
HAL Id: hal-00620790
https://hal.science/hal-00620790

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern matching in strings
Maxime Crochemore, Christophe Hancart

To cite this version:
Maxime Crochemore, Christophe Hancart. Pattern matching in strings. J. Atallah Mikhail. Algo-
rithms and Theory of Computation Handbook, CRC Press, pp.11.1-11.28, 1998. �hal-00620790�

https://hal.science/hal-00620790
https://hal.archives-ouvertes.fr

Pattern Matching in StringsMaxime Crochemore, Institut Gaspard Monge, Universit�e de Marne-la-Vall�eeChristophe Hancart, Laboratoire d'Informatique de Rouen, Universit�e de Rouen1 IntroductionThe present chapter describes a few standard algorithms used for processing texts. They apply,for example, to the manipulation of texts (text editors), to the storage of textual data (textcompression), and to data retrieval systems. The algorithms of the chapter are interesting indi�erent respects. First, they are basic components used in the implementations of practicalsoftware. Second, they introduce programming methods that serve as paradigms in other�elds of computer science (system or software design). Third, they play an important role intheoretical computer science by providing challenging problems.Although data are stored variously, text remains the main form of exchanging information.This is particularly evident in literature or linguistics where data are composed of huge corporaand dictionaries. This applies as well to computer science where a large amount of data arestored in linear �les. And this is also the case in molecular biology where biological moleculescan often be approximated as sequences of nucleotides or amino-acids. Moreover, the quantityof available data in these �elds tends to double every eighteen months. This is the reason whyalgorithms should be e�cient even if the speed of computers increases regularly.The manipulation of texts involves several problems among which are: pattern matching,approximate pattern matching, comparing strings, and text compression. The �rst problemis partially treated in the present chapter, in that we consider only one-dimensional objects.Extensions of the methods to higher dimensional objects and solutions to the second problemappear in the chapter headed \Generalized Pattern Matching". The third problem includesthe comparison of molecular sequences, and is developed in the corresponding chapter. Finally,an entire chapter is devoted to text compression.Pattern matching is the problem of locating a collection of objects (the pattern) inside rawtext. In this chapter, texts and elements of patterns are strings, which are �nite sequences ofsymbols over a �nite alphabet. Methods for searching patterns described by general regularexpressions derive from standard parsing techniques (see the chapter on formal grammars andlanguages). We focus our attention to the case where the pattern represents a �nite set ofstrings. Although the latter case is a specialization of the former case, it can be solved withmore e�cient algorithms.Solutions to pattern matching in strings divide in two families. In the �rst one, the patternis �xed. This situation occurs for example in text editors for the \search" and \substitute"commands, and in telecommunications for checking tokens. In the second family of solutions,the text is considered as �xed while the pattern is variable. This applies to dictionaries and tofull-text data bases, for example.The e�ciency of algorithms is evaluated by their worst-case running times and the amountof memory space they require.The alphabet, the �nite set of symbols, is denoted by �, and the whole set of strings over� by ��. The length of a string u is denoted by juj; it is the length of the underlying �nitesequence of symbols. The concatenation of two strings u and v is denoted by uv. A string vis said to be a factor (or a segment) of a string u if u can be written in the from u0vu00 whereu0; u00 2 ��; if i = ju0j and j = ju0vj � 1, we say that the factor v starts at position i and ends1

at position j in u; the factor v is also denoted by u[i : : j]. The symbol at position i in u, thatis the i+ 1-th symbol of u, is denoted by u[i].2 Matching Fixed PatternsWe consider in this section the two cases where the pattern represents a �xed string or a �xeddictionary (a �nite set of strings). Algorithms search for and locate all the occurrences of thepattern in any text.In the string-matching problem, the �rst case, it is convenient to consider that the textis examined through a window. The window delimits a factor of the text and has usuallythe length of the pattern. It slides along the text from left to right. During the search, it isperiodically shifted according to rules that are speci�c to each algorithm. When the windowis at a certain position on the text, the algorithm checks whether the pattern occurs there ornot, by comparing some symbols in the window with the corresponding aligned symbols of thepattern; if there is a whole match, the position is reported. During this scan operation, thealgorithm acquires from the text information which are often used to determine the length ofthe next shift of the window. Some part of the gathered information can also be memorized inorder to save time during the next scan operation.In the dictionary-matching problem, the second case, methods are based on the use ofautomata, or related data structures.2.1 The Brute Force AlgorithmThe simplest implementation of the sliding window mechanism is the brute force algorithm.The strategy consists here in sliding uniformly the window one position to the right after eachscan operation. As far as scans are correctly implemented, this obviously leads to a correctalgorithm.We give below the pseudocode of the corresponding procedure. The inputs are a nonemptystring x, its length m (thusm > 1), a string y, and its length n. The variable p in the procedurecorresponds to the current left position of the window on the text. It is understood that thestring-to-string comparison in line 2 has to be processed symbol per symbol according to agiven order.Brute-Force-Matcher(x;m; y; n)1 for p from 0 up to n �m2 loop if y[p : :p+m� 1] = x3 then report pThe time complexity of the brute force algorithm is O(m�n) in the worst case (for instancewhen am�1b is searched in an for any two symbol a; b 2 � satisfying a 6= b if we assume thatthe rightmost symbol in the window is compared last). But its behavior is linear in n whensearching in random texts.2.2 The Karp-Rabin AlgorithmHashing provides a simple method for avoiding a quadratic number of symbol comparisons inmost practical situations. Instead of checking at each position p of the window on the textwhether the pattern occurs here or not, it seems to be more e�cient to check only if the factorof the text delimited by the window, namely y[p : : p + m � 1], \looks like" x. In order to2

check the resemblance between the two strings, a hash function is used. But, to be helpfulfor the string-matching problem, the hash function should be highly discriminating for strings.According to the running times of the algorithms, the function should also have the followingproperties:� to be e�ciently computable;� to provide an easy computation of the value associated with the next factor from thevalue associated with the current factor.The last point is met when symbols of alphabet � are assimilated with integers and when thehash function, say h, is de�ned for each string u 2 �� byh(u) = 0@juj�1Xi=0 u[i]� djuj�1�i1A mod q;where q and d are two constants. Then, for each string v 2 ��, for each symbols a0; a00 2 �,h(va00) is computed from h(a0v) by the formulah(va00) = ((h(a0v)� a0 � djvj)� d+ a00) mod q:During the search for pattern x, it is enough to compare the value h(x) with the hash valueassociated with each factor of length m of text y. If the two values are equal, that is, in caseof collision, it is still necessary to check whether the factor is equal to x or not by symbolcomparisons.The underlying string-matching algorithm, which is denoted as the Karp-Rabin algorithm,is implemented below as the procedure Karp-Rabin-Matcher. In the procedure, the valuesdm�1 mod q, h(x), and h(y[0 : :m � 2]) are �rst precomputed, and stored respectively in thevariables r, s, and t (lines 1{7). The value of t is then recomputed at each step of the searchphase (lines 8{12). It is assumed that the value of symbols ranges from 0 to c� 1; the quantity(c� 1)� q is added in line 8 to provide correct computations on positive integers.Karp-Rabin-Matcher(x;m; y; n)1 r 12 s x[0] mod q3 t 04 for i from 1 up to m� 15 loop r (r � d) mod q6 s (s� d+ x[i]) mod q7 t (t� d+ y[i� 1]) mod q8 for p from 0 up to n �m9 loop t (t� d+ y[p+m� 1]) mod q10 if t = s and y[p : : p+m� 1] = x11 then report p12 t ((c� 1)� q + t � y[p]� r) mod qConvenient values for d are powers of 2; in this case, all the products by d can be computedas shifts on integers. The value of q is generally a large prime (such that the quantities(q � 1) � d + c � 1 and c � q � 1 do not cause over
ows), but it can also be the value ofthe implicit modulus supported by integer operations. An illustration of the behavior of thealgorithm is given in Figure 1. 3

