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The Need for a New Sensor Network Simulator 
The emergence of wireless sensor networks brought many open issues to network designers. 
Traditionally, the three main techniques for analyzing the performance of wired and wireless 
networks are analytical methods, computer simulation, and physical measurement. However, 
because of many constraints imposed on sensor networks, such as energy limitation, 
decentralized collaboration, fault tolerance, algorithms for sensor networks tend to be quite 
complex and usually defy analytical methods that have been proved to be fairly effective for 
traditional networks. Furthermore, few sensor networks have come into existence, for there are 
still many unsolved research problems, so measurement is virtually impossible. It appears that 
simulation is the only feasible approach to the quantitative analysis of sensor networks.  

Why a New Simulator 

A good simulator possesses two essential features. First, it must support reusable models. A 
model written for one simulation should be able to be effortlessly embedded into other 
simulations that require the same kind of a model. Second, the model should be easy to be built 
from scratch. Interestingly, we observe that most existing simulators do not possess these two 
features simultaneously. Most commercial simulators provide a reusable model library, often 
coming with a friendly graphical user interface, but adding new models to the library is always a 
painful task. On the other hand, most freely available simulators follow a bottom-up approach; 
writing models from scratch is straightforward, but the reusability is severely limited. 
 
ns2 (ns2, 1990), perhaps the most widely used network simulator, has been extended to include 
some basic facilities to simulate sensor networks. However, one of the problems of ns2 is its 
object-oriented design that introduces much unnecessary interdependency between modules. 
Such interdependency sometimes makes the addition of new protocol models extremely difficult, 
only mastered by those who have intimate familiarity with the simulator.  Being difficult to 
extend is not a major problem for simulators targeted at traditional networks, for there the set of 
popular protocols is relatively small.  For example, Ethernet is widely used for wired LAN, IEEE 
802.11 for wireless LAN, TCP for reliable transmission over unreliable media.  For sensor 
networks, however, the situation is quite different.  There are no such dominant protocols or 
algorithms and there will unlikely be any, because a sensor network is often tailored for a 
particular application with specific features, and it is unlikely that a single algorithm can always 
be the optimal one under various circumstances.  

Many other publicly available network simulators, such as JavaSim (Javasim, 2004), SSFNet 
(ssfnet, 2000), Glomosim (Glomosim, 2004) and its descendant Qualnet (Qualnet, 2004), 
attempted to address problems that were left unsolved by ns2. Among them, JavaSim developers 
realized the drawback of object-oriented design and tried to attack this problem by building a 
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component-oriented architecture.  However, they chose Java as the simulation language, 
inevitably sacrificing the efficiency of the simulation. Moreover, C++ with Standard Template 
Library (Musser and Saini 1996) can easily achieve high efficiency while maintaining a high 
level of code reuse, which matched our design goal better than Java. SSFNet and Glomosim 
designers were more concerned about parallel simulation, with the latter more focused on 
wireless networks. They are not superior to ns2 in terms of design and extensibility.  

Features of SENSE 

SENSE is designed to be an efficient and powerful sensor network simulator that is also easy of 
use. We identify three most critical factors as:  

• Extensibility: The enabling force behind the fully extensibility network simulation 
architecture is our progress on component-based simulation. We introduced a 
component-port model that frees simulation models from interdependency usually found 
in an object-oriented architecture, and then proposed a simulation component 
classification that naturally solves the problem of handling simulated time. The 
component-port model makes simulation models extensible: a new component can 
replace an old one if they have compatible interfaces, and inheritance is not required. The 
simulation component classification makes simulation engines extensible: advanced users 
have the freedom to develop new simulation engines that meet their needs. 

• Reusability: The removal of interdependency between models also promotes reusability. 
A component developed for one simulation can be used in another if it satisfies the 
latter's requirements on the interface and semantics. There is another level of reusability 
made possible by the extensive use of C++ template: a component is usually declared as a 
template class so that it can handle different type of data. 

