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Abstract

Hardware systems are present in many fields of human activity. Markov
models are sometimes used in hardware reliability, availability and main-
tainability (RAM) modeling. They are especially useful in situations in
which the system we want to analyze may be modeled with several states
through which the system evolves, some of them corresponding to ON
states, the rest to OFF states. We provide here RAM analyses of such
systems within a Bayesian framework, addressing both short-term and
long-term performance.

Keywords: Bayesian analysis, Multinomial-Dirichlet model, Exponential-
Gamma model, Markov Chain Monte Carlo, Phase-type distribution.

1 INTRODUCTION

There is a growing interest in Reliability, Availability and Maintainability (RAM)
analyses of hardware (HW) systems, especially of safety critical ones, see Eu-
sgeld et al. (2008); Xie, Dai, and Poh (2004); and Pukite and Pukite (1998) for
extensive reviews. One of the ways to analyze such systems is through Con-
tinuous Time Markov Chains (CTMCs), which, in our context, are stochastic
processes which evolve through a discrete set of states, some of them corre-
sponding to ON configurations, the rest to OFF configurations, remaining at
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each state an exponential time. There are several ways to model a HW system
through a CTMC, see Prowell and Poore (2004); or Xie et al. (2004) for vari-
ous examples. Indeed, there are even several standard hardware configurations
based on CTMC models, including the triple modular redundancy (TMR) sys-
tem (Baier, Haverkort, Hermanns, and Katoen 2003), the dual-duplex system,
or the all voting triple modular redundancy (AVTMR) system (Kim, Lee, and
Lee 2005). These, and other, configurations are aimed at attaining very high
system availability, say 99.999% of time, through transfer of workload when one
or more system components fail, or through the inclusion of intermediate failure
states with automated recovery.

The standard approach to RAM estimation of CTMC HW systems com-
putes Maximum Likelihood Estimates (MLEs) for the involved parameters of
the CTMC, substitutes parameters by the MLEs, computes the equilibrium dis-
tribution, and, consequently, estimates the long-term fraction of time that the
system remains in ON and OFF configurations. However, this approach usually
underrepresents uncertainty in the parameters, as discussed in Glynn (1986) or
Berger and Rı́os Insua (1998). Thus, we adopt here a Bayesian approach that
fully acknowledges the uncertainty present and takes advantage of all informa-
tion available. Moreover, we adopt a more short-term oriented approach.

To do so, in Section 2, we describe a general formulation of the problem,
defining model parameters and specifying the data to proceed with inference
and, more importantly, forecasting tasks. In Section 3, we briefly review how
to estimate the parameters of a CTMC, with the aid of standard Dirichlet-
Multinomial and Exponential-Gamma models and compute the posterior equi-
librium distribution, which we shall use later on. In Sections 4 and 5, we show
how to estimate, respectively, the reliability and maintainability of HW sys-
tems. We then perform inference for system availability. We conclude with an
example in Section 7, followed by some discussion.

2 PROBLEM FORMULATION

We are concerned with hardware systems, which we assume can be modeled
through Continuous Time Markov Chains (CTMC). We consider that the chain
evolves in a state space E = {1, 2, . . ., m}. States {1, 2, . . . , l} correspond to
operational (ON) configurations, whereas states {l + 1, . . . ,m} correspond to
OFF configurations. A transition from an ON to an OFF state describes a
failure, whereas a transition from an OFF to an ON state represents a repair.
We shall denote by Xt the state of the system at time t.

The behavior of a CTMC is characterized by the transition probabilities and
the permanence rates. The transition probability matrix is an m × m matrix
P = (pij), where pij is the probability that a transition out of state i leads to
state j. Hence,

∑

j pij = 1, ∀i, with pii = 0. Clearly, for physical or logical
reasons, some additional pij matrix entries could be 0. The permanence rates
are νi, i = 1, . . . ,m, where 1/νi is the mean of the exponential random variable
which models the time spent by the system in state i before leaving it. See Ross
(2007) for a full description.

For a given initial ON state i, assume we may compute its conditional relia-
bility Ri(t|ν,P ) = Pr {T ≥ t|ν,P , X0 = i}, i.e., the probability that the system
will remain ON, for a time longer than t, where ν is the vector of ν′is, and T
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is the random variable which represents the time passed until system failure.
Then, once we have computed the posterior π(ν,P |data), we shall be able to
compute the posterior predictive reliability

Ri(t|data) =

∫∫

Ri(t|ν,P )π(ν,P |data) dν dP , (1)

which will be one of our key computational objectives, dealt with in Section
4. Computation of maintainability will follow a similar scheme, interchanging
the roles of ON and OFF states with respect to the strategy we shall adopt to
estimate system reliability. Regarding the calculation of availability, we shall
adopt here a short-term approach, computing the so-called interval availability,
which is the expected proportion of time that the system will be ON within a
given interval, provided it was ON initially.

