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Abstract. This chapter surveys and discusses the evolution of a certain class of database 

architectures, more recently referred to as “vertical databases”. The topics discussed in this chapter 

include the evolution of storage structures from the 1970‟s till now, data compression techniques, and 

query processing techniques for single- and multi-variable queries in vertical databases.  Next, the 

chapter covers in detail the architecture and design considerations of a particular (open source) vertical 

database system, called MonetDB.  This is followed by an example of using MonetDB for the 

SkyServer data, and the query processing improvements it offers.  

 

1. Introduction  
Author: Per Svensson 

1.1 Basic concepts 

Consider a High-Energy Physics experiment, where elementary particles are accelerated to nearly the 

speed of light and made to collide. These collisions generate a large number of additional particles. 

For each collision, called an "event", about 1-10 MB of raw data are collected. The rate of these 

collisions is about 10 per second, corresponding to 100‟s of million or a few billion events per year.  

Such events are also generated by large-scale simulations.  After the raw data are collected they 

undergo a "reconstruction" phase, where each event is analyzed to determine the particles it produced 

and to extract hundreds of summary properties (such as the total energy of the event, momentum, and 

number of particles of each type).   

To illustrate the concept of vertical vs. horizontal organization of data, consider a dataset of a billion 

events, each having 200 properties, with values labeled V0,1, V0,2, etc.  Conceptually, the entire 

collection of summary data can be represented as a table with a billion rows and 200 columns as 

shown in Figure 11.1(a).  A horizontal organization of the table simply means that the physical layout 

of the data is row-wise, one row following its predecessor, as shown in Figure 11.1(b). Usually the 

entire table is stored into disk pages or files, each containing multiple rows.  A vertical organization 

means that the layout of the data is column-wise as shown in Figure 11.1(c).  Note that the entire 

column containing a billion values is usually stored in multiple disk pages or multiple files.  

Suppose that a user wishes to get the event ID‟s that have energy, E, greater than 10 MeV (million 

electron-volts) and that have number of pions, Np, between 100 and 200, where “pion” is a specific 

type of particle.  This predicate can be written as: ((E > 10) ^ (100 < Np < 200)).  It is obvious that in 

this case searching over the vertically organized data is likely to be faster, since only the data in the 

two columns for E and Np have to be brought into memory and searched.  In contrast, the horizontal 

organization will require reading the entire table.  Given this simple observation, why were relational 

database systems typically built with a horizontal organization?  As will be discussed next, the 

majority of database systems were designed for transaction processing where frequent updates of 

randomly requested rows were expected, which is the reason for choosing the horizontal organization.  

In this chapter we discuss the class of applications that benefit greatly from a vertical organization, 

which includes most scientific data applications. 
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Figure 11.1 Horizontal vs. vertical organization of tabular (relational) data 

1.2  Design rules and user needs 

A recent contribution to the literature on database design for what its authors call complex analytics is 

[MF04], describing the design rationale for Sybase IQ Multiplex, a parallel, multi-node, shared-storage 

vertical database system [Syb08] whose major design goal is to efficiently manage large-scale data 

warehousing workloads. It is argued in this paper that the consequences of adopting the primary 

design criterion for transactional, write-oriented databases, is “to minimize the portion of stored data 

that must be locked for exclusive access and the length of time that locks are held”. Thus, according to 

[MF04], these consequences have generally led to the following set of design rules for transactional, 

write-oriented databases: 

 Since data are usually accessed and modified one record at a time, data should be stored row-

wise to allow each record to be updated by a single write operation. Also, data should be stored 

in small disk pages to minimize the amount of data transferred between memory and disk and to 

minimize the part of the disk file that needs to be locked during a transaction.  

 Indexes should be restricted to a few attributes to avoid locking entire index tree structures on 

disk and thereby deny access to whole sets of rows, which might otherwise become necessary 

when indexes are updated.  

 Compression of data is usually not profitable because there is often a mix of different data types 

and unrelated data values in each row. The CPU time required for compression and 

decompression will therefore not be recovered by reduced data transfer volume.  

 Adding or deleting attributes and indexes is likely to be expensive since all, or a large part of, 

the data pages used by the parent table may be affected.  

 Finally, updates of an attribute according to even a simple predicate are likely to be costly 

because the entire row must be read and written when a single attribute is to be updated. 

However, once the primary criterion for the internal design of a database system becomes the 

achievement of high performance of complex analytics tasks, this set of rules should be changed as 

follows:  

 Since by storing data column-wise instead of row-wise, it is possible to avoid touching those 
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disk pages of a table which are not at all affected by a query, considerable performance 

improvements may be achieved. Cache efficiency will be enhanced since commonly accessed 

columns will tend to stay in the cache.  