• Scalability: Unlike many parallel network simulators, especially SSFNet and Glomosim, 
parallelization is provided as an option to the users of SENSE. This reflects our belief 
that completely automated parallelization of sequential discrete event models, however 
tempting it may seem, is impossible, just as automated parallelization of sequential 
programs. Even if it is possible, it is doomed to be inefficient. Therefore, parallelizable 
models require extra effort than sequential models, but a good portion of users are not 
interested in parallel simulation at all. In SENSE, a parallel simulation engine can only 
execute components of compatible components. If a user is content with the default 
sequential simulation engine, then every component in the model repository can be 
reused. 

Currently Available Components and Simulation Engines: 

• Battery Model: Linear Battery, Discharge Rate Dependent and/or Relaxation Battery 

• Application Layer : Random Neighbor; Constant Bit Rate 

• Network Layer: Simple Flooding; a simplified verion of ADOV without route repairing, 
a simplified version of DSR without route repairing 

• MAC Layer: NullMAC; IEEE 802.11 with DCF 
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• Physical Layer: Duplex Transceiver; Wireless Channel 

• Simulation Engine: CostSimEng (sequential)   

 

Component Simulation Toolkit 

 
COST (Component-Oriented Simulation Toolkit) is a general-purpose discrete event simulator 
(Chen and Szymanski, 2001). The main design purpose of COST is to maximize the reusability 
of simulation models without losing efficiency. To achieve this goal, COST adopts a component-
based simulation worldview based on a component-port model. A simulation is built by 
configuring and connecting a number of components, either off-the-shelf or fully customized. 
Components interact with each other only via input and output ports, thus the development of a 
component becomes completely independent of others. The component-port model of COST 
makes it easy to construct simulation components from scratch. Implemented in C++, COST also 
features a wide use of templates to facilitate language-level reuse. 

COST is a library of several classes that facilitates the development of discrete event simulation 
using CompC++, a component-oriented extension to C++. It differs from many other tools in the 
simulation worldview it adopts. There are primarily two worldviews that are widely used in the 
discrete event simulation community: Event Scheduling and Process Interaction. Both have their 
strengths and weaknesses. The Event Scheduling is much more efficient, but it is hard to 
program. Process Interaction technique requires less programming effort. However, it is difficult 
to implement using imperative programming languages and many implementations based on 
special simulation languages are not efficient.  

COST adopts a component-oriented worldview, which is a variation of the Event Scheduling 
worldview. Using this technique, a discrete event simulation is viewed as a collection of 
components that interact with each other by exchanging messages through communication ports. 
Besides components, the simulation contains a simulation engine that is responsible for 
synchronizing components. An event-oriented view is adopted to model individual components, 
i.e., the component has one or more event handlers each of which performs corresponding 
actions upon the arrival of a certain type events. Events are divided into two categories. 
Synchronous events are the messages arriving at the input ports, which is sent by its neighboring 
components. Asynchronous events are associated with timers, a special kind of ports lying 
between the components and the simulation engine. Components receive and schedule 
asynchronous events through timers.  

COST takes advantage of component-oriented features that are only available in CompC++.  

Motivation: From Object to Component 

Convenient and powerful as object-oriented programming is, it has its limits.  One of these is that 
it often imposes unnecessary inter-object dependence on the deployment of objects that prevents 
objects from being reusable.  As a small example, in the following diagram, an object A calls a 
method, g(),  of another object B.   
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Figure 1. Object Dependencies in Object-Oriented Languages 

Object A must keep a pointer (or a reference) to object B in order to make such a method call.  
Let us assume that these two objects have been set up correctly in one program.  The difficulty 
arises when A is to be reused in another program.  Obviously, in such a case, either B must also 
be moved over to the new program, or there is another object that is derived from B available for 
A to access .  If it is the former, things will become worse if some of B's methods are dependent 
on another object C.  As a result, any object that A depends upon, either directly or indirectly, 
must be available in the new program. 

Yet we only need, in the above example, a method that provides the same functionality as B.g() 
does.  We should not be concerned with which object can provide such a functionality, whether it 
be B or a different, completely unrelated object D.  In object-oriented programming, once you 
make an inter-object method call, you not only introduce explicit inter-object dependence 
manifested by the method call (represented by the solid arrow in the above diagram), but also 
implicit dependence that is hard to trace and maintain (represented by the dashed arrow). 

