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Abstract

In this chapter, we present an overview of how timing information can be embedded in process-

algebraic frameworks. We concentrate on the case of discrete-time modeling. We begin by discussing

design approaches that have been adopted in different formalisms to model time and time passage, and

how the resulting mechanisms interact with one another and with standard untimed process-algebraic

operators. We proceed to give an overview of ACSR, a timed process algebra developed for modeling

and reasoning about timed, resource-constrained systems. In doing this, ACSR adopts the notion of

a resource as a first-class entity, and it replaces maximal progress, employed by other timed process

algebras, by the notion of resource-constrained progress. ACSR associates resource-usage with time

passage, and implements appropriate semantic rules to ensure that progress in the system is enforced

as far as possible while simultaneous usage of a resource by distinct processes is excluded. In addition,

ACSR employs the notion of priorities to arbitrate access to resources by competing processes. Finally,

we illustrate the use of ACSR for the schedulability analysis of a realistic real-time system problem.

1 Introduction

Process algebras, such as CCS [13], CSP [9], ACP [3] and others, are a well-established class of modeling

and analysis formalisms for concurrent systems. They can be considered as high-level description languages

consisting of a number of operators for building processes including constructs for defining recursive be-

haviors. They are accompanied by semantic theories which give precise meaning to processes, translating
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each process into a mathematical object on which rigorous analysis can be performed. In addition, they are

associated with axiom systems which prescribe the relations between the various constructs and can be used

for reasoning about process behavior. During the last two decades, they have been extensively studied and

proved quite successful in the modeling and reasoning about various aspects of system correctness.

In a process algebra, there exist a number of elementary processes as well as operators for composing

processes into more complex ones. A system is then modeled as a term in this algebra. The rules in the

operational semantics of an algebra define the steps that a process may take in terms of the steps of the

subprocesses. When a process takes a step, it evolves into another process. The set of processes that a given

process P can evolve into by performing a sequence of steps defines the state space of P . The state space is

represented as a labeled transition system (LTS) with steps serving as labels. The notation for a process P

performing a step a and evolving into a process P ′ is P
a−→ P ′.

State space exploration techniques allow us to analyze properties of processes, for example, identify

deadlocks that the system may have.

1.1 Conventional process algebras

Instead of giving a formal definition for some process algebra, we will begin by supplying intuition for the

design of a process-algebraic formalism. Without being specific to any particular process algebra, we will

introduce basic concepts that are present in a typical process algebra and highlight the relationship between

them. This exposition will help us illustrate how the introduction of timing into a process algebra, discussed

in later sections, affects the design of a formalism.

Syntax and semantics. The syntax of a process algebra is defined by a collection of operators that give

rise to a set of processes. Each operator has a non-negative arity. Operators of arity 0 represent elementary

processes. Operators of arity n take n processes and form a new composite process from them. A semantic

definition for such an algebra is formalized by means of structural operational semantics: for each operator

a set of rules is supplied that prescribes how steps of the constituent processes are transformed into a step

of a composite process. Examples of such rules are given later in the section.
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Basic execution steps. Basic execution steps of a process P are taken from a set called the alphabet of

P , which we denote as A(P ). Since execution steps serve as transition labels in the LTS of P , we generically

refer to the elements of the alphabet as labels. Labels in the alphabet of conventional process algebras are

often called events or actions. Here, we will refer to them as events, reserving the term actions to a special

kind of steps which will be introduced in Section 3. Real-time extensions of process algebras also introduce

additional kinds of labels to account for time, as discussed in Section 2. The nature of events depends on

the modeling domain: it can correspond, for example, to a method call in the model of a software system or

to receiving a packet from the network in the model of a communication protocol.

Common operators and rules. The syntax of a typical process algebra is given by the following BNF

definition

P ::= NIL | e.P | P + P | P ‖ P | P\A | C

where e and C range over a set A of events and a set C of process constants associated with the process

algebra, respectively, and A ⊂ A. Each operator is given precise meaning via a set of rules which, given a

process P , prescribe the possible transitions of P , where a transition of P has the form P
e−→ P ′, specifying

that process P can perform event e and evolve into process P ′. The rules themselves have the form

T1, . . . , Tn
T φ

which is interpreted as follows: if transitions T1, . . . , Tn, can be derived, and condition φ holds, then we may

conclude transition T . Conditions T1, . . . , Tn, describe possible transitions of the components of a system

and may be absent for some rules. We proceed to discuss each of the above operators and ways in which

they are interpreted in different process-algebraic formalisms.

• NIL. The inactive process, represented by the operator NIL, does not have any rules associated with

it and thus cannot perform any steps.

• e.P . The most basic operator of a process algebra is the prefix operator. If P is a process then e.P

is also a process, for every event e. This process performs event e and then behaves as P . The rule

associated with a prefix operator usually has the form
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(ACT) −
e.P

e−→ P

An alternative to the prefix operator is a more general sequential composition operator P1 · P2 for

arbitrary processes P1 and P2. We refer the reader to [3] for details.

• P1 + P2. Another commonly-used operator is the choice operator, P1 + P2, which yields a process that

spontaneously evolves into P1 or P2. The rules for the choice operator are

(SUM) P1
e−→ P ′

1

P1 + P2
e−→ P ′

1

,

and a symmetric rule for P2. We say that the first event performed by P1 or P2 resolves the choice.

• P1‖P2. One of the main points of distinction between different process algebras is the parallel composi-

tion operator, which we denote here as P1‖P2. Details of the definition for this operator specify whether

processes in the model execute synchronously or asynchronously and describe the means of commu-

nication and synchronization between concurrent processes. In the case of asynchronous execution,

processes can take steps independently. This case is expressed by the rule

(PARA) P1
e−→ P ′

1

P1 ‖ P2
e−→ P ′

1 ‖ P2

Note that here, unlike the choice operator, P ′
1 remains in the scope of the parallel operator. P2 does

not make a step in this case. There is a symmetric rule for P2.

In the case of a synchronous execution, all concurrent processes are required to take a step. A generic

rule for the synchronous case can be expressed as

(PARS) P1
e1−→ P ′

1 P2
e2−→ P ′

2

P1 ‖ P2
e−→ P ′

1 ‖ P ′
2

The relationship between e and e1, e2 captures the synchronization details. In what is known as CCS-

style synchronization, the alphabet A is partitioned into the sets of input events, denoted as e?, output

events, denoted as e!, and a distinguished internal event τ . A handshake synchronization between two

processes turns an input event and a matching output event into an internal event, represented by the

rule
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(PARCCS) P1
e?−→ P ′

1 P2
e!−→ P ′

2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2

In CSP-style synchronization, components of a process P must synchronize on a predefined set A ⊆ A

and we have that e = e1 = e2 ∈ A. In other formalisms, the result of a synchronization is a composite

event, for example, e1 · e2. The general case is called the ACP-style synchronization, which employs a

communication function f . The communication function is a partial function that maps pairs of events

to events. The rule

(PARACP) P1
e1−→ P ′

1 P2
e2−→ P ′

2

P1 ‖ P2
f(e1,e2)−→ P ′

1 ‖ P ′
2

f(e1, e2) 6= ⊥

is equipped with a side condition that makes the rule applicable only if the communication function is

defined for e1 and e2.

• P\A. This process represents the hiding or restriction operator representing the process P when events

from set A are hidden. This is another operator interpreted differently in distinct process algebras.

These interpretations are closely related to the communication style adopted. In particular, in the

ACP style of communication, hiding of an action prohibits the action from taking place altogether.