 Data are likely to be read many more times than they are written or updated, making CPU time 

“investment” in the creation of efficient storage structures more likely to be profitable. Also, 

data should be stored in large pages so that a large number of relevant data items can be 

retrieved in a single read operation, resulting in a high overall “hit ratio”. Row-wise storage, on 

the other hand, tends to disfavor large page sizes since each read operation drags into memory 

also attributes which are not relevant to the query in question, resulting in a low overall hit ratio. 

 By using version management instead of record-wise locking techniques (which becomes 

possible largely because of the typically much smaller number of concurrent updates), each 

query would see a consistent database state in which no locks, or very few locks, ever occur. 

Also, version management is what complex analytics users need to be able to keep track of their 

many different analysis paths across the database.  

 It is possible (although probably often not necessary) to index every attribute since searches 

greatly dominate over updates and because adding an index to an attribute requires only that 

attribute to be read, not the entire row.  

 Data compression is likely to be profitable because the data belonging to one attribute is highly 

likely to be homogeneous and even auto-correlated.  

 Adding or deleting attributes of a table is likely to be cheap since only relevant data would be 

accessed. Updates of an attribute are likely to be relatively cheap because no irrelevant attribute 

values need to be read or written. 

Similar observations were made much earlier [Sve79a], but were for a long time considered irrelevant 

in mainstream database research. In fact, these alternative design principles have only comparatively 

recently received serious attention. This renewed interest is at least partly due to the fact that today, 

many very large data bases are actually used for data warehousing, decision support, or business or 

security intelligence applications, areas where similar characteristics apply as those claimed above. In 

[Sve79a], the following additional observations were made: 

 In scientific data analysis, the number of simultaneous users is typically much smaller than in 

large-scale commercial applications, but on the other hand the users tend to put more complex, 

usually unanticipated, queries to the system. 

 A more automatic response to complex user requests is required from the system components, 

since in scientific applications no systems or database specialists are usually available.  

 A system should be transportable to many computer models, including medium sized 

computers, since in scientific data analysis applications many users prefer to work with an in-

house computer dedicated to the acquisition and analysis of data. 

One of the first systems to be developed based on the above principles was the system Cantor [KS83, 

KS86, Sve88, AS88].  The Cantor project pioneered the analysis and coordinated application of many 

of the above-mentioned techniques and concepts in relational systems. 

1.3  Architectural opportunities 

Today, there is a growing interest in what has been called read-optimized database systems [SAB+05, 

HLA06], i.e., systems that are oriented towards ad hoc querying of large amounts of data that require 

little or no updating. Data warehouses represent one class of read-optimized systems, in which bulk 

loads of new data are periodically carried out, followed by a relatively long period of read-only 

querying. Early interest in this class of systems came from various statistical and scientific 

applications, such as epidemiological, pharmacological, and other data analytical studies in medicine 

[WFW75], as well as intelligence analysis applications [BSS97]. Transposed files, as vertical storage 

schemes were usually called at the time, were used in a number of early non-relational read-optimized 

database systems. A fairly comprehensive list of such systems was given in the paper [CK85], which 
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asserted that the standard tabular scheme for storage of relations is not necessarily the best, and that 

transposed files can offer many advantages. 

In the field of database technology during the 70‟s and early 80‟s, there was little consensus on how to 

perform experiments, or even on what to measure while performing them. Today‟s experiments and 

analyses are usually far better planned and executed, and the accumulated scientific knowledge in 

database technology is vastly greater.  There is now very good evidence that vertical database systems 

can offer substantial performance advantages, in particular when used in those statistical and analytical 

kinds of applications for which the concept was originally developed, cf. Section 5, below. 

An important conceptual step associated with the use of transposed files is that a whole range of new 

architectural opportunities opens.  Below is a partial list of such architectural opportunities.  We note, 

however, that only a subset of these techniques have been widely used in systems currently available: 

 column-wise storage of data, in place of the conventional row-wise data storage layout used in 

most relational database management systems (RDBMS), can eliminate unnecessary data access if 

only a subset of the columns are involved in the query 

 clustering, in particular sort ordering, of attribute values, can speed up search over column data 

 various kinds of “light-weight” data compression: minimum byte size, dictionary encoding, 

differencing of attribute value sequences, can reduce the amount of data accessed from disk to 

memory 

 run-length encoding (RLE) data compression for columns that are ordered, can reduce the amount 

of data fetched from disk into main memory 

 dynamically optimized sequential combinations of different compression techniques can reduce 

