric for binary images is

the site-wise misclassification metric ρB1 (ef , eg; 1), which is denoted by ρE(ef , eg).

Another metric for binary images is the Hausdorff metric (e.g., Rote, 1991) given by

ρH(ef , eg) ≡ sup
s∈D

∣∣d(s, ef ) − d(s, eg)
∣∣ , (3.11)

where d(s, ef ) is defined by (3.10). The Hausdorff metric is the limiting case of

ρBp (ef , eg; t) when p approaches ∞ with t > ξ (Baddeley, 1992).

In the Bayesian framework, the optimal predictor of the exceedance set based

on an image metric is obtained as follows. Suppose ρ(eYK , ê) is a loss function for

prediction of the exceedance region based on a metric ρ(·, ·) for binary images, where

ê ∈ Ω is an action that is a function of observations Z. Then, a Bayes rule can be
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found by an action that minimizes the posterior expected loss (Berger, 1985, p.159).

Suppose e∗K is the Bayes rule (also known as the optimal Bayes predictor, or OBP),

assuming the loss function ρ(eYK , ê); then e∗K is given by:

e∗K = arg min
be∈Ω

EY (·) |Z

[
ρ(eYK , ê)

]
, (3.12)

where EY (·) |Z[·] is expectation with respect to the posterior distribution of Y (·) given

the observations Z.

In what follows, we shall demonstrate our methodology the tapered version of

Baddeley’s metric for binary images as defined by (3.9). Within this metric, the two

calibration quantities t and p account for both the site-wise misclassification error and

the localization error, where “localization” refers to some important local features,

such as clusters. As we have noted before, it is implicit in all these calculations that

the parameters, φ, of the joint distribution are known and given. In practice, they

are estimated (see Chapter 5), and in this sense our approach is empirical Bayesian

rather than fully Bayesian.

3.3 Baddeley’s loss function and the resulting predictor

We define the Baddeley’s loss function as the square of the tapered version of

Baddeley’s metric for binary images, with p = 2. That is,

Bt(e, ê) ≡
1

|D|

∫

D

(dt(s, e) − dt(s, ê))
2 ds, (3.13)

where e ∈ Ω is the true exceedance set, ê ∈ Ω is an action predicting the true

exceedance set based on observations Z, and dt(s, e) is the tapered distance (3.10)

with taper parameter t. Clearly, Baddeley’s loss function (3.13) is a well defined,

non-negative loss function. It penalizes the discrepancy between the true set and the
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predicted set; the more different the two sets are, the larger the loss. The loss is equal

to zero if and only if ê = e.

Suppose e∗K is the optimal Bayes predictor based on Baddeley’s loss function. We

wish to predict the exceedance region eYK given by (3.5). From (3.12),

e∗K = arg min
be∈Ω

EY (·) |Z

[
Bt(e

Y
K , ê)

]
(3.14)

=
1

|D| arg min
be∈Ω

∫

D

EY (·) |Z

[(
dt(s, e

Y
K)
)2

+ dt(s, ê)
[
dt(s, ê) − 2dt(s, e

Y
K)
]]
ds

(3.15)

=
1

|D| arg min
be∈Ω

∫

D

{
EY (·) |Z

[(
dt(s, e

Y
K)
)2
ds
]

+

+

∫

D

EY (·) |Z

[
dt(s, ê)

[
dt(s, ê) − 2dt(s, e

Y
K)
]]
ds

}
(3.16)

= arg min
be∈Ω

1

|D|

∫

D

EY (·) |Z

[
dt(s, ê)

[
dt(s, ê) − 2dt(s, e

Y
K)
]]
ds (3.17)

= arg min
be∈Ω

Vt(ê;K), (3.18)

where

Vt(ê;K) ≡ 1

|D|

∫

D

{
dt(s, ê) ·

(
dt(s, ê) − 2EY (·) |Z

[
dt(s, e

Y
K)
])}

ds. (3.19)

Here, equation (3.15) holds because of definition (3.13). Equation (3.17) is valid

because EY (·) |Z

[(
dt(s, e

Y
K)
)2]

does not depend on ê. Equation (3.18) is true be-

cause dt(s, ê) is deterministic with respect to the conditional distribution p(Y (·) |Z).

Since the solution is not available in closed form, we shall use numerical optimization

(namely simulated annealing) to obtain the predictor e∗K .

Baddeley’s loss function given by (3.13) takes into account not only the site-wise

misclassification error, but also the localization error, by using the taper t. In Ap-

pendix A, some asymptotic calculations in simple 1-D and 2-D cases shows that as t

51



approaches zero, the leading term of Baddeley’s loss function is t2 times the site-wise

misclassification error in simple 1-D and 2-D cases. Intuitively, given a threshold

K, if Y (·) is less dependent, elements in the exceedance region above K tend to be

separated from each other over the domain of interest. However, if Y (·) is highly

dependent, elements in the exceedance region tend to be clustered together for the

same threshold K. As a special case, consider independent Y (·) in D. Here it is

plausible to use the site-wise misclassification error as a loss function to predict the

exceedance region, since the prediction cannot borrow strength from other indepen-

dent locations. Therefore, we expect to use a small taper in Baddeley’s loss function

to predict the exceedance region for less dependent geostatistical processes. On the

other hand, we need to use a large taper to predict the exceedance region for highly

dependent geostatistical processes, because we expect to borrow strength from other

regions of D. With this in mind, we suggest that the taper be chosen proportional to

the range parameter r. Later in this chapter, I will use simulations based on different

geostatistical processes and different thresholds, to justify the recommended choice

of taper,

t = min(r/2, ξ). (3.20)

3.4 Other approaches to detect hotspots

There are other approaches to detecting spatial hotspots. One example is the

upper level set (ULS) scan statistics by Patil and Taillie (2004).

Suppose that D is the field of interest and is discretized to a collection of sub-

regions, defined by Da ≡ {a1, . . . , am}. Let Ω∗ denote the set of all possible combi-

nations of different sub-regions. In addition, suppose that there is a known “size”
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parameter for each sub-region indexed by a ∈ Da. For example, the number of people

in the sub-region a, Na. Denote a RV of interest in a sub-region a, such as count,

by Ya. Then the ULS method first models Ya to be independently distributed as a

binomial distribution with unknown success probability parameters pa ∈ [0, 1]; that

is, Ya ∼ Binomial(Na, pa). Then the unknown hotspot e ⊆ Dd consists of sub-regions

with significant large values for pa. Suppose that pa = p1 for all sub-regions in e,

pa = p0 for all sub-regions not in e, and p0 < p1 for these two constants. If we

consider e to be an unknown parameter, then the profile likelihood for e is given by

L(e) = max
p0,p1∈[0,1]

L(e, p0, p1) = L(e, p̂0, p̂1),

where p̂0 and p̂1 are the maximum likelihood estimates of p0 and p1, respectively. Fi-

nally, the hotspot estimation requires to maximize L(e) as e varies over Ω∗. However,

maximizing the profile likelihood for the unknown hotspot is troublesome because the

search space Ω∗ is the configuration space of all the sub-regions in the field. Although

Ω∗ is a finite set, it is generally so large that maximizing the profile likelihood by an

exhaustive search is computationally expensive.

The ULS scan statistic is an adaptive approach in which Ω∗ is reduced to ΩULS

by using the scan statistic Ga, for example, Ga = Ya/Aa for the success probability

parameter in the Binomial model. For a given level g, an upper level set (ULS) based

on the scan statistic is Ug = {a : Ga ≥ g}, where the total number of levels, g, is finite.

Then, ΩULS is the collection of all possible upper level set. The maximization of the

profile likelihood for the hotspot is then done in the reduced space. The reduction

is plausible if the reduced search space contains the MLE for the hotspot in the full

search space because the local MLE is also the global MLE in this case.
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In the problem of predicting the exceedance region of a geostatistical process, the

original observations Z are obviously not independent. Neither is the process Y (·)

or the 0-1 value that indicates exceedance or not for each spatial location (see the

definition of the exceedance region in (3.5)). If one does want to use the ULS scan

statistics in this case, the scan statistic for Y (·) can not be guaranteed to be available

for all the sites in D because Z may not cover part of the field sometimes.

3.4.1 Computation of the predictor via simulated annealing

Consider the general goal of finding the θ ∈ Θ that minimizes the objective

function, h(θ). We shall use simulated annealing to achieve this goal numerically

(e.g., Robert and Casella, 2004). Consider a probability distribution of the form,

pT (θ) ≡ (c(T ))−1 exp[−h(θ)/T ], (3.21)

where c(T ) is a normalizing constant. The parameter T > 0 is called the “tempera-

ture” of the system. As T → ∞, pT (·) approaches a uniform distribution on Θ. On

the other hand, when T → 0, pT (·) becomes concentrated on the global minimum of

h(θ). If there are multiple global minima, pT (·) approaches a uniform distribution

over these multiple minima, as T → 0.

Simulated annealing is a sequential procedure made up of a Metropolis sampler

and an annealing schedule. The Metropolis sampler eventually simulates realizations

with target probability distribution pT (·) given in (3.21). Let θ̂i ∈ Θ denote the

state of the samples at iteration i. We propose a new candidate state, ζ ∈ Θ,

where ζ is chosen according to a proposal distribution; for example, ζ is chosen

uniformly in a neighborhood of θ̂i. We then choose θ̂i+1 = ζ, with probability

τ = min
{

1, pT (ζ)/pT (θ̂i)
}

, or keep θ̂i+1 = θ̂i, with probability 1−τ . After canceling
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out the normalizing constant c(T ) and the probability of symmetric proposals from

a uniform distribution, the expression for the probability τ can be simplified to τ =

min
{

1, exp
[
−
(
h(ζ) − h(θ̂i)

)
/T
]}

.

The annealing schedule is simply the rate at which T , which we write as T (i) to

emphasize the iteration number, approaches zero as i → ∞. Under certain assump-

tions on T (i), the simulated-annealing algorithm is guaranteed to find the global

minimum (Geman and Geman, 1984). For example, the annealing schedule,

T (i) =
T0

log(1 + i)
; i = 1, 2 . . . , (3.22)

where T0 is a tuning constant, yields the global minimum. This is called logarithmic

cooling. Fast convergence can be achieved with linear cooling T (i) = T0/(1 + i), for

i = 1, 2 . . .. However, for linear cooling the solution may not be the global minimum;

in our context, results for linear cooling are still reasonable according to the simulation

study in Section 3.5.

In general cases, when the objective function we want to minimize or maximize

involves expressions without analytic forms, a Monte Carlo algorithm within simu-

lated annealing might be necessary to evaluate certain expressions numerically. For

example, the objective function that we want to minimize for the Bayes rule, e∗K , is

Vt(ê;K) defined by (3.19); here we may need a simulation procedure (e.g., Markov

Chain Monte Carlo, or MCMC) to obtain the posterior expectation, EY (·) |Z[dt(s, e
Y
K)].

This can be simplified for models given by (3.1) and (3.2), in which both the true

process Y (·), and the measurement-error process ε(·) are Gaussian. Suppose that we

can always discretize D to a set of locations D∗ ≡ {s∗1, . . . , s∗m} that cover D well.

Therefore, let Y ≡ (Y (s∗1), . . . , Y (s∗m))T denote a vector of the corresponding hidden

values at {s∗1, . . . , s∗m}, and Xm ≡ (x(s∗1), . . . ,x(s∗m)) denote the p×m design matrix
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for predictions over D∗. Now, the conditional distribution p(Y |Z), has a known mul-

tivariate Gaussian distribution that we can exploit. Recall CθY
(·) is the covariance

function of Y (·), where θY is the vector of covariance parameters. By a well known

property of the multivariate Gaussian distribution, the conditional distribution of

interest, p(Y |Z), is Nm(µ∗,Σ∗), with

µ∗ = (Xm)Tβ − F∗Σ−1(XTβ − Z), and Σ∗ = C∗ − F∗Σ−1(F∗)T , (3.23)

where X ≡ (x(s1), . . . ,x(sn)) is a p × n design matrix for the observations; F∗ is an

m× n matrix with (i, j)-element cov(Y (s∗i ), Z(sj)) = cov(Y (s∗i ), Y (sj)) = CθY
(||s∗i −

sj||); C∗ is an m×m matrix with (i, j)-element cov(Y (s∗i ), Y (s∗j)) = CθY
(||s∗i − s∗j ||);

and Σ is an n× n matrix with (i, j)-element cov(Z(si), Z(sj)) = CθY
(||si − sj||).

We now describe the simulated annealing algorithm that yields to optimal Bayes

predictor based on Baddeley’s loss function given by (3.17). Recall that the geostatis-

tical model includes a data model given by (3.1) and a process model given by (3.2).

Suppose that φ ≡ (βT , σ2
ε ,θ

T
Y )T are already estimated using φ̂ ≡

(
β̂
T
, σ̂2

ε , θ̂
T

Y

)T
.

Then we can directly generate samples from p(Y |Z) based on the multivariate Gaus-

sian distribution given in (3.23). Suppose that there are J realizations sampled from

p(Y |Z). Then we can easily approximate EY (·) |Z

[
dt(s, e

Y
K)
]

in Vt(ê;K) defined by

(3.19), by the average of the Monte Carlo samples from EY |Z

[
dt(s, e

Y
K)
]
. If we denote

the approximation by ζ̂s, then

ζ̂s =
1

J

J∑

j=1

dt(s, e
Y (j)

K ),

where Y(j) is the jth realization from the posterior distribution p(Y |Z, φ̂). Then,

we do simulated annealing to solve for e∗ with EY (·) |Z

[
dt(s, e

Y
K)
]

replaced by ζ̂s in

(3.17). The actual algorithm to solve for e∗K , is as follows:
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1. Start with an initial exceedance set ê
(0)
K . (Some suggestions for this starting

value will be given below.)