On the other hand, in CCS, where the set of actions contains input and output actions along channels,

hiding of a channel e within a system P prevents actions e? and e! from taking place on the interface

of P with the environment, but not within the components of P .

• C. A common mechanism for providing recursion in process algebra is process constants. A set of

process constants, C, is assumed. Each C ∈ C is associated with a definition C
def= P , where the process

P may contain occurrences of C, as well as other constants. The semantics of process constants is

given by the following rule:

(CON) P
e−→ P ′

C
e−→ P ′ C

def= P

Equational Theory. A significant component of a process-algebraic framework is its equational theory, a

set of axioms or equations that equate process expressions of the language. Some process algebras, such as

[3] and its derivatives, are even defined equationally since their designers consider this to be the most intuitive
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starting point for understanding the algebra and its operators. In the case that an algebra’s semantics are

given operationally, as discussed above, this theory is produced on the basis of an equivalence relation, which

deems two processes to be related if and only if their respective LTS’s are “similar”, according to a specific

notion of similarity. Based on such an equivalence relation, an equational theory is sound if all of its axioms

equate equivalent processes and, it is complete, if any pair of equivalent processes can be shown to be equal

by the equational theory.

The importance of equational theories is twofold. On one hand, they shed light on the subtleties of a

language’s operators and the interactions that exist between them. As such, they can be useful for revealing

differences between different algebras their operators and their associated equivalences. On the other hand,

they support system verification by equational reasoning. Note that, in order to support compositional

reasoning, they are typically defined over congruence relations, that is, relations which are preserved by all

of a language’s operators. One of the most common such relations is strong bisimulation [13, 17]. Strong

bisimulation is an equivalence relation which respects the branching structure of processes. Intuitively two

processes are bisimilar if they can simulate each other’s behavior step by step. In Table 1.1 we present a

subset of a basic process algebra’s equational theory.

Table 1.1: Axioms of a typical process algebra

(Sum1) P + NIL = P (Par1) P ‖NIL = P

(Sum2) P + Q = Q + P (Par2) P ‖Q = Q ‖ P

(Sum3) (P + Q) + R = P + (Q + R) (Par3) (P ‖Q) ‖R = P ‖ (Q ‖R)

(Hide1) NIL\A = NIL (Hide2) (a.P )\A = a.(P\A) , if a 6∈ A

We note that the inactive process serves as the unit process for the parallel composition and choice

operators (Axioms (Sum1), and (Par1)).

An important axiom in the equational theory of most conventional process algebras is the expansion

theorem, which allows to rewrite a process containing the parallel composition operator to an equivalent

process without parallel composition. The expansion theorem allows simpler analysis algorithms that operate
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on the process LTS. Application of the expansion theorem, in CCS, results in the following equation

e?.P ‖ e!.Q = e?.(P ‖ e!.Q) + e!.(e?.P ‖ Q) + τ.(P ‖ Q)

whereas, in CSP, it yields

e.P ‖ e.Q = e.(P ‖ Q).

It is interesting to note that the interplay between the parallel composition and the restriction operator

gives rise to (e?.P ‖ e!.Q)\{e} = τ.(P ‖ Q) in CCS and (e.P ‖ e.Q)\{e} = NIL in CSP. This highlights the

fact that, while in CCS hiding of a channel within a system does not preclude a handshake communication

between components of the system, in CSP the action is prevented from arising altogether.

2 Modeling of Time-Sensitive Systems

Conventional process algebras offer a way of modeling and analyzing qualitative, functional aspects of system

behavior. Several real-time process algebras extend conventional process algebras to add the quantitative

timing aspect to the system model. In this section, we look at the possible ways to add timing information

to a process-algebraic model and discuss the effect of such extensions on the rules of the algebra and the

interactions between them. Classification ideas may be found in [15].

Two-phase execution. The approach taken by most real-time process algebras is to introduce a new kind

of labels into the process alphabet to represent the progress of time. Labels of this kind can either be real

or rational numbers, or new symbols that are not present in the alphabet of the untimed process algebra.

The former approach is known as a continuous time extension, and a step labeled by a number represents

advancing the time by the specified amount. The latter approach is called discrete time, and a step labeled

by a label of the new kind represents time advancing by a fixed amount. We refer to such steps as ticks. All

other steps of a process are assumed to be instantaneous.

Execution of a process proceeds in two phases. Initially, a sequence of instantaneous steps are executed at

the same time instance, followed by a time step that advances time. An execution that contains an infinite

sequence of instantaneous steps without allowing a time step to take place is called Zeno. Clearly, such
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executions do not have a physical meaning and need to be ruled out either by the semantics of the formalism

or by means of analysis.

Progress. Conversely, a process can choose to pass time indefinitely even though it is capable of perform-

ing instantaneous steps. While not as harmful as Zeno behaviors, such idling behaviors are also undesirable

and should be avoided. Therefore, most formalisms include some means of ensuring progress in an execu-

tion. Many real-time process algebras employ the notion of maximal progress, which forces synchronization

between concurrent processes, whenever it can occur, to occur before the next time step. Some process

algebras, such as CSA [7] and ACSR [11], employ a more restricted notion of progress, as described below.

Global vs. local time. Most real-time process algebras employ an implicit global clock that is shared by

all processes in the system. This means that time progress is synchronous, that is, time can advance only if

all processes in the system agree to pass time together. This is in contrast to the execution of instantaneous

steps of different processes, which may be interleaved even though they are logically simultaneous.

The assumption of uniform global time may be restrictive when modeling distributed systems, where

each node may have its own clock that advances at its own rate. To address this problem, CSA [7] considers

a multi-clock process algebra. In this algebra, steps can have different time progress labels that correspond

to a tick of a particular clock, and only the processes that are within the scope of that clock are required to

participate in that step.

2.1 Discrete-time Modeling

In this chapter, we concentrate on discrete-time modeling. For details on continuous-time process algebras,

the interested reader is referred to [1, 25, 21]. We consider real-time process algebras that assume a global

clock, shared by all concurrent processes, which advances in discrete increments. A tick of that clock is

represented by a special label ε, which is added to the process alphabet. Events inherited from the untimed

versions are considered to be instantaneous, thus are kept independent from the passage of time. Process

algebras that fall into this category are ATP [16], TPL [8], TCCS [14] and several ACP flavors [2, 1]. The

process algebra ACSR, discussed in Section 3, also assumes a global clock but has a richer structure for time
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progress labels.

Syntactic extensions. One of the first steps in designing a real-time process algebra is to decide whether

time progress steps are included into the syntax of the process terms. In a conventional process algebra,

every event e can appear in the event-prefix operator e.P . TCCS and TPL treat time steps in the same way

by introducing a time prefix operator ε.P , with the obvious rule:

(TACT) −
ε.P

ε−→ P

Other process algebras, such as ATP, do not have time prefix operators and extend the semantics for

other operators with rules about time steps.

Extending operators with rules for time progress. Time progress rules can be added to any operator

in the algebra. However,implementation of the rules for different operators is not done in isolation and allow

the algebra designers to offer interesting modeling devices. Below, we consider different choices for rule

design and look at the interplay between them.

Conventional process algebras usually have one kind of inactive process, which we have denoted by NIL.

In real-time process algebras, it is useful to distinguish between a completed process, which we will call δ,

and a deadlocked process, which we will call NIL. The semantic difference is, of course, that the completed

process cannot perform any actions but allows time progress. That is, it is equipped with the rule

(IDLE) −
δ

ε−→ δ.