The solution is to introduce inports and outports. The use of inports and outports has been 
introduced in DEVS formalism (Zeigler et al., 1997; DEVS, 2004), however, in our approach 
their role expanded to become, next to component themselves, and integral part of composing 
simulations. An inport defines what functionality an object (now it is becoming a component) 
provides, and an outport defines what functionality it needs.  From the diagram below, it is 
apparent that the implicit dependence has been removed.  Another benefit of having inports and 
outports is that any interaction a component may have with other components can be deduced 
only from its interface (which is composed of declarations of inports and outports).  In contrast, 
for an object the same information is clear only after scanning through the entire source code. 

 

The central idea of CompC++ is to add inports and outports to objects to make them look and 
function like components.  The extension to the standard C++ language is minimal: only 4 new 
keywords (component, inport, outport, and connect) and 4 new syntactic rules are needed.  The 
addition of these, nevertheless, opens up a whole new programming paradigm, which is referred 
to as component-oriented programming. 
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Figure 2. Component Dependencies in Component-Oriented Simulation 

Implementation of COST 

The first issue of implementing the aforementioned simulation component model is the choice of 
the implementing language. Discrete event simulators can be roughly divided into two groups: 
those based on a special simulation language, such as GPSS and SIMSCRIPT (Law and Kelton, 
1982), and those based on a general programming language, such as SIMPACK (Fishwick, 
1992) and SIMKIT (Gomes et al., 1995) Simulation languages contain abundant semantics 
designed for simulation, but requires a steep learning curve. General programming languages are 
more familiar to programmers, but lack the essential simulation constructs. 

We chose C++ as the implementation language for two reasons. First, general programming 
languages always have good compiler support, and thus their execution speed is generally faster 
after optimization. Second, language-level reusability is a factor as important as component-level 
reusability, and C++ is one of the few languages that support code reuse well. With STL 
(Austern, 1999; Musser and Saini, 1996), C++ programs can easily achieve high efficiency while 
maintaining a high level of code reuse, which matches our design goal. 

However, with C++ we ran into a problem. As mentioned in last section, input ports are 
equivalent to functions, so it is natural to define them as member functions of the component. 
But how can we represent output ports? C++ language standard requires that the address of an 
object must be provided when the member function is being called. This conflicts with the 
requirement that component development should be completely independent. The classical 
solution for such a problem is a functor, which is the generalization of the function pointer. 

Functor 

A functor, or a function object, is an object “that can be called in the same way that a function is” 
(Austern, 1999; Musser and Saini, 1996). A functor class overloads the operator () so that it 
appears as a function pointer. For instance, the following is declaration of a functor class that 
takes one function argument. 

template <class T> class functor { 
public: 
 typedef funct_t bool (*f)(T ); 
 functor (funct_t _f): f(_f) {}  
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 virtual bool operator (T t) { return f(t); } 
private: 
 funct_t f; 
}; 

 

The class functor is a helper class that wraps a function pointer of type funct_t. Upon 
invocation, it calls the actual function pointer and returns the result. The syntax of using the 
functor is exactly the same as that of a function pointer. 

The same idea can be applied to member functions as well. In C++, a member function of a 
class always takes an implicit parameter this, which is a pointer to the object upon which the 
member function will be invoked. As a result, two member functions that belong to different 
classes but take the same explicit parameters are treated as functions of different types. In the 
component level, however, they should be viewed as interchangeable. A mem_functor declared 
below can hide the class type as well as the implicit parameter this. 

 
template <class C, class T> 
class mem_functor : public functor { 
public: 
 typedef funct_t  
  bool (C::*f)(T); 
 mem_functor (C* _c, funct_t _f) 
  : c(_c), f(_f) {} 
 virtual bool operator(T t){return c->f(t);} 
private: 
 C* c; 
 funct_t f; 
}; 

 

With these two classes, functor and mem_functor, it is now straightforward to implement 
input and output ports. An input port could be simply an instantiation of the mem_functor class. 
Since an output port does not know the component(s) to which it will be connected, it could be 
represented as a pointer to a functor. When connecting an input port to an output port 
implemented in this way, the address of the mem_functor object corresponding to the input port 
is assigned to the functor pointer corresponding to the output port, because the class 
mem_functor is derived from the functor class. When the output port is invoked, the operator () 
of the mem_functor class is called, because it is declared as virtual. 

