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1 Introduction

Control charts are an effective tool in Statistical Process Control (SPC) for moni-
toring the stability of a process over time. Their performance is typically discussed
in terms of run-length, rl, i.e., the number of observations between out-of-control
signals. The run-length properties of traditional control charts, designed for inde-
pendent and identically distributed (i.i.d.) observations, are strongly affected by
data autocorrelation, a common feature of many processes. Thus, a process control
scheme should be designed taking autocorrelation into account. Two methods for
dealing with the violation of the i.i.d. assumption are proposed in the SPC literature.
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In the first approach, the control limits of the traditional control charts are adjusted
to account for the serial correlation in the data. Then, the original observations are
plotted in control charts with modified limits (Vasilopoulos and Stamboulis, 1978;
Yashchin, 1993; Schimd and Schöne, 1997; Runger, 2002). The second approach fits
a time series model to the data. If both the structure and model parameters have
been identified correctly, then the residuals are uncorrelated. Hence, traditional
control charts can be applied to the residuals (Alwan and Roberts, 1988; Harris
and Ross, 1991; Montgomery and Mastrangelo, 1991; Wardell et al., 1994; Runger
and Willemain, 1995; Runger et al., 1995; Lu and Reynolds, 1999a,b; Shu et al.,
2002). Both methods require knowledge of an appropriate time series model. The
first approach uses the fitted model to set up the control limits, the second one to
compute the residuals. Most early studies have assumed perfect knowledge of the
mathematical models describing process behavior. In practice, the model is esti-
mated from baseline data. Recent research shows that the combined effect of the
variability of the estimators and model misspecification can significantly deteriorate
the properties of the chart’s run length performance for the autocorrelated data
case and, hence, large sample sizes are needed to ensure that time series parameters
can be estimated accurately (Adams and Tzeng, 1998; Boyles, 2000; Kramer and
Schmid, 2000; Apley, 2002; Apley and Lee, 2003; Testik, 2005; Jensen et al., 2006).
Further, model identification requires some skill and experience in time series anal-
ysis and, in addition, the power detection of traditional control charts, like EWMA
and CUSUM, applied to residuals can be disappointingly poor in some situations
since they do not take into account the fault signature, i.e., the time varying mean
of the residuals resulting from a mean shift in the original process.

A solution to the last problem can be obtained using a proper change point
model. The presence of a special cause of variation can be manifested by changes
in mean or variance of a time series and also by the changes in its stochastic be-
haviour. A change point model supposes that time series models both before and
after the change point can be described by a family of probability density func-
tion. A likelihood ratio test approach is used for deciding between two hypothesis:
the null hypotesis that no change occurred and the alternative hypothesis that a
change occurred at some intermediate unknown time. When the parameters of the
distribution are known before and after the change point, the standard algorithm
for the changepoint detection is the CUSUM test (Page, 1955). When the param-
eters after the change point are unknown, CUSUM can be generalized in several
ways, including the Generalized Likelihood Ratio (GLR) test (Willsky and Jones,
1976; Basseville and Nikiforov, 1993; Superville and Adams, 1994; Siegmund and
Venkatraman, 1995; Lai, 1995; Apley and Shi, 1999; Chang and Fricker, 1999; Lai,
2001; Runger and Testik, 2003). The GLR algorithm can be used for change point
detection, location estimation, or tracking. Further, in the presence of a sudden step
shift in the autocorrelated process, methods such as the GLR have the appealing
advantage of incorporating the information contained in the fault signature. Be-
cause of its general applicability and attractive theoretical properties, the GLR is
now considered a powerful tool for change point detection in dynamic systems.

However, a number of drawbacks with GLR have also been pointed out (see
Basseville and Nikiforov, 1993; Lai, 1995). The GLR method implies a double max-
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imization of the log-likelihood for each possible time of change point in a block
of n observations. For very large n this computation could become a burden and
various modifications procedures have been proposed to reduce the computational
complexity. A possible approach is to restrict the maximum searching to a window
of the M most recent observations, obtaining the so called window-limited GLR.
This restricted search of the maximum offers computational advantages with essen-
tially no loss of information (Lai, 1995). However, practical suggestions for choosing
a suitable value of M and the corresponding control limit are still lacking (Willsky
and Jones, 1976; Basseville and Nikiforov, 1993; Lai, 1995).

In order to address many of the previous issues, this paper discusses a practical
design of GLR charts for detecting changes in the process mean and in the innovation
variance of an autoregressive moving average process. We consider two types of GLR
charts for jointly monitoring the process mean and variance, omnibus GLRs which
make use of a single monitoring statistic and a combination of two GLRs one for the
mean and another for the innovation variance. Observe that though we restrict our
attention to the detection of either a change in the process mean or an increase of
the innovation variance, the resulting control schemes offer some level of protection
also against changes in the autocorrelation pattern. Indeed a change in the dynamic
structure manifests itself also as an increase of the residual variance.

The paper is structured as follows. Section 2 present GLR charts assuming no
model uncertainty. Section 3 discusses the impact of the estimation errors. Evidence
shows that this effect cannot be neglected if a given false alarms rate must be man-
tained. The suggested designing procedure is described in Section 4. Model fitting
is performed using the automatic three stages procedure introduced by Hannan and
Rissanen (1982). Then, a bootstrap method coupled with stochastic approxima-
tion is used to tune control limits able both to satisfy a given constraint on the false
alarms rate and to take into account the model uncertainty. In Section 5, we present
an illustrative example using a real time series. The main results of a Monte Carlo
experiment are presented in Section 6. Some details on the implementation, whose
programs are publicy available upon request from the authors, are given in Section
7.

2 GLR control charts without model uncertainty

Assume that the in-control observations yt can be described by a stationary autore-
gressive moving average ARMA(p, q) process

yt = µ+
p∑
j=1

φj(yt−j − µ) + εt −
q∑
j=0

θjεt−j (1)

where µ = E[yt] and εt are Gaussian linear innovations with zero mean and variance
σ2. We will assume that the serial correlation is stable but a persistent change, oc-
curring at the unknown time instant τ , is able to affect the mean of the original obser-
vations and/or the innovation variance. Hence, before τ the vector of parameters is
assumed to be constant and equal to a known value β = (µ, σ2, φ1, . . . , φp, θ1, . . . , θq),



4 Giovanna Capizzi and Guido Masarotto

while after τ it is equal to (µ+δ, ν2σ2, φ1, . . . , φp, θ1, . . . , θq), where δ 6= 0 and ν2 > 1
are the unknown shift sizes.

A sequential change-point detection algorithm consists of testing the null hy-
pothesis, H0, that there is no change up to the current time t versus the alternative
composite hypothesis, H1, that a mean and/or a variance shift has occurred at an
unknown instant τ , 1 ≤ τ ≤ t. A suitable decision function is evaluated each time a
new observation is available and sampling is stopped when the decision is taken in
favour of the alternative hypothesis.

An adequate tool for this testing hypothesis is the log-likelihood ratio test which
compares the logarithm of the likelihood ratio between the two probability density
functions for H0 and H1. Since the change time and the values of δ and ν2 after the
change are unknown, a solution consists of replacing each of the unknown parameters
by their maximum likelihood estimate. This double maximization, limited to a finite
horizon of length M , results in a window-limited Generalized Likelihood Ratio test,
GLRW , given by

max
t−M+1≤τ≤t

sup
δ,ν2≥1

t∑
i=τ

log
f1(yi|yi−1, . . . , y1)
f0(yi|yi−1, . . . , y1)

(2)

where f1(·) is the conditional density of yt when at time τ both mean and/or variance
are subjected to a shift of size δ and ν2, respectively; while f0(·) is the conditional
density under the hypothesis of no change. The log-likelihood ratio, in (2), can be
readily written as a function of the standardized innovations at computed, under
the hypothesis of no change, using a Kalman-like filter. By well known properties
of the innovation sequence in the Gaussian case (Brockwell and Davies, 1996), the
standardized innovations are independent and

at ∼
{
N(0, 1) when t < τ
N(δρ(t, τ), ν2) when t ≥ τ (3)

where ρ(t, τ) is the fault signature that reflects a pattern, left at time t, in the inno-
vations by a unit magnitude mean shift occurring at τ (see Basseville and Nikiforov,
1993). Thus, step shifts in the mean and variance result in a time-varying mean of
the innovation sequence and in a step profile of the innovation variance.