2. Suppose that at the ith stage, the current exceedance set is ê
(i)
K . Then propose

a new exceedance set ẽK by adding a uniformly-randomly selected site s(i) in D

to ê
(i)
K , or dropping s(i) from ê

(i)
K : if s(i) is excluded from ê

(i)
K in previous stage,

sr is added to ê
(i)
K for ẽK ; if s(i) is included in ê

(i)
K , s(i) is dropped from ê

(i)
K for

ẽK .

3. Accept the proposed ê(i+1) = ẽ with probability

min

{
1, exp

[
− 1

T (i)
(Vt
(
ẽ;K) − V (ê(i);K)

)]}
.

4. Repeat previous steps until ê
(i)
K converges.

We also considered the simulated annealing with particles (Amzal et al., 2006).

The idea is to start multiple chains that are called particles. Each particle updates

one step just as the classical simulated annealing does. Then all the updated particles

are re-sampled based on their corresponding sampling weights. Those particles with

smaller losses being minimized have larger weights, which results in particles that

are eventually closer to the global optimum of interest. In simulated annealing with

particles, the cooling schedule is usually linear. However, the solution of simulated

annealing with particles was comparable with the classical simulated annealing when

both methods have a same number of iteration steps.

3.5 Simulation study

In this section, we evaluate the performance of the Baddeley-loss-based predictor

of the exceedance region in the case of a fixed threshold K, as defined by 3.5. Recall
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that the predictor of the exceedance region, e∗K , defined by (3.14), depends on the

taper size, t. We begin this section, by verifying the rule for the choice of the taper

as suggested by (3.20), on the basis of a Monte Carlo experiment. We then follow up

with comparison of the Baddeley-loss-based predictor of the exceedance region, with

the often-used posterior-mean-based, plug-in predictor.

Recall that we have observations Z at a fixed set B of locations in the domain D.

For any location s ∈ D, the posterior-mean predictor of the hidden process, Y (s) is

Ŷ (s) ≡ EY (s) |Z[Y (s)]. The plug-in predictor of the exceedance region above a fixed

threshold K, based on this predictor of Y (s), is then defined by

êK ≡
{
s ∈ D : Ŷ (s) > K

}
. (3.25)

3.5.1 Calibration of the taper t

We consider a unit square domain D ≡ {s = (x, y) : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1}.

We conduct the simulation and evaluate each predictor on the gridded domain D∗ ≡

{s∗i = (x, y) : x = 0 = 0
M−1

, 1
M−1

, . . . , 1; y = 0 = 0
M−1

, 1
M−1

, . . . , 1} for M = 20.

Assuming no spatial trend in (3.2) (i.e., β = 0), we let the hidden process Y (·) be an

isotropic mean-zero Gaussian process with an exponential covariance function. This

process is characterized solely by its variance σ2 and by the spatial range parameter

r. In our experiments, we let σ2 = 1, and vary r among values 0.5 (corresponding

to weak spatial dependence), 1.5 (moderate spatial dependence), and 5 (very strong

spatial dependence). Using a Cholesky decomposition for the covariance matrix, we

simulate 20 realizations of Y = {Y (s∗) : s∗ ∈ D∗} for each of the three levels (weak,

moderate, strong) for the spatial dependence parameter. To each Y (s∗), we add 100

independent Gaussian measurement error, N(0, σ2
ε ), to obtain the data process. We
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then randomly sample 1/4 of all sites in D∗ as the collection of observation sites B for

experiments, and henceforth fix B. The corresponding data then become observations

Z. We consider two levels of measurement-error variance: σ2
ε = 0.5 and σ2

ε = 2.

Defining the signal-to-noise ratio (SNR) as the ratio of the partial sill in the hidden

process to the measurement-error variance (i.e., SNR≡ σ2/σ2
ε ), this corresponds to

SNRs of 2 and 0.5. The threshold K = F−1
D (α) is fixed as the αthe quantile of the

ACDF of Y (·), with α = 0.5, 0.75, 0.9. Notice that when β = 0 and σ2 = 1, FD(·)

is the standard normal CDF, Φ(·). Hence, K = 0.00, 0.67, 1.28. In summary, the

factors for our 3-factor design are listed in Table 3.1. For each factor combination,

there are 20 replicates of Y (·), and within each replicate there are 100 replicates of

measurement errors. When defining the response to the simulation experiment, we

average over the 100 replications of measurement error and display the 20 responses

corresponding to the replicates of Y (·).

Factor Number of levels Values of levels
r 3 0.5

1.5
5

SNR 2 2
0.5

α 3 0.50
0.75
0.90

Table 3.1: Levels of factors in simulation studies for the single-loss approach.
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We define relative efficiency of e∗K to êK to verify the choice of taper given by

(3.20). Let REB (e∗K , êK ; t) denote the relative efficiency with taper t, defined by,

REB (e∗K , êK ; t) ≡ 1/E
[
Bt

(
e∗K , e

Y
K

)]

1/E
[
Bt

(
êK , eYK

)] =
E
[
Bt

(
êK , e

Y
K

)]

E
[
Bt

(
e∗K , e

Y
K

)] , (3.26)

where E[·] is the expectation with respect to Z and Y (·). Then in the Monte Carlo

experiment conducted in D∗, the expectations with respect to Z and Y (·) are approx-

imated by the corresponding averages over realizations of the measurement error and

realizations of Y.

The relative efficiency, REB, is the ratio of the mean Baddeley’s loss function for

one predictor to another predictor, in which both predictors are compared to the true

exceedance region. Here REB(e∗K , êK) is larger than 1 if and only if predictor e∗K has

smaller average Baddeley’s loss function compared to the true exceedance region than

the predictor êK has. We expect to see a smaller averaged Baddeley’s loss function

for e∗K than for êK because êK plugs in underdispersed predictions, while e∗K is the

optimal predictor of the exceedance set in terms of Baddeley’s loss function.

Suppose for each experiment that there are a total of nY realizations for Y and

nε realizations of the measurement error. Then for each experiment, equation (3.26)

can be approximated by the sample average

R̃EB (e∗K , êK ; t) =

∑nY

i=1

∑nε

j=1Bt

(
ê
(i,j)
K , e

Y (i)
K

)

∑nY

i=1

∑nε

j=1Bt

(
e
∗(i,j)
K , e

Y (i)
K

) , (3.27)

where e
Y (i)
K is the true exceedance set defined by (3.5) based on the jth sample of

Y, while ê
(i,j)
K and e

∗(i,j)
K are corresponding predictors of êK defined by (3.25) and e∗K

defined by (3.14), based on the ith sample of Y and jth sample of the measurement

error.
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In Figure 3.1, we plot the sample-averaged relative efficiency, R̃EB (e∗, êK ; t) (the

solid line), along with the 95% confidence interval (the dashed line), against t, for

simulation experiments over all factor combinations (2 levels of SNR, 3 levels of range

parameter, r, and 3 levels of thresholds, K). From Figure 3.1, it is not surprising

to see that all relative efficiency curves are above 1, since on average, the Baddeley-

loss-based predictor, e∗, for the exceedance region minimizes the Bayes risk of the

Baddeley’s loss function, while the posterior-mean-based, plug-in predictor, êK , is

not the optimal Bayes predictor for Baddeley’s loss function. Based on the relation-

ship between the desirable taper t and the spatial dependence of the true process Y (·),

shown in Figure 3.1, we choose the taper t that has the large and stable relative effi-

ciency. Recall that the spatial dependence of the true process Y (·) is only determined

by the range parameter, r, in all simulation experiments. For the weakly (r = 0.5),

and the moderately (r = 1.5) dependent processes, the desirable taper appears to

be approximately half of the range parameter; for the strongly dependent (r = 5),

the desirable taper appears to be approximately equal to ξ =
√

2, the maximum of

the pairwise distance of D. For a given range, this choice of t remains same across

different combinations of other two factors, the SNR and the threshold, K. In Table

3.2, we list the choice of t for all combinations of experiment factors. Henceforth, we

use the rule, t = min(r/2, ξ), for the choice of t.

3.5.2 Performance comparison

After verifying the rule for the choice of taper, we then conduct a simulation

study to compare the performance of Baddeley-loss-based predictor, e∗K , with the

posterior-mean-based, plug-in predictor, êK .
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Figure 3.1: The relative efficiency of the Baddeley-loss-based predictor and the
posterior-mean-based predictor, for different tapers, range parameters, r, and values
of α (used to set the threshold), for SNR = 2.0. The solid line is for the sample-
averaged relative efficiency. The dashed line is for the 95% confidence interval for the
sample-averaged relative efficiency.
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Figure 3.2: The relative efficiency of the Baddeley-loss-based predictor and the
posterior-mean-based predictor, for different tapers, range parameters, r, and values
of α (used to set the threshold), for SNR = 0.5. The solid line is for the sample-
averaged relative efficiency. The dashed line is for the 95% confidence interval for the
sample-averaged relative efficiency.
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SNR r α = 0.5 α = 0.75 α = 0.9
2 0.5 0.25 0.25 0.25

1.5 0.75 0.75 0.75
5 1.25 1.25 1.25

0.5 0.5 0.25 0.25 0.25
1.5 0.75 0.75 0.75
5 1.25 1.25 1.25

Table 3.2: The choice of taper, t, in the Baddeley’s loss function based on the relative
efficiency, with the grid size, ω = 1, and the maximum pairwise distance, ξ =

√
2.

The domain of interest is the same unit square domain D that we discretized to

D∗ in Section 3.5.1. We let the model parameters have same values as the simulation

in Section 3.5.1; that is, β = 0, σ2 = 1, and r varies among values r = 0.5 (corre-

sponding to weak spatial dependence), r = 1.5 (moderate spatial dependence), and

r = 5 (very strong spatial dependence). We also use a Cholesky decomposition for

the covariance matrix, and simulate 20 realizations of Y = {Y (s∗) : s∗ ∈ D∗} for each

of the three levels (weak, moderate, strong) for the spatial dependence parameter; to

each Y (s∗), we add 100 independent Gaussian measurement error, N(0, σ2
ε ), to obtain

the data process. We then randomly sample 1/4 of all sites in D∗ as the collection

of observation sites B for experiments, and henceforth fix B. The corresponding

data then become observations Z. We consider two levels of measurement-error vari-

ance: σ2
ε = 0.5 and σ2

ε = 2. This corresponds to SNRs of 2 and 0.5. The threshold

K = F−1
D (α) is fixed as the αth quantile of the ACDF of Y (·), with α = 0.5, 0.75, 0.9.

Hence, K = 0.00, 0.67, 1.28. In summary, the factors are the same as in Table 3.1.

64



Notice that in the simulation for the performance comparison, for each factor combi-

nation there are 20 replicates of Y (·), and within each replicate there are 100 replicates

of measurement errors. When defining the response to the simulation experiment for

the performance comparison, we average over the 100 replications of measurement

errors.

Suppose that e is the true exceedance region, and ê is a predicted exceedance

region. Let Se(e, ê) denote a sensitivity measure, and Sp(e, ê) denote a specificity

measure of the predictor ê, defined by:

Se(e, ê) =
|e∩ê|
|e| , and Sp(e, ê) =

|(D\e)∩(D\ê)|
|D\e| . (3.28)

Then, Se(e, ê) calculates the area-proportion of correctly predicted exceedance points

(“true positives”), while Sp(e, ê) calculates the area-proportion of correctly predicted

non-exceedance points (“true negatives”).

Figures 3.3 shows boxplots of the difference of the sensitivity and specificity mea-

sures for the Baddeley-loss-based predictor (e∗K) and the posterior-mean-based, plug-

in predictor (êK). We observe that for the weakly (r = 0.5), moderately (r = 1.5) and

strongly (r = 5) dependent geostatistical processes, e∗K is more likely to predict the

same number or more sites correctly for the true exceedance regions than for êK for

all thresholds. The Baddeley-loss-based predictor e∗K also tends to predict the same

number or more sites correctly for the true non-exceedance regions than êK , except

for the case of α = 0.5, r = 0.5, and SNR=2, where êK is considered to be good, since

Y (·) is less dependent and relative strong to the error process, and the threshold is

close to the center of the distribution of Y (·).

We conducted a similar simulation experiment in a finer domain with M = 40.

As shown in Figure 3.4, the Baddeley-loss-based predictor e∗k performs similarly to
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Figure 3.3: Boxplots of difference of the sensitivity and specificity between the
Baddeley-loss-based predictor and the posterior-mean-based predictor, when the grid
size is M = 20.
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êK for the threshold close to the center of the distribution (α = 0.5). For higher

thresholds, we observe consistently similar results as we saw for M = 20.

3.6 Discussion

In this chapter, we introduce image metrics as loss functions for the prediction of

an exceedance region above a known threshold. We then propose a framework to solve

for the optimal Bayes predictor for the exceedance region with a general image met-

rics. We demonstrate our methodology with special attention to the Baddeley’s loss

function since the Baddeley’s loss function is well suited for discriminating between

local and global structures in the spatial exceedance region.

To obtain the Baddeley-loss-based predictor for the exceedance region, numerical

solution (simulated annealing) is required. It is not surprising that the process of

finding optimal predictors with squared error loss or weighted squared error loss is

much less computationally intensive than those with Baddeley’s loss because of the

possibility of componentwise optimizations in squared error loss or weighted squared

error loss. The extra cost for the Baddeley-loss-based predictor, involves the iteration

number for simulated-annealing solution. Suppose there are m prediction sites and

nT iterations for simulated-annealing solution. Then the extra computation cost is

O(m2nT ).

In practice, we need to pre-estimate the spatial trend and covariance parameters.

