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We study the phase I analysis of a multistage process where the input of the current process stage may
be closely related to the output(s) of the earlier stage(s). We frame univariate observations from each
of the stages in a multistage process as a single vector and recognize that the directions in which these
vectors can shift are limited when attention is restricted to a single step shift in the mean of one stage.
This allows us to focus detection power on a limited subspace with improved sensitivity. Taking advantage
of this particular characteristic, we propose a change point approach that integrates the classical binary
segmentation test with the directional information based on the state-space model for testing the stability
of a batch of historical data. We give an accurate approximation for the significance level of the proposed
test. Our simulation results show that the proposed approach consistently outperforms existing methods
for multistage processes.

KEY WORDS: Binary segmentation; Directional information; Generalized likelihood ratio test; Statis-
tical process control.

1. INTRODUCTION

Many manufacturing operations involve multiple operation
stages instead of just a single stage. For instance, in semicon-
ductor manufacturing, Kim and May (1999) investigated the
via formation procedure to produce multichip module dielec-
tric layers composed of photosensitive benzocyclobutene. The
via formation process involves several sequential stages, such
as spin coating, soft baking, exposing, developing, curing, and
plasma descumming. In such a case, outputs from operations at
downstream stages can be affected by operations at upstream
stages. In addition, a product part that is transferred from one
stage to the next in a multistage process may introduce extra
variations that do not occur in a generic single-stage process.
Shi (2006) has provided an extensive review on the multistage
process control problem with many industrial examples.

Thanks to recent advances in sensor and information tech-
nologies, automatic data acquisition techniques are commonly
used in increasingly complicated processes with multiple
stages. In addition, a large amount of data and information
related to quality measurements in a multistage process has
become available. Thus engineering and statistical approaches
to make use of the multistage data and information regarding
control and monitoring have become possible and beneficial in
industrial practice.

One way to use the multistage information and capture the
multistage relationships (e.g., the correlation structure between
serially dependent stages) is to model the multistage process
as a linear state-space model. Examples have been given by
Jin and Shi (1999), Ding, Shi, and Ceglarek (2002b), Ding,

Ceglarek, and Shi (2002a), Ding, Jin, Ceglarek, and Shi (2005),
Djurdjanovic and Ni (2001), Huang, Zhou, and Shi (2002),
Zhou, Ding, Chen, and Shi (2003a), and Zhou, Huang, and
Shi (2003b). Even though the state-space modeling approach
is popular and has been particularly influential in recent years,
investigations of multistage statistical process control (SPC)
based on such a model, including both phase I retrospective
analysis and phase II monitoring and diagnosis, are rare. Xi-
ang and Tsung (2006) and Zantek, Gordon, and Robert (2006)
considered online monitoring and diagnosis of out-of-control
(OC) conditions in the multistage process. Zhou, Chen, and Shi
(2004) estimated the process parameters by applying the typi-
cal estimation methods of general mixed linear models. Xiang
and Tsung (2006) alternatively derived an EM procedure for
maximum likelihood (ML) estimates of the parameters.

The estimation methods proposed by Zhou et al. (2004) and
Xiang and Tsung (2006) rely on the assumption that the refer-
ence sample is statistically stable. If the collected samples are
indeed not in control (IC) (i.e., change points or outliers exist),
then the estimates of the parameters will be adversely affected.
Therefore, a phase I analysis of a multistage process, aimed at
identifying the data from an IC process as accurately as possible
so that quality engineers can have a good reference for estab-
lishing control charts for future operations, is very valuable and
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desirable. But the phase I analysis of multistage processes re-
mains challenging and has not been thoroughly investigated in
the literature.

One technical challenge is the use of multistage information
in the analysis. Traditional methods developed for a single stage
cannot fully use the information from a multistage operation
where the input of the current process stage may be highly re-
lated to the output(s) of the early stage(s). Another challenge
is the complexity of phase I analysis with uncertain multistage
parameters. One task in phase I is to recognize the presence of
OC conditions and identify which data (if any) are likely to be
from the IC condition. But unlike in phase II monitoring, the
parameters of the process in phase I analysis are not known, so
that any strategy for phase I analysis depends on the simultane-
ous estimation of the parameters. Including OC data can lead to
biased estimation, which in turn may affect the ability to detect
the presence of the OC condition(s) (the “masking” problem).
The situation may be more serious for multistage processes be-
cause of the intricacy of the model and the large number of
parameters.

In this article we integrate the popular multivariate change
point detection scheme with specific directional information
based on a multistage state-space model. Based on this in-
tegration, we propose an effective multivariate change point
method to assist in testing and estimating the sustained shift in
a fixed multistage process sample by using multistage informa-
tion. With a focus on the sustained shift case, we demonstrate
that the proposed scheme uniformly outperforms existing ap-
proaches for multistage processes.

The remainder of the article is organized as follows. First,
in Section 2 we describe the multistage process model in detail
and review existing multivariate change point approaches that
can be applied to multistage models. In Section 3 we consider
a multivariate hypothesis test problem when a set of alternative
hypotheses is available. Then we propose a directional multi-
variate change point method to resolve the unique challenges
of multistage processes. We also give an appropriate approx-
imation of the threshold for the test statistic. We analyze the
test and estimation performance and compare it with the results
of existing approaches in Section 4. Finally, in Section 5 we
summarize the major contributions of the article and suggest is-
sues for future research. We provide some necessary proofs and
derivations in the Appendix.

2. MULTISTAGE MODELING AND TRADITIONAL
CHANGE POINT APPROACHES

2.1 Multistage Modeling

Consider a manufacturing process composed of p stages.
Without loss of generality, the stages are numbered in ascending
order, such that if stage k precedes stage l, then k < l. A two-
level linear state-space model generated from a practical appli-
cation is usually used to describe the quality measurement at
the kth stage of an IC process (Xiang and Tsung 2006),

yk = Ckxk + vk,
(1)

xk = Akxk−1 + wk,

for k = 1, . . . ,p, where xk denotes the unobservable product
quality characteristic. The first level of the model involves fit-
ting the quality measurement to the quality characteristic, with
Ck used to relate the unobservable process quality characteris-
tic, xk, to the observable quality measurement, yk. The second
level of the model involves modeling the transfer of the qual-
ity characteristic from the previous stage to the present stage,
in which Ak denotes the transformation coefficient of the qual-
ity characteristic from stage k − 1 to stage k. Ak and Ck for
k = 1, . . . ,p are known constants (or matrixes) that are usually
derived or estimated from engineering knowledge (see Jin and
Shi 1999; Ding et al. 2002a for details). The process noise (say
the common-cause variation and the unmodeled errors) is des-
ignated wk, and the measurement error of the product quality is
designated vk.

Camelio, Hu, and Ceglarek (2003) used the foregoing state-
space model to represent variation propagation of a multistage
assembly system with compliant parts. Here xk represents the
part deviation at stage k, and yk is the deviation vector contain-
ing all measurements at key product characteristic points. Ak is
the dynamic matrix that represents the deviation change due to
part transfer among stages and is determined jointly by relo-
cation, deformation, and sensitivity matrixes. Ck is the obser-
vation matrix, corresponding to the information on the sensor
number and sensor locations.

Such a linear state-space model structure provides an analyt-
ical engineering tool for modeling, analyzing, and diagnosing a
multistage process. Extensive reviews of the state-space model
have been given by Basseville and Nikiforov (1993) and Ding et
al. (2002a). In this article we start from a univariate case, where
Ak Ck, xk, and yk in model (1) are one-dimensional, and fol-
low the model in the literature, vk ∼ N(0, σ 2

v ), wk ∼ N(0, σ 2
wk

).
The variance depends on the stage index, k, and the initial state,
x0 ∼ N(a0, ε

2). Usually in SPC applications, the unknown pa-
rameters, a0, ε2, σ 2

v , and σ 2
wk

, may be estimated through a large,
good reference sample obtained in the phase I analysis.