Inport and Outport Class 

The method of implementing input and output ports directly on top of two functor classes should 
work well, but there are some practical considerations. For instance, a port should have a name 
for the purpose of the debugging and a port must be set up properly before it can be used in order 
to initialize its member variables. Moreover, one to multiple connections would make topology 
generation more convenient. It is easy to connect an input port to multiple output ports by 
passing its address to each of them, but when connecting an output port to multiple input ports, 
the output port must store the addresses of all connected input ports. Those reasons are the main 
motivation for building the inport and outport class on top of functor classes. 
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The outport class is declared to be a class with a template parameter that is the type of the 
events that can be handled by the output port. The function Setup() gives the port a string name. 
The function Write() is invoked by the component to output a message. ConnectTo() connects an 
input port to the output port. 
 

template <class T> 
class outport { 
public: 
 void Setup(typeii* c, const char* name); 
 bool Write(T t); 
 void ConnectTo(inport& port); 
private: 
 std::vector<functor<T>*> inports; 
}; 

 

Similarly, the inport class takes one template parameter that is the type of the function 
argument. It must be bound to a member function of a component, therefore the type of the 
component is passed as the template parameter of the member template function Setup(), as 
shown below. 
 

template <class T> 
class inport { 
public: 
 template <class C> 
  void Setup( typeii* c, 
   mem_functor<C,T>::funct_t _f, 
   const char* name); 
 bool Write(T t) { return (*f)(t); }; 
private: 
 functor<T>* f; 
}; 

 
Since the type of the member function bound to the input port must be passed to the Setup() 

function, we need to find a way to construct this type from two template parameters, C and T. 
Fortunately, this type is declared publicly in the class mem_functor<C,T> as funct_t. 

 Simulation Time and Port Index 

Until now, functors in COST take only one function argument, which is the message exchanged 
between components. However, two more arguments are necessary. First, all the components in 
COST are time-dependent components, so messages should be timestamped. Hence, an extra 
argument is needed to denote the simulation time at which the message is generated. Another 
extra argument is for arrays of input ports, which are convenient if a number of input ports are of 
the same type. All elements in an input port array share the member function bound to them. 
Therefore, it is necessary to have an extra argument to distinguish between them by their indices. 
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The index of an input port that is an element of an array is always zero. The resulting functor 
class could be like (other classes must be modified accordingly): 

template <class T> class functor { 
public: 
 typedef funct_t bool (*f)(T,double,int ); 
 functor (funct_t _f): f(_f) {}  
 virtual bool operator (T t, double time) { 
  return f(t,time,index); } 
private: 
 funct_t f; 
 int index; 
}; 

Timer 

The timer class requires two different functor classes, t_functor and mt_functor, because a time 
event has empty content, so the binding function of a timer only takes the timestamp argument 
and the index argument. A timer object is actually an array of timers, each of which is identified 
with a unique integer number, as in the input port arrays. The timer class has two methods: Set() 
to schedule an event and Cancel() to cancel an event. 

 
class timer { 
public: 
 void Setup( typeii*, 
  mt_functor<C>::funct_t, const char* name); 
 void Set(double time, int index=0); 
 void Cancel(int index=0); 
private: 
 t_functor * f; 
};  

 
 So far, we have described techniques that we adopted to implement the component-port 
model in C++. It should be noted that all these implementation details are transparent to users. 
Users do not need to have advanced knowledge of C++ templates in order to write simulations in 
COST. 

Wireless Sensor Network Simulation  

Building a wireless sensor network simulation in SENSE consists of the following steps:  

• Designing a sensor node component  

• Constructing a sensor network derived from CostSimEng  

• Configuring the system and running the simulation  
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Here, we assume that all components needed by a sensor node component are available from the 
component repository. If this is not the case, the user must develop new components, as 
described at the COST website (http://www.cs.rpi.edu/~cheng3/cost). We should also mention 
that the first step of designing a sensor node component is not always necessary, if a standard 
sensor node is to be used.  

This first line of this source file demands that HeapQueue must be used as the priority queue for 
event management. For wireless network simulation, because of the inherent drawback of 
CalendarQueue, and also because of the particular channel component being used, HeapQueue 
is often faster.  