p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19y[p] n o d e f e n s e f o r s e n s eh(y[p : : p+ 4]) 8 8 6 28 9 18 28 26 22 12 17 24 16 0 1 9Figure 1 An illustration of the behavior of the Karp-Rabin algorithm when searching for the patternx = sense in the text y = no defense for sense. Here, symbols are assimilated with their ASCIIcodes (hence c = 256), and the values of q and d are set respectively to 31 and 2. This is valid forexample when the maximal integer is 216� 1. The value of h(x) is (115� 16+101� 8+110� 4+115�2+101) mod 31 = 9. Since only h(y[4 : :8]) and h(y[15 : :19]) among the de�ned values of h(y[p : : p+4])are equal to h(x), two string-to-string comparisons against x are performed.The worst case complexity of the above string-matching algorithm is quadratic, as it is forthe brute force algorithm, but its expected running time is O(m+n) if parameters q and d areadequate.2.3 The Knuth-Morris-Pratt AlgorithmThis section presents the �rst discovered linear-time string-matching algorithm. Its designfollows a tight analysis of a version of the brute force algorithm in which the string-to-stringcomparison proceeds from left to right. The brute force algorithm wastes the informationgathered during the scan of the text. On the contrary, the Knuth-Morris-Pratt algorithmstores the information with two purposes. First, it is used to improve the length of shifts.Second, there is no backward scan of the text.Consider a given position p of the window on the text. Assume that a mismatch occursbetween symbols y[p+ i] and x[i] for some i, 0 6 i < m (an illustration is given in Figure 2).Thus, we have y[p : :p+ i� 1] = x[0 : : i� 1] and y[p+ i] 6= x[i]. With regard to the informationgiven by x[0 : : i�1], interesting shifts are necessarily connected with the borders of x[0 : : i�1].(A border of a string u is a factor of u that is both a pre�x and a su�x of u). Among theborders of x[0 : : i� 1], the longest proper border followed by a symbol di�erent from x[i] is thebest possible candidate, subject to the existence of such of a border. (A factor v of a string u issaid to be a proper factor of u if u and v are not identical, that is, if jvj < juj.) This introducesthe function de�ned for each i 2 f0; 1; : : : ; m� 1g by [i] = maxfk j (0 6 k < i; x[i� k : : i� 1] = x[0 : : k � 1]; x[k] 6= x[i]) or (k = �1)g:Then, after a shift of length i� [i], the symbol comparisons can resume with y[p+ i] againstx[[i]] in the case where [i] > 0, and y[p+ i + 1] against x[0] otherwise. Doing so, we missno occurrence of x in y, and avoid a backtrack on the text. The previous statement is stillvalid when no mismatch occurs, that is when i = m, if we consider for a moment the stringx$ instead of x, where $ is a symbol of alphabet � occurring nowhere in x. This amounts tocompleting the de�nition of function by setting [m] = maxfk j 0 6 k < m; x[m� k : :m� 1] = x[0 : :k � 1]g:The Knuth-Morris-Pratt string-matching algorithm is given in pseudocode below as theprocedure Knuth-Morris-Pratt-Matcher. The values of function are �rst computedby the function Better-Prefix-Function given after. The value of the variable j is equalto p + i in the remainder of the code (the search phase of the algorithm strictly speaking);this simpli�es the code, and points out the sequential processing of the text. Observe that thepreprocessing phase applies a similar method to the pattern itself, as if y = x[1 : :m� 1].4

(a) a b a a b c a b a b c a b b a b a a b a c b a a b c ya b c a b a b c a b a b a xa b a a b c a b a b c a b b a b a a b a c b a a b c ya b c a b a b c a b a b a xshift(b) a b c a b a b c a b a b a xa b c a b a b c a b a b a xa b c a b a b c a b a b a xa b c a b a b c a b a b a x(c) i 0 1 2 3 4 5 6 7 8 9 10 11 12 13x[i] a b c a b a b c a b a b a [i] �1 0 0 �1 0 2 0 0 �1 0 2 0 2 1Figure 2 An illustration of the shift in the Knuth-Morris-Pratt algorithm when searching for thepattern x = abcababcababa. (a) The window on the text y is at position 3. A mismatch occurs atposition 10 on x. The matching symbols are shown darkly shaded, and the current analyzed symbolslightly shaded. Avoiding both a backtrack on the text and an immediate mismatch leads to shift thewindow 8 positions to the right. The string-to-string comparison resumes at position 2 on the pattern.(b) The current shift is the consequence of an analysis of the list of the proper borders of x[0 : :9] andof the symbol which follow them in x. The pre�xes of x that are borders of x[0 : :9] = abcabacbab areright-aligned along the discontinuous vertical line. String x[0 : :4] = abcab is a border of x[0 : :9], butis followed by symbol a which is identical to x[10]. String x[0 : :1] is the expected border, since it isfollowed by symbol c. (c) The values of the function for pattern x.
5

Knuth-Morris-Pratt-Matcher(x;m; y; n)1 Better-Prefix-Function(x;m)2 i 03 for j from 0 up to n� 14 loop while i > 0 and y[j] 6= x[i]5 loop i [i]6 i i+ 17 if i = m8 then report j + 1�m9 i [m]Better-Prefix-Function(x;m)1 [0] �12 i 03 for j from 1 up to m� 14 loop if x[j] = x[i]5 then [j] [i]6 else [j] i7 loop i [i]8 while i > 0 and x[j] 6= x[i]9 i i+ 110 [m] i11 return The algorithm has a worst-case running time in O(m+ n), and requires O(m) extra-spaceto store function . The linear running time results from the fact that the number of symbolcomparisons performed during the preprocessing phase and the search phase is less than 2mand 2n respectively. All the previous bounds are independent of the size of the alphabet.2.4 The Boyer-Moore AlgorithmThe Boyer-Moore algorithm is considered as the most e�cient string-matching algorithm inusual applications. A simpli�ed version of it, or the entire algorithm, is often implemented intext editors for the \search" and \substitute" commands.The scan operation proceeds from right to left in the window on the text, instead of leftto right as in the Knuth-Morris-Pratt algorithm. In case of a mismatch, the algorithm usestwo functions to shift the window. These two shift functions are called the better-factor shiftfunction and the bad-symbol shift function. In the two next paragraphs, we explain the goalof the two functions and we give procedures to precompute their values.We �rst explain the aim of the better-factor shift function. Let p be the current (left)position of the window on the text. Assume that a mismatch occurs between symbols y[p+ i]and x[i] for some i, 0 6 i < m (an illustration is given in Figure 3). Then, we have y[p+i] 6= x[i]and y[p+ i+ 1 : : p+m� 1] = x[i+ 1 : :m� 1]. The better-factor shift consists in aligning thefactor y[p+ i+1 : : p+m�1] with its rightmost occurrence x[k+1 : :m�1� i+k] in x precededby a symbol x[k] di�erent from x[i] to avoid an immediate mismatch. If no such factor exists,the shift consists in aligning the longest su�x of y[p+ i+1 : : p+m� 1] with a matching pre�xof x. The better-factor shift function � is de�ned by�[i] = minfi� k j (0 6 k < i; x[k + 1 : :m� 1� i+ k] = x[i+ 1 : :m� 1]; x[k] 6= x[i])or (i�m 6 k < 0; x = x[i� k : :m� 1]x[m� i+ k : :m� 1])g6