Suppose that a multistage process data set contains m obser-
vations in the form {y1,j, y2,j, . . . , yp,j}, where yk,j is a quality
measurement observed from the jth product operated on the kth
stage in the process described by model (1), j = 1,2, . . . ,m.
The model based on the observations then can be written as

yk,j = Ckxk,j + vk,j,
(2)

xk,j = Akxk−1,j + wk,j,

where vk,j and wk,j are independent for k = 1, . . . ,p and j =
1,2, . . . ,m. Here we assume that m > p + 1. This assumption
is not a restrictive one and can be easily satisfied in practical
applications. It can ensure that the estimation of the covariance
matrix in the change point approach is nonsingular, which we
discuss later.

In this article we consider a typical change point problem
in which a single step change occurs at some point, τ , in the
mean of only one stage, say ζ ; that is, the OC model can be
represented as

yk,j = Ckxk,j + vk,j,
(3)

xk,j = Akxk−1,j + wk,j + δI{k=ζ,j>τ },

TECHNOMETRICS, ???? 0, VOL. 0, NO. 00
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where k = 1, . . . ,p, j = 1,2, . . . ,m, and I{·} is the indicator
function. We want to test the “no-change” null hypothesis,
H0 : δ = 0, against the alternative, HA : δ �= 0. We concentrate
on this model assumption, which is common in industrial prac-
tice, in this article, and will investigate various extensions in
future research.

2.2 Conventional Change Point Approaches

Conventionally, there are two possible approaches to develop
testing methods for the multistage process change point prob-
lem. One approach is to conduct a test for the quality measure-
ments of the product at the final stage (i.e., yp,j) using classical
univariate techniques, such as the parametric likelihood ratio
test or the Schwarz information criterion (Csorgo and Horvath
1997; Chen and Gupta 2000). Obviously, using a single stage in
a multistage process can be misleading and ineffective, because
its measure is confounded with the cumulative effects from pre-
vious stages. Moreover, the impact of cross-correlation and au-
tocorrelation due to the process dynamics and inertia of seri-
ally dependent stages should not be ignored. Xiang and Tsung
(2006) have discussed the disadvantages of the online control
scheme based on the observations of the final stage from the
standpoint of efficient monitoring and diagnosing. Thus we be-
lieve that this method is not appropriate for testing and estimat-
ing the change point for the multistage model, and we will not
proceed further with it.

Another conventional approach is to obtain the one-step fore-
cast errors (OSFEs) (i.e., the residuals), based on the process
model and then apply some traditional methods to them. For
model (2), the standardized OSFEs have been given by Xiang
and Tsung (2006) and are independently and identically dis-
tributed (iid) from the standard normal distribution (Durbin and
Koopman 2001) under IC conditions and with known parame-
ters. But in a phase I setting, the parameter values are unknown
and must be estimated. Because of the complex form of the
OSFEs and the possible presence of an OC condition, it appears
to be very difficult (if not impossible) to obtain the analytical
properties and make use of the OSFEs. Thus in this article we
do not develop a test and estimation method for a multistage
change point model based on OSFEs.

Alternatively, we may focus directly on original observations
from each stage. As we discuss later, the method based on orig-
inal observations can conveniently make full use of the under-
lying information in the multistage model. Thus we propose
constructing a proper test for the multistage change point model
by investigating the original product observations, y1,j, . . . , yp,j,
directly.

Let yj = (y1,j, . . . , yp,j)
′ for j = 1,2, . . . ,m. Because the

product observations are independent, we can regard y1, . . . ,

ym as a sequence of independent p-dimensional multivariate
normal vectors with unknown mean μ0 and unknown vari-
ance matrix �. Therefore, the test for a mean shift in the data
set, {yj = (y1,j, . . . , yp,j)

′, j = 1,2, . . . ,m}, may be considered a
change point detection problem, which concerns the mean vec-
tor change under the assumption of an unknown but constant
covariance matrix, when multivariate individual observations
are available. Such a change point problem has been studied by
Srivastava and Worsley (1986), who proposed a method (desig-
nated as the SW method hereinafter) to detect a change point in

the mean vector. James, James, and Siegmund (1992) proposed
a similar method to the SW method but with a different ap-
proximation of the critical value for the test statistics. Sullivan
and Woodall (2000) proposed a preliminary analysis method for
detecting a shift in the mean vector, the covariance matrix, or
both, for multivariate individual observations and used the SW
method as the benchmark. Related asymptotic results of the SW
method also have been given by Chen and Gupta (2000). Be-
cause we are concerned mainly with the shift in the mean vector
rather than the change in the variation, we use the SW method
as a benchmark for comparisons with the proposed scheme in
next section.

Here we briefly describe the SW method. Denote the means
of the first l and last m − l observations as ȳl = 1

l

∑l
j=1 yj,

ȳm−l = 1
m−l

∑m
j=l+1 yj, and the pooled sample variance matrix

as

Wl = 1

m − 2

{
l∑

j=1

(yj − ȳl)(yj − ȳl)
′

+
m∑

j=l+1

(yj − ȳm−l)(yj − ȳm−l)
′
}

.

Obviously, under the OC model (3), Wl is an unbiased estima-
tor of � only when l ≤ τ < l + 1. From an asymptotic view-
point, it is consistent if l/τ = 1 + o(1); see the arguments in the
proof of Proposition 2.

Then the standardized difference between the observations
before and after the change point is

tl =
√

l(m − l)

m
(ȳl − ȳm−l),

and the corresponding Hotelling T2 statistic is

T2
l = t′lW

−1
l tl, l = 1, . . . ,m − 1. (4)

Then H0 is rejected if max1≤l≤m−1 T2
l is large enough. The ML

estimator for the location of change τ is given by

τ̂SW = arg
l=1,...,m−1

max T2
l . (5)

The foregoing SW method is a general approach for test-
ing and estimating the change point in multivariate observation
cases. But using this method for a multistage process may cause
us to overlook some important process information. We illus-
trate this point and propose our approach in the next section.

3. THE DIRECTIONAL MULTIVARIATE CHANGE
POINT METHOD

Approaches to testing and estimating a change point, such
as the SW method, are usually based on the two-sample likeli-
hood ratio test by means of the binary segmentation procedure
(Chen and Gupta 2000). Therefore, before studying the change
point problem of the multistage model, we first consider corre-
sponding one-sample multivariate hypothesis testing problems
in Section 3.1. Then the analogous arguments can be readily
extended to the two-sample multivariate testing problems with
unknown parameters and lead to our proposed change point
method for multistage processes.

TECHNOMETRICS, ???? 0, VOL. 0, NO. 00
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3.1 Multivariate Hypothesis Testing Problems

Let yj = (y1,j, . . . , yp,j)
′, j = 1, . . . ,m, be a random sample

of size m from a p-variate normal population with mean μ and
covariance matrix �. We consider the problem in testing the
following hypothesis test:

H0 :μ = μ0 ↔ H1 :μ �= μ0.

For simplicity, we suppose that the covariance matrix, �, is pos-
itive definite and known. Also, without loss of generality, we
assume that μ0 = 0. For this problem, the most popular test is
the generalized likelihood ratio test (GLRT), for which the test
statistic (Anderson 1984) is

mȳ′
m�−1ȳm ∼ χ2

p , (6)

where χ2
p denotes the chi-squared distribution with p degrees of

freedom. The GLRT has some optimal properties, including ad-
missibility, minimax properties and being the optimal invariant
test against H1. When � is estimated, a Hotelling T2 distribu-
tion should be used instead.

Sometimes we do have some knowledge about the alternative
hypothesis, such as its specific direction, μ = δd, where the
direction, d, is a known vector but the scale, δ, is an unknown
constant. In such a case the hypothesis test would be

H0 :μ = 0 ↔ H′
1 :μ = δd.

