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The Internet is transforming our society, necessitating a quantitative un-
derstanding of Internet traffic. Our team collects and curates the largest

publicly available Internet traffic data sets. An analysis of 50 billion packets using
10,000 processors in the MIT SuperCloud reveals a new phenomenon: the importance
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2 � Internet Traffic

of otherwise unseen leaf nodes and isolated links in Internet traffic. Our analysis fur-
ther shows that a two-parameter modified Zipf–Mandelbrot distribution accurately
describes a wide variety of source/destination statistics on moving sample windows
ranging from 100,000 to 100,000,000 packets over collections that span years and
continents. The measured model parameters distinguish different network streams,
and the model leaf parameter strongly correlates with the fraction of the traffic in
different underlying network topologies.

1.1 INTRODUCTION

Our civilization is now dependent on the Internet, necessitating a scientific under-
standing of this virtual universe [49, 72]. The two largest efforts to capture, curate,
and share Internet packet traffic data for scientific analysis are led by our team via
the Widely Integrated Distributed Environment (WIDE) project [29] and the Center
for Applied Internet Data Analysis (CAIDA) [30]. These data have been used for a
wide variety of research projects, resulting in hundreds of peer-reviewed publications
[86], ranging from characterizing the global state of Internet traffic, to specific stud-
ies on the prevalence of peer-to-peer file sharing traffic, to testing prototype software
designed to stop the spread of Internet worms.

The stochastic network structure of Internet traffic is a core property of great
interest to a wide range of Internet stakeholders [72] and network scientists [11].
Of particular interest is the probability distribution p(d), where d is the degree (or
count) of several network quantities, such as source packets, packets over a unique
source-destination pair (or link), and destination packets collected over specified time
intervals. Among the earliest and most widely cited results of virtual Internet topology
analysis has been the observation that p(d) ∝ 1/dα with a model exponent 1 < α < 3
for large values of d [10, 4, 70] fit a range of network characteristics.

Many Internet models are based on the data obtained from crawling the net-
work from a number of starting points [94]. These webcrawls naturally sample the
supernodes of the network [23], and their resulting p(d) are accurately fit at large
values of d by single-parameter power-law models. However, as we will show, for our
streaming samples of the Internet there are other topologies that contribute signif-
icant traffic. Characterizing a network by a single power-law exponent provides one
view of Internet phenomena, but more accurate and complex models are required
to understand the diverse topologies seen in streaming samples of the Internet. Im-
proving model accuracy while also increasing model complexity requires overcoming
a number of challenges, including acquisition of larger, rigorously collected data sets
[107, 121]; the enormous computational cost of processing large network traffic graphs
[80, 7, 110]; careful filtering, binning, and normalization of the data; and fitting of
nonlinear models to the data.

1.2 METHODOLOGY

This work aims to improve model accuracy through several techniques. First, for over
a decade we have scientifically collected and curated the largest publicly available
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Internet packet traffic data sets and this work analyzes the very largest collections
in our corpora containing 49.6 billion packets (Table 1.2). Second, utilizing recent
innovations in interactive supercomputing [56, 102], matrix-based graph theory [63,
57], and big data mathematics (Figure 1.2) [58], we have developed a scalable Internet
traffic processing pipeline that runs efficiently on more than 10,000 processors in the
MIT SuperCloud [47]. This pipeline allows us, for the first time, to process our largest
traffic collections as network traffic graphs. Third, since not all packets have both
source and destination Internet Protocol version 4 (IPv4) addresses, the data have
been filtered so that for any chosen time window all data sets have the same number of
valid IPv4 packets, denoted NV (Figure 1.1 and Eq. 1.2). All computed probability
distributions also use the same binary logarithmic binning to allow for consistent
statistical comparison across data sets (Eq. 1.4)[34, 11]. Fourth, to accurately model
the data over the full range of d, we employ a modified Zipf–Mandelbrot distribution
[82, 87, 104]

p(d;α, δ) ∝ 1/(d+ δ)α (1.1)

The inclusion of a second model offset parameter δ allows the model to accurately fit
small values of d, in particular d = 1, which has the highest observed probability in
these streaming data. The modified Zipf–Mandelbrot model is a special case of the
more general saturation/cutoff models used to model a variety of network phenomena
(Eq. 1.6) [34, 11]. Finally, nonlinear fitting techniques are used to achieve quality fits
over the entire range of d (Eq. 1.20).

Throughout this chapter, we defer to the terminology of network science. Network
operators use many similar terms with significant differences in meaning. We use
network topology to refer to the graph-theoretic virtual topology of sources and
destinations observed communicating and not the underlying physical topology of
the Internet (Table 1.1)

1.2.1 MAWI and CAIDA Internet Traffic Collection

For the analysis in following sections, the data utilized are summarized in Table 1.2
with data from Tokyo coming from the MAWI Internet Traffic Collection and the
data from Chicago from the CAIDA Internet Traffic Collection.

The Tokyo data sets are publicly available packet traces provided by the WIDE
project (aka the MAWI traces). The WIDE project is a research consortium in Japan
established in 1988 [29]. The members of the project include network engineers, re-
searchers, university students, and industrial partners. The focus of WIDE is on the
empirical study of the large-scale Internet. WIDE operates an Internet testbed both
for commercial traffic and for conducting research experiments. These data have en-
abled quantitative analysis of Internet traffic spanning years illustrating trends such
as the emergence of residential usage, peer-to-peer networks, probe scanning, and
botnets [27, 20, 45]. The Tokyo data sets are publicly available packet traces pro-
vided by the WIDE project (aka the MAWI traces). The traces are collected from a
1 Gbps academic backbone connection in Japan. The 2015 and 2017 data sets are 48-
hour-long traces captured during December 2–3, 2015, and April 12–13, 2017, in JST.
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Table 1.1 Network Terminology Used by Computer Network Operators and Network
Scientists. Throughout this Work, the Network Science Meanings are Employed

Term Network Operations Meaning Network Science Meaning
Network The physical links, wires, routers,

switches, and endpoints used to
transmit data.

Any system that can be rep-
resented as a graph of connec-
tions (links/edges) among enti-
ties (nodes/vertices).