(a) a b c b a b c a b b a a a b a c b a a b b a b c a b yb a b a c b a b a b a xa b c b a b c a b b a a a b a c b a a b b a b c a b yb a b a c b a b a b a xshift(b) b a b a c b a b a b a xb a b a c b a b a b a xb a b a c b a b a b a xb a b a c b a b a b a xb a b a c b a b a b a x(c) i 0 1 2 3 4 5 6 7 8 9 10x[i] b a b a c b a b a b a�[i] 7 7 7 7 7 7 2 9 4 11 1Figure 3 An illustration of the better-factor shift in the Boyer-Moore algorithm when searching forthe pattern x = babacbababa. (a) The window on the text is at position 4. The string-to-stringcomparison, which proceeds from right to left, stops with a mismatch at position 7 on x. The window isshifted 9 positions to the right to avoid an immediate mismatch. (b) Indeed, the string x[8 : :10] = abais repeated three times in x, but is preceded each time by symbol x[7] = b. The expected matchingfactor in x is then the pre�x ba of x. The factors of x identical with aba and the pre�xes of x endingwith a su�x of aba are right-aligned along the rightmost discontinuous vertical line. (c) The values ofthe shift function � for pattern x.
7

b a c d c b a b a b a d a c a b a a b b c b c a b d yb a b a c b a b a b a xb a c d c b a b a b a d a c a b a a b b c b c a b d yb a b a c b a b a b a xshift (a) a a b c d![a] 2 1 6 11(b)Figure 4 An illustration of the bad-symbol shift in the Boyer-Moore algorithm when searching for thepattern x = babacbababa. (a) The window on the text is at position 4. The string-to-string comparisonstops with a mismatch at position 9 on x. Considering only this position and the unexpected symboloccurring at this position, namely symbol x[9] = c, leads to shift the window 5 positions to the right.Notice that if the unexpected symbol were a or d, the applied shift would have been 1 and 10 respectively.(b) The values of the table ! for pattern x when alphabet � is reduced to fa; b; c; dg.for each i 2 f0; 1; : : : ; m � 1g. The value �[i] is then exactly the length of the shift inducedby the better-factor shift. The values of function � are computed by the function given belowas the function Better-Factor-Function. An auxiliary table, namely f , is used; it is ananalogue of the function used in the Knuth-Morris-Pratt algorithm, but de�ned this timefor the reverse pattern; it is indexed from 0 to m � 1. The running time of the functionBetter-Factor-Function is O(m).Better-Factor-Function(x;m)1 for j from 0 up to m� 12 loop �[j] 03 i m4 for j from m� 1 down to 05 loop f [j] i+ 16 while i < m and x[j] 6= x[i]7 loop if �[i] = 08 then �[i] i� j9 i f [i]� 110 i i� 111 for j from 0 up to m� 112 loop if �[j] = 013 then �[j] i+ 114 if j = i15 then i f [i]� 116 return �We now come to the aim of the bad-symbol shift function (Figure 4 shows an illustration).Consider again the text symbol y[p+ i] that causes a mismatch. Assume �rst that this symboloccurs in x[0 : :m � 2]. Then, let k be the position of the rightmost occurrence of y[p + i] inx[0 : :m � 2]. The window can be shifted i � k positions to the right if k < i, and only oneposition otherwise, without missing an occurrence of x in y. Assume now that symbol y[p+ i]does not occur in x. Then, no occurrence of x in y can overlap the position p + i on the text,and thus, the window can be shifted i + 1 positions to the right. Let ! be the table indexedon alphabet �, and de�ned for each symbol a 2 � by![a] = minfmg [fm� 1� j j 0 6 j < m� 1; x[j] = ag:8

According to the above discussion, the bad-symbol shift for the unexpected text symbol aaligned with the symbol at position i on the pattern is the value
[a; i] = maxf![a] + i�m+ 1; 1g;which de�nes the bad-symbol shift function
 on �� f0; 1; : : : ; m� 1g. We give now the codeof the function Last-Occurrence-Function that computes table !. Its running time isO(m+ card�).Last-Occurrence-Function(x;m)1 for each a 2 �2 loop ![a] m3 for j from 0 up to m� 24 loop ![x[j]] m� 1� j5 return !The shift applied in the Boyer-Moore algorithm in case of a mismatch is the maximumbetween the better-factor shift and the bad-symbol shift. In case of a whole match, the shiftapplied to the window is m minus the length of the longest proper border of x, that is also thevalue �[0] (this value is indeed what is called \the period" of the pattern). The code of theentire algorithm is given below.Boyer-Moore-Matcher(x;m; y; n)1 � Better-Factor-Function(x;m)2 ! Last-Occurrence-Function(x;m)3 p 04 while p 6 n �m5 loop i m� 16 while i > 0 and y[p+ i] = x[i]7 loop i i� 18 if i > 09 then p p+ maxf�[i]; ![y[p+ i]] + i�m+ 1g10 else report p11 p p+ �[0]The worst-case running time of the algorithm is quadratic. It is surprising however that,when used to search only for the �rst occurrence of the pattern, the algorithm runs in lineartime. Slight modi�cations of the strategy yield linear-time algorithms. When searching foram�1b in an with a; b 2 � and a 6= b, the algorithm considers only bn=mc symbols of the text.This bound is the absolute minimum for any string-matching algorithm in the model where thepattern only is preprocessed. Indeed, the algorithm is expected to be extremely fast on largealphabets (relative to the length of the pattern).2.5 Practical String-Matching AlgorithmsThe bad-symbol shift function introduced in the Boyer-Moore algorithm is not very e�cientfor small alphabets, but when the alphabet is large compared with the length of the pattern(as it is often the case with the ASCII table and ordinary searches made under a text editor),it becomes very useful. Using only the corresponding table produces some e�cient algorithmsfor practical searches. We describe one of these algorithms below.9