3 INFERENCE FOR CTMC PARAMETERS

We shall briefly discuss first inference for the transition probabilities, perma-
nence rates and equilibrium distribution of CTMC. We shall use these later on in
our RAM computations. We assume that the data available are the times until
state i is left, ti1, ti2, · · · , tini

, for various states i = 1, . . . ,m, and the counts for
the transitions, nij , from state i to state j, that is, (ni1, . . . , ni,i−1, ni,i+1, . . . , nim),
with i, j = 1, . . . ,m. Clearly, nij will be zero if transitions from state i to state
j are logically or physically impossible.

3.1 Estimating transition probabilities

We start with inference for the transition probabilities. Unless based on a
specific model, in general we shall proceed as follows. For the i−th row, we
assume that, a priori:

(pi1, . . . , pi,i−1, pi,i+1, . . . , pim)

∼ D(δi1, . . . , δi,i−1, δi,i+1, . . . , δim),

where δij are the parameters of a Dirichlet distribution, which will be zero if
the corresponding pij are known to be zero. Then, the posterior distribution is

(pi1, . . . , pi,i−1, pi,i+1, . . . , pim)|data

∼ D(δi1 + ni1, . . . , δi,i−1 + ni,i−1, δi,i+1 + ni,i+1, . . . , δim + nim),

(French and Rı́os Insua 2000). More sophisticated models which take into ac-
count possible row dependence may be seen in, e.g., Diaconis and Rolles (2006).

3.2 Estimating permanence rates

We proceed now with inference for the permanence rates, νi, i = 1, · · · ,m. We
assume that the times ti1, ti2, · · · , tini

follow an exponential distribution, with
parameter νi, that is,

ti1, ti2, . . . , tini
∼ E(νi).
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This is a reasonable assumption, as many hardware architectures around are
based on CTMCs, see Xie et al. (2004) and references therein for abundant
examples, but see as well our final discussion.

Assuming that the parameter νi follows a gamma prior distribution,

νi ∼ G(αi, βi),

then,

νi|data ∼ G

(

αi + ni, βi +

ni
∑

j=1

tij

)

,

see, e.g., French and Rı́os Insua (2000).

3.3 Computing the posterior equilibrium distribution

We outline now how to compute the posterior equilibrium distribution of the
CTMC, which we shall need later on. For fixed values of the pij ’s and νi’s, the
equilibrium distribution {πj}

m
j=1 is obtained, if it exists, by solving the system

νjπj =
∑

i6=j

rijπi; ∀j ∈ {1, . . . ,m},

∑

j

πj = 1; πj ≥ 0,
(2)

with rij = νipij . Sufficient conditions for the existence of the πi’s may be
consulted, e.g., in Ross (2007, pg. 385). The πj ’s may be interpreted as long-
term time fractions that the system spends in various states.

When the posterior distributions of νi, pij , are, respectively, very peaked
around certain values ν̂i, p̂ij , say their posterior modes, we could substitute the
parameters by their posterior modes,

ν̂i =
αi + ni − 1

βi +
∑ni

j=1 tij
; p̂ij =

δij + nij − 1
∑

l 6=i(nil + δil)−m+ 1
; r̂ij = ν̂ip̂ij ,

and solve system (2), to obtain the appropriate solution {π̂i}
m
i=1. If this is not

the case, we could obtain samples from the posteriors {νηi }
N
η=1, {pηij}

N
η=1, and,

consequently, obtain a sample {πη
i }

N
η=1 through the repeated solution of (2). If

needed, we could summarize such a sample by, e.g., its mean,

π̂i =
1

N

N
∑

η=1

πη
i , i = 1, . . . ,m.

3.4 Estimating the intensity matrix

The rij ’s in (2) are designated jumping intensities from state i to state j. In
addition, we set rii = −

∑

j 6=i rij = −νi, i = 1, . . . ,m, and place them together
in the intensity matrix Λ = (rij), also called the infinitesimal generator of the
process, which shall have a key role in later computations.

Following a similar reasoning to that of Section 3.3, if the posterior distri-
butions of νi, pij are very peaked around, e.g., their posterior modes ν̂i, p̂ij , we
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could use r̂ij = ν̂ip̂ij , i 6= j. For i = j, we set r̂ii = −ν̂i, i = 1, . . . ,m. Otherwise,
we may obtain samples {νηi }

N
η=1 and {pηij}

N
η=1 from the posteriors above, and

use the relationship rij = νipij to obtain samples from the posterior {rηij}
N
η=1,

i 6= j. For i = j, we use the posterior sample {rηii = −νηi }
N
η=1, i = 1, . . . ,m. If

needed, we could summarize all samples appropriately, by, e.g., their means.

4 RELIABILITY FORECASTING WITH

CTMCs

We describe now how to estimate reliabilities in our system, distinguishing the
case in which we know the initial ON state, and that in which we only know
that the system is initially ON.