processing time 

 B-tree variants or other indexing techniques designed to efficiently store and retrieve variable-

length data in columns, a requirement for profitable exploitation of many data compression 

techniques 

 conjunctive search, join, and set algebra algorithms exploiting the column-wise storage structure 

and working directly on compressed data 

 lazy decompression of data, i.e., data are decompressed only as needed instead of as soon as 

having been brought into main memory, is required if such algorithms are to be used  

 compressed lists of tuple id‟s to represent intermediate and final results in such algorithms 

 vectorized operations on data streams and the vectorized dataflow network architecture paradigm, 

to reduce call overhead costs and allow efficient query evaluation by interpretation of algebraic 

expressions rather than by compilation to low-level code  

 specially designed buffering techniques for storing and accessing metadata and results of simple-

transaction-type queries, which are in general not well suited to column storage schemes. 

Next, we will discuss several of these approaches, with an emphasis on those techniques which have 

been claimed in the literature to be of particular importance in high-performance systems. 

 

2.  Architectural principles 
Author: Per Svensson 

The architectural principles discussed in this section were proposed by several groups who have 

designed different vertical databases over the years. Bringing them together in this way does not mean 

that these principles can be arbitrarily combined with each other. However, they form a collection of 

ideas one should probably be aware of when designing or acquiring such systems. 

The literature review presented next, shows that most of the advantages of vertical storage in databases 
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for analytical purposes have been known and exploited since the early 80‟s at least, but recently there 

is renewed wide-spread market and research interest in the matter. The lack of interest in the past now 

seems to reverse into what might be construed as a canonical vertical storage architecture, replacing 

the previous consensus that the “flat file with indexes” approach is always preferable. 

2.1  Transposed files and the decomposed storage model  

A number of early papers deal with issues related to how to group, cluster, or partition the attributes 

of a database table. For example, the authors of [NCW+84] state: “Partitioning in database design is 

the process of assigning a logical object (relation) from the logical schema of the database to several 

physical objects (files) in a stored database. Vertical partitioning subdivides attributes into groups and 

assigns each group to a physical object.” That paper, however, was not concerned with such analytical 

applications in which ad hoc queries are dominant.  Instead, it discusses how tables may be partitioned 

in order to exploit known correlations between attribute hit rates, to obtain better average query 

performance. This is worthwhile mainly in routinely repeating processes where access patterns which 

display such correlations dominate and change slowly.  

The term [fully] transposed file was used in early papers, such as [THC79, Bat79, Sve79a, Sve79b], to 

denote what is today called “vertically fragmented” or “vertically decomposed” data structures 

[MBK00a], “vertical partitioning” [HLA+06], “column-oriented” data bases [AMF06] or “column 

store” data bases [SAB+05].  

[CK85] is the first published paper on transposed files and related structures that is widely referenced 

in recent database literature. While the authors of [CK85] note that some early database systems used a 

fully transposed storage model, for example, RM [LS71], TOD [WFW75], RAPID [THC79], ALDS 

[BT81], Delta [SKM+84] and [Tan83], in that paper the advantages of a fully decomposed storage 

model (DSM) are described. A DSM is a “[fully] transposed storage model with surrogates1 

included”. In a DSM each column of a relational table is stored in a separate binary association table 

(BAT), as an array of fixed-size two-field records (TID, value), where TID refers to Tuple ID. 

According to [KCJ+87], the DSM further assumes that two copies of each binary relation are stored, 

one clustered (i.e., sorted or hashed with an index) on each of the two attributes (TID, value). The 

authors of [CK85] conclude that there seems to be a general consensus among the database 

community that the conventional N-ary Storage Model (NSM) is better. They suggest that the 

consensus opinion is not well founded and that neither is clearly better until a closer analysis is made. 

In [KCJ+87], a parallel query processing strategy for the DSM is presented, called the pivot algorithm. 

The algorithm makes use of the join index concept [Val87]. An informal description of a generic 

select-join-project query is given in the paper, where all selects are assumed to be range restriction 

operations and all joins are equi-joins. The initial select phase executes a select operation for every 

predicate binding in the query, using the appropriate value-clustered BAT as index. The output of this 

phase is a collection of temporary index lists, each containing the TIDs of selected tuples from 

conceptual relation tables. All these operations are done in parallel. During the pivot phase of the 

algorithm, the main m-way join operation of the query is executed. A “pivot” TID column is chosen 

from those attributes which appear in the join expression. The result of this phase is another collection 

of temporary index lists indicating which tuples in each conceptual relation that satisfy the query. 