Consider a position p of the window on the text, and assume that the symbols y[p+m� 1]and x[m � 1] are identical. If x[m � 1] does not occur in the pre�x x[0 : :m � 2] of x, thewindow can be shifted m positions to the right after the string-to-string comparison betweeny[p : :p+m�2] and x[0 : :m�2] is performed. Otherwise, let k be the position of the rightmostoccurrence of x[m�1] in x[0 : :m�2]; the window can be shifted m�1�k positions to the right.This shows that ![y[p+m� 1]] is also a valid shift in the case where y[p+m� 1] = x[m� 1].The underlying algorithm is the Horspool algorithm.The pseudocode of the Horspool algorithm is given below. To prevent two references to therightmost symbol in the window at each scan and shift operation, table ! is slightly modi�ed:![x[m � 1]] contains the sentinel value 0, after its previous value is saved in variable t. Thevalue of the variable j is the value of the expression p+m� 1 in the discussion above.Horspool-Matcher(x;m; y; n)1 ! Last-Occurrence-Function(x;m)2 t ![x[m� 1]]3 ![x[m� 1]] 04 j m� 15 while j < n6 loop s ![y[j]]7 if s 6= 08 then j j + s9 else if y[j �m+ 1 : : j � 1] = x[0 : :m� 2]10 then report j �m+ 111 j j + tJust like the brute force algorithm, the Horspool algorithm has a quadratic worst-case timecomplexity. But its behavior in practice is at least as good as the behavior of the Boyer-Moorealgorithm is. An example showing the behavior of both algorithms is given in Figure 5.2.6 The Aho-Corasick AlgorithmThe UNIX operating system provides standard text-�le facilities. Among them is the seriesof grep commands that locate patterns in �les. We describe in this section the Aho-Corasickalgorithm underlying an implementation of the fgrep command of UNIX. It searches �les fora �nite and �xed set of strings (the dictionary), and can for instance output lines containingat least one of the strings.If we are interested in searching for all occurrences of all strings of a dictionary, a �rstsolution consists in repeating some string-matching algorithm for each string. Considering adictionary X containing k strings and a text y, the search runs in that case in time O(m+n�k),where m is the sum of the length of the strings in X , and n the length of y. But this solutionis not e�cient, since text y has to be read k times. The solution described in this sectionprovides both a sequential read of the text and a total running time which is O(m + n) on a�xed alphabet. The algorithm can be viewed as a direct extension of weaker version of theKnuth-Morris-Pratt algorithm.The search is done with the help of an automaton that stores the situations encounteredduring the process. At a given position on the text, the current state is identi�ed with theset of pattern pre�xes ending here. The state represents all the factors of the pattern thatcan possibly lead to occurrences. Among the factors, the longest contains all the informationnecessary to continue the search. So, the search is realized with an automaton, denoted by10

(a) n o d e f e n s e f o r s e n s e ys e n s e xs e n s e xs e n s e xs e n s e xs e n s e xs e n s e x(b) n o d e f e n s e f o r s e n s e ys e n s e xs e n s e xs e n s e xs e n s e xs e n s e xs e n s e xs e n s e xFigure 5 An illustration of the behavior of two fast string-matching algorithms when searching for thepattern x = sense in the text y = no defense for sense. The successive positions of the windowon the text are suggested by the alignments of x with the corresponding factors of y. The symbolsof x considered during each scan operation are shown hachured. (a) Behavior of the Boyer-Moorealgorithm. The �rst and second shifts result from the better-shift function, the third and fourth fromthe bad-symbol function, and the �fth from a shift of the length of x minus the length of its longestproper border (the period of x). (b) Behavior of the Horspool algorithm. We assume here that the fourleftmost symbols in the window are compared with the symbols of x[0 : :3] from left to right.D(X), of which states are in one-to-one correspondence with the pre�xes of X . Implementingcompletely the transition function of D(X) would required a size O(m � card�). Instead ofthat, the Aho-Corasick algorithm requires only O(m) space. To get this space complexity, apart of the transition function is made explicit in the data, and the other part is computedwith the help of a failure function. For the �rst part, we assume that for any input (p; a), thefunction denoted by Target returns some state q if the triple (p; a; q) is an edge in the data,and the value nil otherwise. The second part uses the failure function fail, which is an analogueof the function used in the Knuth-Morris-Pratt algorithm. But this time, the function isde�ned on the set of states, and for each state p di�erent from the initial state,fail [p] = the state identi�ed with the longest proper su�x of the pre�x identi�ed with pthat is also a pre�x of a string of X:The aim the failure function is to defer the computation of a transition from the current state,say p, to the computation of the transition from the state fail [p] with the same input symbol,say a, when no edge from p labeled by symbol a is in the data; the initial state, which isidenti�ed with the empty string, is the default state for the statement. We give below thepseudocode of the function Next-State that computes the transitions in the representation.The initial state is denoted by i. 11

0 1 2 345 6 7 8a c ese a s eFigure 6 The trie-like automaton of the pattern X = face; as; easeg. The initial state is distinguishedby a thick ingoing arrow, each terminal state by a thick outgoing arrow. The states are numbered from0 to 8, according to the order in which they are created by the construction statement described in thepresent section. State 0 is identi�ed with the empty string, state 1 with a, state 2 with ac, state 3 withace, and so on. The automaton accepts the language X.Next-State(p; a; i)1 while p 6= nil and Target(p; a) = nil2 loop p fail [p]3 if p 6= nil4 then q Target(p; a)5 else q i6 return qThe preprocessing phase of the Aho-Corasick algorithm builds the explicit part of D(X)including function fail. It is divided itself into two phases.The �rst phase of the preprocessing phase consists in building a sub-automaton of D(X).It is the trie of X (the digital tree in which branches spell the strings of X and edges arelabeled by symbols) having as initial state the root of the trie and as terminal states the nodescorresponding to strings of X (an example is given in Figure 6). It di�ers from D(X) in twopoints:� it contains only the forward edges;� it accepts only the set X .(An edge (p; a; q) in the automaton is said to be forward if the pre�x identi�ed with q isin the form ua where u is the pre�x corresponding to p.) The function given below as thefunction Trie-Like-Automaton computes the automaton corresponding to the trie of X byreturning its initial state. The terminal mark of each state r is managed through the attributeterminal [r]; the mark is either true or false depending on whether state r is terminal ornot. We assume that the function New-State creates and returns a new state, and that theprocedure Make-Edge adds a given new edge to the data.
12

Trie-Like-Automaton(X)1 i New-State2 terminal [i] false3 for string x from �rst to last string of X4 loop p i5 for symbol a from �rst to last symbol of x6 loop q Target(p; a)7 if q = nil8 then q New-State9 terminal [q] false10 Make-Edge(p; a; q)11 p q12 terminal [p] true13 return iThe second step of the preprocessing phase consists mainly in precomputing the failurefunction. This is done by a breadth-�rst traversal of the trie-like automaton. The correspondingpseudocode is given below as the procedure Make-Failure-Function.Make-Failure-Function(i)1 fail [i] nil2 � Empty-Queue3 Enqueue(�; i)4 while not Queue-Is-Empty(�)5 loop p Dequeue(�)6 for each symbol a such that Target(p; a) 6= nil7 loop q Target(p; a)8 fail [q] Next-State(fail [p]; a; i)9 if terminal [fail [q]]10 then terminal [q] true11 Enqueue(�; q)During the computation, some states can be made terminal. This occurs when the state isidenti�ed with a pre�x that ends with a string of X (an illustration is given in Figure 7).The complete dictionary-matching algorithm, implemented in the pseudocode below as theprocedure Aho-Corasick-Matcher, starts with the two steps of the preprocessing; the searchfollows, which simulates automaton D(X). It is understood that the empty string does notbelong to X .Aho-Corasick-Matcher(X; y)1 i Trie-Like-Automaton(X)2 Make-Failure-Function(i)3 p i4 for symbol a from �rst to last symbol of y5 loop p Next-State(p; a; i)6 if terminal [p]7 then report an occurrenceThe total number of tests \Target(p; a) = nil" performed by functionNext-State duringits calls by procedure Make-Failure-Function and during its calls by the search phase of13