For the change-point model (3), the omnibus GLRW statistics, GLRWOS , is
given by

GLRWOS(t) = 2 max
t−M+1≤τ≤t

sup
δ,ν2≥1

l1(τ, δ, ν2)

where

l1(τ, δ, ν2) =
t∑

i=τ

{
a2
i −

(
ai − δρ(i, τ)

ν2

)2
}
− (t− τ + 1) log ν2.

Let

s2t (τ, δ) =
1

t− τ + 1

t∑
i=τ

(ai − δρ(i, τ))2
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Conditionally on τ , the maximum likelihood estimate, m.l.e, of the change magni-
tudes are given by

δ̂t(τ) =
∑t

i=τ aiρ(i, t− τ)∑t
i=τ ρ

2(i, t− τ)
and ν̂2

t (τ) = max
{

1, s2t (τ, δ̂t(τ))
}
. (4)

Hence, the GLRWOS can be otained by

GLRWOS(t) = 2 max
t−M+1≤τ≤t

l1(τ, δ̂t(τ), ν̂2
t (τ)) (5)

If the control statistic (5) falls beyond a suitable control limit hOS , it is assumed
that the process is off target. Thus, the run length of the GLRWOS chart is defined
by the following stopping rule

rlOS = min{t ≥ 1 : GLRWOS(t) ≥ hOS} (6)

Once a signal is given at t, the m.l.e. of the true change time is the value τ̂ which
maximizes l1(τ, δ̂t(τ), ν̂2

t (τ)), and the m.l.e. of the change magnitudes, which can be
used to have an initial idea of the fault’s type, are δ̂t(τ̂) and ν̂t(τ̂).

In the change point model (3), potential shifts in the mean and/or variance have
been assumed to occur at the same unknown instant of time τ , as usually discussed in
the literature concerning the GLR charts (Lai, 1995, 2001). In the following, we will
refer to (3) as the “synchronous” change point model. However, as the associate
editor pointed out, mean and variance shifts might also occur at different times
τ1 and τ2, respectively. In this case the standardized innovations are distributed
according to

at ∼
{
N(0, 1) when t < min(τ1, τ2)
N
(
δρ(t, τ1), 1 + (ν2 − 1)I(t, τ2)

)
when t ≥ min(τ1, τ2)

(7)

Here, I(t, τ2) yields 1 when t ≥ τ2 and 0 otherwise.
An omnibus GLRW statistic for the “asynchronous” change-point model (7) can

be obtained by
max

(τ1,τ2)∈A(t)
sup
δ,ν2≥1

2 l2(τ1, τ2, δ, ν2) (8)

where

l2(τ1, τ2, δ, ν2) =
t∑

i=min(τ1,τ2)

{
a2
i −

(
ai − δρ(i, τ1)

1 + (ν2 − 1)I(t, τ2)

)2
}
− (t− τ2 + 1) log ν2

and A(t) = {(τ1, τ2) : t −M + 1 ≤ τ1, τ2 ≤ t} ∪ {(τ1, τ2) : t −M + 1 ≤ τ1 ≤ t, τ2 =
∞} ∪ {(τ1, τ2) : t−M + 1 ≤ τ2 ≤ t, τ1 =∞}.

Given the values of τ1 and τ2, the m.l.e. of the change magnitudes, here denoted
by ˆ̂

δ and ˆ̂ν2, satisfy the following equations
ˆ̂
δ = dt(τ1, τ2, ˆ̂ν2)
ˆ̂ν2 = max

(
1, g2

t (τ1, τ2,
ˆ̂
δ)
) (9)
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where

dt(τ1, τ2, ν2) =


δ̂t(τ1) when τ1 ≥ τ2 or t < τ2
ν2
∑τ2−1

i=τ1
aiρ(i, τ1) +

∑t
i=τ2

aiρ(i, τ1)

ν2
∑τ2−1

i=τ1
ρ2(i, τ1) +

∑t
i=τ2

ρ2(i, τ1)
otherwise

and

g2
t (τ1, τ2, δ) =

{
1 when t < τ2∑t

i=τ2
(ai − δρ(i, τ1))2/(t− τ2 + 1) otherwise.

The system of equations (9) has no closed form solution when τ1 < τ2. However,
to avoid an iterative approach for solving the maximization problem, we suggest to
use the following approximate statistics

GLRWOA(t) = 2 max
(τ1,τ2)∈A(t)

l2(τ1, τ2, δ̃t(τ1, τ2), ν̃2
t (τ1, τ2)) (10)

where

δ̃t(τ1, τ2) = dt(τ1, τ2, ν̃2
t (τ1, τ2)) and ν̃2

t (τ1, τ2) = max
{

1, gt(τ1, τ2, δ̂t(τ1)
}

(11)

with δ̂t(τ1) given by equation (4). Observe that expressions (11) are exact m.l.e.
of the change magnitudes when τ1 ≥ τ2 or τ2 = ∞, and approximate m.l.e. when
τ1 < τ2. The stopping rule for the asynchronous GLR test is given by

rlOA = min{t ≥ 1 : GLRWOA(t) ≥ hOA}. (12)

It is also straightforward to show that, for both the change-point models (3) and (7),
the two GLRW control statistics for monitoring the process mean and the variance
are given by

GLRWδ(t) = max
t−M+1≤τ≤M−1

sup
δ

l1(τ, δ, 1) = 2 max
t−M+1≤τ≤t

l1(τ, δ̂t(τ), 1) (13)

and

GLRWν(t) = max
t−M+1≤τ≤M−1

sup
ν2≥1

l1(τ, 0, ν2) = 2 max
t−M+1≤τ≤t

l1(τ, 0, ˆ̂̂ν2
t (τ)) (14)

respectively, with ˆ̂̂
ν2
t (τ) = max

(
1, s2t (τ, 0)

)
. A signal is given if either of the two

control statistics (13) and (14) exceeds the corresponding decision limits, say hδ and
hν . Thus, the stopping rule for the combined GLR algorithm, GLRc, can be written
as

rlc = min{t ≥ 1 : GLRWδ(t) ≥ hδ and/or GLRWν(t) ≥ hν} (15)

When the time series model is completely known a priori, the in-control run length
distribution is completely known. Thus, for a given value of M , a suitable control
limit h can be chosen so that a constraint on the frequency of false alarms is satisfied.
Note that, in the following, when we speak of “false alarm rate” we are generically
referring to a suitable measure of the incidence of false alarms, such as the probability
of a false signal in a given time interval and the in control average run length.
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3 Effects of model uncertainty

In the previous section, a perfect knowledge of the mathematical model describing
process dynamics has been assumed. In real applications, the structure of the serial
dependence is rarely known and a suitable time-series model is estimated from an in-
control sample of n observations. Thus, the control chart is applied to the estimated
residuals at(β̂n), β̂n being an estimate of the true parameters vector β. Due to the
differences between β̂n and β, the forecast residuals, at(β̂n), are neither independent
nor indentically distributed and the distribution function of the run length is not
equal to that obtained in the known parameter case, at least when n is finite. A naive
designing procedure consists of evaluating the critical values of the control chart
under the assumption that the estimated model will exactly match the true model,
i.e. assuming β̂n = β. Unfortunately, previous research concerning a variety of
scenarios and monitoring procedures recognizes that model misspecification, or even
small errors in the estimated parameters, lead to control chart performances that are
often very different than those expected in the known parameters case (see Jensen
et al., 2006). In particular, Apley and Shi (1999) show that the GLR chart, designed
for mean shift detection in autocorrelated process, may also be adversely affected
by modeling errors. In order to investigate how and to what extent modeling errors
may affect a GLR chart, designed for jointly control both the mean and variance of
autocorrelated data, we performed an extensive Monte Carlo study. Here, we report
results for the following time series models:

M1. yt = εt + 0.85εt−1, M2. yt = 1.13yt−1 − 0.64yt−2 + εt + 0.90εt−1,
M3. yt = 0.8yt−1 + εt, M4. yt = 0.6yt−1 − 0.8yt−2 + 0.4yt−3 + εt,

where εt ∼ N(0, σ2), with σ2 such that that process variance is equale to one. The
four ARMA models M1-M4 have been selected as their fault signatures are able to
cover a wide variety of dynamics pattern (see Figure 1).