Topology The layout of the physical net-
work.

The specific geometries of a graph
and its sub-graphs.

Stream The flow of data over a specific
physical communication link.

A time-ordered sequence of pairs
of entities (nodes/vertices) repre-
senting distinction in time con-
nections (links/edges) between
entities.

The IP addresses appearing in the traces are anonymized using a prefix-preserving
method [43].

The MAWI repository is an ongoing collection of Internet traffic traces, captured
within the WIDE backbone network (AS2500) that connects Japanese universities
and research institutes to the Internet. Each trace consists of captured packets ob-
served from within WIDE and includes the packet headers of each packet along with
the captured timestamp. Anonymized versions of the traces (with anonymized IP
addresses and with transport layer payload removed) are made publicly available at
http://mawi.wide.ad.jp/.

WIDE carries a variety of traffic including academic and commercial traffic. These
data have enabled quantitative analysis of Internet traffic spanning years illustrat-
ing trends such as the emergence of residential usage, peer-to-peer networks, probe
scanning, and botnets [27, 28, 45]. WIDE is mostly dominated by HTTP traffic, but
is influenced by global anomalies. For example, Code Red, Blaster, and Sasser are
worms that disrupted Internet traffic [5]. Of these, Sasser (2005) impacted MAWI
traffic the most, accounting for two-thirds of packets at its peak. Conversely, the
ICMP traffic surge in 2003 and the SYN Flood in 2012 were more local in nature,
each revealing attacks on targets within WIDE that lasted several months.

CAIDA collects several different data types at geographically and topologically
diverse locations and makes these data available to the research community to the
extent possible while preserving the privacy of individuals and organizations who
donate data or network access [30, 31]. CAIDA has (and had) monitoring locations
in Internet service providers (ISPs) in the USA. CAIDA’s passive traces data set
contains traces collected from high-speed monitors on a commercial backbone link.
The data collection started in April 2008 and is ongoing. These data are useful for
research on the characteristics of Internet traffic, including application breakdown
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(based on TCP/IP ports), security events, geographic and topological distribution,
flow volume, and duration. For an overview of all traces, see the trace statistics page
[85].

Collectively, our consortium has enabled the scientific analysis of Internet traffic,
resulting in hundreds of peer-reviewed publications with over 30,000 citations [86].
These include early work on Internet threats such as the Code Red worm [90] and
Slammer worm [88] and how quarantining might mitigate threats [91]. Subsequent
work explored various techniques, such as dispersion, for measuring Internet capacity
and bandwidth [40, 41, 100]. The next major area of research provided significant
results on the dispersal of the Internet via the emergence of peer-to-peer networks [54,
53], edge devices [62], and corresponding denial-of-service attacks [89], which drove
the need for new ways to categorize traffic [59]. The incorporation of network science
and statistical physics concepts into the analysis of the Internet produced new results
on the hyperbolic geometry of complex networks [67, 66] and sustaining the Internet
with hyperbolic mapping [16, 17, 18]. Likewise, a new understanding also emerged on
the identification of influential spreaders in complex networks [61], the relationship of
popularity versus similarity in growing networks [96], and overall network cosmology
[65]. More recent work has developed new ideas for Internet classification [35] and
future data centric architectures [120].

Table 1.2 Network Traffic Packet Data Sets from MAWI (Tokyo data sets) and CAIDA
(Chicago data sets) Collected at Different Times and Durations over Two Years

Location Date Duration Bandwidth Packets
Tokyo 2015 Dec 02 2 days 109 bits/second 17.0×109

Tokyo 2017 Apr 12 2 days 109 bits/second 16.8×109

Chicago A 2016 Jan 21 1 hour 1010 bits/second 2.0×109

Chicago A 2016 Feb 18 1 hour 1010 bits/second 2.0×109

Chicago A 2016 Mar 17 1 hour 1010 bits/second 1.8×109

Chicago A 2016 Apr 06 1 hour 1010 bits/second 1.8×109

Chicago B 2016 Jan 21 1 hour 1010 bits/second 2.3×109

Chicago B 2016 Feb 18 1 hour 1010 bits/second 1.7×109

Chicago B 2016 Mar 17 1 hour 1010 bits/second 2.0×109

Chicago B 2016 Apr 06 1 hour 1010 bits/second 2.1×109

1.2.2 Network Quantities from Matrices

In our analysis, the network traffic packet data are reduced to origin–destination
traffic matrices. These matrices can be used to compute a wide range of network
statistics useful in the analysis, monitoring, and control of the Internet. Such an
analysis includes the temporal fluctuations of the supernodes [107] and inferring the
presence of unobserved traffic [121, 13].

To create the matrices, at a given time t, NV consecutive valid packets are aggre-
gated from the traffic into a sparse matrix At, where At(i, j) is the number of valid
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Table 1.3 Aggregate Network Properties

Aggregate Property Summation Notation Matrix Nota-
tion

Valid packets NV
∑
i

∑
j At(i, j) 1TAt1

Unique links
∑
i

∑
j |At(i, j)|0 1T|At|01

Unique sources
∑
i |

∑
j At(i, j)|0 1T|At1|0

Unique destinations
∑
j |

∑
i At(i, j)|0 |1TAt|01

Formulas for computing aggregates from a sparse network image At at time t in
both summation and matrix notations. 1 is a column vector of all 1’s, T is the

transpose operation, and | |0 is the zero-norm that sets each nonzero value of its
argument to 1 [55].

packets between the source i and destination j [92]. The sum of all the entries in At

is equal to NV ∑
i,j

At(i, j) = NV (1.2)

All the network quantities depicted in Figure 1.6a can be readily computed from
At as specified in Tables 1.3 and 1.4, including the number of unique sources and
destinations, along with many other network statistics [107, 121, 110].

Table 1.4 Neural Network Image Convolution Filters

Network Quantity Summation Notation Matrix Nota-
tion

Source packets from i
∑
j At(i, j) At 1

Source fan-out from i
∑
j |At(i, j)|0 |At|01

Link packets from i to j At(i, j) At

Destination fan-in to j
∑
i |At(i, j)|0 1T At

Destination packets to j
∑
i At(i, j) 1T|At|0

Different network quantities are extracted from a sparse traffic image At at time t
via convolution with different filters. Formulas for the filters are given in both

summation and matrix notations. 1 is a column vector of all 1’s, T is the transpose
operation, and | |0 is the zero-norm that sets each nonzero value of its argument to

1 [55].

