
1

Parallel Algorithms for Volumetric Surface Construction

Joseph JaJa, Qingmin Shi, and Amitabh Varshney

Institute for Advanced Computer Studies

University of Maryland, College Park

Summary

Large scale scientific data sets are appearing at an increasing rate whose sizes can range from

hundreds of gigabytes to tens of terabytes. Isosurface extraction and rendering is an important

visualization technique that enables the visual exploration of such data sets using surfaces.

However the computational requirements of this approach are substantial which in general

prevent the interactive rendering of isosurfaces for large data sets. Therefore, parallel and

distributed computing techniques offer a promising direction to deal with the corresponding

computational challenges. In this chapter, we give a brief historical perspective of the isosurface

visualization approach, and describe the basic sequential and parallel techniques used to extract

and render isosurfaces with a particular focus on out-of-core techniques. For parallel algorithms,

we assume a distributed memory model in which each processor has its own local disk, and

processors communicate and exchange data through an interconnection network. We present a

general framework for evaluating parallel isosurface extraction algorithms and describe the

related best known parallel algorithms. We also describe the main parallel strategies used to

handle isosurface rendering, pointing out the limitations of these strategies.

1. Introduction

Isosurfaces have long been used as a meaningful way to represent feature boundaries in

2

volumetric datasets. Surface representations of volumetric datasets facilitate visual

comprehension, computational analysis, and manipulation. The earliest beginnings in this field

can be traced to microscopic examination of tissues. For viewing opaque specimen it was

considered desirable to slice the sample at regular intervals and to view each slice under a

microscope. The outlines of key structures in such cross-sectional slices were traced on to

transparent sheets that were then sequentially stacked with transparent spacers in between them

[WC71, LW72]. A user holding such a translucent stack would then be able to mentally

reconstruct the location of the surface interpolating the contours on successive slices. It is

therefore only natural that one of the first algorithms for surface reconstruction from volumes

proceeded by interpolation between planar contours [FKU77]. Fuchs et al.’s method proceeded

by casting the problem of optimal surface reconstruction between planar contours as one of

finding minimum cost cycles in a directed toroidal graph. Their method computed the minimum-

area interpolating surface between the given planar contours. The advent of X-ray computed

tomography (CT) in 1973 through theoretical advances by Cormack [Cormack63, Cormack64]

and their practical realization by Hounsfield [Hounsfield73] made it significantly easier to

acquire highly-detailed cross-sectional images. The use of magnetic fields and radio waves to

create images of physical objects by Lauterbur [Lauterbur73] and Mansfield [GGM74] led to the

development of Magnetic Resonance Imaging (MRI). The obvious implications of such

volumetric imaging technologies in medical diagnosis and therapy sparked a lively interest

amongst radiologists and scientific visualization researchers and greatly accelerated research in a

variety of volume visualization and analysis tools and techniques [Levoy88, Kaufman91]. The

Visible Human Project (VHP) of the National Library of Medicine (NLM) has greatly spurred

the development of fast volume visualization techniques, including fast techniques for isosurface

3

extraction by making available 1971 digital anatomical images (15 GBytes) for the VHP male

dataset and 5189 digital images (39 GBytes) for the VHP female dataset [Yoo04]. Some

isosurfaces extracted from the VHP male dataset appear below [Lorensen01].

Figure 1: These images show various isosurfaces corresponding to different anatomical organs

extracted and rendered using the Marching-Cubes algorithm. These images are reproduced from

[Lorensen01].

Isosurface extraction also became important in another area – modeling of 3D objects with

implicit functions. The basic idea in this research is to model 3D objects as zero crossings of a

scalar field induced by an implicit function. The basis functions used in such implicit functions

could be Gaussians (blobby models) [Blinn82], quadratic polynomials (metaballs) [NHK+86], or

higher-degree polynomials (soft objects) [WMW86]. Subsequent work on level set methods by

Osher and Sethian [OS88] added a temporal dimension to implicit surfaces and enabled them to

evolve through time using numerical solutions of a time-dependent convection equation.

Techniques based on level set methods have been extensively used in modeling a variety of time-

evolving phenomena in scientific computing, CAD/CAM, computational fluid dynamics, and

computational physics [OF03].

4

Simplicity of shape control, smooth blending, and smooth dynamics characteristics have led to

the rapid adoption of isosurfaces for modeling a number of objects and phenomenon in digital

entertainment media. For instance metaballs have been used in modeling of musculature and skin

as isosurfaces of implicit radial basis functions.

Figure 2: An animation still that depicts battle between two battling Tyrannosauruses’s. The

mesh was taken from New Riders IPAS Plugin Reference CD. The muscular structure is created

using the Metareyes plug-in. This involves creating hundreds of Metaballs to gradually build up

a solid mesh. This image was created by Spencer Arts and is reproduced here from the website

http://www.siggraph.org/education/materials/HyperGraph/modeling/metaballs/trex.htm

In dynamic settings morphing and fluid flow simulations have used isosurfaces computed as

level sets of a scalar field. For instance, level-set-based morphing techniques developed by

Whitaker and Breen [BW01] have been used in movies such as Scooby Doo 2 (screen shots

below) and have been extended to work directly from a compressed format in a hierarchical run-

http://www.siggraph.org/education/materials/HyperGraph/modeling/metaballs/trex.htm

5

length-encoded scheme [HNB+06].

(a) (b)

Figure 3: Tar Monster simulation in Scooby-Doo2 (Warner Brothers): (a) shows an early test

sequence of the Tar Monster morphing, (b) shows the final rendered scene (Images copyright

Frantic Films).