Three different cases of model knowledge are considered:
A. the underlying time series model is known a priori ;
B. the model order is specified, but process parameters are unknown. The unknown

parameters must be estimated from an in-control reference sample of size n. In
particular, we make use of the exact maximum likelihood estimation method;

C. both the model order and time series parameters are unknown. Here, we apply
the three stage procedure, suggested by Hannan and Rissanen (1982), modify-
ing the second step as proposed by Kavalieris (1991). More details about the
automatic order and parameter identification will be given in Section 4.
To evaluate the performance of the GLRW charts with estimated parameters,

we make use of both the conditional and marginal distribution of the in-control
run length. The conditional run-length distribution is the probability mass func-
tion conditioned to the observed estimates while the marginal distribution is the
conditional run length distribution averaged over the entire range of the estimates
obtained from an in-control reference sample of the same size (Jones et al., 2001;
Jones, 2002; Jensen et al., 2006).

Table 1 shows the average, the standard deviation and various lower and upper
quantiles of the marginal in-control run length distribution for a GLRWOS , with
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M1 : yt = εt + 0.8εt−1

Time

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

M2 : yt = 1.13yt−1−0.64yt−2+εt+0.9εt−1

Time

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

M3 : yt = 0.8yt−1 + εt

Time

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

M4 : yt = 0.6yt−1 − 0.8yt−2 + 0.4yt−3 + εt

Time

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 1: Fault signature of four ARMA models for a step mean shift at time τ = 21.
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Case B: partially known model
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Case C: completely unknown model
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Figure 2: Estimated distribution of the conditional probability to give a false alarm
within t = 100, ψn = P (rl ≤ 100|β̂n), when a omnibus GLRWOS chart (M = 20,
hOS = 13.62199), based on estimated parameters, is used to monitor data generated
by model M3. Numbers on the curves give the sample sizes used to estimate the
model.

M = 20, designed to give an in-control ARL roughly equal to 1000 when the model
is known. Under the assumption that there are no modeling errors, case A, the
control limits provide the desired ARL values and the standard deviation of the
run length distribution is almost as large as the average run length. With model
uncertainty, cases B and C, the estimated run length distribution appears to be
left-shifted. That is, the main bulk of the run lengths takes relatively low values,
but there is evidence of a long tail of high values. The occurrence of a relatively large
percent of earlier false alarms, together with a few extremely long runs, results in a
shift of the lower quantiles towards smaller values and in a standard deviation of the
run length much larger than the ARL, especially with small sample sizes. Observe
that, for n > 100, the performance of the estimated run-length distribution in case
C is similar to that of case B. Thus, errors in parameter estimation seem to have a
stronger effect on the run-length performance than possible model misspecification.
On the other hand, the extent to which the GLR chart is sensitive to false alarms
when parameters are estimated seems to depend on the particular generating model.
Using model M1, for instance, the median and upper quantiles of the estimated
run length distribution are larger and smaller, respectively, than the corresponding
quantiles for model M4.

Figure 2 illustrates the distribution of the conditional probability of obtaining a
false signal within t = 100, i.e. P (rl ≤ 100|β̂n), for model M3 in the presence of
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Table 1: In control performance of GLRWOS control charts (M = 20) with an in-
control ARL approximately equal to 1000 when the model is known.

A: known B: partially known model C: completely unknown model
model 50 100 200 400 50 100 200 400

Model M1 (hOS = 13.92588)
ARL 1002.1 977.2 918.9 943.7 971.3 836.7 854.8 925.5 959.6
SDRL 991.1 7102.1 2217.2 1478.6 1211.4 8346.0 2164.1 1515.8 1224.7
Q0.01 15 6 8 11 13 4 7 10 13
Q0.25 294 63 119 186 231 44 97 171 225
Q0.50 700 188 342 482 578 140 294 457 561
Q0.75 1392 604 906 1121 1247 469 820 1081 1226
Q0.99 4567 12230 8673 6860 5772 10833 8779 6878 5778

Model M2 (hOS = 13.59065)
ARL 999.5 1227.0 958.4 949.9 953.5 814.3 859.8 907.8 959.9
SDRL 984.5 21695.4 3668.9 1788.4 1315.5 6855.4 2821.4 1623 1321.6
Q0.01 13 4 7 10 12 4 7 9 11
Q0.25 285 59 106 160 207 39 90 151 205
Q0.50 686 180 301 429 530 118 260 410 532
Q0.75 1374 560 823 1053 1184 382 720 1006 1194
Q0.99 4563 14977 10419 7719 6216 10904 9693 7517 6272

Model M3 (hOS = 13.62199)
ARL 997.2 1159.5 952.8 927.0 944.2 1055.5 918.3 910.5 932.3
SDRL 991.4 11620 3439.9 1834.5 1352.3 9256.1 3667.8 1775.8 1327.2
Q0.01 16 5 8 10 13 4 7 10 12
Q0.25 294 42 85 143 199 34 79 138 194
Q0.50 696 129 254 391 510 109 237 385 498
Q0.75 1377 460 766 998 1158 401 721 983 1140
Q0.99 4598 16803 10905 7899 6387 15324 10594 7809 6370

Model M4 (hOS = 13.83589)
ARL 998.7 892.4 878.7 918.3 945.1 663.7 788.1 880.1 938.0
SDRL 992.1 7261.5 2788.7 1690.2 1311.8 6710.4 2616.1 1657.9 1288.4
Q0.01 14 4 6 9 12 3 6 9 11
Q0.25 293 44 92 155 207 28 75 141 204
Q0.50 693 135 267 417 527 83 221 384 518
Q0.75 1383 439 754 1013 1174 278 652 956 1165
Q0.99 4548 11779 9759 7628 6087 9369 9046 7577 6102
Note. 50, 100, 200, 400 are the sample sizes used to fit the model. ARL, SDRL and Qp

denote the average, the standard deviation and the p-quantile of the marginal in-control
run-length distribution (estimated using 100000 Monte Carlo replications).
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Table 2: Percent increase in the marginal false-alarm probability of the GLRWOS

chart with parameter estimated.

Sample size
Model 50 100 200 400 600 800 1000 1200 1400 1600 1800 2000

Case B: partially known model
M1 290.8 143.8 61.3 30.0 20.6 16.0 10.8 10.2 8.9 8.8 8.5 8.1
M2 277.7 150.3 75.5 36.2 24.3 14.5 12.3 9.4 6.8 6.3 4.2 3.7
M3 395.5 218.2 107.1 50.8 35.2 25.2 20.8 18.2 14.2 13.1 12.4 10.5
M4 369.7 192.6 90.7 41.7 28.3 20.0 18.2 15.5 11.9 10.3 10.0 8.4

Case C: completely unknown model
M1 375.5 186.0 76.3 33.2 22.2 18.2 13.7 10.7 9.9 8.7 8.6 6.9
M2 382.9 184.4 84.5 38.9 22.8 17.6 13.9 11.1 9.4 7.4 6.2 6.4
M3 441.1 235.0 113.0 54.8 35.9 25.9 18.7 17.7 16.2 13.4 12.5 12.3
M4 497.4 241.6 106.9 46.3 29.0 23.3 19.0 14.8 13.4 12.2 11.8 8.7

Note. Probabilities have been estimated using 100000 Monte Carlo replications.

model uncertainty. When the true model is known, the probability of an incorrect
signal before the 100th observations is roughly equal to 0.09. Observe that, even for
n = 400, the probability that a false alarm is triggered can be 100 percent larger
than the nominal value with probability about equal to 0.20.