We then plug in these estimates to predict the exceedance region. It is empiri-

cal Bayesian approach, not hierarchical Bayesian. Throughout, we assume that the

threshold K is given. In practice, this is not always true. In next chapter, we will use

a joint loss approach to predict the threshold and exceedance region simultaneously.
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Figure 3.4: Boxplots of difference of the sensitivity and specificity between the
Baddeley-loss-based predictor and the posterior-mean-based predictor, for a grid size
of M = 40.
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CHAPTER 4

JOINT PREDICTION OF A SPATIAL QUANTILE AND

ITS EXCEEDANCE REGION

In Chapter 3, we introduced image metrics as loss functions to predict the spatial

exceedance region for a given threshold K. The exceedance region eYK in (3.5) is

defined as those locations above a fixed threshold K. However, it is not always the

case that the threshold K is known, such as when a spatial quantile is used as the

threshold. In this section, we consider the joint prediction of a spatial quantile (i.e., a

quantile of the spatial cumulative distribution function (SCDF), as defined by Lahiri

et al., 1999), and its associated exceedance region.

Before presenting the approach for joint prediction, we shall briefly review the

spatial model of interest. (It is the same model that was used in Chapters 2 and 3).

Recall that Y (·) ≡ {Y (s) : s ∈ D} is the hidden geostatistical process of interest,

defined on D ⊂ R
d, with a positive d-dimensional volume, |D|. Let Z(·) ≡ {Z(s) : s ∈

D} be the process of observed and potentially observed values. Then the hierarchical

model can be described by the following data and process models.

The data model:

Z(s) = Y (s) + ε(s); s ∈ D, (4.1)
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where ε(·) is a zero-mean, white noise process with measurement-error variance, σ2
ε >

0. We assume that ε(·) is independent of Y (·).

The process model:

Y (s) = µ(s) + δ(s); s ∈ D. (4.2)

Here the function µ(·) captures the large-scale, deterministic mean structure (spatial

trend) of Y (·), and δ(·) is a stationary stochastic process that models the small-scale

spatial structure in Y (·). We assume that the spatial trend, µ(·), follows a linear

model given by

µ(s) = x(s)′β, (4.3)

where the vector x(s) ≡ (x1(s), . . . , xp(s))
T is a collection of covariates at s, and

β ∈ R
p is the spatial-trend parameter. We also assume that δ(·) is a zero-mean,

second-order stationary spatial process with a parametric covariance function, CθY
(·).

Specifically,

E[δ(s)] = 0, and cov[δ(s), δ(s′)] ≡ CθY
(s − s′); s, s′ ∈ D, (4.4)

where θY ≡ (σ2, r)T is the spatial-covariance parameter that consists of the partial

sill, σ2, and the range parameter, r. In this chapter, we assume that θY and σ2
ε are

known, although in practice they are estimated from the data.

Suppose henceforth that we have n observations Z ≡ {Z(s1), . . . , Z(sn)} at a

collection of observation sites, B ≡ {s1, . . . , sn} ⊂ D. The problem of interest in this

chapter is to use the data Z to predict a spatial quantile and its associated exceedance

region of the true process Y (·).
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4.1 Joint loss functions and the resulting predictor

Recall that SD(y;Y (·)) is the spatial cumulative distribution function (SCDF) of

Y (·) on the domain D; that is,

SD(y;Y (·)) ≡ 1

|D|

∫

D

I(Y (s) ≤ y)ds, (4.5)

where I(·) is the indicator function. Let S−1
D (α;Y (·)) denote the inverse SCDF of

Y (·), defined for 0 ≤ α ≤ 1 by:

S−1
D (α;Y (·)) ≡ arg min{y ∈ R : SD(y;Y (·)) ≥ α}. (4.6)

Let θ1 denote the α-quantile of the SCDF of Y (·), and θ2 denote the spatial exceedance

region of points in D that are above the quantile; that is,

θ1 = S−1
D (α;Y (·)), (4.7)

θ2 = eYθ1 ≡ {s ∈ D : I(Y (s) > θ1) = 1}. (4.8)

Then, given the predictor, δ ≡ (δ1(Z), δ2(Z))T , of θ ≡ (θ1, θ2)
T that depends on the

data vector Z, we define the joint loss function, L(θ, δ) to be

L((θ1, θ2), (δ1(Z), δ2(Z))) = L1(θ1, δ1(Z)) × L2(θ2, δ2(Z)), (4.9)

which is of product form. Here, L1(θ1, δ1(Z)) : R × R → R
+ and L2(θ2, δ2(Z)) :

Ω × Ω → R
+ are loss functions for θ1 and θ2, respectively. Notice the joint loss

L((θ1, θ2), (δ1(Z), δ2(Z))) is a nonnegative-valued function defined on (R×Ω)×(R×Ω).

Suppose that (δ∗1, δ
∗
2) is the optimal Bayes predictor (OBP) for (θ1, θ2) based on the

joint loss function defined by (4.9). Then, the joint OBP, (δ∗1, δ
∗
2), is given by:

(δ∗1, δ
∗
2) = arg min

(δ1,δ2)∈(R×Ω)
Eθ1,θ2 |Z [L((θ1, θ2), (δ1, δ2))] , (4.10)
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where Eθ1,θ2 |Z[·] is the expectation based on the conditional distribution of (θ1, θ2)

given the observations Z. We can simplify the calculation for Eθ1,θ2 |Z[·] using the fact

that θ1 and θ2 are functions of Y (·). Then,

Eθ1,θ2 |Z [L ((θ1, θ2), (δ1(Z), δ2(Z)))] = EY (·) |Z [L ((θ1, θ2), (δ1(Z), δ2(Z)))] , (4.11)

where EY (·) |Z[·] is the expectation based on the conditional distribution of Y (·) given

the observations Z. Thus the joint OBP of (θ1, θ2) given data Z is

(δ∗1, δ
∗
2) = arg min

(δ1,δ2)∈(R×Ω)
EY (·) |Z [L((θ1, θ2), (δ1, δ2))] . (4.12)

4.2 Choice of loss functions and the resulting predictor

In principle, the loss function for a spatial quantile, L1(θ1, δ1(Z)), can be any loss

function defined on R × R. Possible examples include squared error loss, weighted

squared error loss, or absolute error loss. Here, we propose a weighted quantile

squared error loss (WQSEL) for L1(·, ·), since it is designed for prediction of the tails

of the SCDF (Craigmile et al., 2006). The specific loss function we shall use for

θ1 = S−1
D (α;Y (·)) is

L1(θ1, δ1(Z)) = wD(θ1)(θ1 − δ1(Z))2, (4.13)

where the weight function wD(θ1) assigns weights based on the values of θ1. For

example, in the problem of prediction of large spatial exceedances of Y (·), we might

use the following weight function proposed by Craigmile et al. (2006):

wD(θ1) ≡
∫ 1

0

w(p)I
(
θ1 ∈ [F−1

D (p), F−1
D (p+ dp))

)
, (4.14)
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where FD(y) is the spatially averaged cumulative distribution function (ACDF) of

Y (·), defined by

FD(y) ≡ 1

|D|

∫

D

Pr{Y (s) ≤ y}ds. (4.15)

Consequently, the inverse ACDF is F−1
D (p) ≡ arg min{y ∈ R : FD(y) ≥ p; 0 ≤ p ≤

1}. Notice that FD(y) is the expectation of SD(y;Y (·)) with respect to Y (·). The

”importance function” w : [0, 1] → [0,∞) in (4.14) is pre-specified. Craigmile et al.

(2006) suggested using the sigmoid-type function,

w(p) =
1

1 + e−λ(p−α)
; p ∈ [0, 1]. (4.16)

Here, 1/2 ≤ α < 1 is a target quantile of the SCDF of Y (·). In Section 4.3, we will

demonstrate that the calibration quantity λ > 0 depends on the spatial dependence

in the hidden process and the value of α. We calibrate λ to minimize the absolute

bias in estimating the spatial quantiles using the WQSEL. Based on the results of a

simulation study that we will present, we recommend large λ for high exceedances (α

near 1) and strongly dependent spatial processes, and small λ for low exceedances (α

near 0.5) and weakly dependent spatial processes.

The loss function for the spatial exceedance region, L2(θ2, δ2(Z)) : Ω × Ω → R
+,

can be obtained from a binary-image metric, as developed in Chapter 3, Section

3.2. Specifically, we choose Baddeley’s loss function (3.13), since it is well suited to

discriminating between both local and global structures, as discussed in Chapter 3,

Section 3.2. Recall that Baddeley’s loss function is given by,

Bt(θ2, δ2(Z)) =
1

|D|

∫

D

(dt(s, θ2) − dt(s, δ2(Z)))2 ds, (4.17)

where θ2 ∈ Ω is the associated exceedance region above the spatial quantile, θ1,

δ2(Z) ∈ Ω is an action predicting the exceedance region, dt(s, θ2) is the tapered
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distance between site s ∈ D and set θ2 ∈ Ω, given by

dt(s, θ2) =

{
mins′∈θ2{||s − s′||, t}, if θ2 6= ∅;
min{ξ, t}, if θ2 = ∅. (4.18)

The calibration quantity (the taper) t > 0 depends on the spatial dependence of the

hidden process. We will follow the same recommendation given in Chapter 3, Section

3.3; that is, t = min(r/2, ξ), where r is the range parameter; and ξ is the maximum

pairwise distance in the domain D.

This choice of loss function for L1(θ1, δ1(Z)) and L2(θ2, δ2(Z)) results in the

product-form loss function:

L((θ1, θ2), (δ1(Z), δ2(Z))) = wD(θ1)(θ1 − δ1(Z))2Bt(θ2, δ2(Z)), (4.19)

where θ1, θ2, wD(·), and Bt(·, ·) are defined by (4.7), (4.8), (2.24), and (3.13), respec-

tively.

Given observations Z, the choice of λ in the “importance function”, and the choice

of taper t, the optimal Bayes predictor for (θ1, θ2) based on the joint loss function

(4.19) can be calculated from:

(δ∗1, δ
∗
2) = arg min

(δ1,δ2)∈(R×Ω)
Eθ1,θ2 |Z

[
wD(θ1)(θ1 − δ1)

2Bt(θ2, δ2)
]

= arg min
(δ1,δ2)∈(R×Ω)

EY (·) |Z

[
wD(θ1)(θ1 − δ1)

2Bt(θ2, δ2)
]
. (4.20)

We could solve for the predictors in the joint space, R×Ω, using simulated annealing.

Instead, the following proposition shows that we can restrict the search for the optimal

Bayes predictor to a reduced space, which simplifies the computation considerably.

Proposition 1 For any given δ2 ∈ Ω, define δ̂1(δ2) by

δ̂1(δ2) =
EY (·) |Z [θ1wD(θ1)Bt(θ2, δ2)]

EY (·) |Z [wD(θ1)Bt(θ2, δ2)]
. (4.21)
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If θ1 and θ2 are defined by (4.7) and (4.8), respectively, then we have

δ∗1 = δ̂1(δ
∗
2), (4.22)

δ∗2 = arg min
δ2∈Ω

EY (·) |Z

[
wD(θ1)(θ1 − δ̂1(δ2))

2Bt(θ2, δ2)
]
. (4.23)

Proof: We state and prove Lemma 1 and Lemma 2 below, which are used to prove

Proposition 1.

Lemma 1 Suppose that θ1 and θ2 are defined by (4.7) and (4.8), respectively. Then

for any given δ2 ∈ Ω,

δ̂1(δ2) ≡
EY (·) |Z [wD(θ1)Bt(θ2, δ2)θ1]

EY (·) |Z [wD(θ1)Bt(θ2, δ2)]
,

minimizes EY (·) |Z [wD(θ1)(θ1 − δ1)
2Bt(θ2, δ2)].

Proof: Differentiating EY (·) |Z [wD(θ1)(θ1 − δ1)
2Bt(θ2, δ2)] with respect to δ1, setting

the result equal to zero, and solving for δ1, we obtain the result.

Lemma 2 If (δ∗1, δ
∗
2) minimizes EY (·) |Z [wD(θ1)(θ1 − δ1)

2Bt(θ2, δ2)], then δ∗1 = δ̂1(δ
∗
2),

where the function δ̂1(·) is defined in Lemma 1.

Proof: By Lemma 1, δ̂1(δ
∗
2) minimizes EY (·) |Z [wD(θ1)(θ1 − δ1)

2Bt(θ2, δ
∗
2)]. Therefore,

EY (·) |Z

[
wD(θ1)

(
θ1 − δ̂1(δ

∗
2)
)2

Bt(θ2, δ
∗
2)

]
≤ EY (·) |Z

[
wD(θ1) (θ1 − δ∗1)

2Bt(θ2, δ
∗
2)
]
.

Since (δ∗1, δ
∗
2) achieves the minimum of the (joint) Bayes risk, we have

EY (·) |Z

[
wD(θ1)

(
θ1 − δ̂1(δ

∗
2)
)2

Bt(θ2, δ
∗
2)

]
= EY (·) |Z

[
wD(θ1) (θ1 − δ∗1)

2Bt(θ2, δ
∗
2)
]
.

Hence, δ∗1 = δ̂1(δ
∗
2) is a solution.
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Now we are ready to prove Proposition 1. On the right-hand side of equation

(4.23), we have

min
(δ1,δ2)∈(R×Ω)

EY (·) |Z

[
wD(θ1)(θ1 − δ1)

2Bt(θ2, δ2)
]

= min
δ2∈Ω

[
min
δ1∈R

EY (·) |Z

[
wD(θ1)(θ1 − δ1)

2Bt(θ2, δ2)
]]

= min
δ2∈Ω

EY (·) |Z

[
wD(θ1)(θ1 − δ̂1(δ2))

2Bt(θ2, δ2)
]
, (4.24)

by Lemma 1. Therefore, δ∗2 defined in (4.23) achieves the minimum for δ2 in the

(joint) Bayes risk. By Lemma 2, δ∗1 defined by (4.22) achieves the other minimum for

δ1 in the (joint) Bayes risk.