Since a join index clustered on the desired TID exists for all entity-based equi-joins, a full scan can 

always be avoided. During the value materialization phase several independent joins are evaluated, 

preferably in parallel. The join operands are small binary relations containing only TIDs. The final 

composition phase executes an m-way merge join which permits a large degree of parallelism. Its 

operands are all small binary relations containing only TID lists whose cardinality has been maximally 

reduced due to the select operations. 

The practical conclusions from this work, reported in [VKC86] and cited in [KCJ+87], is (1) that DSM 

with join indexes provides better retrieval performance than NSM when the number of retrieved 

                                                 

1  The term surrogate is used by some researchers to denote object identifiers, or as here in relational databases, tuple 

identifiers or TIDs. We will use the latter term unless we make a direct quotation. 
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attributes is low or the number of retrieved records is medium to high, while NSM provides better 

retrieval performance when the number of retrieved attributes is high and the number of retrieved 

records is low, and (2) that the performance of single attribute modification is the same for both DSM 

and NSM, while NSM provides better record insert/delete performance.  

This is an approach which is similar to those used in MonetDB [MBK00a, MBK00b] and in Cantor 

[Sve82], with the following main differences: (1) DSM provides two predefined join indices for each 

attribute, one clustered on each of the two attributes (attribute value, TID), while Cantor and MonetDB 

both use indices which are created as needed during query evaluation; (2) Cantor stores these indices 

using Run-Length-Encoding (RLE) compression; MonetDB introduces a novel radix cluster algorithm 

for hash join; (3) although potentially important, parallelism has not been presented as a key design 

issue for MonetDB, nor was it one for Cantor; (4) the algorithms used in MonetDB and Cantor were 

both presented as simple two-way joins, corresponding mainly to the composition phase in the DSM 

algorithm, which is presented as an m-way join.  

2.2 The impact of modern processor architectures 

Research has shown that DBMS performance may be strongly affected by “cache misses” [ADH+99] 

and can be much improved by use of cache-conscious data structures, including column-wise storage 

layouts such as DSM and within-page vertical partitioning techniques [ADH+01]. In [ADH+99] this 

observation is summarized as follows: “Due to the sophisticated techniques used for hiding I/O latency 

and the complexity of modern database applications, DBMSs are becoming compute and memory 

bound”. In [BK99], it is noted that past research on main-memory databases has shown that main-

memory execution needs different optimization criteria than those used in I/O-dominated systems.  

On the other hand, it was a common goal early on for scientific database management systems 

(SDBMS) development projects to exploit the superior CPU power of computers used for scientific 

applications, which in the early 70‟s could be orders of magnitude higher than those of processors 

designed for commercial workloads.  The main purpose was to make query evaluation compute and 

memory bound rather than I/O bound whenever possible. 

The MonetDB developers [MBK00a, MBK00b, BZN05] have conducted thorough analyses of the 

effect of modern computer hardware architectures on data base performance. As advances in CPU 

speed far outpace advances in dynamic random access (DRAM) latency, the effect of optimal use of 

the memory caches is becoming ever more important. In [MBK00a] a detailed discussion is presented 

of the impact of modern computer architectures, in particular with respect to their use of multi-level 

cache memories to alleviate the continually widening gap between DRAM and CPU speeds that has 

been a characteristic for computer hardware evolution since the late 70‟s. Memory access speed has 

stayed almost constant (within a factor of 2), while CPU speed has increased by almost a factor of 

1000 from 1979 to 1999. Cache memories, which have been introduced on several levels to reduce 

memory latency, can do so effectively only when the requested data are found in the cache.  

The authors of [MBK00a] claim that it is no longer appropriate to think of the main memory of a 

computer system as “random access” memory, and show that accessing data sequentially also in main 

memory may provide significant performance advantages. They furthermore show that, unless special 

care is taken, a database server running even a simple sequential scan on a table may spend 95% of its 

cycles waiting for memory to be accessed. This memory access bottleneck is even more difficult to 

avoid in more complex database operations such as sorting, aggregation, and join, which exhibit a 

random access pattern. The performance advantages of exploiting sequential data access patterns 

during query processing have thus become progressively more significant as faster processor hardware 

has become available. 

Based on results from a detailed analytical cost model, the authors of [MBK00a] discuss the 

consequences of this bottleneck for data structures and algorithms to be used in database systems and 

identify vertical fragmentation as the storage layout that leads to optimal memory cache usage.  