Table 2 shows, for a range of sample sizes, the percent increase in false alarm
rates at t = 100 for GLRWOS charts using estimates over those with known param-
eters. Quesenberry (1993) and Jones et al. (2001) pointed out that for a chart with
estimated parameters to perform like one with known parameters a negligible in-
crease in the false alarm rate would be required. Considering the case of independent
data, the authors use tables like Table 2 to determine the minimum sample size nec-
essary so that the Shewhart and EWMA control charts with estimated parameters
performs as the corresponding charts with known parameters. In the present case,
the decrease with n seems to depend upon the particular ARMA model. Hence, it
is difficult to give precise guidelines on the necessary sample size. However, observe
that if an increase in the false alarm rate of no more than 10% is considered accept-
able, as discussed in (Jones et al., 2001), more than 2000 observations are required
for a GLRWOS to perform like one with known parameters for the model M3.

Note that similar results have been obtained for other time series models and for
different types of GLR charts. In addition, results for other values of the window size
M , which have been omitted here for lack of space, show a very similar pattern but
also a stronger impact of the estimation errors when a larger value of M is used. This
is consistent with analogous studies, in the framework of independent data, showing
that the effect of parameters estimation, on both the in-control and out-of-control
run length performance, is much larger when charts with a longer memory are used,
e.g. Jones et al. (2001). A related example is given in Table 3 listing, for a variety
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Table 3: Marginal probabilities of detection within 20 timesteps of a change point
occuring at t = 100 of GLRWOS charts used to monitor data generated by model
M3.

Out of control situations
δ = 0.5 δ = 1 δ = 1.5 δ = 2 δ = 0 δ = 0 δ = 0 δ = 0

M ν = 1 ν = 1 ν = 1 ν = 1 ν = 1.25 ν = 1.5 ν = 2 ν = 2.5
Case A: known model

10 0.041 0.137 0.401 0.748 0.198 0.561 0.950 0.995
20 0.047 0.181 0.516 0.855 0.203 0.584 0.960 0.996
30 0.050 0.186 0.516 0.854 0.201 0.578 0.959 0.996

Case B: partially known model (n = 50)
10 0.028 0.077 0.196 0.420 0.071 0.237 0.721 0.946
20 0.028 0.085 0.229 0.471 0.062 0.215 0.722 0.948
30 0.027 0.082 0.206 0.423 0.056 0.190 0.678 0.935

Case B: partially known model (n = 100)
10 0.033 0.102 0.293 0.596 0.128 0.396 0.871 0.982
20 0.036 0.122 0.351 0.676 0.117 0.383 0.876 0.983
30 0.033 0.116 0.326 0.642 0.106 0.358 0.860 0.982

Case C: completely unknown model (n = 50)
10 0.026 0.063 0.167 0.356 0.054 0.192 0.659 0.925
20 0.026 0.072 0.191 0.408 0.048 0.170 0.657 0.928
30 0.025 0.066 0.170 0.364 0.044 0.150 0.614 0.911

Case C: completely unknown model (n = 100)
10 0.033 0.099 0.279 0.575 0.116 0.371 0.861 0.981
20 0.035 0.122 0.331 0.654 0.106 0.368 0.869 0.985
30 0.034 0.117 0.308 0.626 0.098 0.349 0.855 0.982
Note. Critical values of all schemes have been chosen so that the in-control probability to
signal within t = 100 is marginally equal to 0.1. Probabilities have been estimated using
100000 Monte Carlo replications.

of change-point scenarios and for different values of the window size, the marginal
detection probabilities of three GLRWOS charts designed for monitoring residuals
from the AR(1) model M3. To make this comparison possible, the critical value hOS
of the compared schemes have been chosen so that the probability of a false alarm
before t = 100, i.e. P (rl ≤ 100), is marginally equal to 0.1. Observe that there is
a large deterioration in the chart performance due to the estimation errors which,
however, is relatively more pronounced for larger values of M . Consequently, when
parameters are estimated, the GLR chart based on M = 20 performs sligtly better
than that based on M = 30, notwithstanding no practical difference can be found in
the marginal detection probabilities of detection when the model is perfectly known.
However, in both the case of known and unknown model, differences between the
probabilities of detection, computed for different values of M , cannot be considered
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remarkable. Furthermore, results shown in Table 3 confirm that, at least for n = 100,
the unknowing of model parameters have a larger impact on the chart performance
than the unknowing of model order.

We have seen that the GLR test takes explicitely into account the fault signa-
ture left in the residuals by a shift in the mean of the original observations. For
this reason, it is able to outperform standard monitoring schemes, such as EWMA
and CUSUM charts, suffering from a problem called “forecast recovery” problem
(Superville and Adams, 1994). In the presence of modelling errors, and when large
sample sizes are not available, it might be worthwhile to investigate whether the
GLR chart based on the estimated fault signature still outperforms the standard
monitoring algorithms. Apley and Shi (1999) have already presented comparisons
between GLR and residual-based Shewhart and CUSUM tests for step mean shifts.
Authors have shown that, when model uncertainty is present, the GLR continues to
outperform these two standard control schemes. Here, we present the comparison
between the combined GLR, defined by the stopping rule (15), and the combined
EWMA (Lu and Reynolds, 1999a), whose stopping rule is defined by

rlE = min{t ≥ 1 : uδ,t ≥ hE,δ and/or uν,t ≥ hE,ν},

where

uδ,t = (1− λ)uδ,t−1 + λat and uν,t = (1− λ) max(1, uν,t−1) + λa2
t

with uδ,0 = 0, uν,0 = 1. As criterion for comparison we use the probability of
detecting a shift within 20 timesteps after its occurrence for charts designed to have
marginally the same probability to give a false alarm before t = 100. The detection
probabilities are plotted in the Figure 3 as a function of δ and ν. Observe that when
the model is perfectly known, case A, the combined GLR performance is better
than that of the combined EWMA over all the range of δ and ν values. When model
uncertainty is considered, cases B and C, and the combined tests are designed using
a small reference sample, even if the power detection of both control schemes seems
to be strongly affected by modeling errors, the combined GLR clearly continues to
outperform the combined EWMAs. Similar results have been obtained using other
time series models and different versions of the GLR chart.

Results of this section show that, although the GLR chart seems to be more
efficient than other control charts even in the case of modeling errors, the effect of
uncertainty on its performance cannot be neglected unless the number n of observa-
tions gathered in Phase I is extremely large. For this reason, in the next section we
introduce an alternative designing method that, taking into account the variability
of parameters estimation, leads to charts able to achieve a prescribed rate of false
alarm with a reasonable number of observations.

4 A bootstrap design of GLR control charts

Let Hn(·, β, τ, δ, ν2, h,M) be the marginal run length distribution when n in-control
Phase I observations, y1, . . . , yn, are used to fit the time series model. Here, the
decision interval h is hOS or hOA, in the case of the omnibus charts (5) and (10),
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Case A: known model
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Case B: partially known model, n = 50

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

δδ

1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

νν

Case C: completely known model, n = 50
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Figure 3: Probability of detecting step mean and variance shifts within the 20th

timestep after their occurrence at t = 100, for a combined GLR (M = 20, solid
curve), and for two combined EWMAs, (λ = 0.1 and λ = 0.5, dashed and dotted
curves, respectively), designed to monitor residuals from M2. For all charts, the
control limits are chosen so that P (rl ≤ 100) = 0.1, marginally.
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respectively, (hδ, hν) in the case of the two single charts (13) and (14). The instant
τ is either the unknown single change time for the model (3) or the unknown vector
(τ1, τ2) for the asynchronous model (7).