 
#define queue_t HeapQueue 
 

This header file is absolutely required  

 
#include "../../common/sense.h" 
 

The following header files are necessary only if the corresponding components are needed by the 
sensor node component  

 
#include "../../app/cbr.h" 
#include "../../mob/immobile.h" 
#include "../../net/flooding.h" 
#include "../../net/aodvi.h" 
#include "../../net/dsri.h" 
#include "../../mac/null_mac.h" 
#include "../../mac/mac_80211.h" 
#include "../../phy/transceiver.h" 
#include "../../phy/simple_channel.h" 
#include "../../energy/battery.h" 
#include "../../energy/power.h" 
#include "../../util/fifo_ack.h" 
 

#cxxdef is similar to #define, except it is only recognized by the CompC++ compiler. The 
following two lines state that the flooding component will be used for the network layer. These 
two macros can also be overridden by command line macros definitions (whose format is '-D='.  

 
#cxxdef net_component Flooding 
#cxxdef net_struct Flooding_Struct 
 

For layer XXX, XXX_Struct is the accompanying class that defines data structures and types 
used in that layer. The reason we need a separate class for this purpose is that each XXX is a 
component, and that due to the particular way in which the CompC++ compiler was 
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implemented data structures and types defined inside any component is not accessible from 
outside. Therefore, for each layer XXX, we must define all those data structures and types in 
XXX_Struct, and then derive component XXX from XXX_Struct.  

The following three lines state:  

• The type of packets in the application layer is CBR_Struct::packet_t  

• The network layer passes application layer packets by reference (which may be faster 
than by pointer, for CBR_Struct::packet_t is small, so app_packet_t becomes the 
template parameter of net_struct; the type of packets in the network layer is then 
net_packet_t.  

• Now that net_packet_t is more than a dozen bytes long, so it is better to pass it by pointer, 
so net_packet_t* instead of net_packet_t becomes the template parameter of the 
MAC80211_Struct; the type of packets in the mac layer is then mac_packet_t. Physical 
layers also use mac_packet_t, so there is no need to define more packet types.  

 
typedef CBR_Struct::packet_t app_packet_t; 
typedef net_struct<app_packet_t>::packet_t net_packet_t; 
typedef MAC80211_Struct<net_packet_t*>::packet_t mac_packet_t; 
 

 
Figure 3. Sensor Node Components in SENSE 
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Now we can begin to define the sensor node component. First we instantiate every 
subcomponent used by the node component. We need to determine the template parameter type 
for each subcomponent, usually starting from the application layer. Normally the application 
layer component does not have any template parameter.  

The picture above shows the internal structure of a sensor node.  

 
 
component SensorNode : public TypeII 
{ 
public: 
 
    CBR app; 
    net_component <app_packet_t> net; 
    MAC80211 <net_packet_t*> mac; 
    // A transceiver that can transmit and receive at the same time (of course 
    // a collision would occur in such cases) 
    DuplexTransceiver < mac_packet_t > phy; 
    // Linear battery 
    SimpleBattery battery; 
    // PowerManagers manage the battery 
    PowerManager pm; 
    // sensor nodes are immobile 
    Immobile mob; 
    // the queue used between network and mac 
    FIFOACK3<net_packet_t*,ether_addr_t,unsigned int> queue; 
     
    double MaxX, MaxY;  // coordinate boundaries 
    ether_addr_t MyEtherAddr; // the ethernet address of this node 
    int ID; // the identifier 
 
    virtual ~SensorNode(); 
    void Start(); 
    void Stop(); 
    void Setup(); 
 

The following lines define one inport and two outports to be connected to the channel 
components.  

 
 outport void to_channel_packet(mac_packet_t* packet, double power, int id); 
 inport void from_channel (mac_packet_t* packet, double power); 
 outport void to_channel_pos(coordinate_t& pos, int id); 
}; 
 
SensorNode::~SensorNode() 
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{ 
} 
 
void SensorNode::Start() 
{ 
} 
 
void SensorNode::Stop() 
{ 
} 
 

This function must be called before running the simulation.  

void SensorNode::Setup() 
{ 

At the beginning the amount of energy in each battery is 1,000,000 Joules.  

 
    battery.InitialEnergy=1e6; 
     