Figure 1.17a depicts the major topological structures in the network traffic. Iso-
lated links are sources and destinations that each have only one connection (Ta-
ble 1.5). The first, second, third, . . . supernodes are the source or destination with
the first, second, third, . . . most links (Table 1.6). The core of a network can be
defined in a variety of ways [105, 12]. In this work, the network core conveys the con-
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cept of a collection of sources and destinations that are not isolated and are multiply
connected. The core is defined as the collection of sources and destinations in which
every source and destination has more than one connection. The core, as computed
here, does not include the first five supernodes although only the first supernode is
significant, and whether or not the other supernodes are included has minimal impact
on the core in these data. The core leaves are sources and destinations that have only
one connection to a core source or destination (Tables 1.7 and 1.8).

Table 1.5 Properties of Isolated Links

Network Quantity Matrix Notation
Isolated links At(i1, j1)
Number of isolated link sources 1T|At(i1, j1)1|0
Number of packets traversing isolated links 1TAt(i1, j1)1
Number of unique isolated links 1T|At(i1, j1)|01
Number of isolated link destinations |1TAt(i1, j1)|01

Different characteristics related to isolated links are extracted from a sparse traffic
image At at time t. Formulas are in matrix notation. The set of sources that send

to only one destination are i1 = arg(dout = 1), and the set of destinations that
receive from only one destination are j1 = arg(din = 1).

Table 1.6 Properties of Supernodes

Network Matrix
Quantity Notation
Supernode source leaves At(i1, kmax)
Supernode destination leaves At(kmax, j1)
Number of supernode leaf sources 1T|At(i1, kmax)1|0
Number of packets traversing supernode
leaves

1TAt(i1, kmax) + At(kmax, j1)1

Number of unique supernode leaf links 1T|At(i1, kmax)|0 + |At(kmax, j1)|01
Number of supernode leaf destinations |1TAt(kmax, j1)|01

Different characteristics related to supernodes are extracted from a sparse traffic
image At at time t. Formulas are in matrix notation. The identity of the first

supernode is given by kmax = argmax(dout + din). The leaves of a supernode are
those sources and destinations whose only connection is to the supernode.

An essential step for increasing the accuracy of the statistical measures of Internet
traffic is using windows with the same number of valid packets NV . For this analysis,
a valid packet is defined as TCP over IPv4, which includes more than 95% of the
data in the collection and eliminates a small amount of data that use other protocols
or contain anomalies. Using packet windows with the same number of valid packets
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Table 1.7 Properties of Network Core

Network Matrix
Quantity Notation
Core links At(icore, jcore)
Number of core sources 1T|At(icore, jcore)1|0
Number of core packets 1TAt(icore, jcore)1
Number of unique core links 1T|At(icore, jcore)|01
Number of core destinations |1TAt(icore, jcore)|01

Different characteristics related to the core are extracted from a sparse traffic image
At at time t. Formulas are in matrix notation. The set of sources that send to more

than one destination, excluding the supernode(s), is
icore = arg(1 < dout < dout(kmax)). The set of destinations that receive from more
than one source, excluding the supernode(s), is jcore = arg(1 < din < din(kmax)).

Table 1.8 Properties of Core Leaves

Network Matrix
Quantity Notation
Core source leaves At(i1, kcore)
Core destination leaves At(kcore, j1)
Number of core leaf sources 1T|At(i1, kcore)1|0
Number of core leaf packets 1TAt(i1, kcore) + At(kcore, j1)1
Number of unique core leaf links 1T|At(i1, kcore)|0 + |At(kcore, j1)|01
Number of core leaf destination |1TAt(kcore, j1)|01

Different characteristics related to the core leaves are extracted from a sparse traffic
image At at time t. Formulas are in matrix notation. The core leaves are sources

and destinations that have one connection to a core source or destination.

produces quantities that are consistent over a wide range from NV = 100,000 to
NV = 100,000,000 (Figure 1.1).

1.2.3 Memory and Computation Requirements

Processing 50 billion Internet packets with a variety of algorithms presents numerous
computational challenges. Dividing the data set into combinable units of approxi-
mately 100,000 consecutive packets made the analysis amenable to processing on a
massively parallel supercomputer. The detailed architecture of the parallel process-
ing system and its corresponding performance are described in [47]. The resulting
processing pipeline was able to efficiently use over 10,000 processors on the MIT
SuperCloud and was essential to this first-ever complete analysis of these data.

A key element of our analysis is the use of novel sparse matrix mathematics in
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Figure 1.1 Valid packets. Analyzing packet windows with the same numbers of valid
packets produces consistent fractions of unique links, unique destinations, and unique
sources over a wide range of packet sizes for the Tokyo 2015 (a) and Tokyo 2017 (b)
data sets. The plots show these fractions for moving packet windows of NV = 100,000
packets (left) and NV = 100,000,000 packets (right). The packet windows correspond
to time windows of approximately 1.5 seconds and 25 minutes.
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v ATvAT

à

1.1.1.1

0.0.0.0

2.2.2.2

source destination
001 1.1.1.1 0.0.0.0

002 0.0.0.0 1.1.1.1

003 1.1.1.1 2.2.2.2

SELECT destination FROM T
WHERE source=1.1.1.1

0.0.0.0

1.1.1.1

2.2.2.2

à

à

Figure 1.2 Associative arrays. (a) Tabular representation of raw network traffic
and corresponding database query to find all records beginning with source 1.1.1.1.
(b) Network graph highlighting nearest neighbors of source node 1.1.1.1. (c) Corre-
sponding associative array representation of the network graph illustrating how the
neighbors of source node 1.1.1.1 are computed with matrix vector multiplication.

concert with the MIT SuperCloud. Construction and analysis of network traffic ma-
trices of the entire Internet address space have been considered impractical for its
massive size [110]. Internet Protocol version 4 (IPv4) has 232 unique addresses, but
at any given collection point, only a fraction of these addresses will be observed. Ex-
ploiting this property to save memory can be accomplished by extending traditional
sparse matrices so that new rows and columns can be added dynamically.