The designing procedure of a window limited GLR requires determining adequate
values of both the control limit h and the window size M . In particular, for a given
value of M , the critical value h is usually determined so that a given constraint on
the in-control run-length distribution can be satisfied. However, when β is unknown,
the exact computation of Hn(·, β, τ, δ, ν2, h,M) is not possible and the GLR design
needs to be based on an estimated run-length distribution.

4.1 Estimation of the run-length distribution

Suppose that the order and coefficients of the ARMA(p, q) process are unknown
and have to be estimated. Automatic model identification and a bootstrap-based ap-
proach can be used to estimate the GLR run length distribution, Hn(·;β, τ, δ, ν2, h,M),
taking into account the errors due to model misspecification and parameter estima-
tion, (Bühlmann, 2002).

The method proceeds as follows:
i) Estimate the order and parameters of the generating model using the three

stage algorithm developed by Hannan and Rissanen (1982). Since the original
procedure may overestimate the model orders, the second step is modified fol-
lowing the Kavalieris (1991) proposal that guarantees consistency with respect
to the order selection criterion.

Briefly, the algorithm can be summarized as follows. In the first stage, a high
order autoregressive model is selected by the AIC criterion, with a maximum
order fixed at 10 log10(n). Then, the selected model is used to estimate the
error terms εt. In the second stage, ARMA(p̃, q̃) processes, with p̃ < pmax and
q̃ < qmax, are fitted by regressing yt on its p̃ past values and on the q̃ lagged
values of error terms obtained at the previous stage (in all our examples, we
use in particular pmax = qmax = 5). Let (p̂, q̂) be the best order according
to the BIC criterion. The third stage consists of obtaining the m.l.e. β̂n =
(µ̂, σ̂2, φ̂1, . . . , φ̂p̂, θ̂1, . . . , θ̂q̂).

ii) Generate pseudo-data y∗t according to

y∗t = µ̂+
p̂∑
j=1

φ̂j(y∗t−j − µ̂) + ε∗t −
q̂∑
j=1

θ̂jε
∗
t−j , t = 1, 2, . . . (16)

with ε∗t ∼ N(0, σ̂2).

Equation (16) can also be used to generate observations under the out-of control
situation. For example, under the synchronous model (3), from the instant of
time n+ τ a constant δ may be added to the pseudo-data y∗t , when the change
affects the process mean, and/or ε∗t may be generated from N(0, ν2σ̂2) under
the hypothesis of a shift in the innovation variance.

iii) Use (y∗1, . . . , y
∗
n), the first n observations from (16), to select the model order

(p̂∗n, q̂
∗
n). Then, compute the m.l.e. β̂∗n = (µ̂∗, σ̂2∗, φ̂∗1, . . . , φ̂

∗
p̂∗n
, θ̂∗1, . . . , θ̂

∗
q̂∗n

), as in
step i).
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iv) Apply the control chart to the sequence a∗n+1(β̂∗n), a∗n+2(β̂∗n), . . ., where a∗t (β̂
∗
n)

are the residuals computed for y∗t . Define rl∗ equal to T − n, where T is the
first time at which the control chart gives an out-of-control signal.

Observe that step iv) assumes that data to be monitored are a continuation of
the original trajectory. However, the procedure can be also adapted when the
residual sequence corresponds to an independent trajectory generated by the
same process.

v) Repeat steps ii)-iv) a relatively large number of times and use the empirical dis-
tribution of rl∗ to approximate the unknown distribution Hn(·;β, τ, δ, ν2, h,M).

Observe that, as the number of boostrap replications goes to infinity, the empirical
distribution of the run-lengths rl∗ tends to Hn(·; β̂n, τ, δ, ν, h,M) that is, hence, used
to estimate the unknown distribution function Hn(·;β, τ, δ, ν, h,M).

4.2 Estimation of the control limit

One of the most common criterion for choosing a suitable control limit consists of
identifying a constant h which provides, for a given value of M , a control scheme
with a desired in control average run length, ARL0, i.e. such that E0(rl) = ARL0,
where E0(·) indicates the expected value of the run length under the hypothesis of
no change. However, when the run length distribution exhibits an asymmetric and
heavy-tailed behavior, as is the case with estimated parameters, it is important to
investigate a more robust measure than the ARL, at least when large sample sizes
are not available and/or a very low frequency of false alarms to be achieved. Indeed,
as we have shown in Section 3, the ARL may be unable to capture the increase in
the incidence of false signals. A reasonable alternative might consist of determining
the control limit h so that the probability of a false alarm before some specified
value, N0, is equal to a desired value p0, i.e. solving for h

H0,n(N0;β, h,M) = P (rl ≤ N0) = p0 (17)

where H0,n(·;β, h,M) is the marginal in-control run-length distribution. Observe
that, when p0 = 0.50, this approach corresponds to the median run length criterion
discussed by Gan (1993, 1994) and Lee and Khoo (2006). A similar constraint on
the GLR run-length distribution has also been proposed by Lai (2001) as a more
tractable and more appropriate criterion than the ARL when the observations are
not independent. This kind of approach also looks appealing because the control
chart performance can be improved updating the control limit as more data become
available. In this case, N0 can be set equal to the number of observations up to the
next updating and p0 equal to an acceptable rate of false alarms.

In the presence of model uncertainty, the bootstrap estimate of the probability
of false alarms before N0, i.e. H0,n(N0; β̂n, h,M), may be used for determining the
control limit able to achieve desired performance. In this case, a suitable value of the
control limit for both the omnibus charts, (5) and (10), can be obtained by solving
for h the following equation

H0,n(N0; β̂n, h,M) = p0 (18)
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The solution of (18) can readily be computed via stochastic approximation. In
particular, we have obtained satisfactory results using the Polyak-Ruppert algorithm
(Ruppert, 1991; Polyak and Juditsky, 1992) which is both efficient and simple to
implement. Following this approximation algorithm the h estimate at the s−th step
is

ĥs =
1
s

s0+s∑
i=s0+1

hi (19)

where the hi values are generated by the recursion

hi+1 = max[0, hi −Ai−αqi], i = 1, 2, . . . (20)

Here, qi = I(N0, rl
∗
i )−p0, where I(·, ·) is the indicator function defined in Section 2;

rl∗i are independent random variables, with distribution H0,n(·; β̂n, hi,M) simulated
via steps i)-iv) described in the subsection 4.1; h1 is an initial guess of h, while A, s0, s
and α are suitable constants. The max operator in (20) is here used to ensure that
the h estimates are greater than zero at each step. In our experiments, however, the
h estimates happened to be negative only at the first steps of the iterative algorithm
(20).

Theoretical results (Kushner and Yin, 2003) ensure that, for arbitrary values of
constants A > 0, s0 ≥ 0, and 0.5 < α < 1, H0,n(N0; β̂n, ĥs,M) converges almost
surely to p0, as s tends to infinity. In addition, observe that, for sufficiently large
values of s, H0,n(N0; β̂n, ĥs,M) is approximately normally distributed with mean p0

and variance p0(1−p0)/s. This result may be used for suitably choosing the number
of iterations. For example, if p0 = 0.1 and s = 10000, the previous result ensures
that |H0,n(N0; β̂n, ĥs,M) − p0| is less than 0.006 with probability approximately
equal to 0.95.

