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60.1 Overview of the Functionality of a Database Manage-
ment System

Many of the previous chapters have shown that efficient strategies for complex data-
structuring problems are essential in the design of fast algorithms for a variety of ap-
plications, including combinatorial optimization, information retrieval and Web search,
databases and data mining, and geometric applications. The goal of this chapter is to
provide the reader with an overview of the important data structures that are used in the
implementation of a modern, general-purpose database management system (DBMS). In
earlier chapters of the book the reader has already been exposed to many of the data struc-
tures employed in a DBMS context (e.g., B-trees, buffer trees, quad trees, R-trees, interval
trees, hashing). Hence, we will focus mainly on their application but also introduce other
important data structures to solve some of the fundamental data management problems
such as query processing and optimization, efficient representation of data on disk, as well
as the transfer of data from main memory to external storage. However, due to space con-
straints, we cannot cover applications of data structures to solve more advanced problems
such as those related to the management of multi-dimensional data warehouses, spatial and
temporal data, multimedia data, or XML.

Before we begin our treatment of how data structures are used in a DBMS, we briefly
review the basic architecture, its components, and their functionality. Unless otherwise
noted, our discussion applies to a class of DBMSs that are based on the relational data
model. Relational database management systems make up the majority of systems in use
today and are offered by all major vendors including IBM, Microsoft, Oracle, and Sybase.
Most of the components described here can also be found in DBMSs based on other models
such as the object-based model or XML.

Figure 60.1 depicts a conceptual overview of the main components that make up a DBMS.
Rectangles represent system components, the double-sided arrows represent input and out-
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FIGURE 60.1: A simplified architecture of a database management system (DBMS)

put, and the solid connectors indicate data as well as process flow between two components.
Please note that the inner workings of a DBMS are quite complex and we are not attempt-
ing to provide a detailed discussion of its implementation. For an in-depth treatment the
reader should refer to one of the many excellent database books, e.g., [3, 4, 9, 10].

Starting from the top, users interact with the DBMS via commands generated from a
variety of user interfaces or application programs. These commands can either retrieve or
update the data that is managed by the DBMS or create or update the underlying meta-
data that describes the schema of the data. The former are called queries, the latter are
called data definition statements. Both types of commands are processed by the Query
Evaluation Engine which contains sub-modules for parsing the input, producing an execu-
tion plan, and executing the plan against the underlying database. In the case of queries,
the parsed command is presented to a query optimizer sub-module, which uses information
about how the data is stored to produce an efficient execution plan from the possibly many
alternatives. An execution plan is a set of instructions for evaluating an input command,
usually represented as a tree of relational operators. We discuss data structures that are
used to represent parse trees, query evaluation plans, external sorting, and histograms in
Section 60.2 when we focus on the query evaluation engine.

Since databases are normally too large to fit into the main memory of a computer, the
data of a database resides in secondary memory, generally on one or more magnetic disks.
However, to execute queries or modifications on data, that data must first be transferred
to main memory for processing and then back to disk for persistent storage. It is the
job of the Storage Subsystem to accomplish a sophisticated placement of data on disk, to
assure an efficient localization of these persistent data, to enable their bidirectional transfer
between disk and main memory, and to allow direct access to these data from higher DBMS
architecture levels. It consists of two components: The Disk Space Manager is responsible
for storing physical data items on disk, managing free regions of the disk space, hiding
device properties from higher architecture levels, mapping physical blocks to tracks and
sectors of a disc, and controlling the data transfer of physical data items between external
and internal memory. The Buffer Manager organizes an assigned, limited main memory
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area called buffer. A buffer may be a buffer pool and may comprise several smaller buffers.
Components at higher architecture levels may have direct access to data items in these
buffers.

In Sections 60.3 and 60.4, we discuss data structures that are used to represent both data
in memory as well as on disk such as fixed and variable-length records, large binary objects
(LOBs), heap, sorted, and clustered files, as well as different types of index structures. Given
the fact that a database management system must manage data that is both resident in main
memory as well as on disk, one has to deal with the reality that the most appropriate data
structure for data stored on disk is different from the data structures used for algorithms
that run in main memory. Thus when implementing the storage manager, one has to pay
careful attention to selecting not only the appropriate data structures but also to map the
data between them efficiently.

In addition to the above two components, today’s modern DBMSs include a Transaction
Management Subsystem to support concurrent execution of queries against the database
and recovery from failure. Although transaction processing is an important and complex
topic, it is less interesting for our investigation of data structures and is mentioned here
only for completeness.

The rest of this chapter is organized as follows. Section 60.2 describes important data
structures used during query evaluation. Data structures used for buffer management are
described in Section 60.3, and data structures used by the disk space manager are described
in Section 60.4. Section 60.5 concludes the chapter.

60.2 Data Structures for Query Processing

Query evaluation is performed in several steps as outlined in Figure 60.2. Starting with the
high-level input query expressed in a declarative language called SQL (see, for example, [2])
the Parser scans, parses, and validates the query. The goal is to check whether the query
is formulated according to the syntax rules of the language supported in the DBMS. The
parser also validates that all attribute and relation names are part of the database schema
that is being queried.

The parser produces a parse tree which serves as input to the Query Translation and
Rewrite module shown underneath the parser. Here the query is translated into an internal
representation, which is based on the relational algebra notation [1]. Besides its compact
form, a major advantage of using relational algebra is that there exist transformations (re-
write rules) between equivalent expressions to explore alternate, more efficient forms of the
same query. Different algebraic expressions for a query are called logical query plans and are
represented as expression trees or operator trees. Using the re-write rules, the initial logical
query plan is transformed into an equivalent plan that is expected to execute faster. Query
re-writing is guided by a number of heuristics which help reduce the amount of intermediary
work that must be performed in order to arrive at the same result.

A particularly challenging problem is the selection of the best join ordering for queries
involving the join of three or more relations. The reason is that the order in which the input
relations are presented to a join operator (or any other binary operator for that matter)
tends to have an important impact on the cost of the operation. Unfortunately, the number
of candidate plans grows rapidly when the number of input relations grows!.