The algebra of associative arrays [58] and its corresponding implementation in the
Dynamic Distributed Dimensional Data Model (D4M) software library (d4m.mit.edu)
allows the row and columns of a sparse matrix to be any sortable value, in this case
character string representations of the Internet addresses (Figure 1.2). Associative
arrays extend sparse matrices to have database table properties with dynamically
insertable and removable rows and columns that adjust as new data are added or
subtracted to the matrix. Using these properties, the memory requirements of form-
ing network traffic matrices can be reduced at the cost of increasing the required
computation necessary to resort the rows and columns.

A network matrix At with NV = 100,000,000 represented as an associative array
typically requires 2 gigabytes of memory. A complete analysis of the statistics and
topologies of At typically takes 10 minutes on a single MIT SuperCloud Intel Knights
Landing processor core. Using increments of 100,000 packets means that this anal-
ysis is repeated over 500,000 times to process all 49.6 billion packets. Using 10,000
processors on the MIT SuperCloud shortens the runtime of one of these analyses
to approximately 8 hours. The results presented within this chapter are products of
a discovery process that required hundreds of such runs that would not have been
possible without these computational resources. Fortunately, the utilization of these
results by Internet stakeholders can be significantly accelerated by creating optimized
embedded implementations that only compute the desired statistics and are not re-
quired to support a discovery process [76, 77].



New Phenomena in Large-Scale Internet Traffic � 11

1.3 INTERNET TRAFFIC MODELING

Quantitative measurements of the Internet [101] have provided Internet stakehold-
ers information on the Internet since its inception. Early work has explored the early
growth of the Internet [32], the distribution of packet arrival times [98], the power-law
distribution of network outages [97], the self-similar behavior of traffic [69, 115, 114],
formation processes of power-law networks [42, 83, 22, 113], and the topologies of
Internet service providers [108]. Subsequent work has examined the technological
properties of Internet topologies [73], the diameter of the Internet [70], applying rank
index-based Zipf–Mandelbrot modeling to peer-to-peer traffic [104], and extending
topology measurements to edge hosts [48]. More recent work looks to continued mea-
surement of power-law phenomena [81, 60, 75], exploiting emerging topologies for
optimizing network traffic [37, 68, 25], using network data to locate disruptions [46],
the impact of inter-domain congestion [36], and studying the completeness of passive
sources to determine how well they can observe microscopic phenomena [84].

The above sample of many years of Internet research has provided significant
qualitative insights into Internet phenomenology. Single-parameter power-law fits
have extensively been explored and shown to adequately fit higher-degree tails of
the observations. However, more complex models are required to fit the entire range
of observations. Figure 1.3a adapted from figure 8H [34] shows the number of bytes of
data received in response to 2.3×105 HTTP (web) requests from computers at a large
research laboratory and shows a strong agreement with a power law at large values,
but diverges with the single-parameter model at small values. Figure 1.3b adapted
from figure 9W [34] shows the distribution of 1.2 × 105 hits on web sites from AOL
users and shows a strong agreement with a power law at small values, but diverges
with the single-parameter model at large values. Figure 1.3c adapted from figure 9X
[34] shows the distribution of 2.4 × 108 web hyperlinks and has a reasonable model
agreement across the entire range, except for the smallest values. Figure 1.3d adapted
from figure 4B [81] shows the distribution of visitors arriving at YouTube from refer-
ring web sites appears to be best represented by two very different power-law models
with significant difference as the smallest values. Figure 1.3e adapted from figure
3A [60] shows the distribution of the number of Border Gateway Protocol updates
received by the 4 monitors in 1-minute intervals and shows a strong agreement with
a power law at large values, but diverges with the single-parameter model at small
values. Figure 1.3f adapted from figure 21 in [75] shows the distribution of the Bitcoin
network in 2011 and shows a strong agreement with a power law at small values, but
diverges with the single-parameter model at large values.

The results shown in Figure 1.3 represent some of the best and most carefully
executed fits to Internet data and clearly show the difficulty of fitting the entire
range with a single-parameter power law. It is also worth mentioning that in each
case the cumulative distribution is used, which naturally provides a smoother curve
(in contrast to the differential cumulative distribution used in our analysis), but
provides less detail on the underlying phenomena. Furthermore, the data in Figure 1.3
are typically isolated collections such that the error bars are not readily computable,
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Fig. 8 The CDFs P (x) and their maximum likelihood power-law fits for the first 12 of our 24
empirical data sets. (a) The frequency of occurrence of unique words in the novel Moby
Dick by Herman Melville. (b) The degree distribution of proteins in the protein interaction
network of the yeast S. cerevisiae. (c) The degree distribution of metabolites in the metabolic
network of the bacterium E. coli. (d) The degree distribution of autonomous systems (groups
of computers under single administrative control) on the Internet. (e) The number of calls
received by U.S. customers of the long-distance telephone carrier AT&T. (f) The intensity
of wars from 1816–1980 measured as the number of battle deaths per 10 000 of the combined
populations of the warring nations. (g) The severity of terrorist attacks worldwide from
February 1968 to June 2006, measured by number of deaths. (h) The number of bytes of data
received in response to HTTP (web) requests from computers at a large research laboratory.
(i) The number of species per genus of mammals during the late Quaternary period. (j) The
frequency of sightings of bird species in the United States. (k) The number of customers
affected by electrical blackouts in the United States. (l) The sales volume of bestselling books
in the United States.