A key tool whose utilization the MonetDB developers pioneered in database performance research is 

the use of detailed access cost models based on input from hardware event counters which are 

available in modern CPUs. Use of such models has enabled them, among other things, to identify a 
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significant bottleneck in the implementation of the partitioned hash-join and hence to improve it using 

perfect hashing. Another contribution is their creation of a calibration tool which allows relevant 

performance characteristics (cache sizes, cache line sizes, cache miss latencies) of the cache memory 

system to be extracted from the operating system for use in cost models, in order to predict the 

performance of, and to automatically tune, memory-conscious query processing algorithms on any 

standard processor. 

It is the experience of the MonetDB developers that virtual-memory advice on modern operating 

systems can be effectively utilized in a way which makes a single-level storage software architecture 

approach feasible. Thus, the MonetDB database software architecture does not feature secondary 

storage structures or explicit I/O operations, whereas the underlying “physical” storage architecture is 

multi-level hierarchical, consisting of CPU registers on the lowest level, two levels of hardware cache 

memory (L1 and L2), main memory, and virtual swap memory on disk. 

A conclusion of these studies is that database algorithms and data structures should be designed and 

optimized for efficient multi-level memory access from the outset. Careless implementation of the key 

algorithms can lead to a performance disaster that even faster CPUs will not be able to rescue, whereas 

careful design can lead to an order of magnitude performance improvement. The authors claim, on 

very good analytical and experimental grounds, that the vertical decomposition storage feature is in 

fact the basis of achieving such high performance.  

One final achievement of these design studies and subsequent implementation improvements is a data 

mining benchmark result which is two orders of magnitude better than that of some commercial 

database products.  

2.3 Vectorization and the data-flow execution model  

The use of vector operators (vectorization) in interpretive query evaluation aims at distributing the 

(usually heavy) interpretation overhead over many elementary CPU operations.  It is the same basic 

idea that is exploited in a vectorized CPU, although used in this context primarily to improve the 

efficiency of a software process. It turns out, however, that it is not straightforward to devise an 

efficient vectorized query evaluation process. This is a topic discussed at some length by [BZN05]. It 

would seem that the MonetDB developers are more or less alone in taking advantage of this approach 

today.  

In [KS86], a vectorized interpretation technique for query evaluation was presented, claimed to be 

analogous to the operation of a vectorized dataflow computer [Gil83]. This architectural approach was 

chosen to make sense of the transposed file architecture when extended to support general relational 

queries from the basic access patterns and conjunctive queries previously studied in [Sve79a, Sve79b] 

and briefly discussed in Section 2.6,“Querying compressed, fully transposed files”. It has in fact 

several key features in common with those of MonetDB/X100 described briefly in Section 4.4, below. 

[KS86] surveys the methods which were developed for translating the parsed and syntactically 

optimized expression of a relational query into an execution plan in the form of one or more 

hierarchies of static dataflow networks. Each network in the execution plan is a bipartite graph, i.e., if 

in such a network two nodes are connected by an arc, then one is a data buffer node and the other an 

operator node.  

Network generation is followed by an execution phase which proceeds in two stages: (1) when 

initializing a network hierarchy for evaluation, space is assigned to its buffers from a buffer pool 

common to all networks; and (2) when evaluating a network, initially all but the upstream boundary 

buffer nodes are empty. Evaluation proceeds by executing operator nodes in some order until all 

downstream boundary buffer nodes contain a value (usually a vector value). An operator node may 

execute whenever none of its inbuffer nodes is empty, and none of its outbuffer nodes is full. In the 

last system version of Cantor (1991), 31 different vectorized, so-called stream operators were 

available to the dataflow network generator. They are software analogues of the machine instructions 

of a vectorized dataflow computer. On modern “multi-core” computers as well as on shared-nothing 

multi-node computer systems, Cantor‟s vectorized dataflow query evaluation process could quite 

easily be parallelized. 
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The authors of [BZN05] argue that database systems usually execute less than one instruction per 

cycle (IPC), while in scientific computation, such as matrix multiplication, or in multimedia 

processing, IPCs of 2 or more are not uncommon on modern CPU‟s. The authors claim that database 

systems do not need to perform so badly relative to scientific computing workloads.  Based on 

experimental results they conclude that there are interpretation techniques which, if exploited, would 

allow DBMS compute performance to approach that of scientific computing workloads. A key 

technique by which this may be achieved is loop pipelining, whereby interpretation overhead is 

distributed over many elementary operations. This technique is central to the vectorized prototype 

query processor X100, recently designed and evaluated by the MonetDB developers. According to 

[BZN05], its goal is to: 

1. execute high-volume queries at high CPU efficiency, 

2. be extensible to other application domains like data mining and multi-media retrieval, 

3. scale with the size of the lowest storage hierarchy (disk). 