ITo be exact, for n relations there are n! different join orderings.
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FIGURE 60.2: Outline of query evaluation

The outcome of the query translation and rewrite module is a set of “improved” logical
query plans representing different execution orders or combinations of operators of the
original query. The Physical Plan Generator converts the logical query plans into physical
query plans which contain information about the algorithms to be used in computing the
relational operators represented in the plan. In addition, physical query plans also contain
information about the access methods available for each relation. Access methods are ways
of retrieving tuples from a table and consist of either a file scan (i.e., a complete retrieval
of all tuples) or an index plus a matching selection condition. Given the many different
options for implementing relational operators and for accessing the data, each logical plan
may lead to a large number of possible physical plans. Among the many possible plans,
the physical plan generator evaluates the cost for each and chooses the one with the lowest
overall cost.

Finally, the best physical plan is submitted to the Code Generator which produces the
executable code that is either executed directly (interpreted mode) or is stored and executed
later whenever needed (compiled mode). Query re-writing and physical plan generation are
referred to as query optimization. However, the term is misleading since in most cases the
chosen plan represents a reasonably efficient strategy for executing a query.

Query evaluation engines are very complex systems and a detailed description of the
underlying techniques and algorithms exceeds the scope of this chapter. More details on
this topic can be found in any of the database textbooks (e.g., [3, 4, 9]). For an advanced
treatment of this subject, the reader is also referred to [8, 7] as well as to some of the
excellent surveys that have been published (see, for example, [6, 5]).

In the following paragraphs, we focus on several important data structures that are used
during query evaluation, some of which have been mentioned above: The parse tree for
storing the parsed and validated input query (Section 60.2.3), the expression tree for repre-
senting logical and physical query plans (Section 60.2.4), and the histogram which is used to
approximate the distribution of attribute values in the input relations (Section 60.2.5). We
start with a summary of the well-known index structures and how they are used to speed up
the basic database operations. Since sorting plays an important role in query processing, we
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include a separate description of the data structures used to sort large files using external
memory (Section 60.2.2).

60.2.1 Index Structures

An important part of the work of the physical plan generator is to chose an efficient im-
plementation for each of the operators in the query. For each relational operator (e.g.,
selection, projection, join) there are several alternative algorithms available for imple-
mentation. The best choice usually depends on factors such as size of the relation, available
memory in the buffer pool, sort order of the input data, and availability of index structures.
In the following, we briefly highlight some of the important index structures that are used
by a modern DBMS and how they can speed up relational operations.

One-dimensional Indexes

One-dimensional indexes contain a single search key, which may be composed of multiple
attributes. The most frequently used data structures for one-dimensional database indexes
are dynamic tree-structured indexes such as B/B¥-Trees and hash-based indexes using ex-
tendible and linear hashing. In general, hash-based indexes are especially good for equality
searches. For example, in the case of an equality selection operation, one can use a one-
dimensional hash-based index structure to examine just the tuples that satisfy the given
condition. Consider the selection of students having a certain grade point average (GPA).
Assuming students are randomly distributed throughout the file, an index on the GPA value
could lead us to only those records satisfying the selection condition and resulting in a lot
fewer data transfers than a sequential scan of the file (if we assume the tuples satisfying the
condition make up only a fraction of the entire relation).

Given their superior performance for equality searches hash-based indexes prove to be
particularly useful in implementing relational operations such as joins. For example, the
index-nested-loop join algorithm generates many equality selection queries, making the
difference in cost between a hash-based and the slightly more expensive tree-based imple-
mentation significant.

B-Trees provide efficient support for range searches (all data items that fall within a range
of values) and are almost as good as hash-based indexes for equality searches. Besides their
excellent performance, B-Trees are “self-tuning”, meaning they maintain as many levels of
the index as is appropriate for the size of the file being indexed. Unlike hash-based indexes,
B-Trees manage the space on the blocks they use and do not require any overflow blocks.

Indexes are also used to answer certain types of queries without having to access the
data file. For example, if we need only a few attribute values from each tuple and there is
an index whose search key contains all these fields, we can chose an index scan instead of
examining all data tuples. This is faster since index records are smaller (and hence fit into
fewer buffer pages). Note that an index scan does not make use of the search structure of
the index: for example, in a B-Tree index one would examine all leaf pages in sequence.
All commercial relational database management systems support B-Trees and at least one
type of hash-based index structure.

Multi-dimensional Indexes

In addition to these one-dimensional index structures, many applications (e.g., geographic
database, inventory and sales database for decision-support) also require data structures
capable of indexing data existing in two or higher-dimensional spaces. In these domains,
important database operations are selections involving partial matches (all points within
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a range in each dimension), range queries (all points within a range in each dimension),
nearest-neighbor queries (closest point to a given point), and so-called “where-am-I" queries
(region(s) containing a point).

Some of the most important data structures that support these types of operations are:

Grid file. A multi-dimensional extension of one-dimensional hash tables. Grid files
support range queries, partial-match queries, and nearest-neighbor queries well,
as long as data is uniformly distributed.

Multiple-key index. The index on one attribute leads to indexes on another at-
tribute for each value of the first. Multiple-key indexes are useful for range and
nearest-neighbor queries.

R-tree. A B-Tree generalization suitable for collections of regions. R-Trees are used
to represent a collection of regions by grouping them into a hierarchy of larger
regions. They are well suited to support “where-am-I" queries as well as the other
types of queries mentioned above if the atomic regions are individual points.

Quad tree. Recursively divide a multi-dimensional data set into quadrants until each
quadrant contains a minimal number of points (e.g., amount of data that can fit
on a disk block). Quad trees support partial-match, range, and nearest-neighbor
queries well.