We use simulated annealing to solve for the optimal Bayes predictor δ∗2. From

(3.13) and (4.23), we have that

δ∗2 = arg min
δ2∈Ω

[ ∫

D

{
d2
t (s, δ2)µ1 − 2dt(s, δ2)µ2(s) + (δ̂1(δ2))

2µ3(s)

+(δ̂1(δ2))
2(dt(s, δ2))

2µ4 − 2(δ̂1(δ2))
2dt(s, δ2)µ5(s) − 2δ̂1(δ2)µ6(s)

−2δ̂1(δ2)(dt(s, δ2))
2µ7 + 4δ̂1(δ2)dt(s, δ2)µ8(s)

}
ds
]
. (4.25)

Here µ1 ≡ EY (·) |Z [wD(θ1)θ
2
1], µ2(s) ≡ EY (·) |Z [wD(θ1)θ

2
1dt(s, θ2)], µ3(s) ≡

EY (·) |Z [wD(θ1)d
2
t (s, θ2)], µ4 ≡ EY (·) |Z [wD(θ1)], µ5(s) ≡ EY (·) |Z [wD(θ1)dt(s, θ2)],

µ6(s) ≡ EY (·) |Z [wD(θ1)θ1d
2
t (s, θ2)], µ7 ≡ EY (·) |Z [wD(θ1)θ1], and µ8(s) ≡

EY (·) |Z [wD(θ1)θ1dt(s, θ2)]. This expression is then substituted into (4.22) to obtain

the optimal Bayes predictor, δ∗1.

4.3 Simulation studies

The joint optimal Bayes predictor, (δ∗1, δ
∗
2), depends on the weight function wD(·),

which is determined by the tuning parameter λ in the sigmoid-type “importance
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function” w(·), as shown in (2.24). Hence, in this section, we first present a side sim-

ulation study to calibrate quantity λ for the WQSEL in the joint loss given by (4.19).

We then evaluate the performance of the joint predictor of a spatial quantile and its

associated exceedance region, defined in Section 4.1. We compare the joint-loss-based

predictor of the spatial quantile and the exceedance region, with the posterior-mean-

based plug-in predictor, which we now define. Let Ŷ (·) ≡ {EY (s) |Z[Y (s)] : s ∈ D},

the posterior-mean-based predictor for Y (·). Then, the posterior-mean-based plug-in

predictor is:

θ̂1 ≡ S−1
D

(
α; Ŷ (·)

)
, and θ̂2 ≡ {s ∈ D : Ŷ (s) > θ̂1}. (4.26)

Before we outline the results of the simulation studies, we discuss the experimental

design used in the simulations.

4.3.1 Calibration of λ

In the simulation study to calibrate λ, we consider a unit square domain D ≡

{s = (x, y) : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1} (i.e., ω = 1). We conduct the simulation

and evaluate each predictor on the gridded domain D∗ ≡ {s∗i = (x, y) : x = 0 =

0
M−1

, 1
M−1

, . . . , 1; y = 0 = 0
M−1

, 1
M−1

, . . . , 1} for M = 20. Assuming no spatial trend in

(4.2) (i.e., β = 0), we let the hidden process Y (·) be an isotropic, mean-zero, Gaussian

process with an exponential covariance function. This process is characterized solely

by its variance σ2 and by the spatial range parameter r. In our experiments, we let

σ2 = 1, and we vary r among values 0.5 (corresponding to weak spatial dependence),

1.5 (moderate spatial dependence), and 5 (very strong spatial dependence). We use a

Cholesky decomposition for the covariance matrix, and we simulate 100 realizations

of Y = {Y (s∗) : s∗ ∈ D∗} for each of the three levels (weak, moderate, strong)
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for the spatial dependence parameter; to each Y (s∗), we add ε(s∗) ∼ N(0, σ2
ε ), an

independent Gaussian measurement error, N(0, σ2
ε ) term to obtain the data process.

We then randomly sample 1/4 of all sites inD∗ and declare them to be the observation

sites B; B is subsequently held fixed throughout all the simulations. Then the data

are Z = {z(s∗) : s∗ ∈ B}. We consider two levels of measurement-error variance:

σ2
ε = 0.5 and σ2

ε = 2. Defining the signal-to-noise ratio (SNR) as the ratio of the

partial sill (variance of the hidden process) to the measurement-error variance (i.e.,

SNR ≡ σ2/σ2
ε ), then in the simulation experiment, we have SNRs of 2 and 0.5. The

spatial quantiles of interest are the 0.5-, 0.75-, 0.9- quantiles of the SCDF of Y (·).

The factors and their levels are summarized in Table 4.1.

Factor Number of levels Values of levels
r 3 0.5

1.5
5

SNR 2 2
0.5

α 3 0.50
0.75
0.90

Table 4.1: Levels of factors used in the simulation studies.
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Let θ̂1,W be WQSEL-based optimal Bayes predictor for θ1 = S−1
D (α; y(·)), defined

by

θ̂1,W ≡ arg min
δ1∈R

EY (·) |Z

[
wD(θ1)(θ1 − δ1)

2
]

(4.27)

=
EY (·) |Z [θ1wD(θ1)]

EY (·) |Z [wD(θ1)]
. (4.28)

Then, in a similar manner to the simulation to calibrate λ in the IWQSEL in Chapter

3, Section 2.4, we calibrate λ in wD(θ1) using the following bias criterion:

Bias[SD(θ̂1,W ;Y (·))] ≡ E[SD(θ̂1,W ;Y (·)) − α]. (4.29)

The E[·] in (4.29) is obtained in the simulation by averaging over the samples taken

of Y (·) and ε(·).

In Figure 4.1, we show the bias in estimating the α-quantile of the SCDF of

Y (·) using WQSEL for different factor combinations. By changing λ in the WQSEL,

the bias of SD(qλ(α); Ŷ (·)), where qλ(α) ≡ θ̂1,W is the WQSEL-based OBP of θ1 =

S−1
D (α;Y (·)), can be made small or close to zero. For both SNR = 0.5 and SNR = 2,

we observe that based on the bias criterion, the best λ becomes to increase as α

increases, since for larger α the WQSEL predictor needs larger λ to put more weights

on larger values. For the same level of α = 0.9, λ tends to increase as the spatial

dependence (expressed in terms of the range r) tends to be stronger: for stronger

dependence, the process tends to have similar extreme values appearing in subregions

of D. Therefore, the WQSEL-based predictor needs to be larger in order to deal with

these larger extreme values. Based on the bias criterion, we propose the following

rule, listed in Table 4.2, for the choice of λ in the WQSEL predictor. In the table,

r is the range parameter that captures the spatial dependence in the hidden process
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Figure 4.1: The bias in estimating the α-quantiles (α = 0.5, 0.75, 0.9) of the SCDF
using the WQSEL, versus the calibration quantity λ.
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(r = 0.5 represents “weak” dependence, r = 1.5 represents “moderate” dependence,

and r = 5 represents “strong” dependence).

r α = 0.5 α = 0.75 α = 0.9
0.5 0 6 6
1.5 0 6 7.5
5 0 6 10.5

Table 4.2: The best choice of λ in WQSEL, based on minimizing the absolute bias in
estimating the α-quantile of the SCDF of interest.

4.3.2 Comparison of optimal predictor with plug-in predictor

We now describe a simulation study to compare the performance of joint-loss-based

predictor, (δ∗1, δ
∗
2) given by (4.22), (4.23), with the posterior-mean-based plug-in pre-

dictor, (θ̂1, θ̂2), given by (4.26). Similar to the simulation study used to calibrate the

taper t, the domain of interest is the unit square domain D that is discretized to D∗,

where D∗ = {s∗i = (x, y) : x = 0 = 0
M−1

, 1
M−1

, . . . , 1; y = 0 = 0
M−1

, 1
M−1

, . . . , 1} for

M = 20. Assuming no spatial trend in (4.2) (i.e., β = 0), we let the hidden pro-

cess Y (·) be an isotropic mean-zero Gaussian process with an exponential covariance

function. This process is characterized solely by its variance σ2 and by the spatial

range parameter r. In our experiments, we let σ2 = 1, and vary r among values 0.5

(weak spatial dependence), 1.5 (moderate spatial dependence), and 5 (very strong

spatial dependence). We use a Cholesky decomposition for the covariance matrix,

and simulate 20 realizations of Y = {Y (s∗) : s∗ ∈ D∗} for each of the three lev-

els (weak, moderate, strong) for the spatial dependence parameter; to each Y (s∗),
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we add 100 independent Gaussian measurement-error terms, N(0, σ2
ε ), to obtain the

data process. We then randomly sample 1/4 of all sites in D∗ and declare them to

be the observation sites B for experiments; B is subsequently held fixed throughout

all the simulations. Then the data are Z ≡ {Z(s∗) : s∗ ∈ B}. We consider two levels

of measurement-error variance: σ2
ε = 0.5 and σ2

ε = 2. Defining the signal-to-noise

ratio (SNR) as the ratio of the partial sill (variance of the hidden process Y (·)) to the

measurement-error variance (i.e., SNR ≡ σ2/σ2
ε ), then in the simulation experiment,

we have SNRs of 2 and 0.5. The spatial quantiles of interest are the 0.5-, 0.75-, 0.9-

quantiles of the SCDF of Y (·). In summary, the factors are the same as in Table 4.1.

When defining the response to the simulation experiment, we average over the 100

replications of measurement error and display the 20 responses corresponding to the

replicates of Y (·).

We define a measure to evaluate the overall performance of different predictor of

(θ1, θ2). Suppose that (θ̃1, θ̃2) is a joint predictor for the true pair (θ1, θ2) of interest.

Then the measure, SSB((θ1, θ2), (θ̃1, θ̃2)), is defined by

SSB
(
(θ1, θ2), (θ̃1, θ̃2)

)
=

1

2

[
Se
(
θ2, θ̃2

)
+ Sp

(
θ2, θ̃2

)](
1 − |Bias(SD(θ̃1))|

)
,

(4.30)

where Se(·, ·) and Sp(·, ·) are the sensitivity and specificity measures defined by

(3.28), and Bias(SD(θ̃1;Y (·))) ≡ SD(θ̃1;Y (·)) − α. Hence, the performance mea-

sure SSB quantifies the performance of (θ̃1, θ̃2) on both the exceedance region, the

non-exceedance region, and the α-quantile. Note that the joint measure SSB ∈ [0, 1],

and larger SSB corresponds to better performance.

We summarize our simulation results for SNR = 0.5 in Figures 4.2 and 4.3, and

for SNR = 2 in Figures 4.4 and 4.5. In Figure 4.2, we show boxplots of the bias
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in estimating α-quantile using the joint-loss-based predictor, δ∗1, the bias using the

posterior-mean-based plug-in predictor, θ̂1, and the difference of the joint measure

SSB between the paired joint-loss-based predictor, (δ∗1, δ
∗
2) and the paired posterior-

mean-based plug-in predictor, (θ̂1, θ̂2). In the first column of Figure 4.2, we observe

that the joint-loss-based predictor δ∗1 tends to estimate the spatial quantile well, given

most boxplots are centered around zero. For α = 0.9, δ∗1 still estimates well the 0.9-

quantile. In the second column of Figure 4.2, we observe that the posterior-mean-

based plug-in predictor θ̂1 estimates the 0.5-quantile quite well. However, θ̂1 tends to

underestimate the 0.75- and the 0.9- quantiles. In the third column of Figure 4.2, we

show that for the 0.75- and the 0.9- quantiles and their associated exceedance regions,

the paired joint-loss-based predictor, (δ∗1, δ
∗
2), has better performance than the paired

posterior-mean-based plug-in predictor, (θ̂1, θ̂2), in terms of the SSB measure. For

the 0.5-quantile, the SSB measure shows that (δ∗1, δ
∗
2) and (θ̂1, θ̂2) have comparable

performance in terms of SSB. In Figure 4.3, we show boxplots of the difference of

the sensitivity measure (Se), the specificity measure (Sp), and the average of Se and

Sp, 0.5(Se+Sp), for the joint-loss-based predictor (δ∗2) and the posterior-mean-based

plug-in predictor (θ̂2) for the exceedance region. In the first column of Figure 4.3,

we observe that for the weakly (r = 0.5), moderately (r = 1.5) and strongly (r = 5)

dependent geostatistical processes, δ∗2 and θ̂2 have comparable performance for the

prediction of the spatial exceedance regions above the 0.5- and the 0.75- quantiles,

while for the exceedance region above the 0.9-quantile, δ∗2 tends to predict more

percentage of sites correctly for the true exceedance regions than θ̂2. In the second

column of Figure 4.3, we observe that joint-loss-based predictor tends to predict same

or more percentage of sites correctly for the true non-exceedance regions than the
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posterior-mean-based plug-in predictor. In the third column of Figure 4.3, we show

that the joint-loss-based predictor and the posterior-mean-based plug-in predictor

have the comparable average of Se and Sp for the exceedance region and the non-

exceedance region associated with the 0.5- and 0.75- quantiles; while for the 0.9-

quantile, the joint-loss-based predictor tends to have the larger average of Se and Sp

than for the posterior-mean-based plug-in predictor.

In Figure 4.4 and 4.5, we observe similar simulation results when SNR = 2. In

Figure 4.4, we observe that the performance of the joint-loss-based predictor and the

posterior-mean-based predictor are comparable when the measurement-error is small

(SNR = 2) for α = 0.5 and α = 0.75 in terms of SSB. When the measurement-

error is small, the posterior mean is considered to be a good prediction for the center

portion of the distribution of the true process. Hence, compared to the posterior-

mean-based plug-in predictor, the joint-loss-based predictor does not have significant

improvement on jointly estimating the spatial quantile and the associated exceedance

region. We observe that this improvement of using joint-loss-based predictor increases

when α = 0.9 since the posterior mean still does not predictor well the upper tail of

the distribution of the true process, even the measurement-error is small.