For each ON state i ∈ {1, 2, . . . , l}, we may compute its unconditional pos-
terior reliability (1), which will be typically approximated through simulation

Ri(t|data) ≃
1

N

N
∑

η=1

Ri(t|ν
η,P η),

for a sample {νη,P η}Nη=1 from the above posteriors. If we only know that the
system is initially ON, but we do not know which specific ON state the system
is initially at, we could follow this approach. Let πi be the posterior equilibrium
probability for the i-th ON state, i = 1, . . . , l, as computed from (2). Then, we
could compute

R(t|ν,P ) =
1

π̄

l
∑

i=1

πi Ri(t|ν,P ),

where π̄ =
∑l

j=1 πj , assuming the values of πi, ν and P are known. As we
do not know them, we could approximate the posterior predictive reliability
through Monte Carlo simulation

R(t|data) ≃
1

N

N
∑

η=1

l
∑

i=1

πη
i

π̄η
Ri(t|ν

η,P η),

where π̄η =
∑l

j=1 π
η
j , and {πη

i }
N
η=1 is a sample from the posterior calculated in

Section 3.3, associated with {νη,P η}Nη=1.
The key issue is then how to compute the reliabilities Ri(t|ν, P ), i = 1, . . . , l.

To do so, we adopt the strategy of subsuming all OFF states into an absorbing
state which we designate a, conveniently redefining the transition probabilities.
In Figure 1, we sketch such process for an arbitrary Markov chain with m
states, the first l ON; the rest, OFF. Indeed, for our general CTMC, we divide
the transition probability matrix into four blocks as follows:

P =























0 p12 p13 · · · p
1l

p
1,l+1

· · · · · · p1m

p21 0 p23 · · · p
2l

p
2,l+1

· · · · · · p2m

...
...

...
. . .

...
...

. . .
. . .

...
p
l1

p
l2

p
l3

· · · 0 p
l,l+1

· · · · · · p
lm

p
l+1,1

p
l+1,2

p
l+1,3

· · · p
l+1,l

0 · · · · · · p
l+1,m

...
...

...
. . .

...
...

. . .
. . .

...
pm1 pm2 pm3 · · · p

ml
p
m,l+1

· · · pm,m−1 0























, (3)
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leading to a chain with probability matrix

P1 =















0 p
12

p
13

· · · p
1l

p
1a

=
∑

m>l
p

1m

p
21

0 p
23

· · · p
2l

p
2a

=
∑

m>l
p

2m

...
...

...
. . .

...
...

p
l1

p
l2

p
l3

· · · 0 p
la
=

∑

m>l
p

lm

0 0 0 · · · 0 1















.

The intensity matrix of this chain will be designated

Λ1 =















−ν
1

r
12

r
13

· · · r
1l

ω1

r
21

−ν
2

r
23

· · · r
2l

ω2

...
...

...
. . .

...
...

r
l1

r
l2

r
l3

· · · −ν
l

ω
l

0 0 0 · · · 0 0















=

(

Ω1 ω

0
T 0

)

,

where ωi = −
∑l

j=1 rij , i, j = 1, . . . , l, and rii = −νi, i = 1, . . . , l.
Note, now, that the time until failure coincides with the so-called time until

absorption of our modified Markov chain, defined as

τ = inf{t ≥ 0|Xt = a}.

Consequently, τ has a phase-type distribution, given ν,P ,

τ |ν,P ∼ PH(π(0)
ON

,Ω1|ν,P ),

where π
(0)
ON

is an initial state probability vector over ON states. From Bladt
(2005), we may see that the distribution function F of τ , given ν,P , is

F (t|ν,P ) = 1−R(t|ν,P ) = 1− (π(0)
ON

)T exp(Ω1t|ν,P )e, (4)

where e = (1, . . . , 1)T is the l-vector of 1’s.
We use now these results for our purpose. Assume first that we know

from which ON state we start, which, for simplicity, will be 1. Then, π(0)
ON

=
(1 0 · · · 0)T and, from (4), we have

R1(t|ν,P ) = (1 0 · · · 0) exp(Ω1t|ν,P )e

= (1 0 · · · 0)







ǫ11|ν,P · · · ǫ1l|ν,P
...

. . .
...

ǫl1|ν,P · · · ǫll|ν,P













1
...
1







=

l
∑

j=1

ǫ1j |ν,P . (5)

We need to compute exp(Ω1t) (for convenience, we omit the dependence on ν,P
when the context is clear), a problem reviewed in Moler and Van Loan (2003).
The simplest case is when Ω1 is diagonalizable with different eigenvalues, which
holds with no significant loss of generality, see Geweke, Marshall, and Zarkin
(1986), appealing to Dhrymes (1978). We then decompose Ω1 = SD1S

−1,
where D1 is a diagonal matrix with eigenvalues λ1, . . . , λl of Ω1 as its entries,
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and S is an invertible matrix consisting of the eigenvectors corresponding to the
eigenvalues in D1. Then, we have

exp(Ω1t) =

∞
∑

k=0

(

SD1tS
−1

)k

k!
= S

[

∞
∑

k=0

(D1t)
k

k!

]

S
−1

= S







eλ1t|ν,P

. . .

eλlt|ν,P






S

−1.