The p-values in Table 3 indicate that 17 of the 24 data sets are consistent with a
power-law distribution. The remaining seven data sets all have p-values small enough
that the power-law model can be firmly ruled out. In particular, the distributions
for the HTTP connections, earthquakes, web links, fires, wealth, web hits, and the
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Fig. 9 The CDFs P (x) and their maximum likelihood power-law fits for the second 12 of our 24
empirical data sets. (m) The populations of cities in the United States. (n) The sizes of
email address books at a university. (o) The number of acres burned in California forest fires.
(p) The intensities of solar flares. (q) The intensities of earthquakes. (r) The numbers of
adherents of religious sects. (s) The frequencies of surnames in the United States. (t) The
net worth in U.S. dollars of the richest people in the United States. (u) The numbers of
citations received by published academic papers. (v) The numbers of papers authored by
mathematicians. (w) The numbers of hits on web sites from AOL users. (x) The numbers
of hyperlinks to web sites.

metabolic network cannot plausibly be considered to follow a power law; the prob-
ability of getting by chance a fit as poor as the one observed is very small in each
of these cases and one would have to be unreasonably optimistic to see power-law
behavior in any of these data sets. (For two data sets—the HTTP connections and
wealth distribution—the power law, while not a good fit, is nonetheless better than
the alternatives we tested using the likelihood ratio test, implying that these data sets
are not well characterized by any of the functional forms considered here.)

Tables 4 and 5 show the results of likelihood ratio tests comparing the best-fit
power laws for each of our data sets to the alternative distributions given in Table 1.
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Figure 1.3 Single-parameter power-law fits of Internet data. Single-parameter
fits of the cumulative distributions of Internet data have difficulty modeling the entire
range. The estimated ratio between the model and the data at the model extremes
is shown. (a) Figure 8H [34]. (b) Figure 9W [34]. (c) Figure 9X [34]. (d) Figure 4B
[81]. (e) Figure 3A [60]. (f) Figure 21 [75].

which limits the ability to assess both the quality of the measurements and the model
fits.

Regrettably, the best publicly available data about the global interconnection
system that carries most of the world’s communications traffic are incomplete and
of unknown accuracy. There is no map of physical link locations, capacity, traffic,
or interconnection arrangements. This opacity of the Internet infrastructure hinders
research and development efforts to model network behavior and topology; design
protocols and new architectures; and study real-world properties such as robustness,
resilience, and economic sustainability. There are good reasons for the dearth of in-
formation: complexity and scale of the infrastructure; information-hiding properties
of the routing system; security and commercial sensitivities; costs of storing and pro-
cessing the data; and lack of incentives to gather or share data in the first place,
including cost-effective ways to use it operationally. But understanding the Internet’s
history and present, much less its future, is impossible without realistic and repre-
sentative data sets and measurement infrastructure on which to support sustained
longitudinal measurements as well as new experiments. The MAWI and CAIDA data
collection efforts are the largest efforts to provide the data necessary to begin to
answer these questions.
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1.3.1 Logarithmic Pooling

In this analysis before model fitting, the differential cumulative probabilities are cal-
culated. For a network quantity d, the histogram of this quantity computed from At

is denoted by nt(d), with corresponding probability

pt(d) = nt(d)/
∑
d

nt(d) (1.3)

and cumulative probability
Pt(d) =

∑
i=1,d

pt(d) (1.4)

Because of the relatively large values of d observed due to a single supernode, the
measured probability at large d often exhibits large fluctuations. However, the cumu-
lative probability lacks sufficient detail to see variations around specific values of d,
so it is typical to use the differential cumulative probability with logarithmic bins in
d

Dt(di) = Pt(di)− Pt(di−1) (1.5)
where di = 2i [34]. The corresponding mean and standard deviation of Dt(di) over
many different consecutive values of t for a given data set are denoted D(di) and
σ(di). These quantities strike a balance between accuracy and detail for subsequent
model fitting as demonstrated in the daily structural variations revealed in the Tokyo
data (Figures 1.4 and 1.5).

Diurnal variations in supernode network traffic are well known [107]. The Tokyo
packet data were collected over a period spanning two days and allow the daily varia-
tions in packet traffic to be observed. The precision and accuracy of our measurements
allow these variations to be observed across a wide range of nodes. Figure 1.4 shows
the fraction of source fan-outs in each of various bin ranges. The fluctuations show
the network evolving between two envelopes occurring between noon and midnight
that are shown in Figure 1.5.

1.3.2 Modified Zipf–Mandelbrot Model

Measurements of D(di) can reveal many properties of network traffic, such as the
number of nodes with only one connection D(d = 1) and the size of the supernode
dmax = argmax(D(d) > 0). An effective low-parameter model allows these and many
other properties to be summarized and computed efficiently. In the standard Zipf–
Mandelbrot model typically used in linguistic contexts, the value d in Eq. 1.21 is a
ranking with d = 1 corresponding to the most popular value [82, 87, 104]. In our
analysis, the Zipf–Mandelbrot model is modified so that d is a measured network
quantity instead of a rank index (Eq. 1.21). The model exponent α has a larger
impact on the model at large values of d, while the model offset δ has a larger impact
on the model at small values of d and in particular at d = 1.

The general saturation/cutoff models used to model a variety of network phe-
nomena is denoted [34, 11]

p(d) ∝ 1
(d+ δ)α exp[λd] (1.6)
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Figure 1.4 Daily variation in Internet traffic. The fraction of source nodes with
a given range of fan-out is shown as a function of time for the Tokyo 2015 data. The
p(d = 1) value is plotted on a separate linear scale because of the larger magnitude
relative to the other points. Each point is the mean of many neighboring points in
time, and the error bars are the measured ±1-σ. The daily variations of the distri-
butions oscillate between extremes corresponding to approximately local noon and
midnight.
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Figure 1.5 Daily limits in Internet traffic. The fraction of source nodes versus fan-
out is shown for two noons and two midnights for the Tokyo 2015 data. The overlap
among the noons and the midnights shows the relative day-to-day consistency in
these data and shows the limits of the two extremes in daily variation. During the
day, there is more traffic among nodes with intermediate fan-out. At night, the traffic
is more dominated by leaf nodes and the supernode.
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where δ is the low-d saturation and 1/λ is the high-d cutoff that bounds the power-
law regime of the distribution. The modified Zipf–Mandelbrot is a special case of this
distribution that accurately models our observations. The unnormalized modified
Zipf–Mandelbrot model is denoted

ρ(d;α, δ) = 1
(d+ δ)α (1.7)

with corresponding derivative with respect to δ

∂δρ(d;α, δ) = −α
(d+ δ)α+1 = −αρ(d;α + 1, δ) (1.8)