Although fairly sophisticated volume visualization techniques have evolved over the last decade,

isosurface-based visualization of volumetric features continues to occupy an important

cornerstone of modern-day volume visualization. The main reasons behind the continued

interest in isosurface-based representations for volumes include:

• simple algorithms for extraction of the isosurface,

• triangle-mesh-based isosurfaces map well to the graphics hardware that is optimized for

rendering triangles,

• isosurface-based depiction of volumetric features is intuitive and greatly facilitates their

visual comprehension

2. Isosurface Extraction

We start by introducing a general framework for addressing the isosurface extraction problem. A

6

scalar field function f defined over a domain 3RD ⊂ is sampled at a set of points ,

where D has been decomposed into a set

n
i i

Dv
1

}{
=

∈

Σ of polyhedral cells whose vertices are the

points . The decomposition will be referred to as structured grid if the cells in

}{ jC

}{ iv Σ form a

rectilinear or curvilinear mesh. Otherwise, we have an unstructured grid. In a structured grid, the

connectivity of the cells is implicitly defined and Σ can be represented as a three-dimensional

array of scalar field values of its vertices. In particular, cells in a rectilinear grid are axis-aligned

but their vertices can be spaced arbitrarily in each of the dimensions. On the other hand, the

connectivity of the cells in an unstructured grid has to be defined explicitly and such a grid will

typically be represented by a list of all the cells (where each cell is specified by a list of its

vertices) and another list consisting of the coordinates of the vertices. Given a scalar valueλ , the

isosurface corresponding to λ consists of the set of all points Dp∈ such that λ=)(pf . Under

fairly general conditions on f, it can be shown that the isosurface is a manifold that separates

space into the surface itself and two connected open sets: “above” (or “outside”) and “below” (or

“inside”) the isosurface. In particular, a point Dp∈ is above the isosurface if λ>)(pf and

below the isosurface if λ<)(pf . The isosurface extraction problem is to determine, for any

given isovalue, a piecewise linear approximation of the isosurface from the grid sampling of the

scalar field.

The popular Marching Cubes (MC) algorithm, developed by Lorensen and Cline in 1987

[LC87], computes a triangular mesh approximation of the isosurface based on the following

strategy. A cell C is cut by the isosurface for λ if, and only if, maxmin ff ≤≤ λ where and

are respectively the minimum and the maximum values of the scalar field over the vertices

minf

maxf

7

of . Such a cell is called active; otherwise the cell is called inactive. The MC algorithm scans

the entire cell set, one cell at a time, and determines whether a cell is active and in the

affirmative generates a local triangulation of the isosurface intersection with the cell. More

specifically, each vertex of an active cell is marked as “above” or “below” the isosurface

depending on whether its scalar field value is larger or smaller than the isovalue, followed by a

triangulation based on linear interpolation performed through a table look-up. This algorithm

provides an effective solution to the isosurface extraction problem but can be extremely slow for

moderate to large size grids. Since its introduction, many improvements have appeared which

attempt to reduce the exhaustive search through the grid by indexing the data during a

preprocessing phase. There are two general approaches to index the data and speed up the search.

The first approach, primarily applicable to structured grids, amounts to developing a hierarchical

spatial decomposition of the grid using an octree as the indexing structure. Each node of the

octree is tagged by the minimum and maximum values of the scalar field over the vertices lying

within the spatial region represented by the node. Such a structure restricts in general the search

to smaller subsets of the data, and hence can lead to a much faster search process than the MC

algorithm. Moreover, it can be effective in dealing with large scale data that does not fit in main

memory. This approach was initially introduced by Wilhelms and Van Gelder in [WG92]. We

should note that it is possible that, for some datasets, the octree search could be quite inefficient

as many subtrees may need to be explored to determine relatively very few active cells.

C

The second approach focuses on the value ranges [fmin , fmax] of all the cells, and how they can be

organized to speed up the search. These ranges can be viewed either: (i) as points of the span

space defined by a coordinate system in which one axis corresponds to the minimum value and

8

the other axis corresponds to the maximum value, or (ii) as intervals over the real line. The

problem of determining the active cells amounts to determining the points in the span space lying

in the upper rectangle as indicated in Figure 4 or equivalently determining all the intervals that

contain the isovalueλ . Algorithms based on the span space involve partitioning the span space

into tiles and the encoding of the partition by some indexing structure. For example, we can

partition the span space using equal-size or equal-frequency rectangular tiles [SHL+96] or using

a kd-tree [LSJ96]. Theoretically optimal algorithms organize the intervals [fmin , fmax] into an

interval tree defined recursively as follows. The root of the tree stores the median of the

endpoints of the intervals as the splitting value, and is associated with two lists of the intervals

[fmin , fmax] that contain the splitting value, one list in increasing order of fmin while the second is

in decreasing order of fmax. The size of this indexing structure is proportional to the number N of

intervals and the search complexity is O(log N + k), where N is the total number of intervals and

k is the number of intervals that contain the isovalue. It is easy to see that this search complexity

is asymptotically the best possible for main memory algorithms.

minfλ

maxf

λ

Figure 4: Span space and the subset corresponding to the isovalue.

9

It is worth noting that a hybrid technique was developed in [BPT+99] and involves the

construction of a set of seed cells, such that, for any given isovalue, this set contains at least one

cell from each connected component of the corresponding isosurface. The search for active cells

involves contour propagation starting from some seed cells pertaining to the isosurface. Note that

such a technique requires a structured grid to effectively explore neighboring cells as the contour

is being propagated. A main issue with this technique is how to determine and organize the set of

seed cells whose size may be quite significant.

In this chapter, we will primarily focus on isosurface extraction for large scale data, that is, the

corresponding datasets are at least an order of magnitude larger than the size of the main memory

of a processor and hence have to reside on disk storage. Due to their electromechanical

components, disks have two to three orders of magnitude longer access time than random access

main memory. A single disk access reads or writes a block of contiguous data at once. The

performance of an external memory (or out-of-core) algorithm is typically dominated by the

number of I/O operations, each such operation involving the reading or writing of a single disk

block. Chiang and Silva [CS97] present the first out-of-core isosurface extraction algorithm

based on an I/O optimal interval tree, which was later improved in [CSS98] using a variation of

the interval tree called the binary-blocked I/O interval tree and the metacell notion to be

introduced next. A metacell consists of a cluster of neighboring cells that are stored contiguously

on a disk such that each metacell is about the same size that is a small multiple of the disk block

size. For structured grids, a metacell consists of a subcube that can be represented by a sequence

of the scalar values appearing in a predefined order. The metacell technique turns out to be quite

10

useful when dealing with out-of-core algorithms.

Next we introduce a very efficient out-of-core isosurface extraction algorithm that will be easy to

implement on a multiprocessor system with optimal performance as we will see later.