For this problem, the likelihood ratio test is considered to be the
uniformly most powerful unbiased test (Lehmann 1991), which
has a rejection region

m(d′�−1ȳm)2/d′�−1d > χ2
1 (α),

where α is the prespecified type I error and χ2
1 (α) is the upper

α percentile with a χ2
1 distribution.

Furthermore, in a more practical situation, we may consider
the following hypothesis test:

H0 :μ = 0 ↔ H′′
1 :μ = δd1 or μ = δd2 . . . or μ = δdr,

where the alternative hypothesis has several possible directions,
d1,d2, . . . ,dr , with known vectors. To consider the case where
r is finite, the GLRT will reject the null hypothesis if the test
statistic,

max
i=1,...,r

{m(d′
i�

−1ȳm)2/d′
i�

−1di}, (7)

is larger than a prespecified critical value.
To the best of our knowledge, there is no published theoreti-

cal optimal property of such a test method under the alternative
hypothesis. However, the efficiency of this test can be expected
to be superior to test (6) because of its more sharply focused re-
jection region. Moreover, when the null hypothesis is rejected,
we naturally can use

arg
di=d1,...,dr

max{m(d′
i�

−1ȳm)2/d′
i�

−1di} (8)

as an estimator of the true mean vector direction.
Next we present a proposition that establishes some good as-

ymptotic properties of test (7) and estimator (8).

Proposition 1. For testing the null hypothesis, H0, against
the alternative, H′′

1 , the following hold:

a. For any finite set of directions, test (7) is asymptotically
no less powerful than test (6).

b. Without loss of generality, we assume that μ = δdk, where
1 ≤ k ≤ r. Then, the estimator of k,

k̂ = arg
1≤i≤r

max{m(d′
i�

−1ȳm)2/d′
i�

−1di},

is consistent.

We will find this proposition quite helpful in constructing our
test and estimation of the change point in a multistage model in
the following sections.

3.2 The Directional Multivariate Change Point Method

Here we propose a multivariate change point scheme that
makes full use of the directional information from a multistage
process. Suppose that a shift occurs at some stage, ζ , as repre-
sented by model (3). The expectation of yj will change from μ0
to μ1 = μ0 + δdζ , where dζ = (dζ,1,dζ,2, . . . ,dζ,p)

′, and

dζ,k =

⎧
⎪⎨

⎪⎩

Ck

k∏

i=ζ+1

Ai if k ≥ ζ

0 otherwise.

Thus in the multistage process considered here, the process shift
occurs only in one of p known directions dζ , ζ = 1, . . . ,p. This
a priori shift direction information is a particular characteris-
tic in multistage processes. If we could construct a multivariate
change point scheme that makes use of this a priori knowledge
properly and sufficiently, then the testing and estimation of a
change point in the multistage process would be enhanced com-
pared with the SW method based only on the GLRT, which does
not take such constraining information into consideration.

The SW method combines a binary segmentation procedure
with the two-sample mean test (Chen and Gupta 2000). On
the other hand, the SW test statistic also can be obtained from
the likelihood ratio procedure approach by assuming that � is
known and then using an estimator to replace �. Analogously,
for the multistage model change point problem, by comparing
testing statistics (6) and (7), it is natural to obtain the following
test from (4): H0 is rejected if

max
1≤l≤m−1

Ul > c, (9)

where

Ul = max
1≤k≤p

(d′
kW−1

l tl)
2/d′

kW−1
l dk, l = 1, . . . ,m − 1,

(10)
and c is a constant for attaining the prespecified type I error
probability α. This testing method integrates the binary seg-
mentation procedure and the two-sample GLR mean test with
directional information. Moreover, estimators of ζ and τ are
given by

τ̂ = arg
1≤l<m

max{Ul} (11)

and

ζ̂ = arg
1≤k≤p

max{(d′
kW−1

τ̂ tτ̂ )2/d′
kW−1

τ̂ dk}. (12)

TECHNOMETRICS, ???? 0, VOL. 0, NO. 00
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Remark 1. Note that the foregoing directional multivariate
change point (DMCP) test can be rewritten in the following
form:

max
1≤k≤p

{
max

1≤l≤m−1
(d′

kW−1
l tl)

2/d′
kW−1

l dk

}
> c.

On the other hand, the statistic Vk ≡ max1≤l≤m−1(d′
kW−1

l tl)
2/

d′
kW−1

l dk is similar to the test statistic based on the likelihood
ratio approach for a change point problem set before and after
the change point of the mean vector, μ = μ0 and μ = μ0 +
δdk (see the proof of Prop. 4 in the App.). The DMCP also
can be seen as the combination of p special multivariate change
point tests, each one being the simple hypothesis versus simple
hypothesis. This can help us obtain an approximate significance
level of the DMCP test, which we illustrate later.

Remark 2. Note that � can be represented as

� =

⎛

⎜
⎜
⎜
⎝

var(y1,j) cov(y1,j, y2,j) · · · cov(y1,j, yp,j)

cov(y1,j, y2,j) var(y2,j) · · · cov(y2,j, yp,j)
...

...
...

...

cov(y1,j, yp,j) cov(y2,j, yp,j) · · · var(yp,j)

⎞

⎟
⎟
⎟
⎠

,

where

var(yk,j) = C2
k

[(
k∏

i=1

Ai

)2

ε2 +
k∑

l=1

(
k∏

i=l+1

Ai

)2

σ 2
wl

]

+ σ 2
v

and

cov(yl,j, yk,j) = Ck

k∏

i=1

AiCl

l∏

i=1

Aiε
2

+
l∑

m=1

Ck

k∏

i=m+1

AiCl

l∏

i=m+1

Aiσ
2
wm

, l < k.

Thus to estimate �, we may estimate ε2, σ 2
v , and σ 2

wk
instead

of using a pooled sample variance matrix. In fact, this prob-
lem will lead to the parameter estimation in a variance com-
ponent model. The typical statistical estimation algorithms are
ML estimation, restricted ML estimation (REML), and mini-
mum norm quadratic unbiased estimation (MINQUE) (see Rao
and Kleffe 1988). Zhou et al. (2004) suggested using MINQUE
as an approximation of the ML estimate for multistage mod-
els because the computation load of MINQUE is much lower
than that of ML estimation or REML. But we do not believe
that MINQUE is suitable for phase I analysis, for two reasons.
First, because MINQUE is obtained by solving p + 2 nonlinear
equations, nonconvergence of the iterative algorithm can occur.
To reduce the frequency of nonconvergence, the use of good
starting values is recommended (Rao 1997). But choosing such
starting values is rather difficult in the presence of OC condi-
tion observations. In fact, the convergence of MINQUE may be
questionable under the OC condition. Second, our change point
method is based on the binary segmentation procedure, so that
m − 1 segments are needed. For each segment and each dk,
the MINQUE of � must be obtained; that is, p + 2 nonlinear
equations are solved. When the sample size, m, and number of
stages, p, are large, this is not a trivial computational task. Thus
we suggest using the pooled sample variance matrix, Wl, to es-
timate �. This estimator is easy to calculate and has a closed

form, so that we can obtain some analytical properties for the
proposed DMCP.