Bitmap index. A collection of bit vectors which encode the location of records with a
given value in a given field. Bitmap indexes support range, nearest-neighbor, and
partial-match queries and are often employed in data warehouses and decision-
support systems. Since bitmap indexes tend to get large when the underlying
attributes have many values, they are often compressed using a run-length en-
coding.

Given the importance of database support for non-standard applications, most commer-
cial relational database management systems support one or more of these multi-dimensional
indexes, either directly as part of the core engine (e.g., bitmap indexes), or as part of an of
object-relational extensions (e.g., R-trees in a spatial extender).

60.2.2 Sorting Large Files

The need to sort large data files arises frequently in data management. Besides outputting
the result of a query in sorted order, sorting is useful for eliminating duplicate data items
during the processing of queries. In addition, a widely used algorithm for performing a join
operation (sort-merge join) requires a sorting step. Since the size of databases routinely
exceeds the amount of available main memory, all DBMS vendors use an external sorting
technique called merge sort (which is based on the main-memory version with the same
name). The idea behind merge sort is that a file which does not fit into main memory
can be sorted by breaking it into smaller pieces (sublists), sorting the smaller sublists
individually, and then merging them to produce a file that contains the original data items
in sorted order.

The external merge sort is also a good example of how main memory versions of algorithms
and data structures need to change in a computing environment where all data resides on
secondary and perhaps even tertiary storage. We will point out more examples where the
most appropriate data structure for data stored on disk is different from the data structures
used for algorithms that run in memory in Section 60.4 when we describe the disk space
manager.

During the first phase, also called the run-generation phase, merge-sort fills the available
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buffer pages in main memory with blocks containing the data records from the file on disk.
Sorting is done using any of the main-memory algorithms (e.g., Heapsort, Quicksort). The
sorted records are written back to new blocks on disk, forming a sorted sublist containing
as many blacks as there are available buffer pages in main memory. This process is repeated
until all records in the data file are in one of the sorted sublists. Run-generation is depicted
in Figure 60.3.

Main Memory

Data file
on n disk
blocks

k buffer
pages
(k<<n)

\

]

['n/k] sorted

(B } sublists of

size k disk
E } o

||

FIGURE 60.3: Run generation phase

In the second phase of the external sort merge algorithm, also called the merging phase,
all but one of the main memory buffers are used to hold input data from one of the sorted
sublists. In most instances, the number of sorted sublists is less than the number of buffer
pages and the merging can be done in one pass. Note, this so-called multi-way merging is
different from the main-memory version of merge sort which merges pairs of runs; hence
it is also called two-way merge. A two-way merge strategy in the external version would
result in reading data in and out of memory 2 *log,(n) times for n sublists (versus reading
all n sublists only once). The arrangement of buffers to complete this one-pass multi-way
merging step is shown in Figure 60.4.

In the rare situation when the number of sorted sublists exceeds the available buffer pages
in main memory, the merging step must be performed in several passes as follows: assuming
k buffer pages in main memory, each pass involves the repeated merging of £ — 1 sublists
until all sublists have been merged. At this point the number of runs has been reduced by
a factor of k — 1. If the reduced number of sublists is still greater than k, the merging is
repeated until the number of sublists is less than k. A final merge then generates the sorted
output. In this scenario, the number of merge passes required is [log,_;(n/k)].

60.2.3 The Parse Tree

A parse tree is an m-ary tree that shows the structure of a query in SQL. Each interior node
of the tree is labeled with a non-terminal symbol of SQL’s grammar with the goal symbol
labeling the root node. The query being parsed appears at the bottom with each token of
the query being a leaf in the tree. In the case of SQL, leaf nodes are lexical elements such
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as keywords of the language (e.g., SELECT), names of attributes or relations, operators,
and other schema elements.

The parse tree for the query

SELECT Name
FROM Enrollment, Student
WHERE ID = SID AND GPA > 3.5;

is shown in Figure 60.5. This query selects all the enrolled students with a GPA higher
than 3.5. We are assuming the existence of two relations called Enrollment and Student
which store information about enrollment records for students in a school or University.

<Query>
|
<SFW>
SELECT  <Sel-List> FROM  <From-List> WHERE <Condition>
<Attribute> <RelName> , <From-List>
Name Enrollment <RelName>
‘ AND
Student
<Condition> <Condition>
<Attribute> = <Aftribute> <Aftribute> > <Pattern>
ID SID GPA 3.5

FIGURE 60.5: Sample parse tree for the SQL query
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The parse tree shown in Figure 60.5 is based on the grammar for SQL as defined in
[4] (which is a subset of the real grammar for SQL). Non-terminal symbols are enclosed
in angled brackets. At the root is the category < Query > which forms the goal for the
parsed query. Descending down the tree, we see that this query is of the form SEW (select-
from-where). Of interest is the FROM list which is defined as a relation name followed by
another FROM list. In case one of the relations in the FROM clause is a actually a view,
it must be replaced by its own parse tree that describes the view (since a view is essentially
a query). A parse tree is said to be valid if it conforms to the syntactic rules of the grammar
as well as the semantic rules on the use of the schema names.

60.2.4 Expression Trees

An expression tree is a binary tree data structure that corresponds to a relational algebra
expression. In the relational algebra we can combine several operators into one expression
by applying one operator to the result(s) of either one or two other operators (since all
relational operators are either unary or binary). The expression tree represents the input
relations of the query as leaf nodes of the tree, and the relational algebra operations together
with estimates for result sizes as internal nodes.

Figure 60.6 shows an example of three equivalent expression trees representing logical
query plans for the following SQL query which selects all the students enrolled in the course
"COP 4720’ during the term ’Sp04’ who have a grade point average of 3.5:

SELECT Name FROM Enrollment, Student
WHERE Enrollment.ID = Student.SID AND Enrollment.Course = ’COP 4720’
AND Enrollment.TermCode = ’Sp04’ AND Student.GPA = 3.5;

An execution of a tree consists of executing an internal node operation whenever its operands
are available and then replacing that internal node by the relation that results from execut-
ing the operation. The execution terminates when the root node is executed and produces
the result relation for the query.