3. A Simple Optimal Out-of-Core Isosurface Extraction Algorithm

Introduced in [WJV06], the compact interval tree is a simple indexing structure that enables the

extraction of isosurfaces by accessing only active metacells. It is a variation of the interval tree

but makes use of the concepts of span space and metacells, and can be used for both structured

and unstructured grids. We start by associating with each metacell an interval

corresponding respectively to the minimum and maximum values of the scalar field over the

metacell. Each node of the indexing tree contains a splitting value as in the case of the standard

interval tree, except that no sorted lists of intervals are stored at each node. Instead, we store the

distinct values of the endpoints of these intervals in decreasing order, and associate with

each such value a list of the left endpoints of the corresponding intervals sorted in increasing

order. We present the details next.

],[maxmin ff

maxf

Consider the span space consisting of all possible combinations of the values of the

scalar field. With each such pair we associate a list that contains all the metacells whose

minimum scalar field value is and whose maximum scalar field value is . The essence

of the scheme for our compact interval tree is illustrated through Figure 5 representing the span

space, and Figure 6 representing the compact interval tree built upon the n distinct values of the

endpoints of the intervals corresponding to the metacells.

),(maxmin ff

minf maxf

11

Let be the median of all the endpoints. The root of the interval tree corresponds to all the

intervals containing . Such intervals are represented as points in the square of Figure 5 whose

bottom right corner is located at . We group together all the metacells having the same

 value in this square, and store them consecutively on disk from left to right in increasing

order of their values. We will refer to this contiguous arrangement of all the metacells

having the same value within a square as a brick. The bricks within the square are in turn

stored consecutively on disk in decreasing order of the values. The root will contain the

value , the number of non-empty bricks in the corresponding square, and an index list of the

corresponding bricks. This index list consists of at most n/2 entries corresponding to the non-

empty bricks, each entry containing three fields: the value of the brick, the smallest

value of the metacells in the brick, and a pointer that indicates the start position of the brick on

the disk (see Figure 6). Each brick contains contiguous metacells in increasing order of

values. We recursively repeat the process for the left and right children of the root. We will then

obtain two smaller squares whose bottom right corners are located respectively at and

 in the span space, where and are the median values of the endpoints of the

intervals associated respectively with the left and right subtrees of the root. In this case, each

child will have at most n/4 non-empty index entries associated with its corresponding bricks on

the disk. This recursive process is continued until all the intervals are exhausted. At this point we

have captured all possible pairs and their associated metacell lists.

0f

0f

),(00 ff

maxf

minf

maxf

maxf

0f

maxf minf

minf

),(1010 ff

),(1111 ff 10f 11f

),(maxmin ff

12

minf0f10f 11f

maxf

λ

0f

10f

11f

Note that the size of the standard interval tree is in general much larger than the compact interval

Metacell
Bricks

λ

f10 f11

Indexing Lists

fmax smallest fmin

offset f0

minf0f10f 11f

maxf

Figure 5: Span space and its use in the construction of the compact interval

Figure 6: Structure of the compact interval tree.

11f λ

0f

10f

13

tree. We can upper bound the size of the compact interval tree as follows. There are at most n/2

index entries at each level of the compact interval tree and the height of the tree is no more than

n2log . Hence our compact interval tree is of size O(nlog n), while the size of the standard

l tree is),(NΩ where N is the total number of intervals and hence can be as large as

).(2nΩ Note that the size of the preprocessed dataset will be about the same size as the original

interva

input.

 Table 1 below we compare the sizes of the two indexing structures for some well-known data In

sets, including the datasets Bunny, MRBrain, and CTHead from the Stanford Volume Data

Archive [Stanford]. As can be seen from the table, our indexing structure is substantially smaller

than the standard interval tree, even when .nN ≈

 Data Set Scalar

N n Standard Compact

 Field Size Interval Tree Interval Tree

Bunny 2 2,502103 5,469 bytes 38.2MB 42.7KB

MRBrain 2 bytes 756,982 2,894 11.6MB 22.6KB

CTHead 2 bytes 817,642 3,238 12.5MB 25.3KB

Pressure 4 bytes 24,507,104 20,748,433 374MB 158.3MB

Velocity 4 bytes 27,723,399 22,108,501 423MB 168.7MB

 Tab

e now address the algorithm to extract the isosurface using the compact interval tree. Given a

 le 1

W

query isovalue ,λ consider the unique path from the leaf node labeled with the largest value λ≤

to the root. Each internal node on this path contains an index list with pointers to some bricks.

14

For each such node, two cases can happen depending on whether λ belongs to the right or left

subtree of the node.

 Case1: λ falls within the range covered by the node's right subtree. In this case, the

active m tacells associated with this node can be retrieved from the disk sequentially

starting from the first brick until we reach the brick with the smallest value maxf larger

than

e

λ .

Case2: λ falls within the range covered by the node's left subtree. The active

metacells are those whose minf values satisfy ,min λ≤f from each of the bricks on the

index list of the node. These tacells can be retrieved from the disk starting from the

first metacell on each brick until a metacell is encountered with a .min

 me

λ>f

ince each entry of the index list contains the minf of the correspo icNote that s nding br k, no I/O

me

. Strategies for Parallel Isosurface Extraction

 isosurfaces o ultiprocessor systems, we

access will be performed if the brick contains no active tacells. It is easy to verify that the

performance of our algorithm is I/O optimal in the sense that the active metacells are the only

blocks of data which are moved into main memory for processing.

4

To describe the basic strategies used for extracting n m

need to establish some general framework for discussing and evaluating parallel algorithms. We

start by noting that a number of multiprocessor systems with different architectures are in use

today. Unfortunately the different architectures may require different implementations of a given

algorithm in order to achieve effective and scalable performance. By effective and scalable

performance, we mean a performance time that scales linearly relative to the best known

sequential algorithm, without increasing the size of the problem. In particular, such parallel

15

algorithm should match the best sequential algorithm when run on a single processor. The

development of such an algorithm is in general a challenging task unless the problem is

embarrassingly parallel (that is, the input can be partitioned easily among the processors, and

each processor will run the sequential algorithm almost unchanged).