Each subcomponent must als know the ethernet address of the sensor node it resides. Remember 
the application layer is a CBR component, which would stop at FinishTime to give the whole 
network an opportunity to clean up any packets in transit. Assiging false to app.DumpPackets 
means that if COST_DEBUG is defined, app still won't print out anything.  

     
    app.MyEtherAddr=MyEtherAddr; 
    app.FinishTime=StopTime()*0.9; 
    app.DumpPackets=false; 
     

Set the coordinate of the sensor node. Must also give ID to mob since ID was used to identify the 
index of the sensor node when the position info is sent to the channel component.  

 
    mob.InitX=Random(MaxX); 
    mob.InitY=Random(MaxY); 
    mob.ID=ID; 
 

When a net component is about to retransmit a packet that it received, it cannot do so because 
otherwise all nodes that received the packet may attempt to retransmit the packet immediately, 
inevitably resulting in a collision. ForwardDelay gives the maximum delay time a needed-to-be-
retransmit packet may incur. The actual delay is randomly chosen between [0,ForwardDelay].  

 
    net.MyEtherAddr=MyEtherAddr; 
    net.ForwardDelay=0.1; 
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    net.DumpPackets=true; 
     

If Promiscuity is ture, then the mac component will forward every packet even if it not destined 
to this sensor node, to the network layer. And we want to debug the mac layer, so we set 
mac.DumpPackets to true.  

  
    mac.MyEtherAddr=MyEtherAddr; 
    mac.Promiscuity=true; 
    mac.DumpPackets=true; 
    

The PowerManager takes care of power consumption at different states. The following lines state 
the power consumption is 1.6W at transmission state, 1.2 at receive state, and 1.115 at idle state.  

 
    pm.TXPower=1.6; 
    pm.RXPower=1.2; 
    pm.IdlePower=1.15; 
 

phy.TxPower is the transmission power of the antenna. phy.RXThresh is the lower bound on the 
receive power of any packet that can be successfuly received. phy.CSThresh is the lower bound 
on tye receive power of any packet that can be detected. phy also needs to know the id because it 
needs to communicate with the channel component.  

 
    phy.TXPower=0.0280; 
    phy.TXGain=1.0; 
    phy.RXGain=1.0;  
    phy.Frequency=9.14e8; 
    phy.RXThresh=3.652e-10; 
    phy.CSThresh=1.559e-11; 
    phy.ID=ID; 
 

Now we can establish the connections between components. The connections will become much 
clearer if we look at the diagram.  

 
 
    connect app.to_transport, net.from_transport; 
    connect net.to_transport, app.from_transport; 
     
    connect net.to_mac, queue.in; 
    connect queue.out, mac.from_network; 
    connect mac.to_network_ack, queue.next; 
    connect queue.ack, net.from_mac_ack; 
    connect mac.to_network_data, net.from_mac_data ; 
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These three lines are commented out. They are used when the net component is directly 
connected to the mac component without going through the queue.  

 
    //connect mac.to_network_data, net.from_mac_data ; 
    //connect mac.to_network_ack, net.from_mac_ack; 
    //connect net.to_mac, mac.from_network; 
     
    connect mac.to_phy, phy.from_mac; 
    connect phy.to_mac, mac.from_phy; 
 
    connect phy.to_power_switch, pm.switch_state; 
    connect pm.to_battery_query, battery.query_in; 
    connect pm.to_battery_power, battery.power_in; 
 
 

These three connect statements are different. All above ones are between an outport of a 
subcomponent and an outport of another subcomponent, while these three are between a port of 
the sensor node and a port of a subcomponent. We can view these connections as mapping from 
the ports of subcomponents to its own ports, i.e., to expose the ports of internal components. 
Also remember the connect statement is so designed that it can take only two ports, and than 
packets always flow through from the first port to the second port, so when connection two 
inports, the inport of the subcomponent must be placed in the second place.  

 
    connect phy.to_channel, to_channel_packet; 
    connect mob.pos_out, to_channel_pos; 
    connect from_channel, phy.from_channel; 
} 
 

Once we have the sensor node component ready, we can start to build the entire simulation, 
which is named RoutingSim. It must be derived from the simulation engine class CostSimEng. 
This is the structure of the network. 