Remark 3. It is noteworthy that for a multistage model (2),
μ0 can be represented as

μ0 = E(yj)

=
(

C1A1a0, . . . ,Ck

k∏

i=1

Aia0, . . . ,Cp

p∏

i=1

Aia0

)

≡ a0ς;
that is, in the p-variate vector, μ0, there is only one unknown
parameter, a0. Note that we do not incorporate this point into
the proposed test (9), because we assume that we have no prior
knowledge about which part of the data set may be in control,
that is, model (3). But sometimes we indeed have some addi-
tional information about which part of the data is in control. In
such a case, without loss of generality, we assume that the ob-
servations before some unknown change point are IC, and it is
equivalent to consider the test

H0 : E(y1) = E(y2) = · · · = E(ym) = a0ς

against the alternative

HA : there is an integer τ such that

a0ς = E(y1) = · · · = E(yτ )

�= E(yτ+1) = · · · = E(ym)

= a0ς + δdk

for k = 1, . . . ,p. The GLRT statistic will be

max
1≤k≤p

{

max
1≤l≤m−1

(m − l)

× (ς ′W−1
l ȳm · ς ′W−1

l dk − d′
kW−1

l ȳm−l · ς ′W−1
l ς)2

/([

ς ′W−1
l ς · d′

kW−1
l dk − m − l

m
(ς ′W−1

l dk)
2
]

× ς ′W−1
l ς

)}

.

For testing the preceding change point hypothesis, applying
this test statistic may improve the efficiency compared with the
test (9).

To end this section, we present an asymptotic result on the
consistency of the change point estimator (11) and the estimated
stage where the shift occurs [eq. (12)].

Proposition 2. Suppose that 0 < limm→∞ τ/m = θ < 1,
where τ is the true change point in the observations. When the
process is statistically OC as model (3) and the size of shift δ is
a fixed constant, we then have the following:

a. |̂τ − τ | = Op(1), where τ̂ is as defined in (11) and Op(1)

means bounded in probability.
b. ζ̂ → ζ in probability as m → ∞, where ζ̂ is as defined in

(12).
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This proposition ensures that the proposed estimators (11)
and (12) are asymptotically effective. Although whether or not
τ̂ outperforms τ̂SW remains undemonstrated analytically at this
point in the article, the simulations in Section 4 show that τ̂

indeed improves the accuracy of the change point estimates for
the multistage processes considered in this article.

3.3 Approximate Critical Value

Srivastava and Worsley (1986) and James et al. (1992) pre-
sented two different methods for approximating the significance
level of the SW test. In this section we study some properties of
DMCP and then propose a suitable method to approximate its
significance level or, equivalently, the critical value.

First, we give an approximation of Pr(Vk > c), k = 1, . . . ,p.
The statistic T2

l in (4) is known to follow Hotelling’s T2 distri-
bution, which does not depend on the parameters μ0 and �. To
develop the approximations of Pr(Vk > c), we need to show that
Vk has a similar affine-invariant property. Denoting the statistics
as (d′

kW−1
l tl)

2/d′
kW−1

l dk by Gl,k, we then have the following
proposition.

Proposition 3. When a process is statistically IC, for any
given vector dk �= 0, the distribution of Gl,k does not depend
on dk, μ0, or �.

Based on the foregoing proposition, Pr(Vk > c) can be con-
veniently obtained by Monte Carlo simulations, because we
can choose any set of values, dk, μ0, or �. Without loss of
generality, let d′

k = (0,0, . . . ,1) ≡ e′
p, μ0 = 0, and � be the

identity matrix. This proposition also makes approximating
Pr(Vk > c), k = 1, . . . ,p easy, because we need only study each
specific choice for dk.

To approximate Pr(Vk > c), we need to explore the distribu-
tional properties of Gl,k. By Proposition 3, we have the follow-
ing corollary.

Corollary 1. When the process is statistically IC, the statistic
Gl,k has the same distribution as

m − 2

m − p − 1
F1

(

1 + p − 1

m − p
F2

)

,

where F1 and F2 are two independent random variables with F
distributions with (1, m − p − 1) and (p − 1, m − p) degrees of
freedom.

This corollary indicates that Gl,k has asymptotically a chi-
squared distribution with 1 degree of freedom as m → ∞. In
fact, when � is known, the random variable with � replac-
ing Wl in Gl,k will follow exactly the χ2

1 distribution. Further-
more, by a modification of theorem 1.3.1 of Csorgo and Hor-
vath (1997), we have the following proposition, which estab-
lishes the asymptotic null distribution of Vk.

Proposition 4. When the process is statistically IC, for every
k = 1, . . . ,p, we have

lim
m→∞ Pr

{
A(log m)[Vk]1/2 ≤ t + D(log m)

} = exp(−2e−t)

(13)

for all t, where A(x) = (2 log x)1/2 and D(x) = 2 log x +
1
2 log log x − 1

2 logπ .

We can use this proposition to get asymptotic critical values
of Vk; however, in change point problems, the rate of conver-
gence of the distribution of the test statistic based on binary seg-
mentation is believed to be usually slow (see sec. 1.3 of Csorgo
and Horvath 1997 for some discussions). Consequently, when
m is not large enough, the approximation of (13) yields some-
what conservative results for small values of p. Moreover, em-
pirically speaking, when the number of stages p is fairly large
but m is small, using (13) may lead to a much larger type I er-
ror than the nominal value, due to inaccurate estimation of the
high-dimensional nuisance parameter (�). The result of some
simulations that we conducted (not reported here) support these
assertions.

In fact, the asymptotic distribution of Vk given by (13)
equals that of the classical likelihood ratio, Zm, for testing
only a mean change (see Csorgo and Horvath 1997; Chen and
Gupta 2000; and references therein). When there is no other
unknown nuisance parameter, the critical value can be calcu-
lated using the recursion technique of Hawkins (1977). James
et al. (1987, 1992) considered approximation through a d-
dimensional Brownian bridge. A similar but more explicit sug-
gestion was given by Csorgo and Horvath (1997, sec. 1.3); their
recommended approximation is

Pr
(
Z1/2

m > x
) ≈ x exp(−x2/2)√

2π

{

ln(s) − 1

x2
ln(s) + 4

x2

}

, (14)

where s = (1−h)(1−l)
hl and h = l = (ln(m))3/2/m. This is fairly

accurate if x is not too small. Applying (14) to Vk will yield
a large bias when m is not large enough, because the statistic
Gl,k is not exactly χ2

1 distributed due to the variation in esti-
mating �; that is, it is usually necessary to take a larger critical
value for Vk than what comes from (14). Later we describe a
simulation study that which demonstrates this point. But the
earlier interpretation of (13) suggests a heuristic approximation
of Pr(Vk > c) and, consequently, an appropriate approximation
of c, ĉ. Given a desired type I error, α, say, we may first find a
value c1, defined as the value of x2 where x solves (14) with the
“≈” replaced by “=.” Then we can determine ĉ by the equation

F(̂c) ≡ Pr(Gl,k < ĉ) = Fχ2
1
(c1), (15)

where Fχ2
1
(·) is the cumulative distribution function (cdf) of

the χ2
1 distribution and F(·) is the cdf of Gl,k, which can be

computed by numerical integration according to the distribution
given in Corollary 1. (A Fortran program for calculating the
value ĉ is available from the authors on request.) In contrast,
Pr(Vk > c) can be approximated by first finding c1 from (15).
and then substituting c1/2

1 for x in (14).
To illustrate the effectiveness of the proposed approximation

method, in Table 1 we tabulate some simulated probabilities,
Pr(Vk > ĉ), for various values of m and p. Here α is the desired
type I error and α′ is the estimated value from using ĉ esti-
mated by 30,000 repetitions of a Monte Carlo simulation. It can
be seen that the accuracy of the approximation, ĉ, usually in-
creases as m increases and decreases as p increases. The values
of α′ are close to the desired values, α, even with a small num-
ber of samples (m = 20) and a large number of stages (p = 6).
Generally, ĉ yields a nice approximation in most cases.