4.4 Discussion

In this chapter, we develop a joint loss for joint prediction of a spatial quantile

and its associated exceedance region. We use a product-form loss function, namely

the WQSEL function for the spatial quantile and Baddeley’s loss function for the ex-

ceedance region. From this joint loss function, we obtain the optimal Bayes predictor

for the spatial quantile and the exceedance region. We conduct a side simulation study
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Figure 4.2: Boxplots of difference of bias in estimating α-quantiles using the joint-
loss-based approach and the posterior-mean-based plug-in approach, and boxplot
of difference of SSB values. The 20 values in each boxplot are generated by the
20 realizations of the Y (·) process. The signal-to-noise ratio, SNR, is 0.5 for this
experiment.
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Figure 4.3: Boxplots of difference of the sensitivity (Se), the specificity (Sp), and
the average of Se and Sp with the α-quantile. The 20 values in each boxplot are
generated by the 20 realizations of the Y (·) process. The signal-to-noise ratio, SNR,
is 0.5 for this experiment.
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Figure 4.4: Boxplots of difference of bias in estimating α-quantiles using the joint-
loss-based approach and the posterior-mean-based plug-in approach, and boxplot
of difference of SSB values. The 20 values in each boxplot are generated by the
20 realizations of the Y (·) process. The signal-to-noise ratio, SNR, is 2 for this
experiment.
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Figure 4.5: Boxplots of difference of the sensitivity (Se), the specificity (Sp), and
the average of Se and Sp with the α-quantile. The 20 values in each boxplot are
generated by the 20 realizations of the Y (·) process. The signal-to-noise ratio, SNR,
is 2 for this experiment.
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to choose the calibration quantity λ in the WQSEL function. Our simulation study

shows that when the measurement-error is relatively large (SNR = 0.5), the joint-loss-

based predictor generally has better overall performance than posterior-mean-based

plug-in predictor for the prediction of the exceedance region, the non-exceedance

region, and the associated spatial quantile, as quantified by the performance mea-

sure SSB. When the measurement-error is small (SNR = 2), the joint-loss-based

predictor and the posterior-mean-based plug-in predictor have comparable results in

terms of SSB for α = 0.5, 0.75; we observe that the improvement gained by using

joint-loss-based predictor increases when α = 0.9, since the posterior mean is a poor

predictor of the upper tail of the spatial distribution of the true process, even when

the measurement-error is small.

Again, we note that throughout this chapter, we have taken an empirical Bayesian

approach. That is, we assume that the spatial trend, and the covariance parameters

are known; in practice, they are estimated from the data Z. In the application in

Chapter 5, Section 5.1, we show how this can be done. As we remarked at the

end of Chapter 4, for exceedance regions associated with different spatial quantiles,

the joint-loss-based predictor for each quantile does not guarantee nested structure

in predicting exceedance regions. By nesting correctly we mean that if θ1(α) and

θ2(α) denote the α-quantile and its associated exceedance region, then for αa > αb,

θ2(αa) ⊂ θ2(αb). If OBPs are obtained separately for each of αa and αb, then there is

no guarantee of the set inclusion above. We discuss how this nesting of exceedance

regions might be dealt with in Chapter 6.
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CHAPTER 5

AN APPLICATION TO DECADAL TEMPERATURE

CHANGE OVER THE AMERICAS

In this chapter, we shall apply the methodologies that we developed in this disser-

tation to an application that involves decadal temperature change over the Americas.

Recall that we take an empirical Bayesian approach: After estimation of model pa-

rameters, we first use the loss-function-based predictor given in Chapter 3 to highlight

spatial exceedance regions for which the change in decadal temperature is greater than

several given temperature differences of interest. We then apply the joint-loss-based

predictor shown in Chapter 4 to predict spatial quantiles and their associated spatial

exceedance regions. Before presenting results, we shall briefly describe the decadal-

temperature-change dataset.

The global temperature dataset that we study is obtained from the Climate System

Model (CSM) at the National Center for Atmospheric Research (NCAR). The dataset

consists of yearly averages of 2-meter air temperatures for the period of 1980 through

1999, over the whole globe on 128 × 64 equi-angular longitude-latitude grid cells.

Each cell is roughly 2.8◦ in longitude by 2.8◦ in latitude. Using a procedure called

the Enhanced False Discovery Rate (EFDR), Shen et al. (2002) found evidence of

a temperature change between the two decades from this dataset, which occurred
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for the most part in the central part of the USA and in coastal regions of South

America, at about 20◦S latitude. Like them, we focus on a reduced spatial domain

D∗, for us, D∗ is a 28 × 28 grid cells containing the majority of North and South

America (from 40◦N to 40◦S and 125◦W to 45◦W). For each grid cell, we calculate

the average temperature in the 1980s and subtract it from the average temperature

in the 1990s. The resulting spatial dataset of the change in average temperatures

(◦C) between the two decades over D∗ is shown as the grayscale map in Figure 5.1,

panel (a). In order to study the performance of our methodology with missing data,

we subsample regularly every third grid cell in latitude and longitude, starting from

the cell at the south-west corner, to generate a collection of 10× 10 observation sites

B, shown as the crosses in Figure 5.1, panel (a). In Figure 5.1, panels (b) and (c),

we show the difference in B as a function of latitude and of longitude, respectively.

The temperature change appears to have a non-constant trend over the field. The

histogram of the change in temperature in Figure 5.1, panel (d) shows that most of

the observations have values from −0.4◦C to 0.4◦C. With this in mind, we propose a

spatial model to describe this dataset.

5.1 Spatial model and parameter estimates

Let Y (·) ≡ {Y (s) : s = (x, y) ∈ D∗} be the hidden (true) temperature-change

process in D∗. Suppose that Z(·) ≡ {Z(s) : s ∈ D∗} is the data process for the

temperature-change process. Then we model the data as the true process of interest

plus IID Gaussian measurement-error terms, given by

Z(s) = Y (s) + ε(s); s ∈ D∗, (5.1)
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Figure 5.1: Spatial analysis of the average temperature change from the 1980s to the
1990s on the Celsius scale: (a) grayscale map of the temperature change over the
prediction region D∗ with observation sites B shown as crosses, (b) spatial trend of
temperature change versus latitude, (c) spatial trend of temperature change versus
longitude, (d) histogram of temperature change.
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where ε(·) is made up of IID RVs that are N(0, σ2
ε ) with measurement-error variance,

σ2
ε > 0. We assume that ε(·) is independent of Y (·). The true process has a large-scale

spatial trend µ(·) plus a small-scale spatial structure δ(·), given by

Y (s) = µ(s) + δ(s); s ∈ D∗. (5.2)

To capture the non-linear trend on latitude, we model the spatial trend by µ(s) =

x(s)Tβ, where x(s) = (1, x, y, y2, y3)T , for s = (x, y) and β = (β0, β1, β2, β3, β4)
T .

Further, we assume that δ(·) is a zero-mean, second-order stationary spatial process

with parametric covariance function, CθY
(·), where the spatial-covariance parameter,

θY , consists of the partial sill σ2, and the range parameter r. Recall that we obtained

a collection of observations Z ≡ {Z(s) : s ∈ B} by regularly subsampling the domain

D∗. We shall estimate β, θY , and σ2
ε based on the observations Z.

We use linear regression to estimate the spatial trend parameter β based on the

observation Z and their coordinates. The ordinary least squares estimate of the

coefficient of β is β̂ = (−0.1214,−0.00178,−0.0093,−0.000073,−0.0000055)T . The

estimated spatial trend decreases linearly in longitude and cubically in latitude. In

Figure 5.2, panel (a) and (b), we show the detrended residuals of the observed change

in temperature as a function of latitude and longitude, respectively. We observe that

the detrended residuals have almost a constant (zero) mean in both latitude and longi-

tude. The histogram of the residuals in Figure 5.2, panel (c) suggests that a zero-mean

normal distribution is a reasonable approximation for the distribution of the residu-

als. We then estimate the spatial parameter θY = (σ2, r)T and the measurement-error

variance σ2
ε from the detrended residuals. The circles in Figure 5.2, panel (d), show

the semivariogram of the residuals. We fit the semivariogram using both an exponen-

tial model, shown as the solid line in Figure 5.2, panel (d), and a spherical model,
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shown as the dashed line in Figure 5.2, panel (d). The parameter estimates for the

measurement-error variance σ2
ε , the partial sill σ2, and the range r, for both models

are obtained using the weighted-least-squares (WLS) method (Cressie, 1993b, p.99).

Based on the WLS criterion, we finally choose the exponential model. The estimates

of the parameters in the exponential variogram are (σ̂2
ε , σ̂

2, r̂) = (0.0057, 0.0086, 25.0).

Notice that the estimated SNR, the ratio of σ̂2 to σ̂2
ε , is about 1.5. Further, based on

the choice of taper in (3.20), we use t = 12.5. Assuimg the exponential spatial covari-

ance structure for Y (·) with σ̂2 and r̂ plug-in, we obtain the vector of the standard

errors for β̂ equal to (0.1157, 0.001202, 0.002099, 0.00003677, 0.000001249)T .

5.2 Prediction of exceedance regions above fixed thresholds

Let eYK = {s ∈ D∗ : Y (s) > K} denote the spatial exceedance region for which

the mean change in temperature between the 1980s and the 1990s is greater than

a threshold K measured in degrees Celsius. We choose the threshold K to be 0.05,

0.10, 0.15, and 0.20, which range from the center to the upper tail of the histogram

of the data. Hence we are interested in prediction of the spatial region where the

decadal temperature change from the 1980s to the 1990s is greater than 0.05◦C,

0.10◦C, 0.15◦C, and 0.20◦C, respectively. Given the data model in (5.1) and the

process model in (5.2), we shall apply the Baddeley-loss-function-based approach

(Chapter 3) to predict eYK for K = 0.05, 0.10, 0.15, 0.20. Let e∗K denote the OBP

for the exceedance region above K. We shall compare e∗K with the posterior-mean-

based plug-in predictor: For any location s ∈ D∗, the posterior-mean predictor of

the hidden temperature-change process, Y (s), is Ŷ (s) ≡ EY (s) |Z[Y (s)]. Then the
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Figure 5.2: Spatial analysis of the detrended residuals of the observed averaged-
temperature change in B from the 1980s to the 1990s on the Celsius scale : (a) spatial
trend of detrended temperature change versus latitude, (b) spatial trend of detrended
temperature change versus longitude, (c) histogram of detrended temperature change,
(d) empirical and fitted semivariograms: circles for the empirical semivariogram, solid
line for the fitted exponential model, and dashed line for the fitted spherical variogram.
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posterior-mean-based plug-in predictor for the exceedance region above K, is êK ≡
{
s ∈ D∗ : Ŷ (s) > K

}
.

In the left and the right columns of Figure 5.3, we show the Baddeley-loss-

function-based predictor e∗K and the posterior-mean plug-in predictor, êK for K =

0.05, 0.10, 0.15, 0.20, respectively. In summary, we observe that for the mean temper-

ature increases more than 0.05◦C from the 1980s to the 1990s (K = 0.05), the two

predictors have almost the same exceedance region, which covers most of the norther

region except the north-west corner of the Atlantic Ocean. For the decadal tempera-

ture increase greater than 0.10◦C (K = 0.1), both approaches largely agree; there is

one large area that consists of the central part of the USA, Mexico, Gulf of Mexico,

and the south-west Pacific coastal region of Mexico; and there is one small area in

the Atlantic coastal region of Brazil. For the decadal temperature increase more than

0.15◦C from the 1980s to the 1990s (K = 0.15), both approaches highlight the region

over the central part of the USA, Mexico, Gulf of Mexico, the south-west Pacific

coastal region of Mexico as the exceedance region. The Baddeley-loss-function-based

predictor tends to have larger exceedance region than the posterior-mean-based plug-

in predictor. For the decadal temperature change greater than 0.2◦C (K = 0.2), the

posterior-mean-based plug-in predictor consists of a small region over the south of

Mexico. The Baddeley-loss-function-based prediction for the same exceedance region

covers the south Mexico, and some small regions on the south-west Pacific coastal

region of Mexico.
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Figure 5.3: Prediction of exceedance regions with a change in mean temperature
above K, for K = 0.05, 0.10, 0.15, 0.20◦C. The left column shows the Baddeley-loss-
function-based predictor and the right column shows the posterior-mean-based plug-in
predictors.
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5.3 Prediction of extremely positive changes in temperature

and their exceedance regions

In this section, we are interested in prediction of the exceedance region for which

the decadal mean change in temperature is extremely positive. We define an extremely

positive change in temperature to be the 0.9-quantile of the SCDF of the hidden

temperature-change process, Y (·), as measured by θ1 = S−1
D∗(0.9). Let θ2 denote the

associated exceedance region, where the hidden mean-temperature-change process

has value larger than this quantile, given by θ2 = eYθ1 ≡ {s ∈ D∗ : I(Y (s) > θ1) = 1}.

We apply the joint-loss approach, as introduced in Chapter 4, to this joint prediction

problem. Since the hidden temperature-change process is weakly dependent (r̂ = 25

and D has a length of 80 in both latitude and longitude), we choose the calibration

quantity λ = 6 based on the recommendation given by Table 4.2. The prediction

of the spatial exceedance region with extremely positive mean-temperature change

is shown in Figure 5.4, in gray shading. In Figure 5.4, panel (a), we see that the

joint-loss-based prediction for the the spatial exceedance region associated with the

0.9-quantile consists of two major subregions, a large subregion that covers the central

part of the USA, Mexico, Gulf of Mexico and the south-west Pacific coastal region of

Mexico, and a small subregion covering a part of the Atlantic ocean, east of Puerto

Rico and north of Brazil. In Figure 5.4, panel (b), the posterior-mean-based plug-in

predictor for this spatial exceedance region covers a smaller portion of the central

part of the USA, Mexico, Gulf of Mexico and the south-west Pacific coastal region

of Mexico. The joint-loss-based predictor gives 0.166◦C for the 0.9-quantile of the

SCDF of the hidden temperature-change process over the prediction region D∗. The
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posterior-mean-based plug-in predictor gives 0.15oC, which (as expected) is biased

downwards relative to value of 0.166◦C given above.