  

 
 

Figure 4. Sensor Network Components in Sense 
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component RoutingSim : public CostSimEng 
{ 
public: 
    void Start(); 
    void Stop(); 
 

These are simulation parameters. We don't want configurators of the simulation to access the 
parameters of those inter-components.  

 
    double MaxX, MaxY; 
    int NumNodes; 
    int NumSourceNodes; 
    int NumConnections; 
    int PacketSize; 
    double Interval; 
 

Here we declare sense nodes as an array of SensorNode, and a channel component.  

 
    SensorNode[]  nodes; 
    SimpleChannel < mac_packet_t > channel; 
 
    void Setup(); 
}; 
 
void RoutingSim :: Start() 
{ 
 
} 
 

After the simulation is stopped, we will collect some statistics.  

 
void RoutingSim :: Stop() 
{ 
    int i,sent,recv; 
    double delay; 
    for(sent=recv=i=0,delay=0.0;i<NumNodes;i++) 
    { 
  sent+=nodes[i].app.SentPackets; 
  recv+=nodes[i].app.RecvPackets; 
  delay+=nodes[i].app.TotalDelay; 
    } 
    printf("APP -- packets sent: %d, received: %d, success rate: %.3f, delay: %.3f\n", 
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  sent,recv,(double)recv/sent,delay/recv); 
    for(sent=recv=i=0;i<NumNodes;i++) 
    { 
  sent+=nodes[i].net.SentPackets; 
  recv+=nodes[i].net.RecvPackets; 
    } 
    printf("NET -- packets sent: %d, received: %d\n",sent,recv); 
    for(sent=recv=i=0;i<NumNodes;i++) 
    { 
  sent+=nodes[i].mac.SentPackets; 
  recv+=nodes[i].mac.RecvPackets; 
    } 
    printf("MAC -- packets sent: %d, received: %d\n",sent,recv); 
} 
 

The simulation has a Setup() function which must be called before the simulation can be run. The 
reason we don't do this in the constructor is that we must assign values to its parameters after the 
simulation component has been instantiated. The Setup() function, which you can rename to 
anything you like, first maps component parameters to corresponding simulation parameters (for 
instance, assign the value of the simulation parameter interval to the component parameter 
source.interval). It then connects pairs of inport and outports.  

 
void RoutingSim :: Setup() 
{ 
    int i,j; 
     

The size of the sensor node array must be set using SetSize() before the array can ever be used.  

     
    nodes.SetSize(NumNodes); 
    for(i=0;i<NumNodes;i++) 
    { 
  nodes[i].MaxX=MaxX; 
  nodes[i].MaxY=MaxY; 
  nodes[i].MyEtherAddr=i; 
  nodes[i].ID=i; 
     nodes[i].Setup(); // don't forget to call this function for each sensor node 
    }     
 

The channel component needs to know the total number of sensor nodes. It also needs to know 
the value of CSThresh since it won't sent packets to nodes that cann't detect them. RXThresh is 
also needed to produce the same receive power in those nodes that can just correctly recieve 
packets when using different propagation models.  

In this example FreeSpace is used.  
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    channel.NumNodes=NumNodes; 
    channel.DumpPackets=false; 
    channel.CSThresh=nodes[0].phy.CSThresh; 
    channel.RXThresh=nodes[0].phy.RXThresh; 
    channel.PropagationModel=channel.FreeSpace; 

 

The channel component also has a Setup() function which is to set the size of its outport array.  

 

    channel.Setup(); 
 
    for(i=0;i<NumNodes;i++) 
    { 
  connect nodes[i].to_channel_packet,channel.from_phy; 
  connect nodes[i].to_channel_pos,channel.pos_in; 
  connect channel.to_phy[i],nodes[i].from_channel ; 
    } 

 

This is to create communication pairs. 

 
    int src,dst; 
    for(i=0;i<NumSourceNodes;i++) 
    { 
  for(j=0;j<NumConnections;j++) 
  { 
      do 
      { 
    src=Random(NumNodes); 
    dst=Random(NumNodes); 
      }while(src==dst);  
      nodes[src].app.Connections.push_back( 
   
 make_triple(ether_addr_t(dst),Random(PacketSize)+PacketSize/2, 
    Random(Interval)+Interval/2)); 
  } 
    } 
} 
 

Running the Simulation 

To run the simulation, first we need to create a simulation object from the simulation component 
class. Several default simulation parameters must be determined. StopTime denotes the ending 
time of the simulation. Seed is the initial seed of the random number generator used by the 
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simulation.  