TECHNOMETRICS, ???? 0, VOL. 0, NO. 00
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Table 1. Performance of the approximation based on (14) and (15)

p = 2 p = 4 p = 6

m α c1 ĉ α′ ĉ α′ ĉ α′

20 .100 6.35 9.04 .121 12.2 .123 17.4 .130
.050 7.89 11.9 .058 16.3 .059 23.5 .064
.010 11.4 20.0 .010 28.3 .011 41.0 .011

50 .100 7.24 8.30 .110 9.11 .115 10.1 .110
.050 8.82 10.3 .051 11.4 .053 12.6 .054
.010 12.4 15.7 .010 17.3 .011 18.7 .012

100 .100 7.78 8.36 .106 8.72 .107 9.12 .109
.050 9.36 10.2 .050 10.6 .051 11.1 .053
.010 12.9 14.9 .011 15.5 .010 16.0 .010

Remark 4. As one of the referees pointed out, there may ex-
ist two or more solutions of (14) for some large values of m.
Empirically speaking, we can simply take the largest solution
as c1 in such a situation. But if some very mild conditions are
imposed on m and α, then we may obtain only one solution of
(14). For example, suppose that m ≥ 10 and α ≤ .2, which are
very common in industrial practice and can be satisfied in most
applications. By some direct calculations, we can show that the
solution of (14) exists, is unique, and is within the range of
[2,∞).

Finally, we turn to developing the approximation of the sig-
nificance value of the DMCP test statistic max1≤k≤p Vk. The
probability, Pr(max1≤k≤p Vk > c), seems rather difficult to de-
rive exactly, because Vk, k = 1, . . . ,p, are usually positively
correlated, and the correlations depend on the unknown pa-
rameter �. A simple and natural approach to tackling this
problem is to use the classical Bonferroni procedure, that is,
Pr(max1≤k≤p Vk > c) ≤ ∑p

k=1 Pr(Vk > c). We would expect
this to maintain a false alarm rate close to its nominal analog
when the number of stages, p, is not large; nevertheless, this
approximation is conservative for large p and lacks power if
several Vk’s are highly correlated.

Note that the form of the proposed DMCP test statistic is sim-
ilar in spirit to that of a global test statistic in a multiple-testing
problem. Thus here we recommend applying the well-known
Simes modified Bonferroni procedure (see Simes 1986 for de-
tails) instead of the Bonferroni approximation. Given the strong
empirical evidence of the modified procedure’s superiority, re-
searchers have begun using it in various multiple-testing appli-
cations. Formally, we summarize this procedure for the present
context as follows:

Step 1. Compute the values of statistics Vk for k = 1, . . . ,p.
Step 2. Use (14) and (15) to obtain the corresponding ap-

proximate p values for each Vk, say P̂k, k = 1, . . . ,p.
Step 3. Given a desired false alarm the rate α, reject null hy-

pothesis if P̂(i) ≤ iα/p for at least one i, where P̂(1) ≤
· · · ≤ P̂(p) are the ordered values of P̂1, . . . , P̂p.

Our extensive numerical simulations demonstrate that Si-
mes’s procedure works very well and usually provides less
conservative approximations compared the Bonferroni method.
Some simulation results are given in Section 4. But the theoret-
ical conservativeness of this procedure for our considered test
statistics remains unknown to us. In fact, the Simes method for

testing the intersection of more than two hypotheses is known
to control the probability of type I error when the underlying
test statistics are independent (Simes 1986). Some efforts have
been made to prove that the conservativeness of Simes’s proce-
dure may hold for dependent statistics with various multivariate
distributions, such as those of Samuel-Cahn (1996), Sarkar and
Chang (1997), and Sarkar (1998). All of these efforts rely on
the assumption that the null distributions of test statistics sat-
isfy some specific conditions. (See Sarkar 1998 for a thorough
review and discussion.) For example, Sarkar (1998) considered
a quite relaxed condition, say the multivariate totally positive
of order two, which is satisfied by a large family of multivariate
distributions. Nevertheless, the joint distribution of Vk, even the
marginal distribution for each Vk (not the asymptotic one), is
complicated and remains a challenge. Thus applying Sarkar’s
(1998) results to the DMCP test statistics seems very difficult.
An ongoing effort of our group is to theoretically prove the con-
servativeness of Simes’s procedure for the present multistage
process problem.

4. PERFORMANCE COMPARISONS

In this section we first investigate the test and estimation per-
formance of the proposed scheme through Monte Carlo simula-
tion and compare the results with the SW method under various
combinations of the multistage state-space parameters. We then
conduct a sensitivity analysis to evaluate the effectiveness and
robustness of the proposed scheme under misspecification of
values of Ak and Ck.

4.1 Powers of the Two Tests

For simplicity, we consider only the case of type I error when
α = .05 and fix the number of stages to p = 5 and the num-
ber of observations to m = 50. Without loss of generality, we
use the parameters a0 = 0 and ε2 = σ 2

wk
= σ 2

v = 1 through-
out this section. We compare the proposed DMCP method
with the alternative scheme, the SW method. As we know,
the performance of the method for testing change points in a
multistage process depends on the parameters Ak and Ck for
k = 1,2, . . . ,p; the different locations, ζ , where the shift ini-
tially occurs; the magnitude of the shift, δ; and the change point,
τ . In this section, various levels of δ = .5,1.0,1.5,2.0,3.0,4.0
are considered. (Ak,Ck) = (1.0,1.0), (Ak,Ck) = (1.2, .8), and
(Ak,Ck) = (.8,1.2) for ζ = 1,3,5 and τ = 20 have been found
to be consistent with the numerical comparison settings of Xi-
ang and Tsung (2006).

Table 2 gives the powers of the tests obtained from 20,000
replications, with the critical values for the two methods listed
in the last row. Note that these values are obtained by simu-
lations, so the two methods can be fairly compared. The table
also gives the simulated type I errors for the DMCP method,
determined from the Simes and Bonferroni procedures.

Apparently, both the Simes and Bonferroni procedures per-
form well in controlling the false alarm rate, but the Simes ap-
proach indeed provides less conservative performance. With re-
spect to the powers, Table 2 shows that the proposed DMCP
is uniformly superior to the alternative SW method in detect-
ing any magnitude of shifts. Also, it can be clearly seen that

TECHNOMETRICS, ???? 0, VOL. 0, NO. 00
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Table 2. Performance comparisons between DMCP and SW with α = .05, τ = 20, and m = 50 for a five-stage process

(Ak,Ck) = (1.0,1.0) (Ak,Ck) = (1.2, .8) (Ak,Ck) = (.8,1.2)

δ DMCP SW DMCP SW DMCP SW

ζ = 1 .50 .075 .067 .068 .064 .081 .074
1.00 .185 .157 .159 .134 .222 .185
1.50 .435 .369 .362 .303 .528 .453
2.00 .750 .670 .657 .569 .845 .782
3.00 .993 .981 .979 .953 .999 .995
4.00 1.000 1.000 1.000 1.000 1.000 1.000

ζ = 3 .50 .081 .076 .069 .066 .084 .080
1.00 .210 .183 .157 .135 .259 .223
1.50 .509 .436 .370 .305 .622 .547
2.00 .830 .757 .662 .577 .911 .864
3.00 .998 .995 .980 .960 1.000 .999
4.00 1.000 1.000 1.000 1.000 1.000 1.000

ζ = 5 .50 .070 .067 .062 .059 .077 .075
1.00 .175 .147 .119 .107 .226 .199
1.50 .429 .370 .274 .235 .584 .505
2.00 .758 .677 .522 .451 .890 .836
3.00 .994 .983 .932 .888 1.000 .999
4.00 1.000 1.000 .998 .996 1.000 1.000

Simes .049 .048 .050
Bonferroni .046 .045 .045
Critical value 17.1 24.3 17.0 24.3 17.0 24.3

the DMCP method’s superiority over its counterpart still holds
when the values of the parameters, Ak, Ck, and ζ , vary. Here
we do not tabulate the performance comparisons of these two
methods for shifts at other change points, because similar re-
sults were obtained.