TEName TEName TlName

6Course ='COP 4720
AND Grade = ‘A’ AND
TermCode = ‘Sp04’

Gapa=35

‘ O'remmCode=spo4’
> AND Course = ‘COP 4720’ ‘

D < SID AND GPA =35
- >

/ ID=SID
cSTermCoue:‘SpM‘ N
AND Course = ‘COP 4720 ID =SID
Ocpa=35
Student / \ Enroliment

Enrollment Enroliment Student Student

(a) (b) (c)

FIGURE 60.6: Sample expression trees representing three equivalent logical query plans
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Note that expression trees representing physical query plans differ in the information that
is stored in the nodes. For example, internal nodes contain information such as the oper-
ation being performed, any parameters if necessary, general strategy about the algorithm
that is used, whether or materialization of intermediate results or pipelining is used, and
the anticipated number of buffers the operation will require (rather than result size as in
logical query plans). At the leaf nodes table names are replaced by scan operators such as
TableScan, SortScan, IndexScan, etc.

However, there is an interesting twist to the types of expression trees that are actually
considered by the query optimizer. As we have previously pointed out, the number of
equivalent query plans (both logical and physical) for a given query can be very large. This
is even more so the case, when the query involves the join of two or more relations since we
need to take the join order into account when choosing the best possible plan. In general,
join operations perform best when the left argument (i.e., the outer relation) is the smaller
of the two relations. Today’s query optimizers take advantage of this fact by pruning a large
portion of the entire search space and concentrating only on the class of left-deep trees. A
left-deep tree is an expression tree in which the right child of each join is a leaf (i.e., a base
table). For example, in Figure 60.6, the tree labeled (a) is an example of a left-deep tree
(the tree labeled (b) is an example of a nonlinear or bushy tree, tree (c) is an example of a
right-deep tree).

There are two important advantages for considering on left-deep expression trees: (1) For
a given number of leaves, the number of left-deep trees is not nearly as large as the number
of all trees, enabling the query processor to consider queries with more relations than is
otherwise possible. (2) Left-deep trees allow the query optimizer to generate more efficient
plans by avoiding the intermediate storage (materialization) of join results. Note that in
most join algorithms, the inner table must be materialized because we must examine the
entire inner table for each tuple of the outer table. However, in a left-deep tree, all inner
tables exist as base tables and are therefore already materialized.

IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all search for
left-deep trees using a dynamic programming approach. However, Oracle also considers
right-deep trees and DB2 generates some nonlinear trees. Sybase ASE goes so far as even
allowing users to explicitly edit the query plan whereas IBM DB2 allow users to adjust the
optimization level which influences how many plans the optimizer considers (see [9]).

60.2.5 Histograms

Whether choosing a logical query plan or constructing a physical query plan from a logical
query plan, the query evaluation engine needs to have information about the expected cost
of evaluating the expressions in a query. As we mentioned above, the “cost” of evaluating
an expression is approximated by several parameters including the size of any intermediary
results that are produced during the evaluation, the size of the output, and the types of
algorithms that are chosen to evaluate the operators. Statistics include number of tuples
in a relation, number of disk blocks used, available indexes, etc. Frequent computation of
statistics, especially in light of many changes to the database, lead to more accurate cost
estimates. However, the drawback is increased overhead since counting tuples and values
is expensive. Most systems compromise by gathering statistics periodically, during query
run-time, but also allow the administrator to specifically request a refresh of the statistics.

An important data structure for cost estimation is the histogram, which is used by the
DBMS to approzimate the distribution of values for a given attribute. Note that in all but
the smallest databases, counting the exact occurrence of values is usually not an option.
Having access to accurate distributions is essential in determining how many tuples satisfy a
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certain selection predicate, for example, students with a GPA value of 3.5. This is especially
important in the case of joins, which are among the most expensive operations. For example,
if a value of the join attribute appears in the histograms for both relations, we can determine
exactly how many tuples of the result will have this value.

Using a histogram, the data distribution is approximated by dividing the range of values,
for example, GPA values, into subranges or buckets. Each bucket contains the number of
tuples in the relation with GPA values within that bucket. Histograms are more accurate
than assuming a uniform distribution across all values.

Depending on how one divides the range of values into the buckets, we distinguish between
equiwidth and equidepth histograms [9]: In equiwidth histograms, the value range is divided
into buckets of equal size. In equidepth histograms, the value range is divided so that
the number of tuples in each bucket is the same (usually within a small delta). In both
cases, each bucket contains the average frequency. When the number of buckets gets large,
histograms can be compressed, for example, by combining buckets with similar distributions.

Consider the Students-Enrollments scenario from above. Figure 60.7 depicts two sam-
ple histograms for attribute GPA in relation Student. For this example we are assuming
that GPA values are rounded to one decimal and that there are 50 students total. Fur-
thermore, consider the selection GPA = 3.5. Using the equidepth histogram, we are led
to bucket 3, which contains only the GPA value 3.5 and we arrive at the correct answer,
10 (vs. 1/2 of 12 = 6 in the equiwidth histogram). In general, equidepth histograms pro-
vide better estimates than equiwidth histograms. This is due to the fact that buckets with
very frequently occurring values contain fewer values, and thus the uniform distribution as-
sumption is applied to a smaller range of values, leading to a more accurate estimate. The
converse is true for buckets containing infrequent values, which are better approximated by
equiwidth histograms. However, in query optimization, good estimation for frequent values
are more important. See [4] for a more detailed description of the usage of histograms in
query optimization.