On the other hand, the deadlocked process does not have any rules associated with it, thus preventing

time from progressing any further. Process algebras featuring this time-blocking deadlocked process include

TCCS, ACSR and ACPρ [2]. By this process it is possible to model abnormal conditions that require

attention, and can be employed for detecting anomalies in system models (for example, in ACSR, the

presence of timelocks can be used to test for schedulability of a system model).

It is worth noting here that if the algebra has the time-prefix operator, then the completed process can

be represented by a secondary operator, defined by the recursive definition δ
def= ε.δ.
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Next, we consider event prefix. Here, we may distinguish two different approaches on the treatment of

event execution.

• A first approach, adopted by the process algebra TPL, allows events to be so-called lazy or patient

with respect to time passage. To implement this, the prefix operator is accompanied by the rule

(WAIT) −
a.P

ε−→ a.P.

signifying that the process a.P can idle indefinitely. The motivation behind this law is the intention

for all processes to be patient until the communications in which they can participate become enabled.

Then, progress in the system is assured by appropriate treatment of the parallel composition operator

as we discuss below. Note that, if events are lazy, there is no need for the time-prefix operator.

• Alternatively, the algebra designed has an option of making events urgent. In this case, the event-prefix

operator cannot idle and progress is ensured. This approach is adopted in ATP and TCCS. In the case

of TCCS, time passage is enabled (solely) by the aid of a time-prefix operator, whereas ATP features

a unit delay operator. In some process algebras, such as TPL, urgency of events only applies to the

internal action.

However, modelers using a process algebra with urgent events can inadvertently block time progress

completely, introducing unwanted Zeno behavior in the model. In ATP, the term well-timed systems

has been coined up to refer to systems that contain no Zeno behavior. In general, there is no syntactic

characterization of well-timed systems. It is, however, possible to discover Zeno behavior by state space

exploration.

Continuing with the choice construct, we may see that the majority of timed process algebras proposed

in the literature implement time determinism. That is, they define the choice construct so that it postpones

the resolution of the choice between its summands in the case of system idling. This is described by the

following rule:

(TSUM) P1
ε−→ P ′

1, P2
ε−→ P ′

2

P1 + P2
ε−→ P ′

1 + P ′
2

.
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Note, however, that in an algebra with urgent events a process may not be able to pass time and the choice

may have to be resolved before time advances.

As far as parallel composition is concerned, we first observe that time progresses synchronously in all

parallel components, that is, timed actions can be performed only if all the system components agree to do

so:

(TPAR) P1
ε−→ P ′

1, P2
ε−→ P ′

2

P1 ‖ P2
ε−→ P ′

1 ‖ P ′
2

Specifically, in the presence of a communication function f , we have that f(e1, e2) = ⊥ if one of e1, e2 is ε

but not both.

Further details concerning the interaction of time passage and the parallel composition construct depend

on the synchronization style featured in an algebra as well as the nature of events. In the case of CCS-style

communication and patient events, we may see maximal progress implemented by the following rule:

(TPARMP) P1
ε−→ P ′

1, P2
ε−→ P ′

2, P1 ‖ P2 6
τ−→

P1 ‖ P2
ε−→ P ′

1 ‖ P ′
2

This specifies that P ‖Q may delay if both components may delay and no internal communication between

the two is possible. It can be encountered in TPL, where, for example, in the presence of patient actions,

a!.P + b?.Q ε−→ a!.P + b?.Q

allows time to pass, whereas, the composition (a!.P + b?.Q) ‖ a?.NIL, does not. We should also note that

under this rule, the parallel operator construct does not preserve Zenoness: P
def= a?.P , Q

def= a!.Q, are

non-Zeno processes, but P ‖Q is not.

The rule for maximal progress is not featured in algebras such as TCCS and ATP. It becomes unnecessary

due to the fact that insistent events (recall that the event prefix operator cannot idle) force progress to be

made. CSA replaces maximal progress with locally maximal progress appropriate for distributed systems

with multiple clocks. As we will see in the next section, ACSR replaces maximal progress with resource-

constrained progress.

We continue by reviewing some time-specific constructs introduced in process algebras.

• In addition to the time-prefix operator, TCCS contains an unbounded delay operator δ.P (note that

this is different to the completed process δ) which may delay indefinitely before proceeding with the
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computation. This resembles the willingness of patient events to wait for an environment ready to

participate. Its behavior is specified by the following two rules:

−
δ.P

ε−→ δ.P
P

e−→ P ′

δ.P
e−→ P

• In ATP the basic time-passing construct is the binary unit delay operator , bP c(Q). This process

behaves like P if the execution of P starts before the first tick of time takes place. Otherwise, control is

passed to process Q. Thus, we may consider the operator as a timeout construct with delay 1. Variants

of this operator, including unbounded delay, and bounded but non-unit delay, are encountered in ATP

and other algebras.

• Time interrupt constructs, of the form dP ed(Q), have been defined in ATP and TCSP and describe a

process where computation proceeds as for process P for the first d time units, and then Q is started.

• Another useful construct, encountered in TCSP, ATP and ACSR, is the timeout operator. In TCSP

and ATP, this is modeled as a binary operator, P �d Q, where d is a positive integer, P is called the

body and Q the exception of the timeout. The intuitive meaning of this process is that P is given

permission to start execution for d time units, but, if it fails to do so, control is passed to process Q.

In ACSR, as we will see below, the timeout operator is more complex and combines the notions of

successful termination and interrupts.

Let us now look into the interplay between the above mentioned operators by studying the resulting

axioms in various process algebras. First, consider rules (Sum1) and (Par1) of Table 1.1. We observe that, in

the presence of axioms (TSUM) and (TPAR), respectively, they do not hold in any of the above-mentioned

approaches. However, in the presence of the completed process δ, we have

(CSum1) P + δ = P (CPar1) P ‖ δ = P

On the other hand, the blocked process NIL satisfies the laws

(BSum1) e.P + NIL = e.P (BPar1) e.P ‖NIL = e.P

(BSum2) ε.P + NIL = NIL (BPar2) ε.P ‖NIL = NIL

When restricting attention to regular processes, that is processes using finitely many guarded recursive

equations, an expansion theorem can be deduced for all of the mentioned process algebras.
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2.2 Comparative example

In order to tie together the concepts introduced in the previous sections, and to illustrate the effect of design

decisions within process-algebraic formalisms on the modeling style they impose, we show two models of

the same system in the algebras ATP and TPL. We begin by summarizing the syntax of the two algebras

and their associated semantical meaning. To keep presentation simple, we unify the notations of the two

formalisms for operators representing the same concept. However, semantic differences between respective

constructs may be present and we highlight them by mentioning the semantic rules which apply in each case.

ATP. The syntax of the process algebra ATP is given as follows:

P ::= NIL | C | a.P | P + P | bP c(P ) | P ‖ P | P\A | dP ed(P )

The operators of the language satisfy, among others, the rules (ACT) (and not (WAIT)), (SUM), (TSUM)

and (TPAR) (and not (PARMP)). The terminated process δ can be derived in ATP as follows: δ
def= bNILc(δ).

TPL. The syntax of the process algebra TPL is given as follows:

P ::= NIL | C | a.P | ε.P | P + P | bP c(P ) | P ‖ P | P\A

The operators of the language satisfy, among others, the rules (ACT), (WAIT), (SUM), (TSUM) and (PARMP).

The example. We now proceed to model a simple system in the two algebras. We will show that, despite

their syntactic closeness, subtle semantic differences in the definitions of the operators will require us to

model the same system differently in order to achieve the same behavior in both languages.