 A major architectural difference between current multiprocessors relates to the interconnection

nother architectural difference, which is quite important for us, is the interconnection between

of the main memory to the processors. There are two basic models. The first is the shared

memory model in which all the processors share a large common main memory and

communicate implicitly by reading from or writing into the shared memory. The second model is

a distributed memory architecture in which each processor has its own local memory and

processors communicate through an interconnection network using message passing. In general,

distributed memory systems tend to have a better cost/performance ratio and tend to be more

scalable, while shared memory systems can have an edge in terms of ease of programmability.

Many current systems use a cluster of symmetric multiprocessors (SMPs), for which all

processors within an SMP share the main memory, and communication between the SMPs is

handled by message passing through an interconnection network.

A

the disk storage system and the processors. For a shared storage system, the processors are

connected to a large shared pool of disks and a processor either has very small or no local disk.

Another possibility is to assume that each processor has a its own local disk storage, and

processors can exchange the related data through an interconnection network using message

passing. These two models are the most basic and other variations have been suggested in the

16

literature.

In this chapter, we will primarily focus on distributed memory algorithms (not involving SMPs)

ors performed during the

2. t indexed and where is the index stored? What is the size of the

3. e role of each processor in identifying the active cells and generating the

ritical factors that influence the performance include the amount of work required to index and

ch include the time required to layout the dataset on the

such that each processor has its own disk storage. Given that we are primarily interested in

isosurface extraction for large scale data of size ranging from hundreds of gigabytes to several

terabytes, we will make the assumption that our data cannot fit in main memory, and hence it

resides on the local disks of the different processors. Under these assumptions, a parallel

isosurface extraction algorithm has to deal with the following issues:

1. What is the input data layout on the disks of the process

preprocessing step? And what is the overhead in arranging the data in this format from

the initial input format?

How is the overall datase

index set?

What is th

triangles?

C

organize the data during the initial preprocessing phase, the relative computational loads on the

different processors to identify active cells and generate corresponding triangles for any isovalue

query, and the amount of work required for coordination and communication among the

processors. More specifically, the performance of a parallel isosurface extraction algorithm

depends on the following factors:

1. Preprocessing Overhead, whi

17

processors’ disks and to generate the indexing structure.

Query Execution Time, which depends on the following t2. hree measures:

um number of disk

b. e maximum time spent by any

c. ication, which can be captured by the number of

We focus e while taking note of the complexities of the

aving set a context for evaluating parallel isosurface extraction algorithms, we group the

We gro gorithms that make use of a single tree structure for indexing

a. Total Disk Access Time, which can be captured by the maxim

blocks accessed by any processor from its local disk.

Processor Computation Time, which amounts to th

processor to search through the local metacells (when in memory) and generate the

corresponding triangles.

Interprocessor Commun

communication steps and the maximum amount of data exchanged by any processor

during each communication step.

here on the query execution tim

preprocessing phase. Regarding the (parallel) execution time, the relative importance of the three

measures depend on the multiprocessor system used and on their relative magnitudes. For

example, interprocessor communication tends to be significantly slower for clusters assembled

using off-the-shelf interconnects than for vendor-supplied multiprocessors with a proprietary

interconnection network, and hence minimizing the interprocessor communication should be

given a high priority in this case.

H

recently published parallel algorithms under the following two general categories.

 Tree-Based Algorithms

up under this category the al

the whole dataset using either an octree or an external version of the interval tree. For example,

18

using a shared-memory model, a parallel construction of an octree is described in [BGE+98],

after which the isosurface extraction algorithm amounts to a sequential traversal of the octree

until the appropriate active blocks (at the leaves) are identified. These blocks are assigned in a

round-robin fashion to the available processors (or different threads on a shared memory). Each

thread then excutes the MC algorithm on its local data. The preprocessing step described in

[CS99, CFS+01, CSS98] involves partitioning the dataset into metacells, followed by building a

B-tree like interval tree, called Binary-Blocked I/O interval tree (BBIO tree). The computational

cost of this step is similar to an external sort, which is not insignificant. The isosurface

generation requires that a host traverses the BBIO tree to determine the indices of the active

metacells, after which jobs are dispatched on demand to the available processors. This class of

algorithms suffers from the sequential access to the global indexing structure, the amount of

coordination and communication required to dynamically allocate the corresponding jobs to the

available processors, and the overhead in accessing the data required by each processor.

 Range Partitioning Based Algorithms

We gro at partition the range of scalar field values and up under this category all the algorithms th

then allocate the metacells pertaining to each partition to a different processor. In this case, the

strategy is an attempt to achieve load balancing among the processors that use the local data to

extract active cells. For example, the algorithm described in [ZBB01] follows this strategy.

Blocks are assigned to different processors based upon which partitions a block spans (in the

hope that for any isovalue, the loads among the processors will be even). An external interval

tree (BBIO tree) is then built separately for the local data available on each processor. The

preprocessing algorithm described in [ZN03] is based on partitioning the range of scalar values

into equal-sized subranges, creating afterwards a file of subcubes (assuming a structured grid) for

19

each subrange. The blocks in each range file are then distributed across the different processors,

based on a work estimate of each block. In both cases, the preprocessing is computationally

demanding and there is no guarantee that the loads on the different processors will be about the

same in general. In fact one can easily come up with cases in which the processors will have very

different loads, and hence the performance will degrade significantly in such cases.

We next describe an effective and scalable algorithm based on the compact interval tree indexing

. A Scalable and Efficient Parallel Algorithm for Isosurface Extraction

ibed in Section 3,

 its

or each index in the structure, we stripe the metacells stored in a brick across the p disks, that is,

structure reported in [WJV06].

5

The isosurface extraction algorithm based on the compact interval tree, descr

can be mapped onto a distributed memory multiprocessor system in such a way as to provably

achieve load balancing and a linear scaling of the I/O complexity without increasing the total

amount of work relative to the sequential algorithm. Recall that the indexing structure is a tree

such that each node contains a list of maxf values and pointers to bricks, each brick consisting of a

contiguous arrangement of metacells with increasing minf (but with the same maxf value). Let p be

the number of processors available on our multiprocessor system, each with own local disk.