In Figure 5.5, the gray shading shows the exceedance region above a less extremely

positive change, the 0.75-spatial quantile of the hidden temperature-change process,

using the joint-loss-based approach and the posterior-mean-based plug-in approach.

We choose λ = 6 according to the recommendation given by Table 2.2 with weak

dependence (r = 0.5) and α = 0.75. It is not surprising to see that both predicted

exceedance regions are larger than the respective exceedance regions above the 0.9-

quantile of the SCDF, since we are considering a smaller quantile. For α = 0.75,

both approaches result in the exceedance regions that largely agree; there is one

main area in the north-west region that covers the central part of the USA, Mexico,

Gulf of Mexico, and the south-west Pacific coastal region of Mexico; and there is

one smaller area coving the Atlantic coastal region of Brazil. The joint-loss-based

predictor gives 0.106◦C for the 0.75-quantile of the SCDF and the posterior-mean-

based plug-in prediction gives 0.098◦C. Again, the latter prediction is smaller (as

expected) and biased relative to the value of 0.106◦C given above.

Notice that we actually have temperature-change data available over all of D∗.

We apply the same spatial trend (linear in longitude and cubic in latitude) to all

the data in D∗; and the ordinary-least-squares estimates of the spatial-trend param-

eters are β̂ = (−0.1419,−0.0020, 0.0091,−0.000087,−0.0000051)T . Further, we fit

the semivariogram of the detrended residuals using the exponential model, and the

weighted-least-squares estimates of the semivariogram parameters are σ2
ε , σ

2, and r

are (σ̂2
ε , σ̂

2, r̂) = (0.0, 0.0123, 10.0284). Notice that the estimated measurement-error
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Figure 5.4: Prediction of spatial regions with extremely positive mean-temperature
change (0.9-quantile of the SCDF), as shown by the gray shading: (a) the joint-
loss-based predictor, (b) the posterior-mean-based plug-in predictor, (c) the plug-in
predictor from all the data over D∗.

−120 −100 −80 −60

−
20

0
20

(a)

longitude

la
tit

ud
e

−120 −100 −80 −60

−
20

0
20

(b)

longitude

la
tit

ud
e

−120 −100 −80 −60

−
20

0
20

(c)

longitude

la
tit

ud
e

Figure 5.5: Prediction of spatial regions with mean-temperature change above the
0.75-quantile of the SCDF, as shown by the gray shading: (a) the joint-loss-based
predictor, (b) the posterior-mean-based plug-in predictor, (c) the plug-in predictor
from all the data over D∗.
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variance σ̂2
ε = 0, which means that Z(·) ≡ Y (·). Hence, we can obtain the true 0.9-

quantile, which is equal to 0.1992◦C, and the true 0.75-quantile is equal to 0.1019◦C.

Moreover, the true associated exceedance regions can be obtained and are shown in

Figures 5.4(c) and 5.5(c), respectively. The visual agreement between our proposed

joint-loss-based prediction of the exceedance regions (Figures 5.4(a) and 5.5(a)) and

the true exceedance regions (Figures 5.4(c) and 5.5(c)) is quite remarkable. Be-

cause we know the true process Y (·), we can calculate the performance measure

SSB given by (4.30). For the 0.9-quantile, the SSBs are 0.7504 and 0.9050 for the

posterior-mean-based plug-in and the joint-loss-based predictors, respectively; for the

0.75-quantile, the corresponding SSBs are 0.7912 and 0.9374. Clearly, for both the

0.9- and 0.75- quantiles, the joint-loss-based predictor has better performance than

the posterior-mean-based plug-in predictor.

5.4 Discussion

In this chapter, we have applied the methodologies of Chapter 3 and 4 to a decadal

temperature-change dataset over the Americas, to highlight exceedance regions where

the potential positive mean change in temperature might happen. We first esti-

mate model parameters including those associated with the spatial trend, the spatial

covariance, and the measurement-error variance. We then predict the exceedance

regions above fixed temperature-change thresholds using our Baddeley-loss-function-

based approach. Our results show that for higher fixed thresholds, the extent of the

exceedance region tends to be underestimated if we use the simple posterior-mean-

based plug-in predictor (for Gaussian processes, the kriging predictor is in our case
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equivalent to the posterior-mean-based predictor). This can have substantial im-

plications in setting environmental-remediation regulations and in declaring climate

change in regions of the globe. Further, we undertake joint prediction for an ex-

treme positive change in temperature (quantified by a quantile of the SCDF) and

its associated exceedance region above the quantile, using a joint-loss approach. As

expected, the predicted spatial quantiles from the posterior-mean-based plug-in pre-

dictor are smaller than those from the joint-loss-based predictor. Compared to the

joint-loss-based predictor, the posterior-mean-based plug-in predictor for exceedance

regions above high quantiles also tend to be underestimated.

The application also show some issues that need to be investigated. We observe

that a nested structure for exceedance regions based on ordered thresholds, is not

always preserved. We shall direct our attention to this issue in Chapter 6.
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CHAPTER 6

FUTURE RESEARCH

We have developed a loss function based on an image metric to predict the ex-

ceedance region above a known threshold in Chapter 3; we also have built a joint loss

to predict a spatial quantile and its associated exceedance region in Chapter 4. In

Chapter 5, we have illustrated the methodologies in an application. As we discussed

before, there are extensions to our method that warrant future research. Suppose

that we wish to predict the exceedance regions based on different thresholds. Calcu-

lating the OBP of the region for each threshold does not guarantee that the regions

nest in the proper way. In future research, we shall consider a loss-based approach

for simultaneously predicting multiple exceedance regions that preserve this nesting

structure. Our approach is to use grayscale image metrics as the loss function for the

simultaneous prediction of exceedance regions obtained from multiple fixed thresh-

olds. Of course, this extension should preserve the nested structure of the exceedance

regions with multiple thresholds. Finally, we shall briefly discuss the possibility of

using a joint loss function that is more general than the product-form loss function

we used, as well as the possibility of using a fully Bayesian approach to estimate the

data-model and process-model parameters.
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6.1 Loss functions for the prediction of multiple exceedance

regions

In Chapter 3, we have demonstrated that metrics for binary images are well suited

to loss functions for the exceedance set with one threshold, since applying one thresh-

old on process Y (·) on a domain will turn the domain into a binary image with

a foreground defined by (3.5). This motivates us to consider metrics for grayscale

images as potential loss functions for exceedance regions associated with multiple

thresholds.

Recall that Y (·) ≡ {Y (s) : s ∈ D} is the hidden geostatistical process of interest,

defined on D ⊂ R
d, with a positive d-dimensional volume, |D|. Let Z(·) ≡ {Z(s) :

s ∈ D} be the process of observed and potentially observed values. Then, as we have

seen before, the hierarchical model can be described by the following data and process

models.

The data model:

Z(s) = Y (s) + ε(s); s ∈ D, (6.1)

where ε(·) is a zero-mean white noise process with measurement-error variance, σ2
ε >

0. We assume that ε(·) is independent of Y (·).

The process model

Y (s) = µ(s) + δ(s); s ∈ D. (6.2)

Here the function µ(·) captures the large-scale, deterministic mean structure (spatial

trend) of Y (·), and δ(·) is a stationary stochastic process that models the small-scale

spatial structure in Y (·). We assume that the spatial trend, µ(·), follows a linear

model given by

µ(s) = x(s)′β, (6.3)
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where the vector x(s) ≡ (x1(s), . . . , xp(s))
T is a collection of covariates at s, and

β ∈ R
p is the spatial-trend parameter. We also assume that δ(·) is a zero-mean,

second-order stationary spatial process with a parametric covariance function, CθY
(·).

Precisely,

E[δ(s)] = 0, and cov[δ(s), δ(s′)] ≡ CθY
(s − s′); s, s′ ∈ D, (6.4)

where θY ≡ (σ2, r)T is the spatial-covariance parameter that consists of the partial

sill, σ2, and the range parameter, r. Suppose henceforth that we have n observations

Z ≡ {Z(s1), . . . , Z(sn)} at a collection of observation sites, B ≡ {s1, . . . , sn} ⊂ D.

Then, the problem we shall now discuss is to predict well the exceedance regions of

the hidden process Y (·) associated with threshold values K1, . . . , K`, based on the

observations Z, where ` ≥ 1 is the number of thresholds.

6.1.1 Metrics for grayscale images as loss functions

Without loss of generality, we assume K1 < . . . < K`. Given the data model (6.1)

and the process model (6.2), the exceedance region for each threshold is then defined

by

eYKi
≡
{
D, for i = 0
{s ∈ D : I(Y (s) > Ki) = 1}, for i ∈ {1, . . . , `}. (6.5)

From (6.5), the exceedance regions are nested; that is, eYK`
⊆ eYK`−1 ⊆ . . . ⊆ eYK0

. The

sequence of exceedance regions has a 1-1 map to the following collection of sets:

eYK`
≡ {eYi ; i = 0, . . . , `} and eYi ≡

{
eYKi

\ eYKi+1
, for i ∈ {0, . . . , `− 1};

eYK`
, for i = `.

(6.6)

Notice that if there is only one threshold K, that is ` = 1, then both eYK1
given in

(6.5) and eY1 given in (6.6) are the exceedance set defined by (3.5).
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For a process Y (·) in D, if we define a function κ` : R → {0, . . . , `} such that for

any s ∈ D,

κ`(Y (s)) =





0, if Y (s) ≤ K1;
i, if Ki < Y (s) ≤ Ki+1, where i ∈ {1, . . . , `− 1};
`, if Y (s) > K`;

(6.7)

then the sets defined by (6.6) have the following representation based on κ`:

eYi = {s ∈ D : κ`(Y (s)) = i}, where i ∈ {0, . . . , `}. (6.8)

There is a link between multiple exceedance regions defined by (6.5) and a

grayscale image. A grayscale image is a function f` : D → {0, . . . , `}, where D ⊂ R
2

and ` ≥ 1. After applying κ` on the process Y (·) in D, D turns into a grayscale image

where the image function f` = κ`. Now the problem to predict well the exceedance

regions defined by (6.5), or equivalently defined by (6.6), given a set of thresholds

K1, . . . , K`, is equivalent to predict well the grayscale levels induced by function κ`

given in (6.7). Henceforth, our discussion will be based on the general grayscale im-

age, f`, associated with multiple thresholds. Without loss of generality, we shall scale

levels in f` by a factor of ` to let the largest level be 1; that is, f` : D → {0, 1/`, . . . , 1}.

Notice that f`, for ` = 1, is the binary image f . Let efi denote the i-th foreground of

the grayscale image, f`, defined by

efi ≡ {s ∈ D : f`(s) = i/l}, for i ∈ {1, . . . , `}. (6.9)

Finally, let Ω` = (`+ 1)D denote the set of all possible exceedance sets in D.

The link between spatial exceedance regions and grayscale images motivates us

to use image metrics for grayscale images, as loss functions to predict the exceedance

region. Recall that a loss function, L(θ, a), is a real-valued function defined for all

(θ, a) ∈ Θ×A , where Θ is a parameter space and A is an action space that contains
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the parameter space; L is bounded below by 0 and L(θ, θ) = 0. Sometimes, θ is

considered to be random. The randomness of θ is specified by a prior distribution on

Θ. Hence, a loss function for the prediction of eYK`
is defined on Θ×A = Ω`×Ω`. Now

the true value of interest, eYK`
, has a prior distribution that inherits its randomness

from Y (·). Let ρ be a metric for grayscale images, where ρ is a function Ω` × Ω` to

R
+ ≡ {x : x ≥ 0}. Since metrics for grayscale images are defined on Ω` × Ω` and

satisfy the regularity conditions for loss functions, they can be used as a loss function

for prediction of the multiple exceedance regions defined by (6.5).

We begin with a review of metrics for grayscale images. Some of the metrics are

defined through the random-set representation of grayscale images. Given a scaled

grayscale image f`, the corresponding random set is defined by

FU ≡ {s ∈ D : U ≤ f`(s)}, (6.10)

where U ∈ [0, 1] is a continuous random variable. The distribution of U determines

the weighting associated with each gray level. If we assume a uniformly weighted

random-set model that assumes U follows a uniform distribution on [0, 1], then we

can easily show a simple relation between the distribution of FU and the image f` as

follows:

P (s ∈ FU) = P (U ≤ f`(s)) = f`(s). (6.11)

Friel and Molchanov (1998b) proposed an integral metric for two grayscale images

based on the uniformly weighted random-set representation for grayscale images given

by (6.10). Suppose that FU and GV are the corresponding random sets generated from

f` and g` respectively, where U and V are independent random variables defined on
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[0, 1]. The integral metric for grayscale images is defined as

ρI(f`, g`) ≡ sup
ha∈H

∣∣∣∣∣

∫ 1

0

sup
s∈Ha

u

f`(s)du−
∫ 1

0

sup
s∈Ha

u

g`(s)du

∣∣∣∣∣ , (6.12)

where H = {ha(s) : a ∈ D} is a collection of non-negative, location-specific functions

for all a in D, and Ha

u is the set of locations where the function, ha(s), s ∈ D, has

value equal or larger than a threshold u; that is, Ha

u ≡ {s ∈ D : ha(s) ≥ u}. An

example of ha(s) is given below in (6.13).