Should we not know in which ON state we are, based on the equilibrium
distribution, we could use π̄i|ν,P = πi|ν,P /(

∑l

j=1 πj |ν,P ), i = 1, . . . , l as

the initial state probability vector π(0)
ON

|ν,P , and, then,

R(t|ν,P ) = (π(0)
ON

|ν,P )T exp(Ω1 t|ν,P )e.

We could, then, approximate the posterior reliability through

R(t|data) ≃
1

N

N
∑

η=1

(π(0,η)
ON

)T exp(Ω
(η)
1 t)e, (6)

where
{

Ω
(η)
1 , π(0,η)

ON

}N

η=1
are associated with samples from the posteriors of ν

and P .
For computational issues concerning the exponentiation of a matrix, sev-

eral software packages are available, see, e.g., Sidje (1998), who introduces the
Expokit subroutine and pays special attention to the case of CTMCs. This
subroutine is based on Arnoldi’s matrix decomposition and allows us to compute
the product of the exponentiated matrix times a column vector, without having
to compute, explicitly, the matrix exponential in isolation. It is important to
remark that the underlying principle in Expokit is to approximate exp(Ω1t)e
using the elements of the Krylov subspace

Kd(Ω1t; e) = Span{e, (Ω1t)e, . . . , (Ω1t)
d−1

e},

where d, the dimension of the Krylov subspace, is small compared with l, the
order of the principal matrix (usually d ≤ 50 while l can exceed many thou-
sands). In practice, we use the version of the subroutine described in Sidje and
Stewart (1999), which is shown to solve problems of order up to 66500 with fixed
d = 30. This implies that, at every iteration, one has to compute the spectral
decomposition of a matrix of such dimension d, something which is computa-
tionally affordable, see Sidje (1998) for details. The main computational effort
within each call to the subroutine is then on Arnoldi’s matrix decomposition,
which involves an upper bound of O(d2l) flops, see Golub and Van Loan (1996)
for details.

5 MAINTAINABILITY FORECASTING

WITH CTMCs

Maintainability is defined as the probability of performing a successful repair
action within a given time. If T ′ designates the random variable that represents
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the time passed until a system is repaired, then, conditional on ν,P , and assum-
ing that the system is initially in an OFF state j, maintainability is provided
by

Mj(t|ν,P ) = Pr {T ′ < t|ν,P , X0 = j} , j = l + 1, . . . ,m.

As the repair process may be performed in several phases, maintainability should
take into account all possible jumps between OFF states before a failure is fixed,
that is, before an ON state is reached. Then, to study the maintainability of a
system, we proceed in a similar way to that of Section 4.

For the general system introduced in Section 2, with transition probability
matrix (3), we subsume all ON states into an absorbing state which we designate
b. The intensity matrix of this system is:

Λ2 =

(

0 0
T

ω
′

Ω2

)

,

where Ω2 corresponds to OFF states, and ω′
i = −

∑m

j=l+1 rij , i, j = l+1, . . . ,m,
and rii = −νi, i = l + 1, . . . ,m.

The time until repair is the time until absorption into state b of our modified
Markov chain, which is defined as τ ′ = inf{t ≥ 0|Xt = b}, and has a phase-
type distribution τ ′|ν,P ∼ PH(π(0)

OFF
,Ω2|ν,P ), where π

(0)
OFF

is an initial state
probability vector over OFF states.

Assume now that we know from which OFF state we start, which, for sim-
plicity will be l + 1. Then, π(0)

OFF
= (1 0 · · · 0)T . Following a similar reasoning

to that of Section 4, we have

Ml+1(t|ν,P ) = 1−

m−l
∑

i=1

ǫ′1i|ν,P , (7)

where ǫ′1i|ν,P are the elements of the first row of exp(Ω2 t|ν,P ), which is,
again, the key computational task.

Should we not know in which OFF state we are, based on the equilibrium
distribution, we could use π̃i|ν,P = πi|ν,P /(

∑m

j=l+1 πj |ν,P ), i = l+1, . . . ,m

as the initial state probability vector π
(0)
OFF

|ν,P , and then, we could approach
(7) through

M(t|data) ≃ 1−
1

N

N
∑

η=1

(π(0,η)
OFF

)T exp(Ω
(η)
2 t)e′, (8)

where
{

Ω
(η)
2 , π(0,η)

OFF

}N

η=1
are associated with samples from the posteriors of ν

and P , and e
′ = (1, . . . , 1)T is the (m− l)-vector of 1’s.

6 AVAILABILITY FORECASTING WITH

CTMCs

Availability is closely related to reliability and maintainability and is becoming
a standard system performance measure, see Maciejewski and Caban (2008) and
Lee (2000) for reviews.
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From a steady-state point of view, availability is the sum of the limiting
probabilities for ON states, conditional on ν,P , that is

A|ν,P =

l
∑

i=1

πi|ν,P .

Then, as in Section 3.3, if the posterior distributions of νi, pij , are, respectively,
very peaked about their posterior modes, ν̂i and p̂ij , we may use the approximate
steady-state availability

Â|data =

l
∑

i=1

π̂i|data.