The Polyak-Ruppert algorithm can be also used for designing the combined
GLR chart, defined by the stopping rule (15). Since in the combined case two
control limits, hδ and hν , need to be determined, a new constraint must be added to
that ensuring a desired joint false alarm rate. It seems reasonable, here, to balance
the false alarm probability between the two charts, that is to impose the following
constraint

P (rlδ < rlν) = P (rlδ > rlν) (21)

where

rlδ = min{t > 1 : GLRWδ ≥ hδ}, rlν = min{t > 1 : GLRWν ≥ hν}. (22)

The critical values (hδ, hν) of the stopping rule (15), solution of the system of equa-
tions (18) and (21), can be computed by iterating the following recurrence relations{

hδ,i+1 = max[0, hδ,i −Ai−α(qi − zi)], i = 1, 2, . . .
hν,i+1 = max[0, hν,i −Ai−α(qi + zi)], i = 1, 2, . . .

(23)

with qi = I(N0, rl
∗
c,i) − p0 and zi = I(rl∗ν,i, rl

∗
δ,i) − I(rl∗δ,i, rl

∗
ν,i), and averaging the

results as in (19). In each of the previous expressions the asterisk denotes the
bootstrap replicates of the run lenghts. Let ĥs denote the approximate bivariate
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solution. It is straightforward to show that theoretical results used to suitably
choosing the iteration number in (20) can also be applied to stop the recursive
estimation (23). In particular, H0,n(N0, β̂n, ĥs,M) is asymptotically distributed as
in the omnibus case.

Analogously, stochastic approximation can also be used to obtain critical values
ensuring a prescribed in-control ARL value. In particular, we yield satisfactory
results using either (20) or (23) with qi replaced by (rl∗i −ARL0)/ARL0. However,
as discussed in Section 3, in the presence of modeling errors, the in-control run length
distribution is very-right skewed. Hence, we strongly recommend that users evaluate
more meaningful performance measures than the average run length. Incidentally,
observe that the quantile criterion (18) also offers some computationally advantages
regarding the iterative approximation algorithm. Indeed, when (18) is used, we
always truncate at t = N0 each bootstrap replicate of the run-length, rl∗. Thus,
very long execution times, due to the occurrence of extremely large run lengths, can
be avoided. A similar truncation can be introduced also for the ARL criterion, but
it would correspond to a much higher value. Indeed, when the ARL criterion is
used, we have found convenient to arrest the run-lengths simulation at the value r̄li
such that

hi+1 − hi ≤ ξ, i.e. r̄li ≤ ARL0

(
1 +

ξiα

A

)
where ξ is a constant which, in our experience, can be set equal to 2 or 3. In this way,
we avoid that the sequence hi wanders too much and also unuseful long simulation
runs.

4.3 Choice of window length

As discussed in Section 3, choosing of window length is less critical than that of
control limit. However, window M should be selected to guarantee a satisfactory
out-of-control performance. We suggest, in particular, to evaluate the GLR power
detection for a range of M values. To provide an appropriate basis for comparison,
all charts shoul be designed to have a common marginal in-control run-length prop-
erty. Following this approach, in our opinion, the final choice of the window length
should be left to practitioners. Users can prefer a window size able to guarantee a
satisfactory performance for a wide range of change magnitudes rather than have
the best power detection just for one specified shift. Observe that the analysis of
several values of M is computationally unexpensive since computation of both the
control limit and probability of detection (or even other out-of-control performance
measures) can be done simultaneously for a range of values of the window length.
Indeed, once a time series model has been fitted to a Phase I sample, run-lengths of
the GLR charts, based on the different values of M , can be computed from the same
bootstrap sequence y∗1, y

∗
2, . . .. Thus, the model needs to be re-fitted only once; in

addition, given the nested structure of the GLR statistics, the computational bur-
den, for different values of the window size, is roughly equivalent to that requested
by the maximum value of M (see also Section 7).
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Table 4: Bootstrap estimates of the detection power of GLRWOS charts for a range
of values of M , δ and ν.

Window size
Pδ,ν(r) 5 10 15 20 25 30

p0 = 0.1
P1,1(10) 0.076 0.075 0.059 0.052 0.045 0.042
P1,1(20) 0.101 0.099 0.102 0.105 0.097 0.090
P2,1(10) 0.497 0.512 0.446 0.406 0.380 0.358
P2,1(20) 0.536 0.550 0.555 0.568 0.545 0.525
P0,1.5(10) 0.179 0.151 0.118 0.099 0.088 0.082
P0,1.5(20) 0.335 0.306 0.289 0.270 0.249 0.235
P0,3(10) 0.945 0.937 0.928 0.915 0.907 0.902
P0,3(20) 0.997 0.996 0.998 0.998 0.997 0.997

p0 = 0.2
P1,1(10) 0.122 0.128 0.110 0.101 0.096 0.092
P1,1(20) 0.158 0.174 0.177 0.186 0.180 0.172
P2,1(10) 0.645 0.669 0.630 0.600 0.580 0.565
P2,1(20) 0.690 0.710 0.736 0.753 0.735 0.723
P0,1.5(10) 0.292 0.267 0.243 0.225 0.213 0.202
P0,1.5(20) 0.504 0.484 0.478 0.469 0.453 0.437
P0,3(10) 0.965 0.964 0.959 0.955 0.952 0.951
P0,3(20) 0.999 1.000 0.999 0.999 0.999 1.000

5 An Example

The design procedure, given in the previous section, is illustrated here by applying
a GLRWOS chart to a real data set. In particular, we consider Series A from Box
et al. (1994) that consists of 197 concentration readings taken every two hours from
a chemical process.

Phase I. The first 150 of these measurements are used to fit an ARMA(p, q)
model. The identification of an appropriate order and the estimate of the coefficients
model is done by the automated procedure, described in Section 4, leading to the
following ARMA(1, 1) model

yt = 16.975 + 0.930(yt−1 − 16.975) + εt + 0.654εt−1, σ̂2 = 0.097 (24)

Diagnostic analysis shows no presence of residual correlations (the Box-Liung
test based on the first 20 lags is equal to 21.2814 with a p value of 0.3807) and
no violation of the normality assumption (Shapiro-Wilk statistic=0.9915, with p =
0.5062). Since outliers in the data might affect the model’s adequacy, it is also
necessary to check their presence and adjust the model parameters appropriately.
However, using the outlier identification procedure described by Wei (2006), no
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Figure 4: GLRWOS chart (M = 10, hOS = 19.48519) applied to the Series A from
Box et al. (1994)

significant additive outlier and/or level shift is identified. Thus, we assume that
first 150 observations come from an in-control process.

Suppose that an appropriate constraint on the rate of false alarms is given by
(17), with N0 = 100 and p0 = 0.1. In order to select an adequate GLRWOS chart
we compute, for M = 5, 10, 15, 20, 25, 30, the bootstrap control limit h so that the
probability of an incorrect signal within the 100-th observation is equal to 0.1. Then,
we estimate the probabilities Pδ,ν(r) of detecting a mean and/or a variance shift
after a certain number, r, of timesteps have passed from a change point occurring
at t = 101. Results are shown in Table 4 for a range of values of δ, ν and r. Note
that the choice of the window size M slightly affects the sensitivity of the chart to
detect a real change. In particular, small values of M are more effective in promptly
detecting smaller process shifts. Thus, for monitoring Series A, we decided to use
M = 10. Observe that raising the prescribed value of p0 from 0.1 to 0.2 leads to
a greater percentage of false alarms but also to a greater power detection of the
control chart during out-of-control conditions (results for p0 = 0.2 are also shown in
Table 4). Hence, if the practitioner considers acceptable a larger value of p0 a better
out-of-control performance can be achieved.
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Table 5: Performance of the stochastic approximation algorithm.