The normalized model probability is given by

p(d;α, δ) = ρ(d;α, δ)∑dmax
d=1 ρ(d;α, δ)

(1.9)

where dmax is the largest value of the network quantity d. The cumulative model
probability is the sum

P (di;α, δ) =
di∑
d=1

p(d;α, δ) (1.10)

The corresponding differential cumulative model probability is

D(di;α, δ) = P (di;α, δ)− P (di−1;α, δ) (1.11)

where di = 2i. In terms of ρ, the differential cumulative model probability is

D(di;α, δ) =
∑d=di

d=di−1+1 ρ(d;α, δ)∑d=dmax
d=1 ρ(d;α, δ)

(1.12)

The above function is closely related to the Hurwitz zeta function [38, 34, 119]

ζ(α, δ1) =
∞∑
d=0

ρ(d;α, δ1) (1.13)

where δ1 = δ + 1. The differential cumulative model probability in terms of the
Hurwitz zeta function is

D(di;α, δ) = ζ(α, δ + 3 + di−1)− ζ(α, δ + 2 + di)
ζ(α, δ+)− ζ(α, δ+) (1.14)

1.3.3 Nonlinear Model Fitting

The model exponent α has a larger impact on the model at large values of d, while the
model offset δ has a larger impact on the model at small values of d and in particular
at d = 1. A nonlinear fitting technique is used to obtain accurate model fits across
the entire range of d. Initially, a set of candidate exponent values is selected, typically
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α = 0.10, 0.11, . . . , 3.99, 4.00. For each value of α, a value of δ is computed that exactly
matches the model with the data at D(1). Finding the value of δ corresponding to a
give D(1) is done using Newton’s method as follows. Setting the measured value of
D(1) equal to the model value D(1;α, δ) gives

D(1) = D(1;α, δ) = 1
(1 + δ)α

∑dmax
d=1 ρ(d;α, δ)

(1.15)

Newton’s method works on functions of the form f(δ) = 0. Rewriting the above
expression produces

f(δ) = D(1)(1 + δ)α
dmax∑
d=1

ρ(d;α, δ)− 1 = 0 (1.16)

For given value of α, δ can be computed from the following iterative equation

δ → δ − f(δ)
∂δf(δ) (1.17)

where the partial derivative ∂δf(δ) is

∂δf(δ) = D(1) ∂δ[(1 + δ)α
dmax∑
d=1

ρ(d;α, δ)]

= D(1)[[α(1 + δ)α−1
dmax∑
d=1

ρ(d;α, δ)] + [(1 + δ)α
dmax∑
d=1

∂δρ(d;α, δ)]]

= D(1)[[α(1 + δ)α−1
dmax∑
d=1

ρ(d;α, δ)] + [(1 + δ)α
dmax∑
d=1
−αρ(d;α + 1, δ)]]

= αD(1)(1 + δ)α[(1 + δ)−1
dmax∑
d=1

ρ(d;α, δ)−
dmax∑
d=1

ρ(d;α + 1, δ)] (1.18)

Using a starting value of δ = 1 and bounds of 0 < δ < 10, Newton’s method can
be iterated until the differences in successive values of δ fall below a specified error
(typically 0.001), which is usually achieved in less than five iterations.

If faster evaluation is required, the sums in the above formulas can be accelerated
using the integral approximations

dmax∑
d=1

ρ(d;α, δ) ≈
dsum∑
d=1

ρ(d;α, δ) +
∫ dmax+0.5

dsum+0.5
ρ(x;α, δ)dx

=
dsum∑
d=1

ρ(d;α, δ) + ρ(dsum + 0.5;α− 1, δ)− ρ(dmax + 0.5;α− 1, δ)
α− 1

dmax∑
d=1

ρ(d;α + 1, δ) ≈
dsum∑
d=1

ρ(d;α + 1, δ) +
∫ dmax+0.5

dsum+0.5
ρ(x;α + 1, δ)dx

=
dsum∑
d=1

ρ(d;α + 1, δ) + ρ(dsum + 0.5;α, δ)− ρ(dmax + 0.5;α, δ)
α

(1.19)
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where the parameter dsum can be adjusted to exchange speed for accuracy. For typical
values of α, δ, and dmax used in this work, the accuracy is approximately 1/dsum.

The best-fit α (and corresponding δ) is chosen by minimizing the | |1/2 metric
over logarithmic differences between the candidate models D(di;α, δ) and the data

argminα
∑
di

| log(D(di))− log(D(di;α, δ))|1/2 (1.20)

The | |1/2 metric (or | |p-norm with p = 1/2) favors maximizing error sparsity over
minimizing outliers [39, 24, 116, 55, 103, 21, 117]. Several authors have recently shown
that it is possible to reconstruct a nearly sparse signal from fewer linear measurements
than would be expected from traditional sampling theory. Furthermore, by replacing
the | |1 norm with the | |p with p < 1, reconstruction is possible with substantially
fewer measurements.

Using logarithmic values more evenly weights their contribution to the model fit
and more accurately reflects the number of packets used to compute each value of
D(di). Lower-accuracy data points are avoided by limiting the fitting procedure to
data points where the value is greater than the standard deviation: D(di) > σ(di).

1.4 RESULTS

Figure 1.6b shows five representative model fits out of the 350 performed on 10 data
sets, 5 network quantities, and 7 valid packet windows: NV = 105, 3×105, 106, 3×106,
107, 3×107, 108. The model fits are valid over the entire range of d and provide pa-
rameter estimates with precisions of 0.01. In every case, the high value of p(d = 1) is
indicative of a large contribution from a combination of supernode leaves, core leaves,
and isolated links (Figure 1.17a). The breadth and accuracy of these data allow a
detailed comparison of the model parameters. Figure 1.6c shows the model offset δ
versus the model exponent α for all 350 fits. The different collection locations are
clearly distinguishable in this model parameter space. The Tokyo collections have
smaller offsets and are more tightly clustered than the Chicago collections. Chicago
B has a consistently smaller source and link packet model offset than Chicago A.
All the collections have source, link, and destination packet model exponents in the
relatively narrow 1.5 < α < 2 range. The source fan-out and destination fan-in model
exponents are in the broader 1.5 < α < 2.5 range and are consistent with the prior
literature [34]. These results represent an entirely new approach to characterizing
Internet traffic that allows the distributions to be projected into a low-dimensional
space and enables accurate comparisons among packet collections with different lo-
cations, dates, durations, and sizes. Figure 1.6c indicates that the distributions of
the different collection points occupy different parts of the modified Zipf–Mandelbrot
model parameter space. Figures 1.7–1.16 show the measured and modeled differen-
tial cumulative distributions for the source fan-out, source packets, destination fan-in,
destination packets, and link packets for all the collected data.