Otherwise, we would obtain a posterior steady-state availability sample

{

Aη|data =

l
∑

i=1

πη
i |data

}N

η=1

,

and summarize it accordingly.
As discussed in Lee (2000), we may also be interested in a type of short-term

availability, called interval availability. Define the indicator random variable θt

θt|ν,P =

{

1, if Xt|ν,P ∈ {1, 2, . . . , l}

0, otherwise
,

and

At|ν,P =
1

t

∫ t

0

θs|ν,P ds.

Then, assuming that the system is initially in an ON state i ∈ {1, . . . , l}, the
interval availability is

It|ν,P = E[At|ν,P ] =
1

t

l
∑

j=1

∫ t

0

πj(s|ν,P ) ds. (9)

We then define the posterior interval availability through

It|data =

∫∫

(

It|ν,P
)

π(ν,P |data) dν dP

≃
1

N

N
∑

η=1

It|ν
η,P η, (10)

for appropriate posterior samples {νη,P η}Nη=1.
There are two issues concerning the computation of (9). Firstly, the compu-

tation of E[At|ν,P ]. To accomplish that, we solve the Chapman-Kolmogorov
system of differential equations (Ross 2007)

π
′(t|ν,P ) = Λ|ν,P · π(t|ν,P ); t ∈ [0, T )

π(0|ν,P ) = π
(0),

(11)
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where π
(0) =

(

π
(0)
1 , π

(0)
2 , . . . , π

(0)
m

)T
is the initial state probability vector, and

Λ|ν,P is the intensity matrix defined in Section 3.4, conditional on ν,P . Its
analytic solution is π(t|ν,P ) = exp(t ·Λ|ν,P ) · π(0), and represents the state
probability vector, conditional on ν,P , where πi(t|ν,P ) = Pr {X(t|ν,P ) = i}.
Note again that the key operation is that of matrix exponentiation.

The second issue is that of computing the integral that appears in (9). To
do so, we may use the general Simpson’s rule, dividing [0, t) in 2M subintervals

It|ν,P ≃
1

t

1

3
h

l
∑

j=1

{πj(t0|ν,P )

+ 4[πj(t1|ν,P ) + πj(t3|ν,P ) + · · ·+ πj(t2M−1|ν,P )]

+ 2[πj(t2|ν,P ) + πj(t4|ν,P ) + · · ·+ πj(t2M−2|ν,P )]

+ πj(t2M |ν,P )}, (12)

where h = t/2M , and t ≡ t2M . In this way, we can obtain intermediate values
at even times t2k, k = 1, . . . ,M within the process of integration, using the
recursive relationship

It2k |ν,P =
1

k

{

(k − 1)It2k−2
|ν,P +

1

6

l
∑

j=1

[πj(t2k−2|ν,P )

+ 4πj(t2k−1|ν,P ) + πj(t2k|ν,P )]

}

.

7 RAM ANALYSIS OF AN ERP

CONFIGURATION

As a case study, we shall consider a multiserver system functioning to support
our university Enterprise Resource Planner (ERP), which facilitates adminis-
trative processes to students (e.g., registering for a course), professors (e.g.,
checking resources concerning a grant) and staff (e.g., asking for a leave of ab-
sence), through the Internet. The general architecture of our ERP is shown in
Figure 2. A user makes a petition to the system. The petition passes through an
active/active web-cache (WC) cluster balancer (see Xie et al. (2004) for details
on various cluster architectures), which distributes the load between four appli-
cation (AP) servers. The balancer works if at least one of its two WC servers
is up. The four AP servers work on a 2-out-of-4 basis, that is, it works if at
least two out of four servers are up, see Shao and Lamberson (1991) for details.
In this class of systems, each component is designed to carry only part of the
total load. The AP servers access the database and complete the service to the
user. Our ERP system works well in practice, attaining high availabilities and
managing to offer high-quality services to over 32,000 users.

The transition diagram of our system is shown in Figure 3, along with the
jumping intensities rij = νipij . The meaning of the nine states in our Markov
chain is explained in Table 1. We have available failure and repair data, recorded
by our ERP managers over an eight months period. A summary of the data
is displayed in Table 2, which presents the transition counts nij and, in paren-
theses, the total sojourn time (in hours) that the system spent in state i before
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jumping into state j. For example, the second entry in the first row, 8(508.98),
means that eight transitions have occurred from State 1 into State 2, and that
the system spent a total time of 508.98 hours in State 1 before jumping into
State 2, over the eight transitions.

The main features of our system are listed below:

1. The failure rate (number of failures per unit time) of each WC server is
λ

WC
. Our ERP managers believe that the WC server fails, roughly, once

per fortnight.

2. The failure rate for the AP servers, λ
AP

i , i = 2, 3, 4, is constant and shared

when there are i functioning servers, satisfying λ
AP

4 < λ
AP

3 < λ
AP

2 : when
the four AP servers function the load on each is smaller than when three
are functioning, which, in turn, is smaller than when just two are working.
Recall that when there is just one server on, the system is unable to
cope with the load. Our ERP managers’ beliefs about how often the AP
servers fail are summarized as follows: if four AP servers are functioning,
the failure rate for each server is reduced to 50% of the original level; if
three AP servers are functioning, the failure rate is reduced to 65% of the
original level; while if only two AP servers are functioning it drops to 75%
of the original level, relative to the failure rate for a single AP server that
would be ideally functioning alone, λ

AP

, which is, roughly, one failure per
week.