Sum of Squares Sum of Squares
Total Estimation Stochastic Total Estimation Stochastic

n Mean Errors Approximation Mean Errors Approximation
Model M1 Model M2

50 24.97 36556.63 73.12 27.06 101531.50 63.89
100 17.71 2641.26 1.45 17.67 5366.76 1.73
300 14.70 95.12 0.60 14.44 299.20 0.59

Model M3 Model M4
50 30.50 102578.50 51.80 28.88 153366.42 87.98
100 18.82 862.10 1.92 18.70 2140.08 1.51
300 14.84 80.26 0.61 14.86 86.84 0.56
Note. Each entry is based on 200 time series of length n (used to fit the model) and 20 runs
of the Polyak-Ruppert algorithm starting from a random point (used to estimate the within
sum of squares).

Phase II. Figure 4 shows the GLRWOS statistic applied to the residuals num-
bered from 151 to 197. To simulate an out-of-control situation, a shift of magnitude
equal to one standard deviation has been added to the original observations from
time τ = 191 to 197. Observe that the chart triggers an alarm at time 192, that is
one observation later than the true change time. The m.l.e. of τ , δ and ν are equal
to 191, 1.334 and 1, respectively. Hence, the GLRWOS correctly identifies the time
of change and suggests a possible shift in the process mean.

6 Monte Carlo experiments

We have performed a Monte Carlo experiment to investigate the Polyack-Ruppert
algorithm reliability and to which extent the bootstrap control limits are able to
guarantee the prescribed frequency of false alarms.

Regarding the use of stochastic approximation we have generated 200 time series
of length 50, 100 and 300, for each of the model M1-M4 introduced in Section 3.
Then, for each time series, we have indipendently computed 20 solutions of equation
(18) for a GLRWOS control chart based on M = 20. All the solutions have been
computed setting N0 = 100, p0 = 0.1, A = 20, α = 0.6, s0 = 100, s = 10000
and randomly choosing the starting point of the iterative algorithm, h1, between
10 and 50. For each of the considered cases, Table 5 shows the average of the
200× 20 h estimates and, using the 200 time series as grouping factor, the standard
decomposition of the sum of squares (SS) into a between and within sum of squares.
Here, in particular, the between and within SS measure the variability due to the
estimation errors and to the stochastic approximation, respectively. Overall, the
variability due to stochastic approximation is much smaller than that due to the
estimation errors (the within variability is always less than the 1% of the total
variability). The within-group standard errors range from 0.012, for n = 300, to a
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Table 6: Probabilities of false signal within t = 100 of GLR charts (M = 20) designed
by bootstrap using N0 = 100 and p0 = 0.1.

GLRWOS charts GLRWOA charts GLRWC charts
n FSave FS≤0.2 FSave FS≤0.2 FSave FS≤0.2

Model M1
50 0.099 0.832 0.101 0.830 0.095 0.843

100 0.102 0.851 0.103 0.847 0.099 0.854
300 0.097 0.935 0.097 0.927 0.095 0.935

Model M2
50 0.097 0.872 0.096 0.871 0.095 0.863

100 0.101 0.873 0.098 0.873 0.103 0.870
300 0.104 0.887 0.104 0.883 0.102 0.892

Model M3
50 0.106 0.832 0.108 0.841 0.105 0.846

100 0.098 0.849 0.099 0.851 0.096 0.864
300 0.097 0.897 0.099 0.898 0.095 0.919

Model M4
50 0.154 0.746 0.148 0.755 0.150 0.752

100 0.110 0.822 0.110 0.821 0.108 0.830
300 0.102 0.900 0.102 0.897 0.100 0.908
Note. FSave denotes the marginal probability, FS≤0.2 the frequency with which the condi-
tional probabilities P (rl ≤ 100|β̂n) are less or equal to 0.2. Each entry has been estimated
by simulation using 2000 time series of length n (used to fit the model and to estimate the
control limits) and 1000 continuation for each time series (used to estimate the false signal
probabilities). Maximum standard errors goes from 0.0055 when n = 50 to 0.0018 when
n = 300 for FSave and from 0.0097 to 0.0075 for FS≤0.2.

maximum of 0.152 when n = 50. This guarantees, as predicted by the theory, that
different indipendent runs of the stochastic approximation algorithm converge to the
same solution without regards to the starting point. In addition, other experiments,
conducted with A in the range from 10 to 50 and α in the range from 0.55 to 0.70,
have confirmed that the choice of these two parameters are largely not influential
on the final outcome at least when the number of iteration s is greater than 5000.

To understand the performance of the bootstrap control limits, from each of the
four models M1-M4 introduced in Section 3, 2000 Phase I time series of length
n = 50, 100, and 300 have been simulated in order to identify the generating model
and estimate the control limits. In particular, for M = 20, the omnibus and the
combined GLR charts have been designed solving for h the quantile criterion (18)
with N0 = 100 and p0 = 0.1. For the stochastic approximation algorithm, we have
used the previously given setting but always starting from 20. For each of the original
trajectories generated during Phase I, 1000 pseudo-random continuations have been
generated in the in-control and out-of-control scenarios. In particular, we have
assumed that under the synchronous model (3) a jump occurs on the mean/variance
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Table 7: Probabilities of false signal within t = 100 of GLR charts (M = 20) designed
using N0 = 100 and p0 = 0.1 for model M4 either assuming the model order known
or without taking into account the impact of the estimation errors (naive design).

GLRWOS charts GLRWOA charts GLRWC charts
n FSave FS≤0.2 FSave FS≤0.2 FSave FS≤0.2

Model M4 - Bootstrap limits assuming the order known
50 0.107 0.806 0.104 0.808 0.107 0.804

100 0.106 0.827 0.106 0.831 0.105 0.837
300 0.100 0.908 0.100 0.902 0.098 0.921

Model M4 - Naive control limits
50 0.504 0.270 0.512 0.267 0.508 0.261

100 0.294 0.463 0.301 0.454 0.294 0.462
300 0.153 0.755 0.155 0.741 0.150 0.764
Note. FSave denotes the marginal probability, FS≤0.2 the frequency with which the condi-
tional probabilities P (rl ≤ 100|β̂n) are less or equal to 0.2. Each entry has been estimated
as in table 6. Maximum standard errors goes from 0.0075 when n = 50 to 0.0023 when
n = 300 for FSave and from 0.0112 to 0.0098 for FS≤0.2.

a t = 101 whereas, under the asynchronous model (7), the mean (variance) process
shifts at t = 101 and the variance (mean) at t = 106. Then, we have recorded the
run-lengths defined by the stopping rules (6), (12) and (15).

Estimates of both the marginal false alarm probability and the percentage of
times that conditional probability is smaller than 0.2, are listed in Table 6. Results
show that bootstrap control limits seem to achieve the prescribed frequency of false
alarms for each combination of ARMA models and Phase I sample sizes, with the
only exception of model M4 when n = 50. In this case, inaccuracies are due to
the difficulty to correctly identify the structure of model M4 when the length of
the time series is small. Indeed, when n = 50, the Hannan-Rissanen procedure
correctly identifies the true order in less than 50% of the cases and, on the contrary,
identifies the model as an AR(2) in nearly 30% of the situations. Table 7, showing
results analogous to Table 6 in the case of an a priori known model structure, clearly
confirms that the problem with model M4, when n = 50, is due to the high fraction of
wrong model order choices. Indeed, computing the control limits using the bootstrap
and the stochastic approximation procedure, but assuming that the model order is
known, seem to overcome the problem. It is also interesting to note that the problem
seems more inherent to the model M4 structure than to the adopted identification
procedure. Indeed, even when the model is wrongly identified, the Box-Ljung test
computed for the first five or ten residual autocorrelations, is not significant at the
5% significant level in more than 99% of the time. Hence, in the case of model
M4 and using n = 50, the correct identification of model structure can be difficult
also for a time-series expert; in addition, using selection criteria different from BIC,
such as AIC or AICC, only partially ameliorates the problem due to the biased
selection. Further, these alternative criteria introduce in the parameter estimation
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Table 8: Probabilities of detection within 20 timesteps of a change point occuring
at t = 100. Model M1.