We now show how to distribute the metacells among the local disks in such a way that the active

metacells corresponding to any isovalue are spread evenly among the processors.

F

the first metacell on the first brick is stored on the disk of the first processor, the second on the

disk on the second processor, and so on wrapping around as necessary. For each processor, the

20

indexing structure will be the same except that each entry contains the minf of the metacells in

the corresponding local brick and a pointer to the local brick. It is cl that, for any given

isovalue, the active metacells are spread evenly among the local disks of the processors.

ear

iven a query, we start by broadcasting the isovalue to all the processors. Each processor will

e have performed extensive experimental tests on this algorithm, all of which confirmed the

G

then proceed to use its own version of the indexing structure to determine the active metacells

and extract the triangles as before. Given that each processor will have roughly the same number

of active metacells, approximately the same number of triangles will be generated by each

processor simultaneously. Note that it is easy to verify that we have split the work almost equally

among the processors, without incurring any significant overhead relative to the sequential

algorithm.

W

scalability and efficiency of our parallel implementation. Here we only cite experimental results

achieved on a 16-node cluster, each node is a 2-way Dual-CPU running at 3.0 GHz with 8 GB of

memory and 60 GB local disk, interconnected with a 10Gbps Topspin InfiniBand network. We

used the Richtmyer-Meshkov instability datatset produced by the ASCI team at Lawrence

Livermore National Labs [LLNL]. This dataset represents a simulation in which two gases,

initially separated by a membrane, are pushed against a wire mesh, and then perturbed with a

superposition of long wavelength and short wavelength disturbances and a strong shock wave.

The simulation data is broken up over 270 time steps, each consisting of a 192020482048 ××

grid of one-byte scalar field. Figures 7 and 8 illustrate the performance and

algorithm described in this section using 1, 2, 4, 8, and 16 processors. Note that the one-

 scalability of the

21

processor algorithm is exactly the same as the one described in Section 3 and hence the

scalability is relative to the fastest sequential algorithm.

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0

10 30 50 70 90 110 130 150 170 190 210
Iso-values

To
ta

l T
im

e
(S

ec
)

One Process
Two Processes
Four Processes
Eight Processes
Sixteen Processes

Actual Speedup averaged over various IsoValues

1.00
1.96

3.80

7.26

13.95

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 2 4 6 8 10 12 14 16 18

Number of Processes

Sp
ee

du
p

R
at

e

Actaul Speedup
Ideal Speedup

 Figure 7 Figure 8

6. View-dependent Isosurface Extraction and Rendering

t extracting a triangular mesh that

The isosurface extraction techniques described thus far aim a

closely approximates the complete isosurface. However, as the sizes of the data sets increase, the

corresponding isosurfaces often become too complex to be computed and rendered at interactive

speed. There are several ways to handle this growth in complexity. If the focus is on interactive

rendering alone, one solution is to extract the isosurface as discussed in previous sections and

then render it in a view-dependent manner using ideas developed by Xia and Varshney [XV96],

Hoppe [Hoppe97], and Luebke and Erikson [LE97]. However full-resolution isosurface

extraction is very time-consuming and such a solution can result in a very expensive pre-

processing and an unnecessarily large collection of isosurface triangles. An alternative is to

extract view-dependent isosurfaces from volumes that have been pre-processed into an octree

22

[FGH+03] or a tetrahedral hierarchy of detail [DDL+02, GDL+02]. This is a better solution, but

it still involves traversing the multiresolution volume hierarchy at run time and does not directly

consider visibility-based simplification. The most aggressive approaches compute and render

only the portion of the isosurface that is visible from a given arbitrary viewpoint. As illustrated

in Figure 9, a 2-D isocontour consists of three sections: A, B, and C. Only the visible portion,

shown as bold curves, will be computed and rendered given the indicated viewpoint and screen.

Figure 9: Illustration of the visibility of isosurface patches with respected to a viewpoint.

xperiments have shown that the view dependent approach may reduce the complexity of the

 sequential algorithm for structured grids

ithm requires that cells be examined in a front-to-

E

rendered surfaces significantly [LH98]. In this section, we will describe a typical sequential

view-dependent isosurface extraction algorithm and then introduce two existing parallel

algorithms that more or less are based on this approach. We will also briefly discuss another

view-dependent approach based on ray tracing.

A

The view-dependent isosurface extraction algor

23

back order with respect to the viewpoint in order to guarantee that the isosurface patches on the

front are generated first and are used to test the visibility of the remaining cells. Because the

visibility test is in the volume space, an indexing structure based on volume space partitioning

rather than value space partitioning is more suitable. One such data structure is the octree

mentioned earlier. An octree recursively subdivides the 3-D rectangular volume into eight

subvolumes. For the purpose of isosurface generation, each node v is augmented with a pair of

extreme values, namely the minimum and maximum scalar values fmin(v) and fmax(v) of the points

within the corresponding subvolume. When traversing the octree, we can check at each node v

visited whether fmin(v) ≤ λ ≤ fmax(v) for a given isovalue λ . If this is the case, then the subtree

rooted at v is recursively traversed. Otherwise, the subvolume corresponding to v does not

intersect the isosurface and the entire subtree can be skipped.

A particular version of the octree called Branch-On-Need Octree (BONO) [WG92] has been

shown to be space efficient when the resolution of the volume is not a power of two in all three

dimensions. Unlike the standard octree, where the subvolume corresponding to an internal node

is partitioned evenly, a BONO recursively partitions the volume as if its resolution is a power of

two in each dimension. However, it allocates a node only if its corresponding spatial region

actually “covers’’ some portion of the data. An illustration of a standard octree and a BONO is

given in Figure 10 for a one-dimensional case.

24

(a) A standard octree (b) A Branch-On-Need Octree

Figure 10: A 1D illustration of the standard octree and BONO, both having 6 leaf nodes.

The visibility test of a region is performed using the coverage mask. A coverage mask consists of

one bit for each pixel on the screen. This mask is incrementally “covered” as we extract the

visible pieces of the isosurface. A bit is set to 1 if it is covered by the part of the isosurface that

has already been drawn and 0 otherwise. The visibility of a subvolume is determined as follows.