3. When a WC server fails, our ERP managers consider that, on average,
it takes approximately three hours to fix it. A repaired WC server is
assumed to be as good as new, and it is immediately reconnected to the
system through hot plugging in. When both WC servers fail (Failure
type I; State 7), the system fails; it is repaired and then restarts, as good
as new, from State 1 (all currently non-functioning AP servers are also
fixed). This task takes a longer time, which, on average, is approximately
five hours, based on our ERP managers’ experience.

4. The WC cluster manages load balancing. At least, two AP servers should
be up in peak operation periods. Only one AP server can be repaired at
a time, with an average repair time of two hours. A repaired AP server is
assumed to be as good as new, and it is immediately reconnected to the
system through hot plugging in. When more than two servers are down,
the system fails, because of too heavy demand over the remaining server
(Failure type II; State 8). When this occurs, the system is fixed (including
any currently non-functioning WC server), and restarts, as good as new,
from State 1. Based on our ERP managers’ experience, this process takes
an average time of, roughly, five hours.

5. The WC cluster balancer also detects and disconnects failed AP servers,
but such detection process has a probability α of success. If the balancer
cannot detect and disconnect a failed AP server, the whole system fails
(Failure type III; State 9). Based on our system managers’ experience, the
average time needed to recover the system from such failure and restart, as
good as new, is also, approximately, five hours. Our system managers are
convinced that the WC cluster balancer performs successfully in around
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99% of its detection operations. Detection is a programmed task which
occurs every two hours, consuming a negligible time, and, practically, not
affecting the overall system performance.

The transition probability matrix is

1 2 3 4 5 6 7 8 9

P =

1

2

3

4

5

6

7

8

9
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The permanence rates are, respectively, ν1 = 2λ
WC

+ 4λ
AP

4 , ν2 = λ
WC

+ 4λ
AP

4 +

µ
WC

, ν3 = 2λ
WC

+3λ
AP

3 +µ
AP

, ν4 = λ
WC

+3λ
AP

3 +µ
WC

+µ
AP

, ν5 = λ
WC

+2λ
AP

2 +

µ
WC

+ µ
AP

, ν6 = 2λ
WC

+ 2λ
AP

2 + µ
AP

, and ν7 = ν8 = ν9 = ρ, where µ
WC

and
µ

AP
are the WC and AP repair rates, respectively, and ρ is the system repair

rate when the system falls into any OFF state.
In order to assign prior distributions to the failure and repair rates, we have

considered two different scenarios:

A. We are relatively sure about the failure and repair rates average values,
as recorded by our ERP managers. In this case, we assign peaked gamma
priors around such values, with small variances.

B. We might be less sure about the rates involved. We, then, build in more
uncertainty, and, therefore, assign more diffuse gamma priors (with the
same average values).

With this in mind, we have summarized our prior choices in Table 3. For con-
venience, we have expressed all rates in terms of failures/repairs per fortnight.
As an example, let us consider λWC. In the first scenario, we are relatively
sure that there will be around one failure per fortnight. We assume a prior
λWC ∼ G(10, 10), whose mean and variance are equal to 1. In the second sce-
nario, we take into account more uncertainty, and, therefore, our prior choice is
λWC ∼ G(0.1, 0.1), with mean 1 and variance 10.

Based on the data in Table 2, we get the posterior parameters described in
Table 4. To compute the posterior of, e.g., λWC, the only transitions we have
to take into account are (1,2), (2,7), (3,4), (4,7), (5,7), and (6,5), see Figure
3. Once we have the posteriors for the failure and repair rates, we can obtain
samples from the posteriors for the ν’s and the pij ’s, using their relationships
to the failure and repair rates. Then, to obtain a sample from the posterior
equilibrium distribution, we iteratively solve system (2), for various posterior
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samples of ν and P , which, in this example, is







































































ν1π1 = r21π2 + r31π3 + r71π7 + r81π8 + r91π9,
ν2π2 = r12π1 + r42π4,
ν3π3 = r13π1 + r43π4 + r63π6,
ν4π4 = r24π2 + r34π3 + r54π5,
ν5π5 = r45π4 + r65π6,
ν6π6 = r36π3 + r56π5,
ν7π7 = r27π2 + r47π4 + r57π5,
ν8π8 = r58π5 + r68π6,
ν9π9 = r19π1 + r29π2 + r39π3 + r49π4,
π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8 + π9 = 1,
πi ≥ 0.

Figure 4a shows density plots for the posterior equilibrium distribution obtained
when using peaked priors (Scenario A). We may summarize it through its mean
which is

π̂1 = 0.9455; π̂2 = 0.0330; π̂3 = 0.0134;

π̂4 = 0.0005; π̂5 = 9.422 · 10−6; π̂6 = 0.0003;

π̂7 = 0.0010; π̂8 = 1.309 · 10−5; π̂9 = 0.0063.