To compile the program, the following commands can be used:  

../../bin/cxx sim_routing.cc 

g++ -Wall -o sim_routing sim_routing.cxx  

The following command line will start the simulation run:  

sim_routing [StopTime] [NumNodes] [MaxX] [NumSourceNodes] [PacketSize] [Interval]  

 
 
int main(int argc, char* argv[]) 
{ 
    RoutingSim sim; 
 
    sim.StopTime = 1000; 
    sim.Seed = 1234; 
 
    sim.MaxX = 2000; 
    sim.MaxY = 2000; 
 
    sim.NumNodes = 110; 
    sim.NumConnections = 2; 
    sim.PacketSize = 2000; 
    sim.Interval = 100.0; 
    
    if(argc >= 2) sim.StopTime = atof(argv[1]); 
    if(argc >= 3) sim.NumNodes = atoi(argv[2]); 
    sim.NumSourceNodes = sim.NumNodes / 10; 
    if(argc >= 4) sim.MaxX = sim.MaxY = atof(argv[3]); 
    if(argc >= 5) sim.NumSourceNodes = atoi(argv[4]); 
    if(argc >= 6) sim.PacketSize = atoi(argv[5]); 
    if(argc >= 7) sim.Interval = atof(argv[6]);  
 
    printf("StopTime: %.0f, Number of Nodes: %d, Terrain: %.0f by %.0f\n", 
    sim.StopTime, sim.NumNodes, sim.MaxX, sim.MaxY); 
    printf("Number of Sources: %d, Packet Size: %d, Interval: %f\n", 
    sim.NumSourceNodes, sim.PacketSize, sim.Interval); 
 
    sim.Setup(); 
    sim.Run(); 
 
    return 0; 
} 
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Conclusions 

The example given in the previous section has been extended to simulate two innovative 
protocols for sensor networks: ESCORT (Branch et al., 2005) and SSR (Chen et al., 2005). In the 
first case, the focus was on identifying groups of sensor nodes that can share communication 
duties to save energy. The second protocol tested efficiency of a Self-Selecting Routing in which 
each hop decides its successor on the fly, using Lecture Hall Algorithm for self-selection (Chen 
et al., 2006). Both systems used large sensor networks (several thousand nodes in each case) and 
many traffic scenarios requiring multiple runs for each combination of parameters. In all cases, 
sensor simulator performed reliably and efficiently. Moreover, introducing additional features in 
the simulation, or trying different variants of the implemented protocols required either small 
modifications in existing or introduction of new components, greatly simplifying maintenance of 
the code. 

More generally, COST has been used for other network simulations, like queuing networks, 
computer networks and PCS simulations. These examples can be found at 
<http://www.cs.rpi.edu/~cheng3/cost>. COST is targeted at the simulation modelers who have 
beginning or intermediate knowledge of the C++ language. Once they understand the basic 
component-port model and its support classes, it is fairly easy for them to write models with 
COST, and, more importantly, to take the component-based approach to model the system to be 
simulated. Once a component repository with a wide range of models is developed, the modeler 
will be able to construct a simulation just by connecting components obtained from the 
component.  

COST is a discrete event simulator written in C++ that embodies a component-oriented 
modeling style. At the heart of COST is a component-port model, which is distinguished from 
many developed component models by the notion of output ports. Our simulation component 
classification allows us to extend such a component-port model to make it well suited for 
discrete event simulation by introducing the implicit timestamp mechanism and timers. 

The most distinct feature of COST is the component reusability. Components developed for 
one simulation can be effortlessly reused in other simulations. With an extensive set of library 
components, writing simulation in COST could be as simple as dragging a few components from 
the library and connecting them, as some commercial simulators do. The extra advantage of 
COST is that building components from scratch is simple. 

The only inefficiency of COST simulations comes from the message exchange between 
components, which may involve several layers of function calls and a few virtual function table 
lookups. However, this is rather the deficiency of the C++ language, not of the underlying 
component-port model, because theoretically such overhead can be eliminated during the 
configuration phase. Had we had a truly component-oriented language, COST would have 
achieved perfect efficiency. 
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