The Hausdorff metric in (3.11) is a special case of the integral metric given in

(6.12). A binary image is a special case of a grayscale image with only two levels.

Recall that the grayscale image f` with ` = 1 is the binary image f ; that is, f1 = f .

Similarly, g1 = g. In addition, if we choose

ha(s) = 1 − ||s − a||/t, (6.13)

where t is sufficiently large to satisfy

t ≥ ξ ≡ sup
s,s′∈D

||s − s′||, (6.14)

then we can prove that the Hausdorff metric for two binary images, f and g, is a

special case of the integral metric for the same binary images. The proof first notes

that ρI(f, g) = ρI(f1, g1) since f1 = f and g1 = g. Then, applying the definition in

(6.12), we have

ρI(f, g) ≡ sup
ha∈H

∣∣∣∣∣

∫ 1

0

sup
s∈Ha

u

f(s) du−
∫ 1

0

sup
s∈Ha

u

g(s) du

∣∣∣∣∣

= sup
ha∈H

∣∣∣∣sup
s∈ef

ha(s) − sup
s∈eg

ha(s)

∣∣∣∣ .

This last equation holds because

∫ 1

0

sup
s∈Ha

u

f(s) du =

∫ sup{ha(s):s∈ef}

0

du = sup
s∈ef

ha(s),
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for any binary image f (and g), where ef is the foreground set of f defined by (3.6).

Hence, upon choosing ha(s) as in (6.13) and (6.14),

ρI(f, g) = t−1 sup
a∈D

∣∣d(a, ef ) − d(a, eg)
∣∣ = t−1ρH(f, g),

because of (3.11). Consequently, if the grayscale image only has two levels (a binary

image), the integral metric is the Hausdorff metric, modulo a normalizing constant,

if we choose ha(s) in (6.12) to have the form given in (6.13) and (6.14).

The double-integral metric (Friel and Molchanov, 1998b) is another metric for

grayscale images, defined as follows:

ρDI(f`, g`) ≡
[∫

D

∣∣∣∣∣

∫ 1

0

sup
s∈Ha

u

f`(s)du−
∫ 1

0

sup
s∈Ha

u

g`(s)du

∣∣∣∣∣

p

da

]1/p

. (6.15)

Compared to the integral metric given in (6.12), the double-integral metric replaces

the supremum in (6.12) with an Lp average over all points in D.

In practice, and for ha given by (6.13), the double-integral metric is usually dis-

cretized as follows:

ρDI(f`, g`) =
1

t+ 1

[∫

D

∣∣∣∣∣
t∑

c=0

((f` ⊕Bc)(a) − (g` ⊕Bc)(a))

∣∣∣∣∣

p

da

]1/p

, (6.16)

where

(f` ⊕Bc)(a) = sup
s∈Ha

1−c/t

f`(s) (6.17)

is the largest image value at s within a window around s given by the ball of radius c.

Note that (f` ⊕ B1)(a) = f`(a) if t = 1 unit in the discretized version of the double-

integral metric defined by (6.16). This implies that the double-integral metric given

in (6.16) includes a special case for the Lp average of the sitewise error for grayscale

images, defined by

ρEG(f`, g`) ≡
[∫

D

|f`(a) − g`(a)|p da
]1/p

. (6.18)

109



The third metric for grayscale images is a direct extension of Baddeley’s metric

for binary images in (3.9), due to Frigessi and Rue (1997). They called it Baddeley’s

metric for grayscale images. Suppose that f` and g` are two grayscale images with `

levels. Then Baddeley’s metric for grayscale images is defined as

ρMp (f`, g`) ≡
(

1

`|D|

∫

D

∑̀

i=1

∣∣∣u(d(s, efi )) − u(d(s, egi ))
∣∣∣
p

ds

)1/p

, (6.19)

where efi and egi are the foreground set for level i ∈ {1, . . . , `} in f` and g`, respectively.

Here the function u : [0,∞] → [0,W ] is the same bounded concave function as in

Baddeley’s metric for binary image, with u(0) = 0. If ` = 1, then Baddeley’s metric

for grayscale images defined by (6.19) reduces to Baddeley’s metric for binary images

defined by (3.9).

6.1.2 An optimal Bayes predictor for multiple exceedance

regions

Suppose ρ(eYK`
, ê`) is a loss function for the prediction of multiple exceedance

regions based on a metric ρ(·, ·) for grayscale images, where ê` ∈ Ω` is an action that

is a function of observations Z. Then, an optimal Bayes predictor can be found by an

action that minimizes the posterior expected loss. Suppose e∗K`
is the OBP assuming

the loss function ρ(eYK`
, ê`); that is,

e∗K`
= arg min

be`∈Ω`

EY (·) |Z

[
ρ(eYK`

, ê`)
]
, (6.20)

where recall that EY (·) |Z[·] is expectation with respect to the posterior distribution of

Y (·) given the observations Z. Then a numerical solution is required to solve for e∗K`

since there are no analytic forms for the solution. The convergence to the optimal

solution is slow because of the number of grayscale levels.
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6.1.3 Iterative approach for the prediction of multiple ex-

ceedance regions based on binary image metrics

Another way to approach the prediction of multiple exceedance regions is to use

image metrics for binary images, as follows. By way of illustration, we assume there

are only two thresholdsK1 andK2, whereK1 < K2. Then the collection of exceedance

regions defined by (6.5) is eYK0
= D, eYK1

= {s ∈ D : I(Y (s) ≥ K1) = 1}, and

eYK2
= {s ∈ D : I(Y (s) ≥ K2) = 1}. Notice that the collection of exceedance regions

are nested: eYK2
⊂ eYK1

⊂ eYK0
. Consider eYK0

\ eYK1
and eYK1

to be the background and

the foreground of the binary image based on threshold K1. Then, we can use the

same approach as in Chapter 3, where we use image metrics for binary image as loss

functions, to predict eYK1
. Suppose êK1 is the predictor for the exceedance region eYK1

associated with the lowest threshold K1. Then êK1 \ eYK2
and eYK2

are the background

and the foreground of another binary image, based on the threshold K2. Conditional

on êK1 , we can repeat the approach given in Chapter 3 to iteratively use the image

metrics for binary as loss functions to predict eYK2
. Although the solution from this

iterative approach of using image metrics for binary image will not be optimal from

the point of view using a grayscale image metric as loss function, it does preserve the

nesting structure among the predicted exceedance regions.

6.2 Other future research

For the prediction of a spatial quantile and its exceedance region, in Chapter 4 we

propose a product-form joint loss function. There are other possible forms for a joint

loss function, such as a sum-form or a form with both products and sums. When the

joint loss function involves sum forms, we should calibrate the relative importance
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of each loss functions for the prediction of the spatial quantile and the associated

exceedance region; for example, see Stern and Cressie (1999), for the case of a finite

spatial index.

In this dissertation, we pre-estimate model parameters using data; then we plug

in these estimates to obtain the OBPs for both the exceedance region above a given

threshold and a spatial quantile and its exceedance region. This is an empirical

Bayesian approach. We could use a fully Bayesian approach that requires us to

specify prior distributions on the unknown model parameters. For example, we might

assume gamma priors for both the measurement-error-variance parameter, σ2
ε , and the

partial-sill (process-variance) parameter, σ2. For the range parameter r, we could use

a uniform prior distribution that is defined on a given finite interval on [0,∞). For the

spatial-trend parameter β, a multivariate normal with diagonal covariance matrix is a

possible prior. In the fully Bayesian approach, MCMC is necessary to obtain posterior

samples for the hidden process given the data, before we use numerical optimization

(e.g., simulated annealing) to solve for the OBPs of interest.
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APPENDIX A

ASYMPTOTIC CALCULATIONS OF BADDELEY’S LOSS

FUNCTION IN 1-D AND 2-D CASES

Baddeley’s loss function takes into account not only the sitewise misclassification

error ρB1 (ef , eg; 1), but also the localization error. Here “localization” means some

important local features, such as clusters, hotspots and so on. The taper parameter

t controls the range of the localization error. In what follows we show that as t

approaches 0 on a discrete grid, Bt(e
Y
K , ê) ∼ t2 · ρE(eYK , ê) in simple 1-D and 2-D

cases, where ρE(eYK , ê) is the sitewise misclassification error ρB1 (ef , eg; 1). We derive

the result using the Euclidean distance in the 1-D case, and the Manhattan’s distance

in the 2-D case, for the distance between two sites in (3.10). Manhattan’s distance

caters to the following asymptotic calculation for 2-D cases, and yet is approximately

equal to Euclidean distance as t→ 0.

In both 1-D and 2-D cases, the threshold K is chosen to be large, so that it is

plausible to assume that the exceedance region eYK only consists of one single interval

in the 1-D case, or one single square region in the 2-D case.
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A.1 Baddeley’s loss function in the 1-D case, for small ta-

pers.

In the 1-D case, ||s− s′|| be the Euclidean distance. The sets are intervals. In the

following discussion, let

• t ≡ the taper parameter in Baddeley’s loss function;

• ` ≡ the total length of the field;

• ∆` ≡ the length of a grid cell and n = `/∆`;

• xi ≡ the coordinate of grid cell i;

• eYK ≡ [a1, b1]; ê ≡ [a2, b2].

We consider a number of cases, depending on the taper value and how the sets

intersect (or not).

1. If t ≥ `, then dt(xi, e
Y
K) = d(xi, e

Y
K).
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(a) Suppose eYK and ê intersect, with a1 < a2 < b1 < b2. Then we have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

[
a1

∆`
(a1 − a2)

2 +
`− b2
∆`

(b1 − b2)
2

+

a2−a1
∆∑̀

k=1

(∆` · k)2 +

b2−b1
∆∑̀

k=1

(∆` · k)2 + 0

]

=
a1

`
(a1 − a2)

2 +
`− b2
`

(b1 − b2)
2

+
(∆`)3

`

[
1

6

a2 − a1

∆`

(
a2 − a1

∆`
+ 1

)(
2(a2 − a1)

∆`
+ 1

)

+
1

6

b2 − b1
∆`

(
b2 − b1

∆`
+ 1

)(
2(b2 − b1)

∆`
+ 1

)]

=
a1

`
(a1 − a2)

2 +
`− b2
`

(b1 − b2)
2

+
1

3`

[
(a2 − a1)(a2 − a1 + ∆`)

(
a2 − a1 +

∆`

2

)

+(b2 − b1)(b2 − b1 + ∆`)

(
b2 − b1 +

∆`

2

)]
.

As ∆` → 0 (equivalently, n → ∞), the infill limit for Baddeley’s loss

function is

Bt(e
Y
K , ê) =

a1

`
(a1 − a2)

2 +
`− b2
`

(b1 − b2)
2 +

(a2 − a1)
3

3`
+

(b2 − b1)
3

3`

=
(a2 − a1)

2

3`
(2a1 + a2) +

(b2 − b1)
2

3`
[2(`− b2) + (`− b1)].
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(b) Suppose eYK and ê intersect, with a2 < a1 < b2 < b1. Then we have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

[
a2

∆`
(a1 − a2)

2 +
`− b1
∆`

(b1 − b2)
2

+

a1−a2
∆∑̀

k=1

(∆` · k)2 +

b1−b2
∆∑̀

k=1

(∆` · k)2 + 0

]

=
a2

`
(a1 − a2)

2 +
`− b1
`

(b1 − b2)
2

+
1

3`

[
(a1 − a2)(a1 − a2 + ∆`)

(
a1 − a2 +

∆`

2

)

+(b1 − b2)(b1 − b2 + ∆`)

(
b1 − b2 +

∆`

2

)]
.

As ∆` → 0 (equivalently, n → ∞), the infill limit for Baddeley’s loss

function is

Bt(e
Y
K , ê) =

(a1 − a2)
2

3`
(a1 + 2a2) +

(b1 − b2)
2

3`
[2(`− b1) + (`− b2)].
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(c) Suppose eYK and ê do not intersect, with a1 < b1 ≤ a2 < b2. Then we have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

{ a1

∆`
(a2 − a1)

2 +
`− b2
∆`

(b2 − b1)
2

+

b1−a1
∆∑̀

k=1

(a2 − a1 − k · ∆`)2

+

a2−b1
∆∑̀

k=1

[k · ∆`− (a2 − b1 − k · ∆`)]2

+

b2−a1
∆∑̀

k=1

(a2 − b1 + k · ∆`)2
}

=
a1

`
(a2 − a1)

2 +
`− b2
`

(b2 − b1)
2

+

[
(a2 − a1)

2(b1 − a1)

`
− (a2 − a1)(b1 − a1)(b1 − a1 + ∆`)

`

+
(b1 − a1)(b1 − a1 + ∆`)(b1 − a1 + ∆`

2
)

3`

]

+

[
(a2 − b1)

2(a2 − b1)

`
+

2(a2 − b1)(a2 − b1 + ∆`)

`

+
4(a2 − b1)(a2 − b1 + ∆`)(a2 − b1 + ∆`

2
)

3`

]

+

[
(a2 − b1)(b2 − a2)

`
+

(a2 − b1)(b2 − a2)(b2 − a2 + ∆`)

`

+
(b2 − a2)(b2 − a2 + ∆`)(b2 − a2 + ∆`

2
)

3`

]
.
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As ∆`→ 0, the infill limit for Baddeley’s loss function is

Bt(e
Y
K , ê) =

a1(a2 − a1)
2

`
+
`− b2
`

(b2 − b1)
2

+
(a2 − a1)

2(b1 − a1) + (a2 − b1)
2(b2 − a2)

`

+
(a2 − b1)(b2 − a2)

2 + 3(a2 − b1)
3 − (a2 − a1)(b1 − a1)

2

`

+
(b1 − a1)

3 + 4(a2 − b1)
3 + (b2 − a2)

3

3`

=
(a2 − a1)

2a1

`
+

(`− b2)(b2 − b1)
2

`

+
(a2 − a1)(b1 − a1)(a2 − b1)

`
+

(a2 − b1)(b2 − a2)(b2 − b1)

`

+
(b1 − a1)

3 + 13(a2 − b1)
3 + (b2 − a2)

3

3`
.