To achieve these goals, X100 must manage bottlenecks throughout the computer architecture: 

Disk. The columnBM I/O subsystem of X100 is geared towards efficient sequential data 

access. To reduce bandwidth requirements, it uses a vertical storage layout that in some cases is 

enhanced with lightweight data compression. 

RAM. Like I/O, RAM access is carried out through explicit memory-to-cache routines which 

contain platform-specific optimizations. The same vertically partitioned and even compressed disk 

data layout is used in RAM to save space and bandwidth. 

Cache. A Volcano-like [Gra94] execution pipeline with a vectorized processing model is used. 

Small vertical chunks (e.g., 1000 values) of cache-resident data items, called “vectors”, are the unit of 

operation for X100 execution primitives. The CPU cache is the only place where bandwidth does not 

matter, and therefore (de)compression happens on the boundary between RAM and cache.  

CPU. Vectorized primitives expose to the compiler that processing a tuple is independent of 

the previous and next tuples. Vectorized primitives for projections (expression calculation) do this 

easily, but [BZN05] try to achieve the same for other query processing operators as well (e.g., 

aggregation). This allows compilers to produce efficient loop-pipelined code. 

2.4 Data compression  

There are two obvious ways a DBMS can trade CPU cycles to save disk space and thereby I/O 

bandwidth, a precious resource [MBK00a].  In this context, we are concerned with I/O bandwidth 

only, since disk space itself has recently become so cheap that its cost rarely matters at all except 

perhaps in extreme applications, such as large-scale web search [CDG+06]. First, data may be coded 

into a more compact form [SAB+05]. For example, if one is storing an attribute that is a US 

customer‟s state of residence, the state can be coded directly into six bits, whereas the standard two-

character abbreviation requires 16 bits and a variable length character string for the full name of the 

state requires many more. Second, data values may be packed compactly by storing N values in K*N 

bits, where K is the smallest byte size that can hold any value in the column (bit packing). Of course, 

more sophisticated schemes may be used which can save even more space while allowing for flexible 

updates with data items which require more than K bits. It is also possible to use additional techniques, 

in particular sort order, to save additional I/O bandwidth. Note that these simple data compression 

techniques are equally applicable to row-wise as to column-wise storage schemes. Therefore, when a 

query is processed using a column-wise storage scheme, what makes the basic difference with respect 

to I/O bandwidth is the fact that there is no need to transfer data from irrelevant columns into main 

memory. As we will see, however, additional, more sophisticated compression techniques may also be 

exploited for column-wise storage. 

Although the authors of [AMF06] state that “it was not until the 90s when researchers began to 

concentrate on how compression affects database performance”, the two early papers [Sve79b, 

EOS81] both emphasize in different ways that fast data access may be achieved through judicious use 

of data compression in fully transposed (aka vertically partitioned) files. Early tutorials on the subject 
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are [Sev83, Bas85, RV93], however, none of them specifically discuss how to achieve query 

evaluation speed improvements. Recent papers on the use of data compression in relational databases 

are [WKH+00, AMF06, RS06]. The most significant advantages are typically obtained when 

combining data compression with fully transposed file or DSM storage, but there are also proposals to 

use compression in row-oriented storage schemes.  

The paper [AMF06] discusses an extension of the column-store storage and access subsystem of the 

C-Store system [SAB+05], while also addressing the issue of querying compressed data. The extended 

column storage exploits the fact that “sorted data is usually quite compressible” and suggests storing 

columns in multiple sort orders to maximize query performance, rather than to minimize storage 

space. The authors propose an architecture that allows for direct operation on compressed data while 

minimizing the complexity of adding new compression algorithms. They state: “Compression in 

traditional databases is known to improve performance significantly. It reduces the size of the data and 

improves I/O performance by reducing seek times (the data are stored nearer to each other), reducing 

transfer times (there is less data to transfer), and increasing buffer hit rate (a larger fraction of the 

DBMS fits in the buffer pool). For queries that are I/O limited, the CPU overhead of decompression is 

often compensated for by the I/O improvements.” 

Compression techniques for row-wise stored data often employ dictionary schemes to code attribute 

values in fewer bits. Sometimes Huffman encoding is used whereby varying symbol frequencies may 

be exploited to gain a more compact total encoding, at the price of having to use varying length codes. 

Also, in [AMF06], the idea of frame of reference encoding (FOR) is considered, where values are 

expressed as small differences from some “frame of reference” value, such as the minimum, in a block 

of data. Run length encoding (RLE), where repeats of the same element are expressed as (value, run-

length) pairs, is presented as an attractive approach for compressing sorted data in a column-wise 

store. 