The system under consideration represents two real-time tasks. Task T1 is a periodic task, which is

released every 10 time units and nondeterministically takes either 1 or 2 time units to complete. Once

task T1 completes its execution, it sends a message to release the task T2, which takes 3 time units to

complete. This example has several features that highlight the difference between different process algebras:

the treatment of the timeout used in the periodic release of the first task, the choice between time progress

and sending an event, necessary to implement the non-deterministic completion time of the first task, and

implementation of a lazy event in the second task to receive the release signal from the first task.
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We first consider the representation of this system in ATP.

T1
def= dbδc(start.δ + bδc(start.δ))e10(T1)

T2
def= start.bδc(bδc(bδc(T2))) + bδc(T2)

System
def= (T1 ‖ T2)\{start}

Note that the modeling style of ATP is to describe the events that the process can perform during a

given time unit, each within the scope of a unit-delay operator. Consider T1. In the first time unit, the

process is engaged in an internal computation and cannot perform any events. In the second time unit, the

process has two choices of behavior. If the internal computation has been completed in the first time unit,

the process can perform the event start and then idle until the timeout of 10 time units. Otherwise, it idles

for another time unit and then has no other choice but to perform the event start and wait for the timeout.

The process T2 begins execution when event start arrives, with the summand bδc(T2) allowing it to idle

as needed. Finally, the system is the parallel composition of the two task processes, with the start event

restricted in order to ensure CSP-style synchronization.

Consider now the same system expressed in TPL. Modeling is distinguished by the ATP description due to

ATP’s patient events, the explicit time-prefix operator, and the absence of a timeout operator. Furthermore,

recall that TPL adopts the CCS style of communication, which results in the use of input and output events

for the synchronization of the two tasks.

T1
def= ε.(start!.ε9.T1 + τ.ε.start!.ε8.T1)

T2
def= start?.ε.ε.ε.T2

System
def= (T1 ‖ T2)\{start}

Here, for simplicity, we employ the notation en.P for the process that makes n consecutive executions of

event e before proceeding to process P . Thus, task T1 initially performs some internal computation during

the first time unit, and then it evolves into a choice process. This presents the two possibilities for the

duration of the execution of the task. The first summand corresponds to the case the task is completed after

a single time unit, in which case a start message is emitted. Alternatively, an internal action is performed

by the task and, after a second time unit elapses, task T2 is notified and the process idles for a further 8
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time units. Note that, unlike the ATP model, here it is not necessary to model explicitly the waiting of task

T2: the process waits indefinitely until the action becomes enabled. However, due to maximal progress, once

the communication on the channel start becomes enabled, it cannot be further delayed by time passage.

Consequently, the τ action included in the description of T1 is crucial for the correct description of the model.

Had it been absent, maximal progress would enforce the communication on start to take place immediately

in a process such as (start!.P + ε.Q ‖ start?.R).

3 Modeling of Resource-Sensitive Systems

The notion of maximal progress employed by many real-time process algebras is a useful modeling concept.

Maximal progress makes the model engage in useful computation whenever it is able to do so. However,

there are many cases when maximal progress does not fit well with the application domain. Many systems

that operate under real-time constraints are also constrained by available computational resources. This is

especially true of embedded systems that have to operate on processors with limited computing power and

small memory. Clearly, satisfaction of timing constraints by such systems depends on timely availability of

resources needed by each process. Therefore, modeling of resource-constrained systems replaces the notion

of maximal progress with the notion of resource-constrained progress.

Process algebra ACSR [11] implements this notion of resource-constrained progress by associating resource

consumption with time passage. Specifically, it replaces the single timed event ε, discussed in the previous

section, by a structured set of labels: whenever a process wants to perform a step that advances time, it

declares the set of resources that are needed for this step, along with the priority of access for each resource.

This resource declaration is called an action. The semantic rules of the parallel composition operator ensure

that only actions using disjoint resources are allowed to proceed simultaneously. Thus, while progress in the

system is enforced wherever possible, in order for two processes to consume the same resource two distinct

phases (time units) must elapse. We will build upon the discussion in Section 2 to highlight similarities and

differences between ACSR and other real-time process algebras.
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3.1 Syntax and semantics

Execution steps. ACSR employs a different execution model compared to other real-time process alge-

bras. We have previously seen that processes in most process algebras execute events that are considered

instantaneous and, in between events, time can advance while processes are “doing nothing.” In ACSR,

processes can also engage in instantaneous events. The CCS-style of communications is adopted for such

events which can be observable, such as sending or receiving a message, or the internal τ action. On the

other hand, it assumes that processes can engage in internal computation that takes non-trivial amount of

time relative to the size of the clock tick. These timed actions involve the consumption of resources, or

explicit idling. Consequently, ACSR distinguishes between events and actions. Just like the events that we

have considered above, ACSR events are logically instantaneous and do not require computational resources

to execute. An action, by contrast, takes one unit of time and requires a set of resources to complete. We

consider the details below.

Timed Actions. We consider a system to be composed of a finite set of serially-reusable resources denoted

by R. An action that consumes one “tick” of time is a set of pairs of the form (r, p), where r is a resource and

p, a natural number, is the priority of the resource use, with the restriction that each resource be represented

at most once. As an example, the singleton action, {(cpu, 2)}, denotes the use of some resource cpu ∈ R

running at priority level 2. The action ∅ represents idling for one time unit, since no resource is consumed.

We use DR to denote the domain of timed actions, and we let A,B range over DR. We define ρ(A) to be

the set of resources used in the action A; e.g., ρ({(r1, p1), (r2, p2)}) = {r1, r2}.

Instantaneous Events. Instantaneous events provide the basic synchronization mechanism in ACSR. We

assume a set of channels L. An event is denoted by a pair (a, p), where a is the label of the event, and p is its

priority. Labels are drawn from the set  L ∪  ̄L ∪ {τ}, where for all a ∈ L, a? ∈  L and a! ∈  ̄L. We say that a?

and a! are inverse labels. As in CCS, the special identity label τ arises when two events with inverse labels

are executed in parallel.

We use DE to denote the domain of events, and let e, f range over DE . We use l(e) to represent the

label of event e. The entire domain of actions is D = DR ∪ DE , and we let α and β range over D.
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ACSR operators. The following grammar describes the syntax of PACSR processes:

P ::= NIL | A : P | e.P | P + P | P ‖ P |

P 4a

t (P, P, P ) | P\F | [P ]I | P\\I | C

Semantics for ACSR is set up in two steps. First, the unprioritized semantics define steps of a process by

means of structural rules, as we have seen with the other process algebras above. Second, the prioritized

semantics interpret priorities within events and actions by applying a preemption relation, disabling low-

priority events and actions in the presence of higher-priority ones. The rules of the unprioritized semantics

are given in Table 1.2.

Process NIL is a deadlocked process that blocks the progress of time. Event prefix e.P is similar to the

event prefix of ATP and cannot pass time. Action prefix A : P is similar to the time prefix of TPL, except

that a distinct action A is executed instead of ε. Process P + Q offers the nondeterministic choice between

P and Q. This choice is resolved with the first action taken by one of the two processes.

The process P ‖ Q describes the concurrent composition of P and Q: the component processes may

proceed independently or interact with one another while executing events, and they synchronize on timed

actions. Specifically, rules (Par1)-(Par3) implement CCS-style communication in the model, with the first

two rules describing the asynchronous execution of events, and the latter describing synchronization on

matching events. Of particular interest to the algebra is rule (Par4). We first observe that time progresses

synchronously in a complex system, that is, for time to pass all of the concurrent components must be willing

to perform a timed action. However, note that such progress is resource-constrained: as expressed in the side

condition of the rule, at most one process may use a given resource in any time unit. A consequence of this side

condition is that whenever two (or more) concurrent processes are competing for the use of the same resource

and neither is willing to engage in alternative behariour, then the system is deadlocked. This fact plays a

significant role in the algebra and it is exploited for performing schedulability analysis. For example, process

{(cpu, 1), (mem, 2)} : P ‖{(cpu, 2)} : Q has no outgoing transitions since {(cpu, 1), (mem, 2)}∩{(cpu, 2)} 6= ∅.