When more diffuse priors are used, there is also more uncertainty in the posterior
equilibrium distribution, see Figure 4b. In this scenario, the system is less
prone to be in State 1, and there is a significant increase in the value of the
limiting probability associated with State 2 (one WC server down). The limiting
probabilities corresponding to OFF states, π7, π8, π9, although still relatively
small, have increased significantly their respective values, and, e.g., the system
would spend now, in the long run, around 1% of the time in State 9, due to
failures in the detection process.

Assuming that the initial state is 1, and considering peaked priors for the fail-
ure and repair rates, the reliability conditional on (ν̂, P̂ ) (the posterior modes)
is obtained by plugging in such estimates in (5)

R1(t|ν̂, P̂ ) = ǫ11|ν̂, P̂ + ǫ12|ν̂, P̂ + ǫ13|ν̂, P̂

+ǫ14|ν̂, P̂ + ǫ15|ν̂, P̂ + ǫ16|ν̂, P̂

= −3.44 · 10−9e−312.60t + 1.76 · 10−8e−264.86t

+6.00 · 10−6e−196.18t − 3.06 · 10−5e−148.45t

−5.75 · 10−4e−116.90t + 1.00e−0.49t.

Time units have been expressed, for simplicity, in fortnights, although we will
plot the time axis in hours in all the graphics below. In Figure 5a, we have
plotted R1(t|ν̂, P̂ ), plugging in the MLEs (dashed line) and the posterior modes
(solid line) as estimates of (ν,P ), along with .95 predictive bands (dotted lines)
around the mean reliabilities (dotted-dashed line), as computed from (6). Note
that there is a lot of uncertainty which is ignored through the standard approach
based on plugging in parameter estimates. As we can observe, the predictive
bands are quite separated from the posterior mean reliability, with relative errors
close to 100% for time values around 1000 hours (approx. 40 days). The values
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of the reliability conditional on the posterior modes of (ν,P ) are, in practice, the
same as those of the posterior mean reliability. On the other hand, the reliability
conditional on the MLEs of (ν,P ) drops drastically to zero, something which
indicates the poor quality of the MLEs when little data are available, as in
this case. It should be noted that when peaked priors are used, they tend to
dominate the analysis. Nevertheless, we should also remark that our aim is to
provide additional information to that of reliability point estimation, based on
MLEs, posterior modes or similar, by plotting predictive bands.

The same set of graphics is plotted in Figure 5b, when more diffuse priors are
used for the failure and repair rates. As we can observe, the expected reliability
has decreased with respect to its value in Figure 5a, and the uncertainty is much
larger now. In this case, there is little difference between the results obtained
when using the posterior modes, the MLEs or the posterior mean reliability, due
to the relatively low importance of the prior distribution of the failure and repair
rates. Finally, we should note that similar results are obtained for both scenarios
when starting from a different ON state, as the repair rates are much higher
than the failure rates, and, therefore, the systems quickly tends to be in State 1.
A similar behavior is also observed when the initial ON state is unknown, as the
system reliability in this case is a weighted sum of the reliabilities when starting
at the different ON states, with weights depending on the limiting probabilities
πi, i = 1, . . . , 6, as was mentioned in Section 4.

In a similar way, we perform prediction for the system maintainability when
peaked priors are used for the failure and repair rates, based on (7). In Figure
6a, we have plotted system maintainability when the initial OFF State is 7,
plugging in the posterior modes of (ν,P ) (solid line) and the MLEs (dashed
line) in (7). We have also plotted .95 predictive bands (dotted lines) around
the posterior mean maintainability (dotted-dashed line), as computed from (8).
Note that, in this case, less uncertainty is present, as the sojourn time at any
OFF state depends only on the value of ρ, which has a peaked distribution in the
first scenario. Again, the predicted maintainability when plugging in the MLEs
of (ν,P ) is much worse than when plugging in the posterior modes, or when
computing the posterior mean maintainability. When more diffuse priors for
the failure and repair rates are used, the results are quite similar, see Figure 6b.
However, the expected maintainability is worse than in the previous case, and
the uncertainty has now significantly larger values. No difference is practically
found when we start from the OFF states 8 or 9, as we have assumed that the
repair rate is the same for states 7, 8 and 9.