0 1 2 345 6 7 8a c ese a s eFigure 7 The explicit part of the automaton D(X) of the pattern X = face; as; easeg. Comparedto the trie-like automaton of X displayed in Figure 6, state 7 has been made terminal; this is becausethe corresponding pre�x, namely eas, ends with the string as that is in X. The failure function fail isdepicted with discontinuous non-labeled directed edges.the algorithm are bounded by 2m and 2n respectively, similarly as the bounds of comparisonsin the Knuth-Morris-Pratt algorithm. Using a total order on the alphabet, the running timeof function Target is both O(log k) and O(log card�), since the maximum number of edgesoutgoing a state in the data representing automaton D(X) is bounded both by k and bycard�. Thus, the entire algorithm runs in time O(m + n) on a �xed alphabet, and in timeO((m+ n)� logminfk; card�g) in the general case. The algorithm requires O(m) extra-spaceto store the data and to implement the queue used during the breadth-�rst traversal executedin procedure Make-Failure-Function.Let us discuss the question of reporting occurrences of pattern X (line 7 of procedureAho-Corasick-Matcher). The simplest way of doing it is to report the ending positions ofoccurrences. This remains to output the value of the position of the current symbol in the text.A second possibility is to report the whole set of strings in X ending at the current position.To do so, the attribute terminal has to be transformed. First, for a state r, terminal [r] is theset of the string of X that are su�xes of the string corresponding to r. Second, to avoid aquadratic behavior, sets are manipulated by their identi�ers only.3 Indexing TextsThis section deals with the pattern-matching problem applied to �xed texts. Solutions consistin building an index on the text that speeds up further searches. The indexes that we considerhere are data structures that contain all the su�xes and therefore all the factors of the text. Twotypes of structures are presented: su�x trees and su�x automata. They are both compactrepresentations of su�xes in the sense that their sizes are linear in the length of the text,although the sum of lengths of su�xes of a string is quadratic. Moreover, their constructionstake linear time on �xed alphabets. On an arbitrary �nite alphabet �, assumed to be ordered,a log card� factor has to be added to almost all running times given in the following. Thiscorresponds to the branching operation involved in the respective data structures.Indexes are powerful tools that have many applications. Here is a non-exhaustive list ofthem, assuming an index on the text y.� Membership: testing if a string x occurs in y.� Occurrence number: producing the number of occurrences of a string x in y.14

010 231 42 5637 84 9 105 116 127a b $abbabb$ bbabb$ $ abb$ b abb $Figure 8 The su�x tree T (y) of the string y = aabbabb$. The nodes are numbered from 0 to 12,according to the order in which they are created by the construction algorithm described in the presentsection. Each of the eight external nodes of the trie is marked by the position of the occurrence ofthe corresponding su�x in y. Hence, the branch (0; 5; 9; 4), running from the root to an external node,spells the string bbabb$, which is the su�x of y starting at position 2.� List of positions: analogue of the string-matching problem of Section 2.� Longest repeated factor: locating the longest factor of y occurring at least twice in y.� Longest common factor: �nding a longest string that occurs both in a string x and in y.Solutions to some of these problems are �rst considered with su�x trees, then with su�xautomata.3.1 Su�x TreesThe su�x tree T (y) of a nonempty string y of length n is a data structure containing all thesu�xes of y. In order to simplify the statement, it is assumed that y ends with a specialsymbol of the alphabet occurring nowhere else in y (this special symbol is denoted by $ in theexamples). The su�x tree of y is a trie which satis�es the following properties:� the branches from the root to the external nodes spell the nonempty su�xes of y, andeach external node is marked by the position of the occurrence of the corresponding su�xin y;� the internal nodes have at least two successors, except if y is a one-length string;� the edges outgoing an internal node are labeled by factors starting with di�erent symbols;� any string that labels an edge is represented by the couple of integers corresponding toits position in y and its length.(An example of su�x tree is displayed in Figure 8.) The special symbol at the end of y avoidsmarking nodes, and implies that T (y) has exactly n external nodes. The other propertiesthen imply that the total size of T (y) is O(n), which makes it possible to design a linear-timeconstruction of the data structure. The algorithm described in the following and implementedby the procedure Suffix-Tree given further has this time complexity.15

The construction algorithm works as follows. It inserts the nonempty su�xes y[i : :n � 1],0 6 i < n, of y in the data structure from the longest to the shortest su�x. In order to explainhow this is performed, we introduce the two notationshi = the longest pre�x of y[i : :n� 1] that is a pre�x of some stricly longest su�x of y;andti = the string w such that y[i : :n � 1] is identical with hiw,de�ned for each i 2 f1; : : : ; n � 1g. The strategy to insert the su�xes is precisely based onthese de�nitions. Initially, the data structure contains only the string y. Then, the insertionof the string y[i : :n � 1], 1 6 i < n, proceeds in two steps:� �rst, the \head" in the data structure, that is, the node h corresponding to string hi, islocated, possibly breaking an edge;� second, a node called the \tail", say t, is created, added as successor of node h, and theedge from h to t is labeled with string ti.The second step of the insertion is clearly performed in constant time. Thus, �nding the headis critical for the overall performance of the construction algorithm. A brute-force method to�nd the head consists in spelling the current su�x y[i : :n� 1] from the root of the trie, givingan O(jhij) time complexity for the insertion at step i, and an O(n2) running time to buildthe su�x tree T (y). Adding \short-circuit" links leads to an overall O(n) time complexity,although there is no guarantee that the insertion at any step i is realized in constant time.Observe that in any su�x tree, if the string corresponding to a given internal node p in thedata structure is in the form au with a 2 � and u 2 ��, then there exists an unique internalnode corresponding to the string u. From this remark are de�ned the su�x links bylink [p] = the node q corresponding to the string uwhen p corresponds to the string au for some symbol a 2 �for each internal node p that is di�erent from the root. The links are useful when computinghi from hi�1 because of the property: if hi�1 is in the form aw for some symbol a 2 � andsome string w 2 ��, then w is a pre�x of hi.We explain in three following paragraphs how the su�x links help to �nd the successiveheads e�ciently. We consider a step i in the algorithm assuming that i > 1. We denote by gthe node that corresponds to the string hi�1. The aim is both to insert y[i : :n� 1] and to �ndthe node h corresponding to the string hi. We �rst study the most general case of the insertionof the su�x y[i : :n � 1]. Particular cases are studied after.We assume in the present case that the predecessor of g in the data structure, say g0, isboth de�ned and di�erent from the root. Then hi�1 is in the form auv where a 2 �, u; v 2 ��,au corresponds to the node g0, and v labels the edge from g0 to g. Since the string uv is apre�x of hi, it can be fully spelled from the root. Moreover, the spelling operation of uv fromthe root can be short-circuited by spelling only the string v from the node link[g0]. The nodeq reached at the end of the spelling operation (possibly breaking the last partially taken downedge) is then exactly the node link [g]. It remains to spell the string ti�1 from q for completelyinserting the string y[i : :n � 1]. The spelling stops on the expected node h (possibly breakingagain an edge) which becomes the new head in the data structure. The su�x of ti�1 that hasnot been spelled so far, is exactly the string ti. (An example for the whole previous statementis given in Figure 9.) 16

010 231 425637 84
aabbabb$ bbabb$ $ b babbabb(a)