On the other hand:

{(cpu1, 1), (mem, 2)} : P ‖ ({(cpu1, 2)} : Q1 + {cpu2, 1} : Q2)
{(cpu1,1),(mem,2),(cpu2,1)}−→ P ‖Q2

The scope construct, P 4a

t (Q,R, S), binds the process P by a temporal scope and incorporates the
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Table 1.2: The non-prioritized relation

(Act1) e.P
e−→ P (Act2) A : P

A−→ P

(Sum1) P1
α−→ P

P1 + P2
α−→ P

(Sum2) P2
α−→ P

P1 + P2
α−→ P

(Par1) P1
e−→ P ′

1

P1‖P2
e−→ P ′

1‖P2

(Par2) P2
e−→ P ′

2

P1‖P2
e−→ P1‖P ′

2

(Par3)
P1

(a?,n)−→ P ′
1, P2

(a!,n)−→ P ′
2

P1‖P2
(τ,n+m)−→ P ′

1‖P ′
2

(Par4)
P1

A1−→ P ′
1, P2

A2−→ P ′
2

P1‖P2
A1∪A2−→ P ′

1‖P ′
2

, ρ(A1) ∩ ρ(A2) = ∅

(Res1)
P

e−→ P ′, l(e) 6∈ F

P\F e−→ P ′\F
(Res2) P

A−→ P ′

P\F A−→ P ′\F

(Cl1)
P

A1−→ P ′, A2 = {(r, 0) | r ∈ I − ρ(A1)}
[P ]I

A1∪A2−→ [P ′]I
(Cl2) P

e−→ P ′

[P ]I
e−→ [P ′]I

(Hide1)
P

A−→ P ′, A′ = {(r, n) ∈ A | r /∈ I}
P\\I A′

−→ P ′\\I
(Hide2) P

e−→ P ′

P\\I e−→ P ′\\I

(Sc1)
P

e−→ P ′, l(e) 6= b!, t > 0

P 4
b

t (Q, R, S)
e−→ P ′ 4

b

t (Q, R, S)
(Sc2)

P
(b!,n)−→ P ′, t > 0

P 4
b

t (Q, R, S)
(τ,n)−→ Q

(Sc3)
P

A−→ P ′, t > 0

P 4
b

t (Q, R, S)
A−→ P ′ 4

b

t−1 (Q, R, S)
(Sc4)

R
α−→ R′, t = 0

P 4
b

t (Q, R, S)
α−→ R′

(Sc5)
S

α−→ S′, t > 0

P 4
b

t (Q, R, S)
α−→ S′

(Rec)
P

α−→ P ′, C
def
= P

C
α−→ P ′

notions of timeout and interrupts. We call t the time bound, where t ∈ NN ∪ {∞} and require that P may

execute for a maximum of t time units. The scope may be exited in one of three ways: first, if P terminates

successfully within t time-units by executing an event labeled a!, where a ∈ L, then control is delegated

to Q, the success-handler. Else, if P fails to terminate within time t, then control proceeds to R. Finally,

throughout the execution of this process, P may be interrupted by process S.
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As an example consider the task specification T
def= R4a

10 (SH,EH, IN) where

R
def= (in?, 1).(a!, 2).NIL + ∅ : R

SH
def= (ack!, 1).T

EH
def= (nack!, 1).T

IN
def= (kill?, 3).NIL

This task awaits for an input request to arrive for a 10 time-unit period. If such an event takes place it

signals on channel a the arrival and the success handler process, SH, acknowledges the event. If the deadline

elapses without the appearance of the event, the task signals the lack of input on channel nack. Finally, at

any point during its computation, the task may receive a signal on channel kill and halt its computation.

According to the rules for scope, process R4a

10 (SH,EH, IN) may engage in the following actions:

R4
a

10 (SH,EH, IN) ∅−→ R4
a

9 (SH,EH, IN)

R4
a

10 (SH,EH, IN)
(in?,1)−→ ((a!, 2).NIL)4

a

10 (SH,EH, IN)

R4
a

10 (SH,EH, IN)
(kill?,3)−→ NIL

Furthermore, note that:

R4
a

0 (SH,EH, IN)
(nack!,1)−→ T

((a!, 2).NIL)4
a

10 (SH,EH, IN)
(τ,2)−→ SH

The Close operator, [P ]I , produces a process P that monopolizes the resources in I ⊆ R. Rules (Cl1)

and (Cl2) describe the behavior of the close operator. When a process P is embedded in a closed context

such as [P ]I , we ensure that there is no further sharing of the resources in I. Assume that P executes a

time-consuming action A. If A utilizes less than the full resource set I, the action is augmented with (r, 0)

pairs for each unused resource r ∈ I − ρ(A). The way to interpret Close is as follows. A process may idle in

two ways: it may either release its resources during the idle time (represented by ∅), or it may hold them.

Close ensures that the resources are held. Instantaneous events are not affected. Thus:

[∅ : P1 + {(cpu, 1)} : P2]cpu
{(cpu,0)}−→ P1
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[∅ : P1 + {(cpu, 1)} : P2]cpu
{(cpu,1)}−→ P2

The resource hiding operator, P\\I internalizes the set of resources I within the process P . As shown in

(Hide1) and (Hide2) information regarding usage of resources in I is removed from timed actions of P while

instantaneous events remain unaffected. Finally, the restriction operator P\F and process constants C are

defined in the usual way.

In subsequent sections, we will assume the presence of a special constant IDLE ∈ C, representing the

process that idles forever, defined by IDLE def= ∅ : IDLE . Further, we will be using the shorthand notation

P 4t (Q) for P 4a

t (NIL, Q, NIL) to denote the process that executes as P for the first t time units and then

proceeds as Q. Finally, we write Πi∈IPi for the parallel composition of processes Pi, i ∈ I.

An important observation to make about the semantic rules is that the only “source” of time progress

is the action-prefix operator. That is, time progress has to be explicitly encoded into the model by the

designer. This feature forces the designer to think carefully about time progress in the model and results in

fewer unexpected behaviors in a complex model.

Another important observation is that time determinism, which is one of the main underlying principles

for most real-time process algebras, loses its importance in ACSR. Specifically, time determinism requires

that if P
ε−→ P1 and P

ε−→ P2, then P1 = P2. That is, because a process is, effectively, idle while time

advances, one tick should be indistinguishable from another. On the other hand, in ACSR, a process may be

able to perform different timed actions and evolve to different states: P
A1−→ P1 and P

A2−→ P2, with P1 6= P2.

Since actions may be blocked by other processes with higher resource-access priorities, it is important to

develop models in such a way that a process offers alternative behaviors in case the main one is blocked. For

example, a process P that wants to execute an action A, but is willing to be preempted, can be expressed

as P
def= A : P ′ + ∅ : P . The action ∅, which does not require any resources, allows the process P to idle for

one time unit and then retry to execute A.

Preemption and Prioritized Transitions. The prioritized transition system is based on preemption,

which incorporates the ACSR treatment of priority. This is based on a transitive, irreflexive, binary relation

on actions, ≺, called the preemption relation. If α ≺ β, for two actions α and β, we say that α is preempted
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by β. Then, in any process, if there is a choice between executing either α or β, β will always be executed.