It is worth noting that the difference in performance between
the DMCP and SW methods will be more prominent in higher-
dimensional problems. To verify this point, we consider a mul-
tistage process of p = 20 and fix ζ = 10, τ = 40, and m = 100
for simplicity. The other parameters are the same as those given
in Table 2. Table 3 gives the simulation results. Compared with
the power results given in Table 2, the superiority of the DMCP
method is more remarkable in the case where p = 20, especially
for moderate magnitudes of change, say δ = 1.5 or 2.0.

Based on the results given in Tables 2 and 3 and other simu-
lations of various multistage model parameters (available from

the authors on request), we conclude that the DMCP method,
by taking advantage of incorporating shift direction informa-
tion, is almost always better than the SW method in detecting
mean process change. In the following section, we assess the
effectiveness of the corresponding estimation methods as well.

4.2 Performance of the Estimators (11) and (12)

Here we investigate the performance of the proposed ap-
proach in estimating the change point after the null hypothesis
is rejected. We compare the performance of two change point
estimators, τ̂SW in (5) and τ̂ in (11). The number of stages,
p = 5, and the number of observations, m = 50, are consid-
ered again. A total of 50,000 independent series are generated
in the simulations. Note that any series for which no signal
was trigged is discarded. The process change point is simu-
lated at τ = 10 and τ = 20. Again the parameter combinations

Table 3. Performance comparisons between DMCP and SW with α = .05, τ = 40, and m = 100,
and ζ = 10 for a 20-stage process

(Ak,Ck) = (1.0,1.0) (Ak,Ck) = (1.2, .8) (Ak,Ck) = (.8,1.2)

δ DMCP SW DMCP SW DMCP SW

.50 .071 .071 .067 .067 .070 .078
1.00 .254 .174 .173 .128 .254 .225
1.50 .710 .480 .520 .325 .710 .613
2.00 .968 .856 .872 .661 .968 .942
3.00 1.000 .999 1.000 .992 1.000 1.000
4.00 1.000 1.000 1.000 1.000 1.000 1.000

Simes .048 .047 .048
Bonferroni .043 .041 .042
Critical value 27.5 63.6 27.4 63.6 27.4 63.6
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Table 4. The averages (AVE), standard deviations (SD), and precisions of change point estimates for shift at the third stage
in a five-stage process

AVE SD P1 P2 P3

δ τ̂ τ̂SW τ̂ τ̂SW τ̂ τ̂SW τ̂ τ̂SW τ̂ τ̂SW Pζ

τ = 10
1.00 16.7 17.1 12.8 13.1 .27 .23 .37 .33 .45 .41 .63
2.00 11.3 11.7 5.9 6.6 .61 .56 .73 .69 .81 .76 .93
3.00 10.3 10.4 2.5 3.0 .82 .79 .90 .88 .94 .93 .99
4.00 10.1 10.1 1.1 1.2 .93 .92 .97 .96 .99 .98 1.00

τ = 20
1.00 21.6 21.8 10.0 10.6 .27 .24 .37 .33 .44 .41 .75
2.00 20.3 20.3 4.2 4.9 .61 .57 .73 .70 .81 .77 .97
3.00 20.0 20.0 1.7 2.0 .82 .81 .91 .89 .95 .94 1.00
4.00 20.0 20.0 .9 .9 .93 .93 .97 .97 .99 .99 1.00

(Ak,Ck) = (1.0,1.0) and ζ = 3 are considered. To quantify
the diagnostic precision of the estimators, in addition to cal-
culating the averages and the standard deviations of the change
point estimates, Table 4 gives the probabilities, Pr(|̂τ − τ | ≤ 1),
Pr(|̂τ − τ | ≤ 2), and Pr(|̂τ − τ | ≤ 3) (denoted as P1, P2, and
P3).

For a small shift of 1.0, the two estimators both appear to be
biased in estimating the process change point, especially in the
case where τ = 10. The proposed τ̂ performs uniformly better
in terms of the average and standard deviation for any mag-
nitude of shift. Moreover, τ̂ has better performance in terms of
diagnostic precision. Other extensive simulations conducted for
various parameter combinations also demonstrated that τ̂ ap-
pears to be more accurate in estimating τ . In addition, the prob-
abilities Pr(̂ζ = ζ ) (Pζ ), given in the last column of Table 4,
also indicate that the estimates of ζ (12) are fairly accurate.

4.3 Sensitivity Analysis

In general, more powerful model-based strategies come at the
price of being more adversely affected by deviations from the
model assumptions. The performance of a model-based method
depends on the nature and degree of the misspecification of the
assumption. As mentioned in Section 1, Ak and Ck usually are
derived or estimated from engineering knowledge. In practical
applications, we may have inaccurate estimations of these para-
meters, especially if there are many stages. Estimation errors in

Ak and Ck will yield incorrect direction vectors and adversely
affect the performance of the DMCP method. Here we conduct
some simulations to check how the DMCP method performs
when Ak and Ck are misspecified.

For simplicity, here we consider α = .05, p = 20, ζ = 10,
τ = 40, and m = 100, the same values as in Table 3. Sup-
pose that the true values of Ak and Ck are fixed as 1.0. Let
Âk∗ and Ĉk∗ denote the incorrect values for the stage k∗. We
consider two situations, (I) k∗ = 5,10, and 15 and (II) k∗ = 2i
for i = 1,2, . . . ,10, which correspond to low and high degrees
of parameter misspecification. For each situation, the following
Âk∗ and Ĉk∗ are considered: (a) Âk∗ = .8, (b) Ĉk∗ = .8, (c) Âk∗ =
1.2, (d) Ĉk∗ = 1.2, (e) Âk∗ = 1.2 and Ĉk∗ = .8, (f) Âk∗ = .8 and
Ĉk∗ = 1.2, (g) Âk∗ = .8 and Ĉk∗ = .8, and (h) Âk∗ = 1.2 and
Ĉk∗ = 1.2. Table 5 gives the powers of the tests, obtained from
20,000 replications. Note that the values in the third and fourth
columns of the table are from Table 3, where the values of Ak

and Ck are prespecified correctly.
We can see that when the degree of misspecification is low,

such as in (I), the DMCP approach still generally performs bet-
ter than the SW method except for very small δ, but its supe-
riority is reduced compared with the power performance in the
fourth column. For the situation (II), where many parameters
are estimated incorrectly, as we would expect, misspecification
of Ak and Ck has a significantly adverse effect on the perfor-
mance of the DMCP approach, especially in the last case, (h).

Table 5. Performance comparison with misspecified parameters Ak and Ck

DMCP with misspecified values of Ak and CkDMCP
δ SW true (a) (b) (c) (d) (e) (f) (g) (h)

(I) .50 .071 .071 .070 .068 .071 .068 .070 .069 .071 .069
1.00 .174 .254 .242 .218 .248 .238 .220 .242 .215 .221
1.50 .480 .710 .686 .642 .690 .672 .639 .679 .600 .615
2.00 .856 .968 .961 .938 .958 .954 .933 .957 .919 .927
3.00 .999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(II) .50 .071 .071 .068 .066 .066 .067 .065 .067 .067 .061
1.00 .174 .254 .220 .191 .168 .215 .160 .224 .189 .124
1.50 .480 .710 .627 .549 .481 .618 .471 .639 .510 .309
2.00 .856 .968 .937 .892 .823 .929 .816 .937 .860 .608
3.00 .999 1.000 1.000 1.000 .998 1.000 .994 1.000 1.000 .959
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Thus although the proposed approach can still work quite well
even when values of Ak and Ck are misspecified, we believe
that it is critical to estimate Ak and Ck accurately when using a
model-based method.

5. CONCLUSIONS

Phase I analysis of multistage processes remains a challeng-
ing problem that has not been thoroughly investigated in the
literature. In this article we have focused on the problem of
testing and estimating the change point in a phase I reference
sample. We have proposed an approach that combines the clas-
sical binary segmentation procedure and the multivariate two-
sample test. This novel approach fully incorporates the direc-
tional information based on the multistage state-space model
for testing the stability of multistage processes. We give an ap-
propriate approximation of the threshold for the test statistic.
We also explore an estimation approach to identify an OC stage
and locate the change point, with the estimators shown to be
consistent. Our simulation results also show that the proposed
scheme consistently outperforms conventional multivariate ap-
proaches to multistage processes, unless the process model is
grossly misspecified.