τ1 = 101 τ1 = 101 τ1 =∞ τ1 =∞ τ1 = 101 τ1 = 101 τ1 = 106
τ2 =∞ τ2 =∞ τ2 = 101 τ2 = 101 τ2 = 101 τ2 = 106 τ2 = 101
δ = 1 δ = 2 δ = − δ = − δ = 0.5 δ = 0.5 δ = 0.5

n ν = − ν = − ν = 1.5 ν = 2 ν = 1.25 ν = 1.25 ν = 1.25
GLRWOS charts

50 0.246 0.931 0.267 0.762 0.149 0.118 0.130
100 0.402 0.991 0.407 0.885 0.240 0.194 0.210
300 0.530 0.999 0.512 0.934 0.320 0.263 0.282

GLRWOA charts
50 0.227 0.918 0.291 0.784 0.154 0.123 0.136

100 0.372 0.988 0.446 0.904 0.251 0.203 0.223
300 0.501 0.998 0.563 0.950 0.340 0.278 0.304

GLRWC charts
50 0.218 0.919 0.307 0.805 0.147 0.114 0.133

100 0.358 0.987 0.464 0.915 0.241 0.191 0.219
300 0.481 0.998 0.574 0.954 0.323 0.260 0.294
Note. Each entry has been estimated by simulation as in Table 6. Maximum standard errors
goes from 0.0084 when n = 50 to 0.0025 when n = 300.

process an extra-variability so large to severely reduce the GLR power detection for
model M4 and for other ARMA models and, consequently, the wide applicability of
the proposed procedure.

Overall, our results show that the bootstrap procedure can be successfully imple-
mented for most of the investigated time series model even using a Phase I sample
size of n = 50. Even the relatively worse performance of model M4 for the smaller
sample size is still much better than that obtained using the naive control limits,
i.e., ignoring the impact of model uncertainty (see Table 7). However, in order to
improve the initial performance, we emphasize the importance of updating the con-
trol limits, when at least 100 observations become available. Note that, this can be
easily done since, given M , N0 and p0, the suggested procedure leads to a completely
automatic updating.

The need to update the decision interval arises also by the analysis of the out-of-
control performance of the GLR charts based on the bootstrap control limits. Table
8, in particular, shows the probabilities to trigger an alarm within 20 timesteps
when synchronus or asynchronous change points occur in the mean and/or variance
of model M1 (similar results have been obtained for the other models). As expected,
the GLR power detection strictly depends on the number of observations gathered
during the Phase I. Indeed, since the bootstrap decision intervals take into account
the estimation errors, and these are smaller when n is larger, the probability to
promptly give a true signal increases with the Phase I sample size. Regarding
to comparisons between the different version of the window-limited GLR charts,
observe that (i) when only the process mean shifts, the omnibus GLR chart based
on the synchronous change point model, i.e. GLRWOS , slightly outperforms both
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the asynchronous and combined GLR charts; (ii) when only the process variance
shifts, the combined GLR chart, i.e. GLRWC , shows the better power detection;
(iii) when a change affects both the mean and the variance process the GLR chart
based on the asynchronous change point model, i.e. GLRWOA, slightly outperforms
the other two control schemes. However, it should be noted that these differences
between the charts are really small and perhaps unimportant in practical situations.

7 Software

We have implemented a library of functions in the R language (R Development
Core Team, 2006), with the most time consuming part written in C. Our func-
tions use the Chandresekar recursions to compute the standardized innovations and
the likelihood function (Pearlman, 1980; Melard, 1984) and the newuoa algorithm,
introduced by Powell (2004), to derive the maximum likelihood estimates. Model
selection, required at the second stage of the Hannan and Rissanen algorithm, has
been implemented using the QR decomposition and moving variables in and out of
the model according to the algorithm described by Clarke (1981).

Observe that the GLRW statistics are functions of the following basic quantities:

wt(i) =
t∑

h=t−j
a2
h, ct(i, j) =

t∑
h=t−j

ahρ(h, t− i) and vt(i, j) =
t∑

h=t−j
ρ2(h, t− i) (25)

for i = 0, . . . ,M − 1 and j = 0, . . . , i. For example, regarding to the GLRWOS

statistics, we have that

δ̂t(τ) =
ct(t− τ, t− τ)
vt(t− τ, t− τ)

and ν̂t(τ) = max(1, s2t (τ, δ̂t(τ)))

where s2t (τ, δ̂t(τ)) = (wt(t− τ)− δ̂2t (τ)vt(t− τ, t− τ))/(t− τ + 1). Hence,

sup
δ,ν2≥1

l1(τ, δ, ν2) = l1(τ, δ̂t(τ), ν̂t(τ)) = wt(t−τ)−(t−τ+1){s2t (τ, δ̂t(τ))/ν̂2
t (τ)+log(ν̂2

t (τ))}

Note that the previous quantities can be efficiently computed using the following
recursive relations

wt(i) = wt(i− 1) + a2
t

ct(i, j) = ct(i− 1, j − 1) + atρ(t, t− i)
vt(i, j) = vt(i− 1, j − 1) + ρ2(t, t− i)

i = 1, . . . ,M − 1; j = 1, . . . , i

with wt(0) = a2
t , ct(i, 0) = atρ(t, t−i), vt(i, 0) = ρ2(t, t−i) for i = 0, . . . ,M . The use

of these recursions is particularly useful for the asynchronous GLR implementation.
When more than one window-length value is considered, the previous recursions
must be runned using the maximum M . Then, all the GLRW statistics can be
readily computed for different values of M .

In order to give an example of the computing time, the 10100 stochastic approx-
imation iterations, used in the example of Section 5 to compute the six decision
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intervals, for M = 5, 10, 15, 20, 25 and 30, took a total of 19 seconds using a Pen-
tium 4 (3.00GHZ) PC running the GNU/Linux (Ubuntu 6.10) operating system.
Observe that, in this case, 10101 ARMA models have been fitted to time series
of 150 observations using automatic order selection and exact maximum likelihood
estimation.

8 Conclusions

In this paper we have proposed a procedure to design a GLR chart with a prescribed
rate of false alarms. The methodology can be summarized as follows:

a) fit an ARMA model to the data using the Hannan and Rissanen (1982) automatic
identification procedure;

b) check model assumptions; in particular, i) check the Gaussian assumption using
a suitable test and normal probability plot; ii) check for no autocorrelation in
the residuals plotting the sample autocorrelation and, if necessary, using some
test like the Ljung-Box portmanteau test (Wei, 2006); iii) check for the presence
of outliers and/or level changes;

c) choose N0 and p0, or a suitable large value of the in-control ARL; then compute,
for different values of the window size M , the control limit h using stochastic
approximation;

d) choose a suitable value of M on the basis of some estimate of the out-of-control
performance.

We suggest starting the designing procedure when at least 50 Phase I observations
are available and to regularly update the control limits as more data are gathered. If
needed, the design procedure can be implemented in a fully automatic way. Indeed,
step b) can be automated using a predefined battery of diagnostic tests and the
choice of M in step d) can be based on a prefixed criteria (e.g. M might be chosen
so as to maximize the probability of detecting a given shift within r timesteps).
However, we believe that, if it is possible, users should have a minimal interaction
with the designing procedure in order to make more balanced choices and also to
achieve a better understanding of the underlying process. In any way, if suitable
software is available, the interactive design for a particular process requires only a
few minutes.

Note that, it is also necessary to choose between implementing a synchronous,
an asynchronous or a combined GLR. However, our results show little practical
differences between these three types of GLR charts in terms of in and out-of-
control performance. Since their statistical properties are basically equivalent, we
emphasize that this choice should be mainly based on the practitioner’s preference
and/or experience.

Finally, note that the proposed approach can be also used for the design of other
control charts. For example, we have successfully applied a variant of the presented
procedure to the design of residual EWMA and CUSUM monitoring schemes.
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