We refer to [11] for the precise definition of ≺. Here, we briefly describe the three cases for which α ≺ β is

deemed to be true by the definition.

• The first case is for two timed actions α and β which compete for common resources. Here, it must be

that the preempting action β employs all its resources at priority level at least the same as α. Also,

β must use at least one resource at a higher level. It is still permitted for α to contain resources not

in β but all such resources must be employed at priority level 0. Otherwise, the two timed actions are

incomparable. Note that β cannot preempt an action α consuming a strict subset of its resources at

the same or lower level. This is necessary for preserving the compositionality of the parallel operator.

For instance, {(r1, 2), (r2, 0)} ≺ {(r1, 7)} but {(r1, 2), (r2, 1)} 6≺ {(r1, 7)}.

• The second case is for two events with the same label. Here, an event may be preempted by another

event with the same label but a higher priority. For example, (τ, 1) ≺ (τ, 2), (a, 2) ≺ (a, 5), and

(a, 1) 6≺ (b, 2) if a 6= b.

• The third case is when an event and a timed action are comparable under “≺.” Here, if n > 0 in an

event (τ, n), we let the event preempt any timed action. For instance, {(r1, 2), (r2, 5)} ≺ (τ, 2), but

{(r1, 2), (r2, 5)} 6≺ (τ, 0).

We define the prioritized transition system “→π,” which simply refines “→” to account for preemption as

follows: P
α−−→π P ′ if and only if (1) P

α−→ P ′ is an unprioritized transition, and (2) there is no unprioritized

transition P
β−→ P ′′ such that α ≺ β.

We note that the close operator has a special significance in relation to the preemption relation and the

prioritized transition system. In particular, we may see that, by closing a system by the set of its resources, we

enforce progress to be made: for example, consider the case when an idling action and a resource-consuming

action are simultaneously enabled from the initial state of a system. By applying the close operator, the

idling action is transformed into an action that consumes all resources of the system at priority level 0.

Then, in the prioritized transition relation this action will become preempted by the non-idling action, and

the system will be forced to progress.
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3.2 Schedulability Analysis with ACSR

In this section, we discuss how realistic task sets can be modeled in ACSR and how to perform schedulability

analysis of such task sets. A real-time task is a building block for a real-time system. A task is invoked

in response to an event in the system and needs to perform its computation by a certain deadline. A task

invocation, then, is characterized by two parameters that are constant across all invocations of the same

task: a relative deadline d and the range of execution times it takes to complete, [cmin, cmax]. The task

itself can be considered as a sequence of invocations and is characterized by a dispatch policy, which can

be periodic, aperiodic, or sporadic. A periodic task with a period p is dispatched by a timer event every

p time units. Aperiodic and sporadic tasks are dispatched by events that can be raised by tasks within

the system or originate from the system’s environment. Sporadic tasks are characterized by the minimum

separation between task invocations. For more information the reader is referred to [12]. A real-time system

consists of a fixed set of tasks and a set of resources that tasks share. The most important kind of resources

are processors that run tasks. Although ACSR can model migration of tasks between processors, in this

paper we assume that tasks are statically allocated to processors. Other resource types include buses, shared

memory blocks, etc.

In [5], modeling and analysis of several scheduling problems was introduced. Here, we apply a similar

approach to a somewhat different scheduling problem. We consider real-time systems that contain periodic

tasks with precedence constraints, executing on a set of processor resources without task migration. These

tasks are competing between them for the use of the system’s resources, access to which is resolved by a

scheduler according to the task priorities. These priorities can be static or dynamic. We assume that the

systems we consider are closed, that is, there is no competition for system resources from outside sources.

Similar task models have been considered in [18, 20]. We use the following notation: For a task Ti, let the

integer constants di, [cmin,i, cmax,i], and pi, denote the deadline, execution time range, and period of the

task, respectively. Resource cpui denotes the processor resource to which Ti is allocated. Note that, if more

than one tasks are allocated to a processor, then cpui = cpuj for some i and j.

We assume a set of precedence constraints between the system tasks representing data or control depen-
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Figure 1.1: Task set with precedence constraints

dencies that exist between them. These constraints are of the form

wij : Ti

fij

� Tj ,

where fij is an integer constant representing a propagation delay. We require that the precedence graph be

acyclic in order to avoid deadlocks during execution. We also use the simplifying assumption that for every

constraint wij tasks Ti and Tj have harmonic periods; that is, either pi is a multiple of pj or vice versa. Let

tj,n be the nth invocation of task Tj . Then, a constraint wij : Ti

fij

� Tj with pj = k · pi (that is, Ti executes

more often than Tj), is interpreted as follows: tj,n cannot begin execution until fij time units later than

ti,(n−1)·k+1 completes its execution. On the other hand, if wij : Ti

fij

� Tj with pi = k · pj , then tj,n cannot

begin execution until fij time units later than tj,nmod k completes its execution.

As we present the modeling approach, it will become clear that this task model can be easily generalized

in several ways, at the cost of a slightly more complex ACSR encoding. More general constraints can be used,

the requirement for harmonic periods for interacting tasks can be eliminated, and other dispatch policies

can be represented. We also note that the encoding of tasks and constraints can be automatically generated

from higher-level architectural representations such as AADL, as reported in [23].

Example. To illustrate the scheduling problem described above, consider the example shown in Fig-

ure 1.1(a). The system consists of four tasks with constant execution times (c = cmin = cmax) and deadlines

equal to task periods. Constraints are represented as a graph, with tasks as graph nodes and constraints as

directed edges. Figure 1.1(b) presents the schedule of a system execution with the rate-monotonic priority

assignment. (Tasks are assigned static priorities according to their periods, the shorter the period the higher
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the priority, and scheduling is preemptive.) Note that even though task T4 has the highest priority, it barely

meets its deadline due to a precedence dependency on a lower-priority T2, which is preempted by T1. Note

also that only the first invocation of T4 is affected by T2, and only the first invocation of T1 affects T3.

We now proceed with the model of the scheduling problem. We do this in a bottom-up approach,

beginning with the modeling of tasks and building up to the modeling of an entire system.

Encoding of task execution. The execution of a task Ti goes through several states. Initially, Ti

is sleeping, represented by the ACSR process Sleepi. This process can idle indefinitely, waiting for the

environment to offer the dispatchi event. When this event occurs, the process proceeds to the next state

Resolvei, where it waits until all precedence constraints are met. When that happens, the environment offers

the csat i event, which will allow the task to begin its execution. Execution is modeled by a parameterized

collection of ACSR processes Execi,c. Intuitively, process Execi,c represents the execution when the task

invocation has accumulated c time units of computation. While c < ci,max, Execi,c can gain access to the

resource cpui, and by doing this it advances to Execi,c+1. Alternatively, the task may be preempted, in

which case Execi,c follows the self-loop labeled with the idling action. In addition, if c >= ci,min, Execi,c

can send event donei and return to state Sleepi. Once c = ci,max, the process may only offer the event donei

until it becomes accepted. The ACSR processes for the task execution are shown below:

Sleepi
def= ∅ : Sleepi + (dispatchi?, 0).Resolvei

Resolvei
def= ∅ : Resolvei + (csat i?, 0).Execi,0

Execi,c
def= ∅ : Execi,c + {(cpui, pri)} : Execi,c+1 c < ci,min

Execi,c
def= ∅ : Execi,c + {(cpui, pri)} : Execi,c+1 + (donei!, pri).Sleepi ci,min ≤ c < ci,max

Execi,c
def= ∅ : Execi,c + (donei!, pri).Sleepi c = ci,max

Task activators. For each task Ti, the event dispatchi is supplied by a process acting as a task activator.