The subvolume under consideration is first projected onto the screen. If every pixel in the

projection is set to one in the coverage mask, then the corresponding subvolume is not visible

and can therefore be safely pruned. Otherwise, that subvolume needs to be recursively examined.

Typically, to reduce the cost of identifying the bits to be tested, the visibility of the bounding box

of the projection instead of the projection itself is tested. This is a conservative test but

guarantees that no visible portion of the isosurface will be falsely classified as invisible. Once an

active cell is determined to be visible, a triangulation of the isosurface patches inside it is

generated as before. The triangles thus generated are used to update the coverage mask. Figure

11 gives the pseudo-code of the overall algorithm.

25

procedure traverse()

begin

 Set all bits in the coverage mask to 0;

traverse(root, λ);

end

procedure traverse(node, λ)

begin

if fmin(node) > λ or fmax(node) < λ then

 return;

else

 Compute the bounding box b of the subvolume corresponding to node.

 if b is invisible then

 return;

 else

 if node is a leaf then

 Compute the triangulation of node;

 Update the coverage mask using the triangles just generated;

 return;

 else

 for each child c of node do

 traverse(c, λ);

 endfor

 endif

endif

End

Figure11: The framework of a sequential view-dependent isosurface extraction algorithm.

Mapping a sequential view-dependent algorithm to a distributed memory multiprocessor system

presents several challenges. First, the set of visible active cells are not known beforehand, which

makes it difficult to partition the triangulation workload almost equally among the available

26

processors. Second, once the processors have finished triangulating a batch of active cells, the

coverage mask needs to be updated using the triangles just computed, a process that requires

significant inter-processor communication. And finally, in the case where data set cannot be

duplicated at each node, careful data placement is required so that each processor is able to

access most of the data it needs locally. We next describe two parallel algorithms that attempt to

address these problems.

The multi-pass occlusion culling algorithm

The multi-pass occlusion culling algorithm was proposed by Gao and Shen in [GS01]. In this

algorithm, one of the processors is chosen as the host and the other processors serve as the

slaves. Blocks, each consisting of m × n × l cells, are the units of the visibility test. The host is

responsible for identifying active and visible blocks and for distributing them to the slaves on the

fly. The slaves are responsible for generating the isosurface patches within the active blocks they

receive, and for updating the corresponding portions of the coverage mask.

 `

To improve the workload balance of the slave nodes, the entire set of active blocks is extracted at

once at the host using a front-to-back traversal of an octree and is stored in an active block list.

This list is then processed in multiple passes. Each pass picks some active blocks for

triangulation and discard those determined as invisible. This process continues until the active

cell list becomes empty.

A modified coverage mask is used to perform the visibility test. Each bit of the coverage mask

has three states: covered, pending, and vacant. A covered bit indicates that the corresponding

27

pixel has been drawn already; a vacant bit indicates a pixel that has not been drawn; and a

pending bit represents a pixel that may be drawn in the current pass.

In each pass, the host first scans the active block list and classifies each block as visible,

invisible, or pending. An active block is visible if its projection covers at least one vacant bit in

the coverage mask. An active block is determined to be invisible if every bit in it is covered.

Otherwise, this active block is classified as pending. A visible block is put into the visible block

list and will be rendered in the current pass. Its projection is also used to update the

corresponding invisible bits to pending. An invisible block is discarded. A pending block may be

visible depending on the triangulation result of the current pass and therefore will remain in the

active blocks list and will be processed in the next pass.

Once the visible blocks are identified, they are distributed to the slaves for triangulation. In

order to keep the workloads at the slaves as balanced as possible, the number of active cells in

each active and visible block is estimated. A recursive image space partitioning algorithm is used

to partition the image space into k tiles, where k is the number of slaves, such that each tile has

approximately the same number of estimated active cells. The active blocks, whose projected

bounding boxes have centers that lie in the same tile, are sent to the same slave. Each slave

maintains a local coverage mask. Once the current batch of active blocks is processed, the slave

updates its local coverage mask. The local coverage masks are then merged to update the global

coverage mask, which resides at the host. A technique called binary swap [MPH+94] is used to

reduce the amount communication needed to update the global coverage mask.

28

A single pass occlusion culling algorithm with random data partitioning

Another parallel view-dependent isosurface extraction algorithm is due to Zhang et al. [ZBR02].

Unlike the algorithm of [GS01], which assumes that each node has a complete copy of the

original data set, this algorithm statically partitions the data and distributes the corresponding

partitions across all the processors. Deterministic data partitioning techniques based on scalar

value ranges of the cells such as the one discussed in the previous section and the one in

[ZBB01] can be used for this partitioning task. Zhang et al. show that random data distribution

could be equally effective in terms of maintaining workload balance. In their scheme, the data set

is partitioned into blocks of equal size and each block is randomly assigned to a processor with

equal probability. They show that in such a scheme it is very unlikely that the workload of a

particular processor will greatly exceed the expected average workload. The blocks assigned to a

processor are stored on its local disk and an external interval tree is built to facilitate the

identification of active blocks among them.

To address the problem of the high cost in updating the coverage mask, they opt to create a high

quality coverage mask at the beginning and use it throughout the entire extraction process. This

coverage mask is constructed using ray casting. A set of rays are shot from the viewpoint

towards the centers of each boundary face of the boundary blocks. Some additional randomly

rays are also used. For each ray, the first active block b it intersects is added to the visible block

set V. To further improve the quality of the coverage mask, the nearest neighboring blocks of b is

also added to V. The ray casting step can be done in parallel with each processor responsible for

the same number of rays. The range information of all the blocks is made available at each

processor for this purpose. The occluding blocks computed during the ray casting step are

29

collected from all the processors and broadcast so that every processor gets the complete set of

occluding blocks.

Using the local external interval tree, each processor obtains the set of local active blocks. Those

local active blocks that are also occluding blocks are processed immediately and the isosurface

patches generated are used to create the local coverage mask. The local coverage mask produced

by each processor is then merged into a global coverage mask, which is broadcast to all the

processors. Notice that, unlike the multi-pass algorithm, the computation of the global coverage

mask in this case happens only once.

Once the global coverage mask is available to all the processors, each processor uses it to decide

which of the remaining active blocks are visible and process only these blocks. The images

created by different processors are then combined to yield the final image.