(d) Suppose eYK and ê do not intersect, with a2 < b2 ≤ a1 < b1. Then we have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

{a2

`
(a1 − a2)

2 +
`− b1
∆`

(b1 − b2)
2

+

a2−b1
∆∑̀

k=1

(a1 − a2 − k · ∆`)2

+

a1−b2
∆∑̀

k=1

[k · ∆`− (a1 − b2 − k · ∆`)]2

+

b1−a1
∆∑̀

k=1

(a1 − b2 + k · ∆`)2
}
.

As ∆`→ 0, the infill limit for Baddeley’s loss function is

Bt(e
Y
K , ê) =

a2(a1 − a2)
2

`
+

(`− b1)(b2 − b1)
2

`

+
(a1 − a2)(b2 − a2)(a1 − b2)

`

+
(a1 − b2)(b1 − a1)(b1 − b2)

`

+
(b2 − a2)

3 + 13(a1 − b2)
3 + (b1 − a1)

3

3`
.
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Notice that for t ≥ `,m in all the cases (a)-(d), the asymptotic value of Bad-

deley’s loss function as as ∆` → 0 does not depend on the taper parameter

t.

2. Now suppose that t < `. Define nt ≡ t
∆`

and assume that nt > 1, which means

that the taper parameter is at least bigger that the length of the grid cell. Then

t → 0 implies ∆` → 0. Here we also assume that t is so small that dilated

circles with radius t never intersect each other.

(a) Suppose eYK and ê intersect, with a1 < a2 < b1 < b2. Then we have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

[ t
∆∑̀

k=1

(k · ∆`− t)2 +
(a2 − t) − a1

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`)2

+

t
∆∑̀

k=0

(k · ∆`)2 +
b2 − (b1 + t)

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`− t)2
]

=
∆`

`

[ t2
∆`

(a2 − t− a1 + b− 2 − b1 − t)

+4(∆`)2

t
∆∑̀

k=0

k2 +
2t3

∆`
− 4∆`t

t
∆∑̀

k=0

k
]

=
t2

`
(a2 − a1 + b2 − b1 − 2t)

+
4

3`
t(t+ ∆`)

(
t+

∆`

2

)
− 2t2

∆`

`
.

As ∆`→ 0, the infill limit for Baddeley’s loss function is

Bt(e
Y
K , ê) =

t2

`

[
[(a2 − a1) + (b2 − b1)] −

2t

3

]
.
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(b) Suppose eYK and ê intersect, with a2 < a1 < b2 < b1. Then we have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

[ t
∆∑̀

k=0

(k · ∆`− t)2 +
(a1 − t) − a2

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`)2

+

t
∆∑̀

k=0

(k · ∆`)2 +
b1 − (b2 + t)

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`− t)2
]

=
t2

`
[(a1 − a2 − t) + (b1 − b2 + t)]

+
4

3`
t(t+ ∆`)

(
t+

∆`

2

)
− 2t2∆`

`
.

As ∆`→ 0, the infill limit for Baddeley’s loss function is

Bt(e
Y
K , ê) =

t2

`

[
[(a1 − a2) + (b1 − b2)] −

2t

3

]
.

(c) Suppose that eYK and ê do not intersect, with a1 < b1 < a2 < b2. Then we

have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

[ t
∆∑̀

k=0

(k · ∆`− t)2 +
b1 − a1

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`− t)2 + 0

+

t
∆∑̀

k=0

+
b2 − a2

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`− t)2
]

=
t2

`
[(b1 − a1) + (b2 − a2)]

+
4

`

[
t

3
(t+ ∆`)

(
t+

∆`

2

)
− t3 − 2t2∆`

]
.

As ∆`→ 0, the infill limit for Baddeley’s loss function is

Bt(e
Y
K , ê) =

t2

`

[
(b1 − a1) + (b2 − a2) −

8

3
t

]
.
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(d) Suppose that eYK and ê do not intersect, with a2 < b2 < a1 < b1. Then we

have

Bt(e
Y
K , ê) =

1

n

n∑

i=1

[dt(xi, e
Y
K) − dt(xi, ê)]

2

=
∆`

`

[ t
∆∑̀

k=0

(k · ∆`− t)2 +
b2 − a2

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`− t)2 + 0

+

t
∆∑̀

k=0

+
b1 − a1

∆`
t2 +

t
∆∑̀

k=0

(k · ∆`− t)2
]

=
t2

`
[(b2 − a2) + (b1 − a1)]

+
4

`

[
t

3
(t+ ∆`)

(
t+

∆`

2

)
− t3 − 2t2∆`

]
.

As ∆` → 0 (equivalently, n → ∞), the infill limit for Baddeley’s loss

function is

Bt(e
Y
K , ê) =

t2

`

[
(b1 − a1) + (b2 − a2) −

8

3
t

]
.

Notice that for t < `, in all the cases (a)-(d), the asymptotic value of Baddeley’s loss

function ∆`→ 0, has the form

t2
|(eYK ∪ ê− eYK ∩ ê)|

|D| ,

where | · | is the volume of a set. In the 1-D case, the volume of a set (interval) is the

length of the interval.

A.2 Baddeley’s loss function in the 2-D case, for small ta-

pers.

In the 2-D case, let ||s − s′|| be the Manhattan distance, defined as

d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|.
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The set here is chosen to be square region, ((xl, yl), (xu, yu)), with the bottom-left

corner (xl, yl) and upper-right corner (xu, yu). In the following discussion, let

• t ≡ the taper parameter in Baddeley’s loss function;

• ` ≡ the total length in each direction;

• ∆` ≡ the length of a grid cell and n = `/∆`;

• si ≡ (i1 · ∆`, i2 · ∆`), i1, i1 ∈ {1, . . . , n}, are all the grid points over field D;

• eYK ≡ ((a1, b1), (c1, d1)), ê ≡ ((a2, b2), (c2, d2)). Then A1 ≡ (c1 − a1)(d1 − b1) is

the area of eYK , A2 ≡ (c2 − a2)(d2 − b2) is the area of ê, P1 ≡ 2(c1 − a1 + d1 − b1)

is the perimeter of eYK , P2 ≡ 2(c2 − a2 + d2 − b2) is the perimeter of ê.

In the 2-D case, we shall only consider cases with t < `, since we have shown in the 1-

D case that the asymptotic value of Baddeley’s loss function as δ`→ 0 is independent

of the taper parameter, t. In cases with t < `, define nt ≡ t
∆`

and assume that nt > 1,

which means that the taper parameter is at least longer than the length of the grid

unit. Then if nt → ∞ and t→ 0, we must have ∆`→ 0. Here we also assume that t

is so small that dilated circles with radius t never intersect each other.
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1. Suppose that eYK and ê do not intersect, with c1 < a2 and d1 < b2. Then we

have

Bt(e
Y
K , ê) =

1

n2

n∑

j=1

n∑

i=1

{
dt
[
(i · ∆`, j · ∆`), eYK

]
− dt [(i · ∆`, j · ∆`), ê]

}2

=
(∆`)2

`2

{[
4

t
∆∑̀

k=0

t
∆`

−k∑

m=0

(k · ∆`+m · ∆`− t)2

+2
d1 − b1

∆`

t
∆∑̀

k=0

(k · ∆`− t)2

+2
c1 − a1

∆`

t
∆∑̀

k=0

(k · ∆`− t)2

+
d1 − b1

∆`

c1 − a1

∆`
t2
]

+
[
4

t
∆∑̀

k=0

t
∆`

−k∑

m=0

(k · ∆`+m · ∆`− t)2

+2
d2 − b2

∆`

t
∆∑̀

k=0

(k · ∆`− t)2

+2
c2 − a2

∆`

t
∆∑̀

k=0

(k · ∆`− t)2 +
d2 − b2

∆`

c2 − a2

∆`
t2
]}

=
(∆`)2

`2

{
A1 + A2

(∆`)2
t2

+
P1 + P2

(∆`)2

[
t3 − t2(t+ ∆`) +

1

3
t(t+ ∆`)

(
t+

∆`

2

)]

+8
[
t2

t
∆`

+1∑

k=1

k − 2t · ∆`
t

∆`
+1∑

k=1

k(k − 1)

+(∆`)2

t
∆`

+1∑

k=1

k(k − 1)2
]}
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=
t2

`2
(A1 + A2) +

P1 + P2

`2

[
1

3
t(t+ ∆`)

(
t+

∆`

2

)
− ∆`t2

]

+
8(∆`)2

`2

[
(t2 + 2t · ∆`+ (∆`)2)

t
∆`

+1∑

k=1

k

−2(t · ∆`+ (∆`)2)

t
∆`

+1∑

k=1

k2 + (∆`)2

t
∆`

+1∑

k=1

k3
]

=
A1 + A2

`2
t2 +

P1 + P2

`2

[
1

3
t(t+ ∆`)

(
t+

∆`

2

)]

+
8

`2

[
(t+ ∆`)2 (t+ ∆`) (t+ 2∆`)

2

−1

2
(t+ ∆`)(t+ ∆`)(t+ 2∆`)

(
t+

∆`

2

)

+
1

4
(t+ ∆`)2(t+ 2∆`)2

]
.

As ∆`→ 0, the infill limit for Baddeley’s loss function is

Bt(e
Y
K , ê) =

A1 + A1

`2
t2 +

P1 + P2

`2
t3

3
+

10t4

3`2

=
t2

`2

[
(A1 + A2) +

P1 + P2

3
t+

10

3
t2
]
.
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2. Suppose eYK and ê intersect, with a1 < a2 < c1 and b1 < b2 < d1. Then we have

Bt(e
Y
K , ê) =

1

n2

n∑

j=1

n∑

i=1

{
dt
[
(i · ∆`, j · ∆`), eYK

]
− dt [(i · ∆`, j · ∆`), ê]

}2

=
(∆`)2

`2

{[
3

t
∆∑̀

k=0

t
∆`

−k∑

m=0

(k · ∆`+m · ∆`− t)2

+

t
∆∑̀

k=0

t
∆`

−k∑

m=0

(k · ∆`+m · ∆`)2

+
(d1 − b1) + (c1 − a1) + (b2 − b1 − t) + (a2 − a1 − t)

∆`
·

t
∆∑̀

k=0

(k · ∆`− t)2 +
(d1 − b2) + (c1 − a2)

∆`

t
∆∑̀

k=0

(k · ∆`)2

+
(c1 − a1)(d1 − b1) − (d1 − b2 + t)(c1 − a2 + t)

(∆`)2
t2

]

+

[
3

t
∆∑̀

k=0

t
∆`

−k∑

m=0

(k · ∆`+m · ∆`− t)2

+

t
∆∑̀

k=0

t
∆`

−k∑

m=0

(k · ∆`+m · ∆`)2

+
(d2 − b2) + (c2 − a2) + (d2 − d1 − t) + (c2 − c1 − t)

∆`
·

t
∆∑̀

k=0

(k · ∆`− t)2 +
(d1 − b2) + (c1 − a2)

∆`

t
∆∑̀

k=0

(k · ∆`)2

+
(d2 − b2)(c2 − a2) − (d1 − b2 + t)(c1 − a2 + t)

(∆`)2
t2

]

+2

t
∆∑̀

k=0

t
∆∑̀

m=0

(k · ∆`−m · ∆`)2

}
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=
(∆`)2

`2

{[
8(∆`)2

t
∆`

+1∑

k=1

k(k − 1)2 − 12t · ∆`
t

∆`
+1∑

k=0

k(k − 1)

+6t2

t
∆`

+1∑

k=0

k
]

+
2(d2 + c2 − a1 − b1 − 2t) + 2[(d1 − b2) + (c1 − a2)]

∆`
·

t
∆∑̀

k=0

(k · ∆`)2 − 2(d2 + c2 − a1 − b1 − 2t)

∆`

t
∆∑̀

k=0

2t · ∆` · k

+
(∆`)2

3

t2

(∆`)2

(
t

∆`
+ 1

)(
t

∆`
− 1

)
+
A1 + A2

(∆`)2
t2

−2(d1 − b2 + t)(c1 − a2 + t) + ∆` · 2(d2 + c2 − a1 − b1 − 2t)

(∆`)2
t2

}

=
1

`2

{
2[(t+ ∆`)(t+ 2∆`)]2 − 16∆`+ 12t

3
(t+ ∆`)(t+ 2∆`)(t+ 1.5∆`)

+(4(∆`)2 + 6t · ∆`+ 3t2)(t+ ∆`)(t+ 2∆`)

−2(d2 + c2 − a1 − b1 − 2t)t2(t+ ∆`)

+
2t[(d2 + c2 − a1 − b1 − 2t) + (d1 − b2) + (c1 − a2)]

3
(t+ ∆`) ·

(
t+

∆`

2

)
+ t2[(A1 + A2) − 2(d1 − b2 + t)(c1 − a2 + t)

+2(d2 + c2 − a1 − b1 − 2t)∆`] +
1

3
t2(t+ ∆`)(t− ∆`)

}
.

As ∆`→ 0, the infill limit for Baddeley’s loss function is

Bt(e
Y
K , ê) =

t2

`2

{
2t2 − 4t

3
[(c2 + d2) − (a1 + b1)]

+[A1 + A2 − 2(d1 − b2)(c1 − a2)]
}
.

Notice that in both 1-D and 2-D cases, the leading term in the infill limit of Baddeley’s

loss is t2 · ρE(eYK , ê), as the taper parameter t→ 0.
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