010 231 425637 84 9 105
a babbabb$ bbabb$ $ abb$ babb$ $(b)Figure 9 During the construction of the su�x tree T (y) of the string y = aabbabb$, the step 5, thatis, the insertion of the su�x bb$. The de�ned su�x link are depicted with discontinuous non-labeleddirected edges. (a) Initially, the head in the data structure is node 7, and its su�x link is not yetde�ned. The predecessor of node 7, node 2, is di�erent from the root, and the factor of y that is spelledfrom the root to node 7, namely h4 = abb, is in the form auv, where a 2 �, u 2 ��, and v is the stringof �� labeling the edge from node 2 to node 7. Here, a = a, u is the empty string, and v = bb. Then, thestring uv = bb is spelled from the node linked with node 2, that is, from node 0; the spelling operationstops on the edge from node 5 to node 4; this edge is broken, which creates node 9. Node 9 is linked tonode 7. The string t4 = $ is spelled from node 9; the spelling operation stops on node 9, which becomesthe new head in the data structure. (b) Node 10 is created, added as successor of node 9, and the edgefrom node 9 to node 10 is labeled by the string $, remainder of the last spelling operation.The second case is when g is a (direct) successor of the root. The string hi�1 is then in theform au where a 2 � and u 2 ��. Similarly to the above case, the string u can be fully spelledfrom the root. The spelling of u gives a node q, which is then linked with g. Afterwards, thestring ti�1 is spelled from q.The last case is when g is the root itself. The string ti�1 minus its �rst symbol has to bespelled from the root. Which ends the study of all the possible cases that can arise.The important aspect of the algorithm is the use of two di�erent implementations for thetwo spelling operations pointed out above. The �rst one, given in the pseudocode below as thefunction Fast-Find, deals with the situation where we know in advance that a given factory[j : : j + k � 1] of y can be fully spelled from a given node p of the trie. It is then su�cient toscan only the �rst symbols of the labels of the encountered nodes, which justi�es the name ofthe function. The second implementation of the spelling operation spells a factor y[j : : j+k�1]of y from a given node p too, but, this time, the spelling is performed symbol by symbol. Thecorresponding function is implemented after as the function Slow-Find. Before giving thepseudocode of the functions, we precise the notations used in the following.� For any input (y; p; j), the function Successor-By-One-Symbol returns the node qsuch that q is a successor of the node p and the �rst symbol of the label of the edge fromp to q is y[j]; if such a node q does not exist, it returns nil.� For any input (p; q), the function Label returns the two integers that represents the labelof the edge from the node p to the node q.� The function New-Node creates and returns a new node.17

� For any input (p; j; k; q; `), the function New-Breaking-Node creates and returns thenode r breaking the edge (p; y[j : : j+k�1]; q) at the position ` in the label y[j : : j+k�1].(Which gives the two edges (p; y[j : : j + `� 1]; r) and (r; y[j+ ` : : j + k � 1]; q).)Function Fast-Find returns a couple of nodes such that the second one is the node reachedby the spelling, and the �rst one is its predecessor.Fast-Find(y; p; j; k)1 p0 nil2 while k > 03 loop p0 p4 q Successor-By-One-Symbol(y; p; j)5 (r; s) Label(p; q)6 if s 6 k7 then p q8 j j + s9 k k � s10 else p New-Breaking-Node(p; r; s; q; k)11 k 012 return (p0; p)Compared to function Fast-Find, function Slow-Find considers an extra-input that is thepredecessor of node p (denoted by p0). It considers in addition two extra-outputs that are theposition and the length of the factor that remains to be spelled.Slow-Find(y; p0; p; j; k)1 b false2 loop q Successor-By-One-Symbol(y; p; j)3 if q = nil4 then b true5 else (r; s) Label(p; q)6 ` 17 while ` < s and y[j + `] = y[r+ `]8 loop ` ` + 19 j j + `10 k k � `11 p0 p12 if ` = s13 then p q14 else p New-Breaking-Node(p; r; s; q; `)15 b true16 while b = false17 return (p0; p; j; k)The complete construction algorithm is implemented as the function Suffix-Tree givenbelow. The function returns the root of the constructed su�x-tree. Memorizing systematicallythe predecessors h0 and q0 of the nodes h and q avoids considering doubly linked tries. Thename of the attribute which marks the positions of the external nodes is made explicit.18

Suffix-Tree(y; n)1 p New-Node2 h0 nil3 h p4 r �15 s n+ 16 for i from 0 up to n� 17 loop if h0 = nil8 then (h0; h; r; s) Slow-Find(y;nil; p; r+ 1; s� 1)9 else (j; k) Label(h0; h)10 if h0 = p11 then (q0; q) Fast-Find(y; p; j+ 1; k� 1)12 else (q0; q) Fast-Find(y; link[h0]; j; k)13 link [h] q14 (h0; h; r; s) Slow-Find(y; q0; q; r; s)15 t New-Node16 Make-Edge(h; (r; s); t)17 position[t] i18 return pThe algorithm runs in time O(n) (more precisely O(n� log card�) if we take into accountthe branching in the data structure). Indeed, the instruction at line 4 in function Fast-Find isperformed less than 2n times, and the number of symbol comparisons done at line 7 in functionSlow-Find is less than n.Once the su�x tree of y is build, some operations can be performed rapidly. We describefour applications in the following. Let x be a string of length m.Testing whether x occurs in y or not can be solved in time O(m) by spelling x from theroot of the trie symbol by symbol. If the operation succeeds, x occurs in y. Otherwise, we getthe longest pre�x of x occurring in y.Producing the number of occurrences of x in y starts identically by spelling x. Assumethat x occurs actually in y. Let p be the node at the extremity of the last taken down edge,or be the root itself if x is empty. The expected number, say k, is then exactly the numberof external nodes of the sub-trie of root p. This number can be computed by traversing thesub-trie. Since each internal node of the sub-trie has at least two successors, the total size ofthe sub-trie is O(k), and the traversal of the sub-trie is performed in time O(k) (independentlyof �). The method can be improved by precomputing in time O(n) (independently of �) allthe values associated with each internal node; the whole operation is then performed in timeO(m), whatever is the number of occurrences of x.The method for reporting the list of positions of x in y proceeds in the same way. Therunning time needed by the operation is O(m) to locate x in the trie, plus O(k) to report eachof the positions associated with the k external nodes.Finding the longest repeated factor of y remains to compute the \deepest" internal nodeof the trie, that is, the internal node corresponding to a longest possible factor in y. This isperformed in time O(n).3.2 Su�x AutomataThe su�x automaton S(y) of a string y is the minimal deterministic automaton recognizingSu�(y), that is, the set of su�xes of y. This automaton is minimal among all the deterministic19

0 1 2 3 4 6 7 958 10a a b b a b bb b ab b aFigure 10 The su�x automaton S(y) of the string y = aabbabb. The states are numbered from 0to 10, according to the order in which they are created by the construction algorithm described in thepresent section. The initial state is state 0, terminal states are states 0, 5, 9, and 10. This automatonis the minimal deterministic automaton accepting the language of the su�xes of y.automata recognizing the same language, which implies that it is not necessarily complete. Anexample is given in Figure 10.The main point about su�x automata is that their size is asymptotically linear in the lengthof the string. More precisely, given a string y of length n, the number of states of S(y) is equalto n+1 when n 6 2, and is bounded by n+1 and 2n� 1 otherwise; as to the number of edges,it is equal to n + 1 when n 6 1, it is 2 or 3 when n = 2, and it bounded by n and 3n � 4otherwise.The construction of the su�x automaton of a string y of length n can be performed in timeO(n), or, more precisely, in time O(n� log card�) on an arbitrary alphabet �. It makes useof a failure function fail de�nes on the states of S(y). The set of states of S(y) identi�es withthe quotient setsu�1 Su�(y) = fv 2 �� j uv 2 Su�(y)gfor the strings u in the whole set of factors of y. One may observe that two sets in the formu�1 Su�(y) are either disjoint or comparable. This allows to setfail [p] = the smallest quotient set stricly containing the quotient set identi�ed with p;for each state p of the automaton di�erent from the initial state of the automaton. The functiongiven below as the function Suffix-Automaton builds the su�x automaton of y, and returnsthe initial state, say i, of the automaton. The construction is on-line, which means that at eachstep of the construction, just after processing a pre�x y0 of y, the su�x automaton S(y0) isbuild. Denoting by t the state without outgoing edge in the automaton S(y0), terminal statesof S(y0) are implicitly known by the \su�x path" of t, that is, the list of the statest; fail [t]; fail[fail [t]]; : : : ; i:The algorithm uses the function length de�ned for each state p of S(y) bylength[p] = the length of the longest string spelled from i to p.
20