Figure 1.17b shows the average relative fractions of sources, total packets, total
links, and the number of destinations in each of the five topologies for the ten data
sets, and seven valid packet windows: NV = 105, 3×105, 106, 3×106, 107, 3×107, 108.
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Figure 1.6 Streaming network traffic quantities, distributions, and model
fits. (a) Internet traffic streams of NV valid packets are divided into a variety of
quantities for analysis. (b) A selection of 5 of the 350 measured differential cumu-
lative probabilities spanning different locations, dates, and packet windows. Blue
circles are measured data with ±1-σ error bars. Black lines are the best-fit modi-
fied Zipf–Mandelbrot models with parameters α and δ. Red dots highlight the large
contribution of leaf nodes and isolated links. (c) Model fit parameters for all 350
measured probability distributions.
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The four projections in Figure 1.17b are chosen from Figures 1.18–1.21 to highlight
the differences in the collection locations. The distinct regions in the various pro-
jections shown in Figure 1.17b indicate that underlying topological differences are
present in the data. The Tokyo collections have much larger supernode leaf compo-
nents than the Chicago collections. The Chicago collections have much larger core
and core leaves components than the Tokyo collections. Chicago A consistently has
fewer isolated links than Chicago B. Comparing the modified Zipf–Mandelbrot model
parameters in Figure 1.6c and underlying topologies in Figure 1.17b suggests that
the model parameters are a more compact way to distinguish the network traffic.

Figures 1.6c and 1.17b indicate that different collection points produce different
model parameters α and δ and that these collection points also have different under-
lying topologies. Figure 1.22 connects the model fits and topology observations by
plotting the topology fraction as a function of the model leaf parameter 1/(1 + δ)α
which corresponds to the relative strength of the distribution at p(d = 1)

1/(1 + δ)α ∝ p(d = 1;α, δ) (1.21)

The correlations revealed in Figure 1.22 suggest that the model leaf parameter
strongly correlates with the fraction of the traffic in different underlying network
topologies and is a potentially new and beneficial way to characterize networks. Fig-
ure 1.22 indicates that the fraction of sources, links, and destinations in the core
shrinks as the relative importance of the leaf parameter in the source fan-out and
destination fan-in increases. In other words, more source and destination leaves mean
a smaller core. Likewise, the fraction of links and total packets in the supernode
leaves grows as the leaf parameter in the link packets and source packets increases.
Interestingly, the fraction of sources in the core leaves and isolated links decreases as
the leaf parameter in the source and destination packets increases indicating a shift
of sources away from the core leaves and isolated links into supernode leaves. Thus,
the modified Zipf–Mandelbrot model and its leaf parameter provide a direct connec-
tion with the network topology, underscoring the value of having accurate model fits
across the entire range of values and in particular for d = 1.

Figures 1.23–1.27 show the fraction of the sources, links, total packets, and des-
tinations in each of the measured topologies for all the locations as a function of the
modified Zipf–Mandelbrot leaf parameter computed from the model fits of the source
packets, source fan-out, link packets, destination fan-in, and destination packets taken
from Figures 1.7–1.16.

1.5 DISCUSSION

Measurements of Internet traffic are useful for informing policy, identifying and pre-
venting outages, defeating attacks, planning for future loads, and protecting the Do-
main Name System [33]. On a given day, millions of IPs are engaged in scanning
behavior. Our improved models can aid cybersecurity analysts in determining which
of these IPs are nefarious [118], the distribution of attacks in particular critical sectors
[51], identifying spamming behavior [44], how to vaccinate against computer viruses
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[8], obscuring web sources [52], identifying significant flow aggregates in traffic [26],
and sources of rumors [95].

The results presented here have a number of potential practical applications for
Internet stakeholders. The methods presented of collecting, filtering, computing, and
binning the data to produce accurate measurements of a variety of network quantities
are generally applicable to Internet measurements and have the potential to produce
more accurate measures of these quantities. The accurate fits of the two-parameter
modified Zipf–Mandelbrot distribution offer all the usual benefits of low-parameter
models: measuring parameters with far less data, accurate predictions of network
quantities based on a few parameters, observing changes in the underlying distribu-
tion, and using modeled distributions to detect anomalies in the data.

From a scientific perspective, improved knowledge of how Internet traffic flows
can inform our understanding of how economics, topology, and demand shape the
Internet over time. As with all scientific disciplines, the ability of theoreticians to
develop and test theories of the Internet and network phenomena is bounded by
the scale and accuracy of measured phenomena [2, 19, 109, 111]. The connections
among dynamic evolution [14], network topology [92][15, 79], network robustness [71],
controllability [78], community formation [99], and spreading phenomena [50] have
emerged in many contexts [9, 112, 64]. Many first-principles theories for Internet
and network phenomena have been proposed, such as Poisson models [98], fractional
Brownian motion [115], preferential attachment [10, 4][93, 106], statistical mechanics
[3], percolation [1], hyperbolic geometries [67, 66], non-global greedy routing [16, 17,
18], interacting particle systems [6], higher-order organization of complex networks
from graph motifs [12], and minimum control energy [74]. All of these models require
data to test them. In contrast to previous network models that have principally
been based on data obtained from network crawls from a variety of start points
on the network, our network traffic data are collected from observations of network
streams. Both viewpoints provide important network observations. Observations of a
network stream provide complementary data on network dynamics and highlight the
contribution of leaves and isolated edges, which are less sampled in network crawls.