View-dependent isosurface extraction by ray tracing

Finally, we describe briefly another parallel scheme for extracting and rendering isosurface in a

view-dependent fashion, namely distributed ray tracing. It was first proposed by Parker et al.

[PSL+98], and was implemented on a shared-memory multiprocessor machine and later ported

to distributed memory systems [DPH+03].

Unlike the view-dependent isosurface extraction algorithm we have just discussed, the ray

tracing method does not actually compute the linear approximation of the isosurface. Instead, it

directly renders the image pixel by pixel. For each pixel p, a ray rp is created which shoots from

30

the viewpoint through p towards the volume. The first active cell rp intersects can be identified

using an indexing structure such as the k-D tree [WFM+05] or the octree [WG92]. The location

and orientation of the isosurface at its intersection point with rp is then analytically computed and

is used to draw the pixel p. To find the intersection point, we need to be able to determine the

function value f (p) of any point p within the active cell. This can be done using trilinear

interpolation of the function values sampled at the vertices of the active cell.

One benefit of this scheme is that the tracing of a ray is totally independent of the tracing of

other rays. Thus the parallelization of this scheme is quite straightforward. However, one needs

to be aware that tracing thousands of rays can be very expensive compared to finding and

rendering a linear approximation of the isosurface. Also, the tracing of each ray may involve any

portion of the volume. Therefore, a shared-memory system is more suitable for this scheme.

Nevertherless, as is demonstrated in [DPH+03], by carefully exploiting the locality of the search

and by caching data blocks residing at remote processors, the same scheme can still achieve good

performance in a distributed memory system.

To avoid tracing thousands of rays in the above scheme, Liu et al. [LFL02] have used ray-casting

to only identify the active cells for a given view. These active cells then serve as seeds from

which the visible isosurfaces are computed by outward propagation as suggested by Itoh and

Koyamada [IK95].

7. Conclusion

We presented in this chapter an overview of the best known techniques for extracting and

31

rendering isosurfaces. For large scale data sets, the interactive rendering of isosurfaces is quite

challenging and requires some form of extra hardware support either through parallel processing

on a multiprocessor or through effective programming of graphics processors. We have focused

on the best known parallel techniques to handle isosurface extraction and rendering, and

examined their performance in terms of scalability and efficiency. We believe that the rendering

techniques do not achieve the desired performance and more research is required to improve on

these techniques.

References

[Stanford] http://graphics.stanford.edu/data/voldata/

[LLNL] http://www.llnl.gov/CASC/asciturb/

[BPT+99] C. L. Bajaj, V. Pascucci, D. Thompson and X. Zhang. Parallel accelerated isocontouring for out-of-core

visualization. In Proceedings of 1999 IEEE Parallel Vis. and Graphics Symp., pp. 97–104, 1999.

[BGE+98] D. Bartz, R. Grosso, T. Ertl, and W. Straßer. Parallel Construction and Isosurface Extraction of Recursive

Tree Structures. In Proc. of WSCG’98, volume III, pp. 479–486, 1998.

[Blinn82] J. Blinn. A Generalization of Algebraic Surface Drawing, In ACM Transactions on Graphics, Vol. 1, No.

3, pp. 235–256, July, 1982.

[BW01] D. Breen and R. Whitaker. A Level-Set Approach for the Metamorphosis of Solid Models, In IEEE

Transactions on Visualization and Computer Graphics, Vol. 7, No. 2, pp. 173–192, 2001.

[CFS+01] Y–J. Chiang, R. Farias, C. Silva and B. Wei. A unified infrastructure for parallel out-of-core isosurface

and volume rendering of unstructured grids. In Proc. IEEE Symp. on Parallel and Large-Data Visualization and

Graphics, pp. 59–66, 2001.

[CS97] Y–J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In Proceedings IEEE Visualization, pp. 293–

300, 1997.

[CS99] Y. Chiang and C. Silva. External memory techniques for isosurface extraction in scientific visualization. In

http://graphics.stanford.edu/data/voldata/
http://www.llnl.gov/CASC/asciturb/

32

External Memory Algorithms and Visualization, Vol. 50, pp. 247–277, DIMACS Book Series, American

Mathematical Society, 1999.

[CSS98] Y–J. Chiang, C. T. Silva and W. J. Schroeder. Interactive out-of-core isosurface extraction. In Proceedings

IEEE Visualization, pp. 167–174, 1998.

[Cormack63] A. M. Cormack. Representation of a function by its line integrals, with some radiological applications,

In Journal of Applied Physics, Vol. 34, pp. 2722–2727, 1963.

[Cormack64] A. M. Cormack. Representation of a function by its line integrals, with some radiological applications.

II, In Journal of Applied Physics, Vol. 35, pp. 2908–2913, 1964.

[DDL+02] E. Danovaro, L. De Floriani, M. Lee, H. Samet. Multiresolution Tetrahedral Meshes: an Analysis and a

Comparison. In Proceedings of the International Conference on Shape Modeling, Banff (Canada), pp. 83–91, 2002.

[DPH+03] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and Charles Hansen. Distributed Interactive Ray Tracing

for Large Volume Visualization. In Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data

Visualization and Graphics (PVG'03), pp. 87–94, 2003.

[FGH+03] D. Fang, J. Gray, B. Hamann, and K. I. Joy. Real-Time View-Dependent Extraction of Isosurfaces from

Adaptively Refined Octrees and Tetrahedral Meshes. In SPIE Visualization and Data Analysis, 2003.

[FKU77] H. Fuchs, Z. Kedem and S. P. Uselton. Optimal Surface Reconstruction from Planar Contours, In

Communications of the ACM, Vol. 20, No. 10, pp. 693–702, October 1977.

[GS01] Jinzhu Gao and Han-Wei Shen. Parallel view-dependent isosurface extraction using multi-pass occlusion

culling. In Parallel and LargeData Visualization and Graphics, pages 67–74. IEEE Computer Society Press, Oct.

2001.

[GGM74] A. N. Garroway, P. K. Grannell, P. Mansfield. Image formation in NMR by a selective irradiative

process. In Journal of Physics C: Solid State Physics, Vol 7, pp. L457–462, 1974.