Finally, to forecast system availability, we make use of (12), following (11),
to compute the value of the state probability vector π(t|ν,P ) at each point
of the interval [0, t), which has been divided in 200 subintervals. We have
plotted the system availability in Figure 7a, plugging in the posterior modes
(solid line) and the MLEs (dashed line) of (ν,P ), when starting in State 1. We
have also plotted .95 predictive bands (dotted lines) around the posterior mean
availabilities, as computed from (10), when the system was initially in State 1
(dotted-dashed line) or in State 5 (long-dashed line). As we can observe, the
posterior mean availability has, in the transient regime, a lower value when the
system starts in State 5 than when it starts in State 1. This is reasonable, as
in State 1 all the components are functioning, whereas State 5 is a critical one,
as one WC server and two AP servers are down. However, in the long run,
the mean availability tends to the steady-state availability, regardless of the
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initial ON state. Again, the availability computed when plugging in the MLEs
underrepresents the values obtained when plugging in the posterior modes, or
when the posterior mean availabilities, starting from States 1 or 5, are computed.
We can observe that, in this case, the uncertainty is, in practice, negligible, with
relative errors less than 1%. This is reasonable, as our ERP system is designed
as a high-availability device. Its availability will tend, in the long run, to a
steady-state availability, whose value is the sum of the limiting probabilities at
the ON states, πi, i = 1, . . . , 6. Such probabilities have peaked posteriors, see
Figure 4a, and, therefore, there will be little uncertainty when computing the
posterior availability.

When we use more diffuse priors for the failure and repair rates, we observe
a similar behavior, see Figure 7b. More uncertainty is present, especially when
the initial State is 5. In this case, the posterior mean availability goes below
.90 in the transient regime (at a time around 10 hours), although it gradually
reaches a steady value around .95, as time runs, merging asymptotically with
the availabilities obtained for the other cases.

8 CONCLUSIONS

Forecasting reliability, availability and maintainability of hardware components
in safety critical systems is becoming increasingly important. Although there
are several software packages available to support reasonably complex RAM
analyses, such as Relex, CASRE or SHARPE, among others, they have several
limitations. One of the most important ones is the fact that they provide little
support to Bayesian analysis. With this drawback in mind, we have focused, in
this paper, on Bayesian analysis of such systems.

We have provided a description of hardware systems through Continuous
Time Markov Chains. We have followed a Bayesian approach to estimate the
reliability, availability and maintainability of such systems, devoting our atten-
tion to three key items: description of the CTMC and the underlying discrete
Markov process; inference and forecasting for the CTMC parameters and the
posterior equilibrium distribution; and system RAM forecasting.

We have considered the role of prior uncertainty, and whether this is more
or less tight, and how this influences the results, especially in cases in which
there is little data, as in our case.

We have shown how the key computational issue refers to Arnoldi’s matrix
decomposition, within the subroutine of matrix exponentiation, and discussed
its potential inefficiency when the number of states becomes too large. In such
case, we could alternatively use reduced order models, see Grigoriu (2009) and
references therein. These models would approximate the posterior on ν, P

through k points ν
k, P

k with weights qk, appropriately chosen, and then ap-
proximate R(t|data) by

∑

qkR(t|νk, P k), thus performing only k matrix expo-
nentiations, with k chosen based on our computational budget.

Another issue of interest refers to the actual convenience of using CTMCs to
model the system. Should the holding times not follow exponential distributions,
we could rely on semimarkovian processes to analyze the system. We should
note, however, that although the equilibrium analysis is as easy as we have
described here, the transient analysis, of special interest to us, becomes more
difficult. See Maŕın, Plà, and Rı́os Insua (2005) for an example in a different
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application area. This will be the subject of future work.
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TABLES

Table 1: Meaning of the states of the Markov chain

State (#WC servers down,#AP servers down)
1 (0,0)
2 (1,0)
3 (0,1)
4 (1,1)
5 (1,2)
6 (0,2)
7 Failure type I: all WC servers down
8 Failure type II: 3 or 4 AP servers down
9 Failure type III: erroneous balancer detection

Table 2: Transition counts and sojourn times

Final state

1 2 3 4 5 6 7 8 9

In
it
ia
l
st
a
te

1 – 8 (508.98) 6 (5007.89) – – – – – 2 (31.68)
2 6 (68.18) – – – – – 2 (39.11) – –
3 4 (27.72) – – 1 (13.35) – 1 (4.09) – – –
4 – – 1 (1.57) – – – – – –
5 – – – – – – – 1 (0.02) –
6 – – – – 1 (8.86) – – – –
7 2 (29.36) – – – – – – – –
8 1 (2.21) – – – – – – – –
9 2 (19.13) – – – – – – – –

Table 3: Prior parameters of the failure and repair rates

Small variance Large variance

αsv βsv αlv βlv

λWC 10 10 0.1 0.1
λAP
4 9.2 9.6 0.092 0.096

λAP
3 16 13 0.16 0.13

λAP
2 22.5 15 0.225 0.15

µWC 1300 11 13 0.11
µAP 2800 17 28 0.17
ρ 450 6.7 4.5 0.067
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Table 4: Posterior parameters of the failure and repair rates

Small variance Large variance

α
post
sv β

post
sv α

post

lv
β
post

lv

λWC 23 11.70 13.1 1.80
λAP
4 17.2 24.6 8.092 15.095

λAP
3 17 13.01 1.16 0.14

λAP
2 23.5 15.00 1.225 0.15

µWC 1307 11.21 20 0.32
µAP 2804 17.08 32 0.25
ρ 455 6.85 9.5 0.218
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Figure 6: System maintainability
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Figure 7: System availability
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