The aggregated data sets our teams have collected provide a unique window
into these questions. The nonlinear fitting techniques described are a novel approach
to fitting power-law data and have potential applications to power-law networks in
diverse domains. The model fit parameters present new opportunities to connect
the distributions to underlying theoretical models of networks. That the model fit
parameters distinguish the different collection points and are reflective of different
network topologies in the data at these points suggests a deeper underlying connection
between the models and the network topologies.

1.6 CONCLUSIONS

Our society critically depends on the Internet for our professional, personal, and polit-
ical lives. This dependence has rapidly grown much stronger than our comprehension
of its underlying structure, performance limits, dynamics, and evolution. The fun-
damental characteristics of the Internet are perpetually challenging to research and
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analyze, and we must admit we know little about what keeps the system stable. As
a result, researchers and policymakers deal with a multi-trillion-dollar ecosystem es-
sentially in the dark, and agencies charged with infrastructure protection have little
situational awareness regarding global dynamics and operational threats. This paper
has presented an analysis of the largest publicly available collection of Internet traffic
consisting of 50 billion packets and reveals a new phenomenon: the importance of
otherwise unseen leaf nodes and isolated links in Internet traffic. Our analysis fur-
ther shows that a two-parameter modified Zipf–Mandelbrot distribution accurately
describes a wide variety of source/destination statistics on moving sample windows
ranging from 100,000 to 100,000,000 packets over collections that span years and con-
tinents. The measured model parameters distinguish different network streams, and
the model leaf parameter strongly correlates with the fraction of the traffic in differ-
ent underlying network topologies. These results represent a significant improvement
in Internet modeling accuracy, improve our understanding of the Internet, and show
the importance of stream sampling for measuring network phenomena.
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Figure 1.8 Measured differential cumulative probabilities. Blue circles with ±1-
σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black line)
and parameters α and δ performed for Tokyo 2017 Apr 12.
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Figure 1.9 Measured differential cumulative probabilities. Blue circles with ±1-
σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black line)
and parameters α and δ performed for Chicago A 2016 Jan 21.
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Figure 1.10 Measured differential cumulative probabilities. Blue circles with
±1-σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black
line) and parameters α and δ performed for Chicago A 2016 Feb 18.
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Figure 1.11 Measured differential cumulative probabilities. Blue circles with
±1-σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black
line) and parameters α and δ performed for Chicago A 2016 Mar 17.
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Figure 1.12 Measured differential cumulative probabilities. Blue circles with
±1-σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black
line) and parameters α and δ performed for Chicago A 2016 Apr 06.
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Figure 1.13 Measured differential cumulative probabilities. Blue circles with
±1-σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black
line) and parameters α and δ performed for Chicago B 2016 Jan 21.
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Figure 1.14 Measured differential cumulative probabilities. Blue circles with
±1-σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black
line) and parameters α and δ performed for Chicago B 2016 Feb 18.
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line) and parameters α and δ performed for Chicago B 2016 Mar 17.
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Figure 1.16 Measured differential cumulative probabilities. Blue circles with
±1-σ error bars, along with their best-fit modified Zipf–Mandelbrot models (black
line) and parameters α and δ performed for Chicago B 2016 Apr 06.
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Figure 1.18 Fraction of data in different network topologies. Fraction of data
in isolated links, core leaves, and supernode leaves versus the fraction of data in the
core for each location, time, and seven packet windows (NV = 105, . . . , 108).
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Figure 1.19 Fraction of data in different network topologies. Fraction of data
in the core, core leaves, and supernode leaves versus the fraction of data in isolated
links for each location, time, and seven packet windows (NV = 105, . . . , 108).
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Figure 1.20 Fraction of data in different network topologies. Fraction of data
in the core, isolated links, and supernode leaves versus the fraction of data in core
leaves for each location, time, and seven packet windows (NV = 105, . . . , 108).
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Figure 1.21 Fraction of data in different network topologies. Fraction of data
in the core, isolated links, and core leaves versus the fraction of data in supernode
leaves for each location, time, and seven packet windows (NV = 105, . . . , 108).
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Figure 1.22 Topology versus model leaf parameter. Network topology is highly
correlated with the modified Zipf–Mandelbrot model leaf parameter 1/(1 + δ)α. A
selection of eight projections showing the fraction of data in various underlying topolo-
gies. Vertical axis is the corresponding fraction of the sources, links, total packets,
and destinations that are in various topologies. Horizontal axis is the value of the
model parameter taken from either the source packet, source fan-out, link packet,
destination fan-in, or destination packet fits. Data points are for each location, time,
and seven packet windows (NV = 105, . . . , 108).
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Figure 1.23 Topology versus modified Zipf–Mandelbrot model leaf parame-
ter. Fraction of data in the core, isolated links, core leaves, and supernode leaves
versus the model leaf parameter computed from the source packet modified Zipf–
Mandelbrot model fits for each location, time, and seven packet windows (NV =
105, . . . , 108).
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Figure 1.24 Topology versus modified Zipf–Mandelbrot model leaf parame-
ter. Fraction of data in the core, isolated links, core leaves, and supernode leaves
versus the model leaf parameter computed from the source fan-out modified Zipf–
Mandelbrot model fits for each location, time, and seven packet windows (NV =
105, . . . , 108).
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Figure 1.25 Topology versus modified Zipf–Mandelbrot model leaf parame-
ter. Fraction of data in the core, isolated links, core leaves, and supernode leaves
versus the model leaf parameter computed from the link packets modified Zipf–
Mandelbrot model fits for each location, time, and seven packet windows (NV =
105, . . . , 108).
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Figure 1.26 Topology versus modified Zipf–Mandelbrot model leaf parame-
ter. Fraction of data in the core, isolated links, core leaves, and supernode leaves
versus the model leaf parameter computed from the destination fan-out modi-
fied Zipf–Mandelbrot model fits for each location, time, and seven packet windows
(NV = 105, . . . , 108).
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Figure 1.27 Topology versus modified Zipf–Mandelbrot model leaf parame-
ter. Fraction of data in the core, isolated links, core leaves, and supernode leaves
versus the model leaf parameter computed from the destination packets modi-
fied Zipf–Mandelbrot model fits for each location, time, and seven packet windows
(NV = 105, . . . , 108).
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