Note that although the focus of this article is on a univariate
process, many multistage processes are actually multivariate in
practice. Extension of our proposed DMCP scheme to a multi-
variate multistage process warrants further research. Moreover,
it should be pointed out that our proposed approach can be read-
ily extended to detect multiple change points by using the bi-
nary segmentation method recursively (Vostrikova 1981; Yao
1988).
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APPENDIX: PROOFS

Proof of Proposition 1

a. Under the null hypothesis, we have

Pr{mȳ′
m�−1ȳm > C′} = α

and

Pr
{

max
i=1,...,r

{m(d′
i�

−1ȳm)2/d′
i�

−1di} > C
}

= α,

where C′ is the upper α percentile of the χ2
p distribution and C

is some chosen constant. Here we denote mȳ′
m�−1ȳm as V(p)

and m(d′
i�

−1ȳm)2/d′
i�

−1di as Vi, which follow a χ2
1 distribu-

tion under H0. As is well known, the GLRT is equivalent to

max
i=1,...,∞

{m(d′
i�

−1ȳm)2/d′
i�

−1di} > C′,

where {di, i = 1, . . . ,∞} is a countable set dense in the para-
meter space (Roy 1953). It immediately follows that C′ > C.

Without loss of generality, we suppose that μ = δd1 and
δ > 0 under H′′

1 . It is obvious that these two multivariate tests
are consistent and unbiased for testing H′′

1 . Note that under H′′
1 ,

Pr{maxi=1,...,r Vi > C} ≥ Pr{V1 > C}. Thus it suffices to prove
that

Pr{V1 < C} ≤ Pr{V(p) < C′} → 0 as m → ∞,

where V1 ∼ χ2
1 (mδ2) and V(p) ∼ χ2

p (mδ2). Here χ2
p (mδ2) is the

noncentral chi-squared distribution with the noncentral parame-
ter (mδ2)1/2. For simplicity, denote ξ = √

mδ → ∞ as m → ∞.

Note that V(p) can be partitioned into U(p−1) and V(1), which
are distributed as χ2

p−1 and χ2
1 (ξ2). Consequently, by C′ > C,

there exists ε > 0, so that C′ − (C + ε) > 0. We then have

Pr{V(p) < C′}
Pr{V1 < C}

= Pr{U(p − 1) + V(1) < C′}
Pr{V1 < C}

≥ Pr{V(1) < C + ε}
Pr{V1 < C} Pr{U(p − 1) < C′ − (C + ε)}

≡ �.

The inequality derives from the fact that U(p − 1) and V(1) are
independent. Then, using the fact that 1 − �(x) ≈ φ(x)

x [where
�(·) and φ(·) are the cdf and density function of standard nor-
mal distribution] for large x, we have

Pr{V(1) < C + ε}
Pr{V1 < C}

= Pr{[z + ξ ]2 < C + ε}
Pr{[z + ξ ]2 < C}

≈ 1 − �(ξ − √
C + ε)

1 − �(ξ − √
C)

≈ exp

{

(
√

C + ε − √
C)ξ − ε

2

}

as m → ∞,

where z is a standard normal random variable.
By noting that the probability Pr{U(p − 1) < C′ − (C + ε)}

is a value greater than 0 for the fixed ε, it follows that

� ≈ exp

{

(
√

C + ε − √
C)ξ − ε

2

}

× Pr{U(p − 1) < C′ − (C + ε)}
→ ∞ as m → ∞.

b. Without loss of generality, we assume that δ > 0. For nota-

tional convenience, let ui = di/

√
d′

i�
−1di, i = 1, . . . , r. Then

the estimator (8) can be rewritten as

arg
ui=u1,...,ur

max{m(u′
i�

−1ȳm)2}.
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Thus proving the consistency of this estimator is equivalent to
showing that

Pr

{⋃

i �=k

[(u′
k�

−1ȳm)2 < (u′
i�

−1ȳm)2]
}

→ 0 as m → ∞.

Because

Pr

{⋃

i �=k

[(u′
k�

−1ȳm)2 < (u′
i�

−1ȳm)2]
}

≤
∑

i �=k

Pr{(u′
k�

−1ȳm)2 < (u′
i�

−1ȳm)2},

it suffices to prove that
∑

i �=k

Pr{(u′
j�

−1ȳm)2 − (u′
k�

−1ȳm)2 > 0} → 0 as m → ∞.

Denote zi = (u′
j�

−1ȳm)2 − (u′
k�

−1ȳm)2. For any ε > 0,
∑

i �=k

Pr{zi − E(zi) + E(zi) > ε}

=
∑

i �=k

Pr

{[

zi − E(zi) − ε

2

]

+
[

E(zi) − ε

2

]

> 0

}

≤
∑

i �=k

Pr

{

zi − E(zi) >
ε

2

}

+
∑

i �=k

Pr

{

E(zi) >
ε

2

}

. (A.1)

Under μ = δdk, we have that ȳm ∼ Np(δ
∗uk,

1
m�), where δ∗ =

δ(d′
k�

−1dk)
1/2. It is not difficult to verify that zi → E(zi) as

m → ∞ and var(zi) = O(m−1). Thus, by the Chebychev in-
equality, the first term of (A.1) tends 0 as m → ∞.

On the other hand, u′
i�

−1ui = 1, i = 1, . . . , r, yield

E(zi) = [E(u′
i�

−1ȳm)]2 − [E(u′
k�

−1ȳm)]2

= δ∗[(u′
i�

−1uk)
2 − (u′

k�
−1uk)

2].
From (uk −ui)

′�−1(uk −ui) ≥ 0 and (uk +ui)
′�−1(uk +ui) ≥

0, we have that E(zi) < 0. It immediately follows that the sec-
ond term of (A.1) equals 0. Therefore, (A.1) tends to 0 as
m → ∞, which completes the proof.

Proof of Proposition 2

a. Bhattacharya (1987) studied the asymptotic distribution of
the ML estimate of the change point in a general multiparameter
case. Gombay and Horvath (1996) also considered the asymp-
totic behavior of the ML estimate of a change point in a expo-
nential family case. For the sake of simplicity, they assumed no
nuisance parameter (Csorgo and Horvath 1997, sec. 1.5). Be-
cause our suggested testing statistics are somewhat “special,”
the methods in the preceding articles cannot be directly ex-
tended to prove the consistency of the estimator τ̂ . Here we
give a short proof.