Suffix-Automaton(y)1 i New-State2 terminal [i] false3 length[i] 04 fail [i] nil5 t i6 for symbol a from �rst to last symbol of y7 loop t Suffix-Automaton-Extension(i; t; a)8 p t9 loop terminal [p] true10 p fail [p]11 while p 6= nil12 return iThe on-line construction is based on the function Suffix-Automaton-Extension that isimplemented below. The latter function processes the next symbol, say a, of the string y. If y0is the pre�x of y preceding a, it transforms the su�x automaton S(y0) already build into thesu�x automaton S(y0a).Suffix-Automaton-Extension(i; t; a)1 t0 t2 t New-State3 terminal [t] false4 length[t] length[t0] + 15 p t06 loop Make-Edge(p; a; t)7 p fail [p]8 while p 6= nil and Target(p; a) = nil9 if p = nil10 then fail [t] i11 else q Target(p; a)12 if length[q] = length[p] + 113 then fail [t] q14 else r New-State15 terminal [r] false16 for each letter b such that Target(q; b) 6= nil17 loop Make-Edge(r; b;Target(q; b))18 length[r] length[p] + 119 fail [r] fail [q]20 fail [q] r21 fail [t] r22 loop Cancel-Edge(p; a;Target(p; a))23 Make-Edge(p; a; r)24 p fail [p]25 while p 6= nil and Target(p; a) = q26 return tWe illustrate the behavior of function Suffix-Automaton-Extension in Figure 11.With the su�x automaton S(y) of y, several operations can be solved e�ciently. Wedescribe three of them. Let x be a string of length m.21

(a) 0 1 2 3 4 5 6 8 9 107b b b b a a b b ba aaa a b
(b) 0 1 2 3 4 5 6 8 9 107 11b b b b a a b b b ca aaa a b cccc
Figure 11 An illustration of the behavior of function Suffix-Automaton-Extension. The functiontransforms the su�x automaton S(y0) of a string y0 in the su�x automaton S(y0a) for any given symbola (the terminal states being implicitly known). Let us consider that y0 = bbbbaabbb, and let us examinethree possible cases according to a, namely a = c, a = b, and a = a. (a) The automaton S(bbbbaabbb).The state denoted by t0 is state 10, and the su�x path of t0 is the list of the states 10, 3, 2, 1, and 0.During the execution of the �rst loop of the function, state p runs through a part of the su�x path oft0. At the same time, edges labeled by a are created from p the newly created state t = 11, unless suchan edge already exists in which case the loop stops. (b) If a = c, the execution stops with an unde�nedvalue for p. The edges labeled by c start at terminal states, and the failure of t is the initial state.(c) If a = b, the loop stops on state p = 3, because an edge labeled by b is de�ned on it. The conditionat line 12 of function Suffix-Automaton-Extension is satis�ed, which means that the edge labeledby a from p is not a short-circuit. In this case, the state ending the previous edge is the failure of t.(d) Finally, when a = a, the loop stops on state p = 3 for the same reason, but the edge labeled by afrom p is a short-circuit. The string bbba is a su�x of the (newly considered) string bbbbaabbba, butbbbba is not. Since these two strings reach state 5, this state is duplicated into a new state r = 12 thatbecomes terminal. Su�xes bba and ba are re-directed to this new state. The failure of t is r.

22

(c) 0 1 2 3 4 5 6 8 9 107 11b b b b a a b b b ba aaa a b
(d) 0 1 2 3 4 5 6 8 9 107 1112b b b b a a b b b aa aaa a baMembership test solves in time O(m) by spelling x from the initial state of the automaton.If the entire string is spelled, x occurs in y. Otherwise we get the longest pre�x of x occurringin y.Computing the number k of occurrences of x in y (assuming that x is a factor of y) startssimilarly. Let p be the state reached after the spelling of x from the initial state. Then k isexactly the number of terminal states accessible from p. The number k associated with eachstate p can be precomputing in time O(n) (independently of the alphabet) by a depth-�rsttraversal of the graph underlying the automaton. The query for x is then performed in timeO(m), whatever is k.The base of an algorithm for computing a longest factor common to x and y is implementedin the procedure Ending-Factors-Matcher given below. This procedure reports at eachposition in y the length of the longest factor of x ending here. It can obviously be used forstring matching. It works as the procedure Aho-Corasick-Matcher in the use of the failurefunction. The running time of the search phase of the procedure is O(m).

23

Ending-Factors-Matcher(y; x)1 i Suffix-Automaton(y)2 ` 03 p i4 for symbol a from �rst to last symbol of x5 loop if Target(p; a) 6= nil6 then ` `+ 17 p Target(p; a)8 else loop p fail [p]9 while p 6= nil and Target(p; a) 6= nil10 if p = nil11 then ` 012 p i13 else ` length[p] + 114 p Target(p; a)15 report `Retaining a largest value of the variable ` in the procedure (instead of reporting all values)solves the longest common factor problem.4 Research Issues and SummaryString searching by hashing was introduced by Harrison (1971), and later fully analyzed in[Karp and Rabin, 1987].The �rst linear-time string-matching algorithm is due to Knuth, Morris, and Pratt ([Knuth,Morris, and Pratt, 1977]). It can be proved that, during the search, the delay, that is, thenumber of times a symbol of the text is compared to symbols of the pattern, is less thanblog�(m+1)c, where � is the golden ratio (1+p5)=2. [Simon, 1993] gives a similar algorithmbut with a delay bounded by the size of the alphabet (of the pattern). [Hancart, 1993] provesthat the delay of Simon's algorithm is less than 1+blog2mc. This paper also proves that this isoptimal among algorithms processing the text with a one-symbol bu�er. The bound becomesO(logminf1+blog2mc; card�g) using an ordering on the alphabet �, which is not a restrictionin practice.[Galil, 1981] gives a general criterion to transform string-matching algorithms that worksequentially on the text into real-time algorithms.The Boyer-Moore algorithm was designed in [Boyer and Moore, 1977]. The version givenin this chapter follows [Knuth, Morris, and Pratt, 1977]. This paper contains the �rst proofon the linearity of the algorithm when restricted to the search of the �rst occurrence of thepattern. [Cole, 1994] proves that the maximum number of symbol comparisons is bounded by3n for non periodic patterns, and that this bound is tight.[Knuth, Morris, and Pratt, 1977] considers a variant of the Boyer-Moore algorithm in whichall previous matches inside the current window are memorized. Each window con�gurationbecomes the state of what is called the Boyer-Moore automaton. It is still unknown whetherthe maximum number of states of the automaton is polynomial or not.Several variants of the Boyer-Moore algorithm avoid the quadratic behavior when searchingfor all occurrences of the pattern. Among the most e�cient in terms of the number of symbolcomparisons are the algorithm of Apostolico and Giancarlo (1986), Turbo-BM algorithm by24