[GDL+02] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. I. Joy. Interactive View-Dependent

Rendering of Large IsoSurfaces. In Proc. IEEE Visualization 2002 (VIS'02), pp. 475–482, 2002.

[Hounsfield73] G. N. Hounsfield. Computerized transverse axial scanning (tomography): part 1. Description of

system, In The British Journal of Radiology, Vol. 46, pp. 1016–1022, 1973.

[Hoppe97] H. Hoppe. View-dependent refinement of progressive meshes. In Proceedings of SIGGRAPH 97, pp.

189–198, 1997.

33

[HNB+06] B. Houston, M. Nielsen, C. Batty, O. Nilsson, and K. Museth. Hierarchical RLE Level Set: A Compact

and Versatile Deformable Surface Representation, In ACM Transactions on Graphics, Vol. 25, No. 1, pp. 1–24,

2006.

[IK95] T. Itoh and K. Koyamada. Automatic isosurface propagation using an extreme graph and sorted boundary

cell lists. IEEE Transactions on Visualization and Computer Graphics, Vol. 1, No. 4, pp. 319–327, Dec 1995.

[Kaufman91] A. Kaufman. Volume Visualization, IEEE Computer Society Press, ISBN 0-8186-9020-8, 1991.

[Lauterbur73] P. Lauterbur. Image Formation by Induced Local Interactions: Examples Employing Nuclear

Magnetic Resonance, In Nature, Vol. 242, pp. 190–191, 1973.

[Levoy88] M. Levoy. Display of Surfaces from Volume Data, IEEE Computer Graphics and Applications, Vol. 8,

No. 3, pp. 29–37, May 1988.

[LW72] C. Levinthal and R. Ware. Three-dimensional reconstruction from serial sections. In Nature 236, pp. 207–

210, March 1972.

[LFL02] Z. Liu, A. Finkelstein, and K. Li. Improving progressive view-dependent isosurface propagation. In

Computers and Graphics, Vol. 26, pp. 209–218, 2002.

[LH98] Y. Livnat and C. Hansen. View dependent isosurface extraction. In Visualization ’98, pp. 175–180, October

1998.

[LSJ96] Y. Livnat, H. Shen, and C. R. Johnson. A near optimal isosurface extraction algorithm using the span

space". In IEEE Transactions on Visualization and Computer Graphics, Vol. 2, No. 1, pp. 73–84, 1996.

[Lorensen01] W. Lorensen. Marching Through the Visible Man, at http://www.crd.ge.com/esl/cgsp/projects/vm/,

August 2001.

[LC87] W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution 3D surface construction algorithm. In

Maureen C.Stone, editor. Computer Graphics (SIGGRAPH’87 Proceedings), Vol. 21, pp. 161–169, July, 1987.

[LE97] D. Luebke and C. Erikson. View-Dependent Simplification of Arbitrary Polygonal Environments. In

Proceedings of SIGGRAPH 97, pp. 199–208, 1997.

[MPH+94] K. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume rendering using binary-swap

composition. In IEEE Computer Graphics and Applications, Vol. 14, No. 4, pp. 59–68, 1994.

[NHK+86] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, K. Omura. Object Modeling by

Distribution Function and a Method of Image Generation, In Electronics Communication Conference 85 J68-D(4),

http://www.crd.ge.com/esl/cgsp/projects/vm/
http://www.cs.virginia.edu/%7Eluebke/publications/sig97.html

34

pp. 718–725, 1986 (in Japanese).

[OF03] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, Springer, NY, 2003.

[OS88] S. Osher and J. Sethian. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on

Hamilton-Jacobi Formulations, In Journal of Computational Physics, Vol. 79, pp. 12–49, 1988.

[PSL+98] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive ray tracing for isosurface

rendering. In Visualization 98, pp. 233–238. IEEE Computer Society Press, October 1998.

[SHL+96] H. W. Shen, C. D. Hansen, Y. Livnat and C. R. Johnson. Isosurfacing in span space with utmost

efficiency (ISSUE). In IEEE Visualization’96, pp. 281–294, Oct.1996.

[WC71] M. Weinstein and K. R. Castleman. Reconstructing 3-D specimens from 2-D section images, In Proc. SPIE

26, pp. 131–138, May 1971.

[WFM+05] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel. Faster Isosurface Ray Tracing using

Implicit KD-Trees. In IEEE Transactions on Visualization and Computer Graphics, Vol. 11, No. 5, pp. 562–572,

2005.

[WJV06] Q. Wang, J. JaJa, and A. Varshney. An efficient and scalable parallel algorithm for out-of-core isosurface

extraction and rendering. To appear in IEEE International Parallel and Distributed Processing Symposium, 2006.

[WG92] J.Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. ACM Transactions on Graphics,

Vol. 11, No. 3, pp. 201–227, July 1992.

[WMW86] G. Wyvill, C. McPhetters, B. Wyvill. Data Structure for Soft Objects, The Visual Computer, Vol. 2, pp.

227–234, 1986.

[XV96] J. C. Xia and A. Varshney. Dynamic View-dependent Simplification of Polygonal Models. In Proceedings

of IEEE Visualization 96, pp. 327–34, 1996.

[Yoo04] T. Yoo. Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis,

A. K. Peters Ltd, MA, 2004.

[ZBB01] X. Zhang, C. L. Bajaj and W. Blanke. Scalable isosurface visualization of massive datasets on cots

clusters. In Proc. IEEE Symposuim on Parallel and Large-data Visualization and Graphics, pp. 51–58, 2001.

[ZBR02] X. Zhang, C. L. Bajaj and V. Ramachandran. Parallel and out-of-core view-dependent isocontour

visualization using random data distribution. In Proc. Joint Eurographics-IEEE TCVG Symp. on Visualization and

Graphics, pp. 9–18, 2002.

35

[ZN03] H. Zhang and T. S. Newman. Efficient Parallel Out-of-core Isosurface Extraction. In Proc. IEEE

Symposium on parallel and large-data visualization and graphics (PVG) ’03, pp. 9–16, Oct. 2003.

	Parallel Algorithms for Volumetric Surface Construction
	1. Introduction