Histograms are used by the query optimizers of all of the major DBMS vendors. For

Equiwidth Equidepth
10.0
7.0

4.0

30 31 32 33 34 3.5 36 3.7 38 3.9 30 31 32 33 34 35 36 3.7 38 39

e e

Bucket 1 Bucket 2 Bucket3  Bucket4  Bucket5 Bucket 1 Bucket 2 Bucket 3 Bucket4  Bucket 5

8values  14values 12values 9values 7 values 14 values 10 values 10 values 9values 7 values

FIGURE 60.7: Sample histograms approximating the distribution of grades values in rela-
tion Student



60-12
example, Sybase ASE, IBM DB2, Informix, and Oracle all use one-dimensional, equidepth

histograms. Microsoft’s SQL Server uses one-dimensional equiarea histograms (a combina-
tion of equiwidth and equidepth) [9].

60.3 Data Structures for Buffer Management

A buffer is partitioned into an array of frames each of which can keep a page. Usually a
page of a buffer is mapped to a block? of a file so that reading and writing of a page only
require one disk access each. Application programs and queries make requests on the buffer
manager when they need a block from disk, that contains a data item of interest. If the
block is already in the buffer, the buffer manager conveys the address of the block in main
memory to the requester. If the block is not in main memory, the buffer manager first
allocates space in the buffer for the block, throwing out some other block if necessary, to
make space for the new block. The displaced block is written back to disk if it was modified
since the most recent time that it was written to the disk. Then, the buffer manager reads
in the requested block from disk into the free frame of the buffer and passes the page address
in main memory to the requester. A major goal of buffer management is to minimize the
number of block transfers between the disk and the buffer.

Besides pages, so-called segments are provided as a counterpart of files in main memory.
This allows one to define different segment types with additional attributes, which support
varying requirements concerning data processing. A segment is organized as a contiguous
subarea of the buffer in a virtual, linear address space with visible page borders. Thus, it
consists of an ordered sequence of pages. Data items are managed so that page borders are
respected. If a data item is required, the address of the page in the buffer containing the
item is returned.

An important question now is how segments are mapped to files. An appropriate mapping
enables the storage system to preserve the merits of the file concept. The distribution of a
segment over several files turns out to be unfavorable in the same way as the representation
of a data item over several pages. Hence, a segment S}, is assigned to exactly one file Fj,
and m segments can be stored in a file. Since block size and page size are the same, each
page Py, € S is assigned to a block Bj, € F;. We distinguish four methods of realizing
this mapping.

The direct page addressing assumes an implicitly given mapping between the pages of a
segment Si and the blocks of a file Fj. The page Py, (1 < i < s;) is stored in the block
Bj, 1 <l<dj)sothat! = K; —1+4iand dj > K; — 1+ s; holds. K; denotes the
number of the first block reserved for Sy (Figure 60.8). Frequently, we have a restriction
to a 1:1-mapping, i.e., K; =1 and s; = d; hold. Only in this case, a dynamic extension of
segments is possible. A drawback is that at the time of the segment creation the assigned
file area has to be allocated so that a block is occupied for each empty page. For segments
whose data stock grows slowly, the fixed block allocation leads to a low storage utilization.

The indirect page addressing offers a much larger flexibility for the allocation of pages
to blocks and, in addition, dynamic update and extension functionality (Figure 60.9). It
requires two auxiliary data structures.

2A block is a contiguous sequence of bytes and represents the unit used for both storage allocation and
data transfer. It is usually a multiple of 512 Bytes and has a typical size of 1KB to 8KB. It may contain
several data items. Usually, a data item does not span two or more blocks.
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FIGURE 60.8: Direct page addressing

e Each segment Sy is associated with a page table T}, which for each page of the
segment contains an entry indicating the block currently assigned to the page.
Empty pages obtain a special null value in the page table.

e Each file F} is associated with a bit table M; which serves for free disk space
management and quotes for each block whether currently a page is mapped to it
or not. M;(l) = 1 means that block Bj, is occupied; M;(l) = 0 says that block
Bj, is free. Hence, the bit table enables a dynamic assignment between pages
and blocks.

Although this concept leads to an improved storage utilization, for large segments and
files, the page tables and bit tables have to be split because of their size, transferred into
main memory and managed in a special buffer. The provision of a page P, that is not in the
buffer can require two physical block accesses (and two enforced page removals), because, if
necessary, the page table T has to be loaded first in order to find the current block address

J =Ty (7).

s, s,
segments ‘ P, ‘ P, ‘ P, ‘ ‘ ‘ ‘ ‘ P,, ‘ P, ‘ P, ‘ ‘ ‘ ‘
T, T,
page tables [2 [ 3JTqgJ..ToJo][t1tTolpl]..[T0T0]
F
o [ETETE] [ T-TE[&T [ [ | |
bit tables for free disk V! 2 3 4 5 p q r d
space management [1 T 1T 1T0T]0] [T T1JofJofJof]o]

FIGURE 60.9: Indirect page addressing

The two methods described so far assume that a modified page is written back to the block
that has once been assigned to it (update in place). If an error occurs within a transaction,
as a result of the direct placement of updates, the recovery manager must provide enough
log information (undo information) to be able to restore the old state of a page. Since the
writing of large volumes of log data leads to notable effort, it is often beneficial to perform
updates in a page in a manner so that the old state of the page is available until the end
of the transaction. The following two methods are based on an indirect update of changes
and provide extensive support for recovery.
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The twin slot method can be regarded as a modification of the direct page addressing. It
causes very low costs for recovery but partially compensates this advantage through double
disk space utilization. For a page Py, of a segment Sj, two physically consecutive blocks
Bj,_, and Bj, of a file Fj with { = K; —1+2-7 are allocated. Alternately, at the beginning
of a transaction, one of both block keeps the current state of the page whereas changes are
written to the other block. In case of a page request, both blocks are read, and the block
with the more recent state is provided as the current page in the buffer. The block with the
older state then stores the changed page. By means of page locks, a transaction-oriented
recovery concept can be realized without explicitly managing log data.