The activator process serves two purposes: it handles thread dispatch and keeps track of the deadline of the

current thread invocation. Here we show a simple activator process for a periodic thread Ti whose deadline

is equal to its period (di = pi).

Activator i
def= (dispatchi!, pri).Wait 4pi

(Activator i)
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Wait def= (done?, pri).Signal i + ∅ : Wait

The process sends the dispatch event to the task process, initiating execution of the task invocation.

Then, the activator awaits for pi time units for the task to signal its completion on channel done in which

case it continues as process Signal i, explained in the next paragraph. Note that, as soon as the task is

ready to emit an event labeled with done this will be immediately received by Wait . This is ensured by the

preemption relation that enforces maximal progress in this sense by preempting timed actions over internal

communications. Once the pi time units elapse, the Activator i resends the dispatch signal. By that time,

the thread should have completed its activation and be able to accept the dispatch signal. Otherwise, a

deadline violation is detected and the activator process is blocked since, in its initial state, it cannot pass

time. The resulting deadlocked state in the state space of the model allows us to detect the missed deadline.

Encoding of constraints. The set of precedence constraints of the system is handled by associating two

more processes with each task in the model. The first is responsible for releasing all tasks which are waiting

for the task to complete execution, and the latter is for detecting the release of all constraints on which its

own invocation depends. So, suppose that task Ti is involved in a set of constraints W1 = {wi,j | j ∈ J},

and a set of constraints W2 = {wm,i | m ∈ M}. Let us begin by considering constraints W1. For each such

constraint one should detect the completion of task Ti and send appropriate messages to release the relevant

task. The detection of the completion is implemented by process Signali, the component of Activator i

mentioned above, as follows:

Signal i
def= (fini!, pri).Signal i + ∅ : Signal i

This process is enabled until the next invocation of Task i and emits the event fini signaling the completion

of an invocation. Such a completion may have different importance for difference constraints. To capture

this, for each constraint wi,j ∈ W1, we define a process Releasei,j that determines whether the constraint

should be released and emits a message to task j. Representation of Releasei,j depends on the relationship

between the periods of Ti and Tj . In the case that pj = k · pi, Releasei,j awaits the completion of task Ti

and emits a message to task Tj by offering donei,j . It repeats this behavior every pj time units and ignores
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intermediate completions of invocations:

Releasei,j
def= Rel i,j 4pj

(Releasei,j)

Rel i,j
def= (fini?, pri).Send i,j + ∅ : Rel i,j

Send i,j
def= (donei,j !, pri).IDLE + ∅ : Send i,j

The case of pi = k · pj is very similar with the exception that Releasei,j repeats this behavior every pi time

units.

Let us now consider constraints W2 for a task Ti. These are handled by an ACSR process Constr i. The

process itself consists of a number of concurrent processes: a set of processes Propj,i, for each wj,i ∈ W2,

which detect the release of the constraint wj,i, and a process Poll i which queries all the Propj,i processes

and sends the csat i event if all constraints are released. Communication between these concurrent processes

is internal to Constr i

Constr i
def= (Poll i ‖ ΠjPropi,j)\{ready i}

The process Poll i runs every time unit and sequentially tries to synchronize with every process Propj,i on

event ready i. If any of the processes cannot offer readyi, this indicates that the constraint wj,i is not satisfied.

Let us assume that |W2| = m. We have:

Poll i
def= Poll i,0

Poll i,j
def= (ready i?, 0).Poll i,j+1 + ∅ : Poll i j < m

Poll i,m
def= (csat i!, pri).∅ : Poll i + ∅ : Poll i.

Representation of Propi,j depends on the relationship between the periods of Ti and Tj . Let us begin

with the case that pi = k · pj . In this case, Propi,j awaits a signal from process Releasej,i and, after fj,i time

units, it declares the release of the task to the polling process by sending the event ready i. It repeats this

behavior every pi time units:

Propi,j
def= Pi,j 4pi

(Propi,j)

Pi,j
def= (donej,i?, pri).IDLE 4fj,i

(Ready i,j) + ∅ : Pi,j

Ready i,j
def= ∅ : Ready i,j + (readyj !, pri,l).Ready i,j
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The case when pj = k · pi is handled in a similar way, only the behavior of Propi,j is repeated every pj time

units.

Priority assignments and final composition. We are now ready to put together the processes for tasks

and constraints into a coherent model. We first form the “task cluster” that brings together the processes that

relate to the single task, and make communication between them internal to the cluster. The four processes

involved in a cluster for the task Ti are Sleepi, Activator i, Releasei, and Constr i. They communicate by

events dispatchi, donei, fini, and csat i. We thus get the following expression for the task cluster process

Task i
def= (Sleepi‖Activator i‖Constr i‖Releasei)\{dispatchi, donei, csat i,fini}.

It remains to compose task clusters together, and make all communication on events donei,j internal. In

addition, we need to close all processor resources so that no other tasks can use them and to enforce progress

in the system.

RTSystem def= [(Πi=1...nTaski)\{donei,j |i, j = 1 . . . n}]{cpui|i=1...n}.

In order for this model to execute correctly, we need to carefully assign priorities in actions and events

used in the model. Priorities of resource access represent the scheduling policy used to schedule processors

in the system. In the case of static priority scheduling, all actions in all processes Execi,c have the same

priority, which is the priority statically assigned to thread Ti. Dynamic-priority scheduling policies, such as

EDF (Earliest Deadline First) policy, makes the resource priority in Execi,c a function of di and c.

On the other hand, event priorities do not play an important role in the specific model. We may observe

that any process may engage in at most one event at any given point in time. Thus, although the execution

of more than one internal event may be possible in any time-phase (between two timed actions) in the global

system, if a number of internal events are simultaneously enabled in some state of the system, execution of

one event does not affect the execution of another, since, by construction, this must be taking place in a

separate component of the system. In addition, note that all such events will take place confluently before

the next timed action due to the preemption relation preempting timed events by internal actions.

Schedulability Analysis Within the ACSR formalism we can conduct two types of analysis for real-time

scheduling: validation and schedulability analysis. Validation shows that a given specification correctly
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models the required real-time scheduling discipline, such as Rate Monotonic and Earliest-Deadline-First.

Schedulability analysis determines whether or not a real-time system with a particular scheduling discipline

misses any of its deadlines. In the ACSR modeling approach, a missed deadline induces a deadlock in the

system. The correctness criterion, then, can be stated as the absence of deadlocks in the model of the system.

This can be checked by using state-space exploration techniques. Specifically, we can show that an instance

of the problem is schedulable if and only if its associated RTSystem process contains no deadlocks. The

following theorem pinpoints the source of deadlocks in a certain class of systems, including process RTSystem

above, and enables ut to arrive at the desired conclusion.

First, let us introduce some useful notation. In the sequel, we will write P
α−−→π if there is some process

P ′ such that P
α−−→π P ′ and P 6 α−−→π if there is no process P ′ such that P

α−−→π P ′. Further, we will write

P =⇒π P ′ if there is a sequence of transitions of the form P
α1−−→π P1

α2−−→π . . .
αn−−→π Pn = P ′, in which

case we say that P ′ is a derivative of P and that the length of the transition P =⇒π P ′ is n.