We first consider τ < l < m. Assume that when m → ∞,
l/m → θ1, where θ1 ∈ (0,1) and θ1 > θ . By the law of large
numbers, we can obtain

m−1/2tl = δθ

√

θ−1
1 − 1dζ + Op

(
m−1/2),

m−1/2tτ = δ
√

θ(1 − θ)dζ + Op
(
m−1/2),

Wτ = � + Op
(
m−1/2),

and

Wl = �1 + Op
(
m−1/2),

where �1 = � + θ(1 − θθ−1
1 )dζ d′

ζ . Consequently, it is easy to

verify that m−1Gτ,ζ = Op(1) > 0 and m−1Gl,k = Op(1). Thus
to prove part a, it is sufficient to show that when m → ∞, for
any 1 ≤ k ≤ p, τ < l < m, m−1(Gτ,ζ − Gl,k) > 0, a.e. It then
follows from the definition that

m−1(Gτ,ζ − Gl,k)

= δ2
[
θ(1 − θ)(d′

ζ �
−1dζ )

2

d′
ζ �

−1dζ

− (θ−1
1 − 1)θ2(d′

ζ �
−1
1 dk)

2

d′
k�

−1
1 dk

]

× (
1 + Op

(
m−1/2))

= δ2 (θ−1
1 − 1)θ2

d′
k�

−1
1 dk

d′
k�2dk

(
1 + Op

(
m−1/2)),

where �2 = γ d′
ζ �

−1dζ �
−1
1 − �−1

1 dζ d′
ζ �

−1
1 and γ = (θ−1 −

1)/(θ−1
1 − 1) > 1. Now we just need to show that the matrix

�2 is positive definite, which can be seen from

�2 = (d′
ζ �

−1dζ )�
−1
1 [γ�1 − (d′

ζ �
−1dζ )

−1dζ d′
ζ ]�−1

1

> (d′
ζ �

−1dζ )�
−1
1 [� − (d′

ζ �
−1dζ )

−1dζ d′
ζ ]�−1

1

= (d′
ζ �

−1dζ )�
−1
1 �1/2

× [
I − (d′

ζ �
−1dζ )

−1�−1/2dζ d′
ζ �

−1/2]�1/2�−1
1

≥ 0,

where the first inequality comes from �1 − � = θ(1 −
θθ−1

1 )dζ d′
ζ ≥ 0 and the second inequality comes from the

matrix (d′
ζ �

−1dζ )
−1�−1/2dζ d′

ζ �
−1/2 being symmetric and

idempotent. Here for two symmetric matrixes, C and D, C ≥ D
means that C − D is semipositive definite. The proof for
1 < l < τ is analogous to the foregoing arguments and is omit-
ted here.

b. By |̂τ − τ | = Op(1) and a similar argument as in the proof
of Proposition 1.b, the proof of consistency is straightforward
and is omitted here.

Proof of Proposition 3

First, let Zi = �−1/2yi, i = 1, . . . ,m. Then it follows that

Gl,k = (d′
kW−1

l tl)
2/d′

kW−1
l dk = (d̃′

kW̃−1
l t̃l)

2/d̃′
kW̃−1

l d̃k,

where d̃k = �−1/2dk and W̃l and t̃l are given by substituting
Zi into Wl and tl instead of yi. Obviously, Zi, i = 1, . . . ,m, is
a random sample of size m from a p-variate standard normal
population. Thus t̃l and (m − 2)W̃l are independently distrib-
uted as a p-variate standard multivariate normal distribution and
a Wishart distribution with m − 2 degrees of freedom. Thus it
suffices to show that the distribution of Gl,k does not depend on
d̃k, which is some unknown vector.
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It can be easily seen that Gl,k is scale-invariant for d̃k. We
show that Gl,k has an orthogonal transformation-invariant prop-
erty. Let ek = �d̃k and Ul = �W̃l�

′, where � is a orthogo-
nal matrix. We need to show that (d̃′

kW̃−1
l t̃l)

2/d̃′
kW̃−1

l d̃k and
(ẽ′

kW̃−1
l t̃l)

2/ẽ′
kW̃−1

l ẽk are identically distributed. Because

(e′
kW̃−1

l tl)
2

e′
kW̃−1

l ek
= (d̃′

kUl
−1�t̃l)

2

d̃′
kU−1

l d̃k

and �t̃l is independent of Ul and follows a standard multivariate
normal distribution, we can complete the proof by showing that
Ul and W̃l are identically distributed.

As we know, the density function of W̃l is fW̃l
∝

|W̃l|−(m−p−2)/2 exp{− 1
2 tr(W̃l)}, and the Jacobian transforma-

tion is J(Ul → W̃l) = |�|p+1 = 1, Then the density function of
Ul is

fUl ∝ |W̃l|−(m−p−2)/2 exp

{

−1

2
tr(W̃l)

}

J(Ul → W̃l)
−1

= |�Ul�
′|−(m−p−2)/2 exp

{

−1

2
tr(�Ul�

′)
}

= |Ul|−(m−p−2)/2 exp

{

−1

2
tr(Ul)

}

,

which means that Ul and W̃l are identically distributed.

Proof of Corollary 1

By Proposition 3, without loss of generality, we take d′
k =

(0,0, . . . ,1) ≡ e′
p, μ0 = 0, and � to be the identity matrix.

Also, for simplicity, here we suppress the symbol “l” in W−1
l

and tl. Then

Gl,k = (e′
pW−1t)2/e′

pW−1ep

= t′[W−1epe′
pW−1/ωpp]t ≡ t′Vt,

where ωij is the (i, j) element of W−1. Obviously, V is a semi-
positive definite matrix with rank 1. Thus there exists an orthog-
onal matrix, �, such that �V�′ = diag(0,0, . . . , tr(V)). Then
�t|� ∼ Np(0, I) and is independent of �. Consequently, the
unconditioned distribution of �t ≡ t̃ is also a standard multi-
variate normal distribution. Therefore, Gl,k and t̃2p · tr(V) are

identically distributed. In addition, we can see that t̃ is inde-
pendent of diag(0,0, . . . , tr(V)) by noting that t is indepen-

dent of W−1. We partition W as
(

W11 W12

W21 W22

)
and W−1 as

(
W11 W12

W21 ωpp

)
, where W11 and W11 are (p−1)-dimensional ma-

trixes. Consequently, we have

t̃2p · tr(V) = t̃2p

(
W21W12

ωpp
+ ωpp

)

= t̃2p

(
(ωpp)2W21W−2

11 W12

ωpp
+ ωpp

)

= t̃2pω
pp(W21W−2

11 W12 + 1)

= t̃2pω
pp(W21W−1/2

11 W−1
11 W−1/2

11 W12 + 1
)
.

It is well known that ωpp is independent of W21W−1/2
11 W−1

11 ×
W−1/2

11 W12 and (m−2)/ωpp ∼ χ2
m−p−1 (Anderson 1984). Thus

t̃2pω
pp = m − 2

m − p − 1
t̃2p

/
{[(m − 2)/ωpp]/(m − p − 1)

}

∼ m − 2

m − p − 1
F1.

Note that W21W−1/2
11 ∼ Np−1(0, I), (m − 2)W11 ∼

Wishartp−1(m − 2, I), and they are independent (Anderson
1984). According to the relationship between Hotelling’s T2

distribution and the F distribution, it can be immediately ob-
tained that W21W−2

11 W12 ∼ p−1
m−p F2, which completes the proof.

Proof of Proposition 4

Csorgo and Horvath (1997) presented a very general proof
for the classical likelihood ratio approach. To apply their proofs,
we need to make some minor modifications to our problem so
that it is of the same form as that of Csorgo and Horvath (1997,
sec. 1.1). Note that for k = 1, . . . ,p, the mean of yj can be
expressed as μ0 + δjdk, j = 1, . . . ,m. Then our hypothesis is
equivalent to

H0 : δ1 = δ2 = · · · = δm

against the alternative

HA : there is an integer τ so that δ1 = · · · = δτ �=
δτ+1 = · · · = δm.

This is exactly a one-dimensional parameter change point hy-
pothesis. (μ0,�) are the nuisance parameters. It can be eas-
ily seen that the statistics Vk are similar to those seen when
using the exact parametric likelihood procedure, as illustrated
by Csorgo and Horvath (1997), except that the estimate of nui-
sance parameter � in Vk is obtained by the two-sample pooled
sample variance matrix, Wj, but the likelihood procedure uses
the standard ML estimator by solving the likelihood estimating
equations. However, as we know, when the process is statisti-
cally IC (under null hypothesis H0), Wj is m1/2-consistent, [i.e.,
‖Wj − �‖ = Op(m−1/2)], as is the estimate obtained from the
estimating equations. Thus we need only replace the estimate
of � with Wj in the proof of theorem 1.3.1 of Csorgo and Hor-
vath (1997), which can similarly complete the remainder of the
proof.

[Received April 2007. Revised January 2008.]
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