An important point made by [AMF06] is that if one wants to exploit different compression techniques 

depending on local properties of data, it is important to find ways to avoid an associated increase in 

code complexity, where each combination of compression types used to represent the arguments of a 

join operation would otherwise require its own piece of code. The authors give several examples 

showing how, by using compressed blocks as an intermediate representation of data, operators can 

operate directly on compressed data whenever possible, degenerating to a lazy decompression scheme 

when not possible. Also, by abstracting general properties of compression techniques and letting 

operators check these properties, operator code may be shielded from having to know details of the 

way data are encoded. 

The paper [HLA+06] discusses techniques for performance improvements in read-optimized data 

bases. The authors report how they have studied performance effects of compressing data using three 

commonly used “light-weight” compression techniques: dictionary, bit packing, and FOR-delta, the 

latter a variation of FOR where the value stored is the difference of a value from the previous one, 

instead of from the same base value. 

In [RS06] data base compression techniques are discussed from a more general perspective, pointing 

out that certain statistical properties of data in a DBMS, in particular skew, correlation, and lack of 

tuple order, may be used to achieve additional compression. They present a new compression method 

based on a mix of column and tuple coding, while employing Huffman coding, lexicographical 

sorting, and delta coding. The paper provides a deeper performance analysis of its methods than has 

been customary, making it an important contribution also in this context although it does not 

specifically focus on column-wise storage. Finally, it briefly discusses how to perform certain 

operations, specifically Index Scan, Hash Join, Group By with Aggregation, and Sort Merge Join, 

directly on compressed data. 

In the MonetDB system described in [MBK00a], two space optimizations have been applied that 

reduce the per-tuple memory in BATs: 

Virtual TIDs. Generally, when decomposing a relational table, MonetDB avoids allocating the 4-byte 

field for the TID since it can be inferred from the data sequence itself. MonetDB‟s (and DSM‟s) 

approach leaves the possibility open for non-virtual TIDs as well, a feature which may be useful, e.g., 
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when performing a hash-lookup.  

Byte encodings. Database columns often have low domain cardinality. For such columns, MonetDB 

uses fixed-size encodings in 1- or 2-byte integer values. 

In [KS86], the approach to data compression used in Cantor and its test-bed is described. It 

presupposes the existence of an efficient way to organize attribute subfiles containing varying length 

data. The so-called b-list structure developed for this purpose is a B-tree variant suitable for storing 

linear lists which exploits an observation made in [Knu73], and also shows similarity to a structure 

discussed in [MS77].  

When data are read from or written into a b-list node, data values are accessed one block at a time. 

When a block is written, a compression algorithm is first applied to its data, working as follows: 

First, from all values in a given sequence, its minimum value is subtracted and stored in a sequence 

header (cf. the FOR technique discussed above). Then, to store an arbitrary-length subsequence of 

integers compactly, four alternatives are considered: 

1. use the smallest possible common byte length for the subsequence and store the byte length in 

the header (bit packing) 

2. use the smallest possible common byte length for the difference subsequence and store the 

first element of the original subsequence as well as the byte length in the header (FOR-delta) 

3. if the sequence is a run of equal values, store the value and length of the subsequence in the 

subsequence header (RLE) 

4. if the subsequence is a run of equal differences, store the first element of the subsequence, the 

common difference, and the subsequence length in the header (delta-RLE) 

To combine these alternatives optimally in order to store a given data sequence (of length n) as 

compactly as possible, a dynamic programming, branch-and-bound algorithm was developed. This 

algorithm subdivides the sequence into subsequences, each characterized by storage alternative, byte 

size, cardinality, and size of header, so as to represent the entire sequence using as few bits as 

possible, given the above-mentioned constraints. The algorithm solved this problem in time O(n). 

For reading and writing data in b-lists, six access procedures are available, allowing sequential as well 

as direct-addressed read and write access of data segments. One of the sequential read procedures does 

not unpack run-compressed data sequences, enabling fast access to such data. This facility is used by 

the conjunctive query search algorithm as well as by the merge-join algorithm.  

2.5 Buffering techniques for accessing metadata 

In vertical databases, metadata usually play an important role, not only to support users with 

information about database contents, but also internally to support parameter and algorithm selection 

during runtime. In order to exploit the advantages of vertical segmentation to achieve the best possible 

runtime performance, algorithms for searching and accessing data need to frequently consult the 

metadatabase (MDB) for information about the current status of database contents. For example, to 

find the fastest way to search a run-length compressed, fully transposed, ordered file (CFTOF search, 

see Section 2.6 “Querying compressed, fully transposed files”), it is important to be able to quickly 

access at runtime certain properties of the attributes involved in the query, in particular their sort key 

position, as well as their cardinality and value range. The latter information is needed to obtain good 

estimates of the selectivity of search clauses, to be used when determining which attribute access 

sequence the query should choose.  