Theorem 1.1 Consider a process P such that

P
def= ([(Πi∈IPi)\F ]U )\\V

where F ⊆ L, U, V ⊆ R, for all i, Pi contains no parallel composition operator and I = I1 ∪ I2 where,

• for all i ∈ I1 and for all derivatives Qi of Pi, Qi
∅−−→π, and

• for all i ∈ I2 and for all derivatives Qi of Pi, either (1) Qi
∅−−→π or (2) Qi

αi−−→π, `(αi) ∈ F , and

Qi 6
β−−→π for all β ∈ D − {αi}.

Then, for all derivatives Q of P , if Q 6−−→π then Q = ([(Πi∈IQi)\F ]U )\\V and Qi
αi−−→π for some i ∈ I2.

Proof: Consider a process P
def= ([(Πi∈IPi)\F ]U )\\V satisfying the conditions of the theorem. We will

prove that any derivative Q of P is such that Q = [(Πi∈IQi)\F ]U )\\V , where no Qi contains a parallel

composition operator, and I can be partitioned into sets I1 and I2 satisfying the conditions of the theorem.

The proof will be carried out by induction on the length, n, of the transition P =⇒π Q.

Clearly, the claim holds for n = 0. Suppose that it holds for n = k − 1 and that P =⇒π Q′ α−−→π Q is

a transition of size n. By the induction hypothesis, Q′ = [(Πi∈IQ
′
i)\F ]U )\\V satisfies the conditions of the

theorem. Consider the transition Q′ α−−→π Q. Three cases exist:
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• α ∈ DR. This implies that for all i ∈ I, Q′
i

Ai−−→π Qi, for some Qi, Q = [(Πi∈IQi)\F ]U )\\V and

α =
⋃

i∈I Ai. It is straightforward to see that no Qi contains a parallel composition operator and that,

since each Qi is a derivative of Q′
i, the conditions of the theorem are satisfied.

• α = τ . This implies that there exist j, k ∈ I, such that Q′
j

αj−−→π Qj and Q′
k

αk−−→π Qk, where `(αj)

and `(αk) are inverse labels, and Q = [(Πi∈I−{j,k}Q
′
i ‖ Qj ‖ Qk)\F ]U )\\V . It is straightforward to see

that no Q′
i, Qi, contains a parallel composition operator and check that the conditions of the theorem

are satisfied.

• α ∈ DE . This implies that there exists j ∈ I, such that Q′
j

αj−−→π Qj Q = [(Πi∈I−{j}Q
′
i ‖ Qj)\F ]U )\\V

and the proof follows easily.

So consider an arbitrary derivative Q of P and suppose that Q 6−−→π. Since Q = [(Πi∈IQi)\F ]U )\\V satisfies

the conditions of the theorem, and further Q 6 ∅−−→π, it must be that some Qi 6
∅−−→π, i ∈ I2. This implies

that Qi
αi−−→π and the result follows. 2

As a corollary we obtain the desired result.

Proposition 1.1 RTSystem is schedulable if and only if it contains no deadlocks.

Proof: First, we observe that if RTSystem contains no deadlocks then the associated real-time system is

schedulable: task activations take place as planned and no deadlines are missed.

To prove the opposite direction, we show that if the system contains a deadlock then RTSystem is not

schedulable. Consider system RTSystem. By using the ACSR axiom system, we may easily rewrite this

process to an equivalent process which has the form of P in Theorem 1.1, that is,

RTSystem = [ (Πi=1...n (Sleepi ‖ Activator i ‖ (Poll i ‖ ΠjPropi,j) ‖ Releasei)) \ F ] U

where F = {donei,j | i, j = 1 . . . n}∪{dispatchi, donei, csat i, ready i,fini | i = 1 . . . n}, U = {cpui|i = 1 . . . n}.

It is straightforward to verify that the above process satisfies the conditions of Theorem 1.1, and, further,

I2 contains all processes Activatori, with αi = (dispatchi, pri). Consequently, by the same theorem, if

a deadlock arises in RTSystem, the event dispatchi is enabled in some process Activatori but not in the
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respective Sleepi process. This implies that the task has not yet completed execution of its previous activation

and has missed its deadline. Thus, the system is not schedulable. This completes the proof. 2

Thus, the model we have described can be instantiated to a specific task set with a specific scheduling

algorithm, and its schedulability can be decided by searching for deadlocks in the resulting model.

4 Conclusions

In this chapter, we have given an overview of how timing information can be embedded in process-algebraic

frameworks. We have concentrated on illustrating how time and time passage are modeled in different process

algebras, and how the resulting mechanisms interact with each other and with standard, untimed operators.

We have proceeded to review the ACSR process algebra which extends the ideas of timed process algebras to

the field of timed, resource-constrained systems. We have observed that ACSR shares a number of features

with other timed process algebras. For example, all the mentioned formalisms share the view that a timed

system is the composition of cooperating sequential processes which synchronize on a shared global clock

and operate in a sequence of two-phase steps alternating between time progress and instantaneous steps.

Further, in all the formalisms the designer is called to ensure that non-Zenoness and progress are preserved

in the system, with respect to the idiosyncracies of the formalism.

ACSR stands out from the remainder of the process algebras considered in that it is geared towards

the modeling of resource-sensitive, timed systems. In doing this, it adopts the notion of a resource as

a first-class entity, and it replaces maximal progress, employed by other process algebras, by the notion

of resource-constrained progress. Thus, it associates resource-usage with time passage, and it implements

appropriate rules to ensure that progress in the system is enforced as far as possible while simultaneous

usage of a resource by distinct processes is excluded. In addition, ACSR employs the notions of priorities to

arbitrate access to resources by competing processes.

Furthermore, we have illustrated the use of ACSR for the schedulability analysis of a realistic real-time

system problem. The systems in question are composed of a set of periodic tasks with precedence constraints,

competing for the use of a set of processors, access to which is resolved by a scheduler according to the task

priorities. Schedulability analysis of this, and other schedulability problems, is translated in the formalism
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into the absence of deadlocks in the ACSR process modeling the system. We have made this concrete by

providing a compositional result that characterizes the source of deadlocks in a specific set of concurrent

components. We have shown that, in our model, this source is associated with tasks missing their deadlines.

ACSR has been extended into a family of process algebras. Extensions and variations include GCSR [4]

which allows the visual representation of ACSR processes, Dense-time ACSR [6] which includes a more

general notion of time, ACSR-VP [10] which includes a value-passing capability, PACSR [19], a proba-

bilistic formalism for quantitative reasoning about fault-tolerant properties of resource-bound systems and

P2ACSR [24] which allows to specify power-constrained systems. The PARAGON toolset [22] provides tool

support for system modeling and analysis using these formalisms.

References

[1] J. Baeten and C. Middelburg. Process algebra with timing: Real time and discrete time. In Handbook

of Process Algebra, pages 627–684. Elsevier, 2001.

[2] J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal Aspects of Computing, 3(2):481–

529, 1991.

[3] J. C. M. Baeten and W. P. Weijland. Process Algebra. Number 18 in Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1990.

[4] H. Ben-Abdallah. GCSR: A Graphical Language for the Specification, Refinement and Analysis of

Real-Time Systems. PhD thesis, Department of Computer and Information Science, University of

Pennsylvania, 1996.

[5] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y. S. Kim, I. Lee, and H.-L. Xie. A process algebraic approach

to the schedulability analysis of real-time systems. Real-Time Systems, 15(3):189–219, 1998.

[6] P. Brémond-Grégoire and I. Lee. Process algebra of communicating shared resources with dense time

and priorities. Theoretical Computer Science, 189:179–219, 1997.



REFERENCES 32
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