The shadow paging concept (Figure 60.10) represents an extension of the indirect page
addressing method and also supports indirect updates of changes. Before the beginning of a
new save-interval given by two save-points> the contents of all current pages of a segment are
duplicated as so-called shadow pages and can thus be kept unchanged and consistent. This
means, when a new save-point is created, all data structures belonging to the representation
of a segment Sy, (i.e., all occupied pages, the page table T}, the bit table M) are stored as
a consistent snapshot of the segment on disk. All modifications during a save-interval are
performed on copies T,; and M’ of Ty, and M. Changed pages are not written back to their
original but to free blocks. At the creation of a new save-point, which must be an atomic
operation, the tables T,; and M’ as well as all pages that belong to this state and have been
changed are written back to disk. Further, all those blocks are released whose pages were
subject to changes during the last save-interval. This just concerns those shadow pages for
which a more recent version exists. At the beginning of the next save-interval the current
contents of T,; and M’ has to be copied again to T}, and M. In case of an error within a
save-interval, the DBMS can roll back to the previous consistent state represented by T}
and M.

As an example, Figure 60.10 shows several changes of pages in two segments S; and
S5. These changes are marked by so-called shadow bits in the page tables. Shadow bits
are employed for the release of shadow pages at the creation time of new save-points. If a
segment consists of s pages, the pertaining file must allocate s further blocks, because each
changed page occupies two blocks within a save-interval.

The save-points orientate themselves to segments and not to transaction borders. Hence,
in an error case, a segment-oriented recovery is executed. For a transaction-oriented recovery
additional log data have to be collected.

60.4 Data Structures for Disk Space Management

Placing data items on disc is usually performed at different logical granularities. The
most basic items found in relational or object-oriented database systems are the values of
attributes. They consist of one or several bytes and are represented by fields. Fields, in
turn, are put together in collections called records, which correspond to tuples or objects.
Records need to be stored in physical blocks (see Section 60.3). A collection of records that
forms a relation or the extent of a class is stored in some useful way as a collection of blocks,
called a file.

3Transactions are usually considered as being atomic. But a limited concept of “subtransactions” allows
one to establish intermediate save-points while the transaction is executing, and subsequently to roll
back to a previously established save-point, if required, instead of having to roll back all the way to the
beginning. Note that updates made at save-points are invisible to other transactions.
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FIGURE 60.10: The shadow paging concept (segments S; and Sz currently in process)

60.4.1 Record Organizations

A collection of field names and their corresponding data types constitute a record format
or record type. The data type of a field is usually one of the standard data types (e.g.,
integer, float, bool, date, time). If all records in a file have the same size in bytes, we call
them fized-length records. The fields of a record all have a fixed length and are stored
consecutively. If the base address, i.e., the start position, of a record is given, the address
of a specific field can be calculated as the sum of the lengths of the preceding fields. The
sum assigned to each field is called the offset of this field. Record and field information are
stored in the data dictionary. Figure 60.11 illustrates this record organization.

F, F, F| R F, = field value i
L, L, L, L, L, = length of field value i
base address (B) address(F,) =B+ L, +L, offset(F,)=L,+L,

FIGURE 60.11: Organization of records with fields of fixed length

Fixed-length records are easy to manage and allow the use of efficient search methods.
But this implies that all fields have a size so that all data items that potentially are to be
stored may find space. This can lead to a waste of disk space and to more unfavorable
access times.

If we assume that each record of a file has the same, fixed number of fields, a variable-
length record can only be formed if some fields have a variable length. For example, a
string representing the name of an employee can have a varying length in different records.
Different data structures exist for implementing variable-length records. A first possible
organization amounts to a consecutive sequence of fields which are interrupted by separators
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(such as 7 or % or §). Separators are special symbols that do not occur in data items. A
special terminator symbol indicates the end of the record. But this organization requires
a pass (scan) of the record to be able to find a field of interest (Figure 60.12). Instead
of separators, each field of variable length can also start with a counter that specifies the
needed number of bytes of a field value.

‘ F, ‘&‘ F, |&‘ |&‘ F, ‘$‘ F, = field value i
O, = offset for field value i
‘ Q1 ‘ Qz | | 0, |0,.| F; ‘ F, ‘ F, & = separator for field value
| } ! T $ = terminator for record

FIGURE 60.12: Alternative organizations of records with fields of variable length

Another alternative is that a header precedes the record. A header represents the “ad-
ministrative” part of the record and can include information about integer offsets of the
beginnings of the field values (Figure 60.12). The ith integer number is then the start
address of the ith field value relatively to the beginning of the record. Also for the end of
the record we must store an offset in order to know the end of the last field value. This
alternative is usually the better one. Costs arise due to the header in terms of storage;
the benefit is direct field access. Problems arise with changes. An update can let a field
value grow which necessitates a “shift” of all consecutive fields. Besides, it can happen that
a modified record does not fit any more on the page assigned to it and has to be moved
to another page. If record identifiers contain a page number, on this page the new page
number has to be left behind pointing to the new location of the record.

A further problem of variable-length records arises if such a record grows to such an
extent that it does not fit on a page any more. For example, field values storing image
data in various formats (e.g., GIF or JPEG), movies in formats such as MPEG, or spatial
objects such as polygons can extend from the order of many kilobytes to the order of many
megabytes or even gigabytes. Such truly large values for records or field values of records
are called large objects (lobs) with the distinction of binary large objects (blobs) for large
byte sequences and character large objects!character (clobs) for large strings.

Since, in general, lobs exceed page borders, only the non-lob fields are stored on the
original page. Different data structures are conceivable for representing lobs. They all have
in common that a lob is subdivided into a collection of linked pages. This organization
is also called spanned, because records can span more than one page, in contrast to the
unspanned organization where records are not allowed to cross page borders. The first
alternative is to keep a pointer instead of the lob on the original page as attribute value.
This pointer (also called page reference) points to the start of a linked page or block list
keeping the lob (Figure 60.13(a)). Insertions, deletions, and modifications are simple but
direct access to pages is impossible. The second alternative is to store a lob directory as
attribute value (Figure 60.13(b)). Instead of a pointer, a directory is stored which includes
the lob size, further administrative data, and a page reference list pointing to the single
pages or blocks on a disk. The main benefit of this structure is the direct and sequential
access to pages. The main drawback is the fixed and limited size of the lob directory and
thus the lob. A lob directory can grow so much that it needs itself a lob for its storage.