Crochemore et alii (1992) (the two previous algorithms are analyzed in [Lecroq, 1995]), andthe algorithm of Colussi ([Colussi, 1994]).The Horspool algorithm is from [Horspool, 1980]. The paper contains practical aspects ofstring matching that are developed in [Hume and Sunday, 1993].The optimal bound on the expected time complexity of string matching is O(logmm n) (see[Knuth, Morris, and Pratt, 1977] and the paper of Yao (1980)).String matching can be solved by linear-time algorithms requiring only a constant amountof memory in addition to the pattern and the (window on the) text. This can be proved bydi�erent techniques presented in [Crochemore and Rytter, 1994]. The most recent solution isby G�asieniec, Plandowski, and Rytter (1995).[Cole et alii, 1995] shows that, in the worst case, any string-matching algorithm workingwith symbol comparisons makes at least n + 94m(n�m) comparisons during its search phase.Some string-matching algorithms make less than 2n comparisons. The presently-known upperbound on the problem is n + 83(m+1)(n � m), but with a quadratic-time preprocessing phase(see [Cole et alii, 1995]). With a linear-time preprocessing phase, the current upper bounds are43n� 13m and n+ 4 logm+2m (n�m) (see respectively [Galil and Giancarlo, 1992] and [Breslauerand Galil, 1993]). Except in a few cases (patterns of length 3 for example), lower and upperbounds do not meet. So, the problem of the exact complexity of string matching is open.The Aho-Corasick algorithm is from [Aho and Corasick, 1975]. Commentz-Walter (1979)has designed an extension of the Boyer-Moore algorithm that solves the dictionary-matchingproblem. It is fully described in [Aho, 1990].The su�x-tree construction of Section 3 is from [McCreight, 1976]. An on-line version is byUkkonen (1992). A previous algorithm by Weiner (1973) relates su�x trees to a data structureclose to su�x automata.The construction of su�x automata, also described as direct acyclic word graphs and oftendenoted by the acronym DAWG, is from [Blumer et alii, 1985] and from [Crochemore, 1986].An alternative data structure that implements e�ciently indexes is the notion of su�xarrays introduced in [Manber and Myers, 1993].5 De�ning TermsBorder: A string v is a border of a string u if v is both a pre�x and a su�x of u. String v issaid to be the border of u if it is the longest proper border of u.Factor: A string v is a factor of a string u if u = u0vu00 for some strings u0 and u00.Occurrence: A string v occurs in a string u if v is a factor of u.Pattern: A �nite number of strings that are searched for in texts.Pre�x: A string v is a pre�x of a string u if u = vu00 for some string u00.Proper: Quali�es a factor of a string that is not equal to the string itself.Segment: Equivalent to factor.Su�x: A string v is a su�x of a string u if u = u0v for some string u0.Su�x tree: Trie containing all the su�xes of a string.Su�x automaton: Smallest automaton accepting the su�xes of a string.Text: A stream of symbols that is searched for occurrences of patterns.Trie: Digital tree, tree in which edges are labeled by symbols or strings.25

Window: Factor of the text that is aligned with the pattern.6 ReferencesAho, A.V. 1990. Algorithms for �nding patterns in strings. In Handbook of Theoretical Com-puter Science, ed. J. van Leeuwen, vol. A, chap. 5, p. 255{300. Elsevier, Amsterdam.Aho, A.V. and Corasick, M.J. 1975. E�cient string matching: an aid to bibliographic search.Comm. ACM. 18:333{340.Baase, S. 1988. Computer algorithms { Introduction to design and analysis. Addison-Wesley.Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., Chen, M.T., and Seiferas, J. 1985. Thesmallest automaton recognizing the subwords of a text. Theoret. Comput. Sci. 40:31{55.Boyer, R.S. and Moore, J.S. 1977. A fast string searching algorithm. Comm. ACM. 20:762{772.Breslauer, D. and Galil, Z. 1993. E�cient comparison based string matching. J. Complexity.9:339{365.Cole, R. 1994. Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm.SIAM J. Comput. 23:1075{1091.Cole, R., Hariharan, R., Zwick, U., and Paterson, M.S. 1995. Tighter lower bounds on theexact complexity of string matching. SIAM J. Comput. 24:30{45.Colussi, L. 1994. Fastest pattern matching in strings. J. Algorithms. 16:163{189.Cormen, T.H., Leiserson, C.E., and Rivest, R.L. 1990. Introduction to algorithms. MIT Press.Crochemore, M. 1986. Transducers and repetitions. Theoret. Comput. Sci. 45:63{86.Crochemore, M. and Rytter, W. 1994. Text Algorithms. Oxford University Press.Galil, Z. 1981. String matching in real time. J. ACM. 28:134{149.Galil, Z. and Giancarlo, R. 1992. On the exact complexity of string matching: upper bounds.SIAM J. Comput. 21:407{437.Gonnet, G.H. and Baeza-Yates, R.A. 1991. Handbook of algorithms and data structures.Addison-Wesley.Hancart, C. 1993. On Simon's string searching algorithm. Inf. Process. Lett. 47:95{99.Horspool, R.N. 1980. Practical fast searching in strings. Software { Practice and Experience.10:501{506.Hume, A. and Sunday, D.M. 1991. Fast string searching. Software { Practice and Experience.21:1221{1248.Karp, R.M. and Rabin, M.O. 1987. E�cient randomized pattern-matching algorithms. IBMJ. Res. Dev. 31:249{260.Knuth, D.E., Morris Jr, J.H., and Pratt, V.R. 1977. Fast pattern matching in strings. SIAMJ. Comput. 6:323{350.Lecroq, T. 1995. Experimental results on string-matching algorithms. Software { Practice andExperience. 25:727{765.McCreight, E.M. 1976. A space-economical su�x tree construction algorithm. J. Algorithms.23:262{272. 26

Manber, U. and Myers, G. 1993. Su�x arrays: a new method for on-line string searches. SIAMJ. Comput. 22:935{948.Sedgewick, R. 1988. Algorithms. Addison-Wesley.Simon, I. 1993. String matching algorithms and automata. In First American Workshop onString Processing, ed. R. Baeza-Yates and N. Ziviani, p. 151{157. Universidade Federal deMinas Gerais.Stephen, G.A. 1994. String searching algorithms. World Scienti�c Press.7 Further InformationProblems and algorithms presented in the chapter are just a sample of questions related topattern matching. They share the formal methods used to design e�cient algorithms. A widerpanorama of algorithms on texts may be found in a few books such as [Crochemore and Rytter,1994] and [Stephen, 1994].Research papers in pattern matching are disseminated in a few journals, among which are:Communications of the ACM, Journal of the ACM, Theoretical Computer Science, Journal ofAlgorithms, SIAM Journal on Computing, Algorithmica.Two main annual conferences present the latest advances of this �eld of research:� Combinatorial Pattern Matching, which started in 1990 in Paris (France), and was heldsince in London (England), Tucson (Arizona), Padova (Italy), Asilomar (California),Helsinki (Finland), Laguna Beach (California).� Workshop on String Processing, which started in 1993 in Belo Horizonte (Brazil), andwas held since in Valparaiso (Chile), and Recife (Brazil).But general conferences in computer science often have sessions devoted to pattern matching.Several books on the design and analysis of general algorithms contain a chapter devotedto algorithms on texts. Here is a sample of these books: [Baase, 1988], [Cormen, Leiserson,and Rivest, 1990], [Gonnet and Baeza-Yates, 1991], [Sedgewick, 1988].
27