The third alternative is the usage of positional B*-trees (Figure 60.14). Such a B-tree
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block lob directory

lob size

lob administrative data

N pointer to block 1 /
AN pointer to block 2
 ——

- ‘ / N\ pointer to block 3

L L e L pointer to block k

(@) (b)

FIGURE 60.13: A lob as a linked list of pages (a), and the use of a lob directory (b)

variant stores relative byte positions in its inner nodes as separators. Its leaf nodes keep
the actual data pages of the lob. The original page only stores as the field value a pointer
to the root of the tree.

1536 3072
512 1024 2048 2560
0-511 512-1023  1024-1535  1536-2047  2048-2559  2560-3071

FIGURE 60.14: A lob managed by a positional BT-tree

60.4.2 Page Organizations

Records are positioned on pages (or blocks). In order to reference a record, often a pointer
to it suffices. Due to different requirements for storing records, the structure of pointers
can vary. The most obvious pointer type is the physical address of a record on disk or in a
virtual storage and can easily be used to compute the page to be read. The main advantage
is a direct access to the searched record. But it is impossible to move a record within a
page, because this requires the locating and changing of all pointers to this record. We call
these pointers physical pointers. Due to this drawback, a pointer is often described as a
pair (p,n) where p is the number of the page where the record can be found and where
n is a number indicating the location of the record on the page. The parameter n can be
interpreted differently, e.g., as a relative byte address on a page, as a number of a slot, or
as an index of a directory in the page header. The entry at this index position yields the
relative position of the record on the page. All pointers (s,p) remain unchanged and are
named page-related pointers. Pointers that are completely stable against movements in main
memory can be achieved if a record is associated with a logical address that reveals nothing
about its storage. The record can be moved freely in a file without changing any pointers.
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This can be realized by indirect addressing. If a record is moved, only the respective entry
in a translation table has to be changed. All pointers remain unchanged, and we call them
logical pointers. The main drawback is that each access to a record needs an additional
access to the translation table. Further, the table can become so large that it does not fit
completely in main memory.

A page can be considered as a collection of slots. Each slot can capture exactly one
record. If all records have the same length, all slots have the same size and can be allocated
consecutively on the page. Hence, a page contains so many records as slots fit on a page plus
page information like directories and pointers to other pages. A first alternative for arrang-
ing a set of N fixed-length records is to place them in the first N slots (see Figure 60.15).
If a record is deleted in slot ¢ < N, the last record on the page in slot N is moved to the
free slot i. However, this causes problems if the record to be moved is pinned* and the
slot number has to be changed. Hence, this “packed” organization is problematic, although
it allows one to easily compute the location of the ith record. A second alternative is to
manage deletions of records on each page and thus information about free slots by means
of a directory represented as a bitmap. The retrieval of the ith record as well as finding the
next free slot on a page require a traversal of the directory. The search for the next free slot
can be sped up if an additional, special field stores a pointer on the first slot whose deletion
flag is set. The slot itself then contains a pointer to the next free slot so that a chaining of
free slots is achieved.

slot 1 slot 1
slot 2 slot 2
slot 3 slot 3
free spaceg
slot N
number of
number of slot M slots
‘N‘ records ‘1‘_“‘0‘1‘1“\#
~ page header / M 3 2 T~ bitmap
"packed organization" "unpacked organization"

FIGURE 60.15: Alternative page organizations for fixed-length records

Also variable-length records can be positioned consecutively on a page. But deletions of
records must be handled differently now because slots cannot be reused in a simple manner
any more. If a new record is to be inserted, first a free slot of “the right size” has to be
found. If the slot is too large, storage is wasted. If it is too small, it cannot be used. In any
case, unused storage areas (fragmentation) at the end of slots can only be avoided if records
on a page are moved and condensed. This leads to a connected, free storage area. If the
records of a page are unpinned, the “packed” representation for fixed-length records can be
adapted. Either a special terminator symbol marks the end of the record, or a field at the
beginning of the record keeps its length. In the general case, indirect addressing is needed
which permits record movements without negative effects and without further access costs.

4If pointers of unknown origin reference a record, we call the record pinned, otherwise unpinned.
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The most flexible organization of variable-length records is provided by the tuple identifier
(TID) concepttuple identifier concept (Figure 60.16). Each record is assigned a unique,
stable pointer consisting of a page number and an index into a page-internal directory. The
entry at index ¢ contains the relative position, i.e., the offset, of slot ¢ and hence a pointer
to record ¢ on the page. The length information of a record is stored either in the directory
entry or at the beginning of the slot (L; in Figure 60.16). Records which grow or shrink
can be moved on the page without being forced to modify their TIDs. If a record is deleted,
this is registered in the corresponding directory entry by means of a deletion flag.

P123 P456

123 |1

1232

123 |N

number of *. pointer to the

directory " beginning of -
entries the free space

FIGURE 60.16: Page organization for variable-length records

Since a page cannot be subdivided into predefined slots, some kind of free disk space
management is needed on each page. A pointer to the beginning of the free storage space
on the page can be kept in the page header. If a record does not fit into the currently
available free disk space, the page is compressed (i.e., defragmented) and all records are
placed consecutively without gaps. The effect is that the maximally available free space is
obtained and is located after the record representations.

If, despite defragmentation, a record does still not fit into the available free space, the
record must be moved from its “home page” to an “overflow page”. The respective TID
can be kept stable by storing a “proxy TID” instead of the record on the home page. This
proxy TID points to the record having been moved to the overflow page. An overflow record
is not allowed to be moved to another, second overflow page. If an overflow record has to
leave its overflow page, its placement on the home page is attempted. If this fails due to a
lack of space, a new overflow page is determined and the overflow pointer is placed on the
home page. This procedure assures that each record can be retrieved with a maximum of
two page accesses.

If a record is deleted, we can only replace the corresponding entry in the directory by a
deletion flag. But we cannot compress the directory since the indexes of the directory are
used to identify records. If we deleted an entry and compress, the indexes of the subsequent
slots in the directory would be decremented so that TIDs would point to wrong slots and
thus wrong records. If a new record is inserted, the first entry of the directory containing
a deletion flag is selected for determining the new TID and pointing to the new record.

If a record represents a large object, i.e., it does not fit on a single page but requires a
collection of linked pages, the different data structures for blobs can be employed.
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60.4.3 File Organization

A file (segment) can be viewed as a sequence of blocks (pages). Four fundamental file
organizations can be distinguished, namely files of unordered records (heap files), files of
ordered records (sorted files), files with dispersed records (hash files), and tree-based files
(index structures).

Heayp files are the simplest file organization. Records are inserted and stored in their un-
ordered, chronological sequence. For each heap file we have to manage their assigned pages
(blocks) to support scans as well as the pages containing free space to perform insertions
efficiently. Doubly-linked lists of pages or directories of pages using both page numbers for
page addressing are possible alternatives. For the first alternative, the DBMS uses a header
page which is the first page of a heap file, contains the address of the first data page, and
information about available free space on the pages. For the second alternative, the DBMS
must keep the first page of the heap file in mind. The directory itself represents a collection
of pages and can be organized as a linked list. Each directory entry points to a page of
the heap file. The free space on each page is recorded by a counter associated with each
directory entry. If a record is to be inserted, its length can be compared to the number of
free bytes on a page.

Sorted files physically order their records based on the values of one (or several) of their
fields, called the ordering field(s). If the ordering field is also a key field of the file, i.e., a
field guaranteed to have a unique value in each record, then the field is called the ordering
key for the file. If all records have the same fixed length, binary search on the ordering key
can be employed resulting in faster access to records.

Hash files are a file organization based on hashing and representing an important indexing
technique. They provide very fast access to records on certain search conditions. Internal
hashing techniques have been discussed in different chapters of this book; here we are dealing
with their external variants and will only explain their essential features. The fundamental
idea of hash files is the distribution of the records of a file into so-called buckets, which are
organized as heaps. The distribution is performed depending on the value of the search key.
The direct assignment of a record to a bucket is computed by a hash function. Each bucket
consists of one or several pages of records. A bucket directory is used for the management
of the buckets, which is an array of pointers. The entry for index ¢ points to the first page
of bucket 7. All pages for bucket i are organized as a linked list. If a record has to be
inserted into a bucket, this is usually done on its last page since only there space can be
found. Hence, a pointer to the last page of a bucket is used to accelerate the access to this
page and to avoid traversing all the pages of the bucket. If there is no space left on the
last page, overflow pages are provided. This is called a static hash file. Unfortunately, this
strategy can cause long chains of overflow pages. Dynamic hash files deal with this problem
by allowing a variable number of buckets. Fxtensible hash files employ a directory structure
in order to support insertion and deletion efficiently without the employment of overflow
pages. Linear hash files apply an intelligent strategy to create new buckets. Insertion and
deletion are efficiently realized without using a directory structure.

Index structures are a fundamental and predominantly tree-based file organization based
on the search key property of values and aiming at speeding up the access to records. They
have a paramount importance in query processing. Many examples of index structures are
already described in detail in this book, e.g., B-trees and variants, quad-trees and octtrees,
R-trees and variants, and other multidimensional data structures. We will not discuss them
further here. Instead, we mention some basic and general organization forms for index
structures that can also be combined. An index structure is called a primary organization
if it contains search key information together with an embedding of the respective records;
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it is named a secondary organization if it includes besides search key information only TIDs
or TID lists to records in separate file structures (e.g., heap files or sorted files). An index is
called a dense index if it contains (at least) one index entry for each search key value which
is part of a record of the indexed file; it is named a sparse index (Figure 60.17) if it only
contains an entry for each page of records of the indexed file. An index is called a clustered
index (Figure 60.17) if the logical order of records is equal or almost equal to their physical
order, i.e., records belonging logically together are physically stored on neighbored pages.
Otherwise, the index is named non-clustered. An index is called a one-dimensional index if
a linear order is defined on the set of search key values used for organizing the index entries.
Such an order cannot be imposed on a multi-dimensional index where the organization of
index entries is based on spatial relationships. An index is called a single-level indez if the
index only consists of a single file; otherwise, if the index is composed of several files, it is
named a multi-level index.

empl. name
no

001 | Farmerie, William
002 | Smith, James

empl.

no 003 | Johnson, Ben
001

004 004 | Franklin, John
006 005 | Meyer, Frank

006 | Bush, Donald
007 | Peck, Gregory
008 | Jones, Trevor

FIGURE 60.17: Example of a clustered, sparse index as a secondary organization on a
sorted file

60.5 Conclusion

A modern database management system is a complex software system that leverages many
sophisticated algorithms, for example, to evaluate relational operations, to provide efficient
access to data, to manage the buffer pool, and to move data between disk and main memory.
In this chapter, we have shown how many of the data structures that were introduced in
earlier parts of this book (e.g., B-trees, buffer trees, quad trees, R-trees, interval trees,
hashing) including a few new ones such as histograms, LOBs, and disk pages, are being used
in a real-world application. However, as we have noted in the introduction, our coverage
of the data structures that are part of a DBMS is not meant to be exhaustive since a
complete treatment would have easily exceeded the scope of this chapter. Furthermore, as
the functionality of a DBMS must continuously grow in order to support new applications
(e.g., GIS, federated databases, data mining), so does the set of data structures that must
be designed to efficiently manage the underlying data (e.g., spatio-temporal data, XML,
bio-medical data). Many of these new data structure challenges are being actively studied
in the database research communities today and are likely to form a basis for tomorrow’s
systems.
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