However, the vertical storage structure is not well suited for the management of metadata, since the 

access pattern of system-generated, runtime metadata lookup queries and updates is much more 

“horizontally” clustered than typical user queries. In fact, the access pattern of such queries is quite 

similar to that of a random sequence of simple-transaction queries being issued during a short time 

interval. To a first approximation the individual items in such a sequence can be assumed to be 

uncorrelated, i.e., when the system brings into memory a vertically structured MDB buffer load to 

access one data item in an MDB attribute, the likelihood that it will access another data item from the 

same buffer load in the near future is no greater than that of a random hit into the attribute. Therefore, 

the next time a data item is needed from the same MDB attribute, it is quite likely that a new buffer 
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load will have to be fetched from disk. On the other hand, the likelihood is quite high that the next few 

MDB accesses will involve other properties associated with the same MDB relation, which should 

favor horizontal clustering. In the first case, the hit rate for the buffered data will be low and the 

performance of the system will suffer (unless the entire column fits into the buffer and can therefore be 

assumed to stay in memory permanently). 

A simple solution to this “impedance mismatch” problem could be to store the metadata as a collection 

of hash tables or linked lists, but if one wants the system to be able to answer general queries which 

involve metadata relation tables, and perhaps other relation tables as well, a more elaborate solution is 

needed, possibly one similar to that used in C-Store to manage simple-transaction-type queries, see 

Section 3.2, below. In Cantor, this issue was handled by designing a separate cache memory for MDB 

relation tables with a least-recently-used (LRU) replacement regime, structured as a collection of 

linked lists of metadata records, one for each relation, attribute, and b-list storage structure. This 

amounts to adopting an NSM architecture for the cache, to be used for internal queries only. When a 

user query involves a MDB relation, the entire MDB is first “unified”, i.e., all updates made to the 

cache since the previous unification are written out to the transposed files used to permanently store 

the columns of MDB tables. 

2.6 Querying compressed, fully transposed files 

The authors of [SAB+05], while describing the architectural properties of the C-Store system, 

acknowledge previous work on using compressed data in databases, stating that “Roth and Van Horn 

[RV93] provide an excellent summary of many of the techniques that have been developed. Our 

coding schemes are similar to some of these techniques, all of which are derived from a long history of 

work on the topic in the broader field of computer science… Our observation that it is possible to 

operate directly on compressed data has been made before [Gra91, WKH+00]”.  Indeed, the capability 

to represent multiple values in a single field to simultaneously apply an operation on all the values at 

once, was exploited earlier in the algorithm for CFTOF search described in [Sve79b]. 

Batory [Bat79] showed that search algorithms designed for use with transposed files could outperform 

commonly used techniques such as the use of inverted files (indexes) in a large proportion of cases. In 

[Sve79b], theoretical and empirical results were presented, showing that conjunctive queries may be 

evaluated even more efficiently if the transposed file structure is combined with sorting with respect to 

the primary key followed by column-wise run-length encoded (RLE) data compression, forming a 

compressed, fully transposed ordered file (CFTOF) organization. The performance of a test-bed 

system was measured and compared with a commercially available database system and with results 

from an analytical performance model. The results showed that order-of-magnitude performance gains 

could indeed be achieved by combining transposed file storage and data compression techniques.  

In [AS88] the authors later refined these results by combining interpolation search, sequential search, 

and binary search into a poly-algorithm which dynamically selects the appropriate method, given 

known metadata. It is shown how this “modified CFTOF interpolation search” significantly improves 

search performance over sequential CFTOF search in critical cases. The only situation where inverted 

file range search retains a clear advantage in a CFTOF-structured data base is in highly selective 

queries over non-key attributes. To add the complex and costly machinery of updatable inverted files 

to handle that (in a read-optimized database) fairly uncommon special case seems unwarranted in most 

analytic DBMS applications. 

One feature of RLE-compressed vertical data storage architectures that allows for direct operation on 

compressed data is that not only can they be exploited in conjunctive query searches, but they can be 

used profitably also in join and set operations on relations, as well as in duplicate removal operations. 

An important design feature of Cantor‟s search and sort subsystem [KS86], which contains algorithms 

for internal and external sorting, duplicate tuple detection, conjunctive query search, key lookup, 

merge-join, set union, set difference, and set intersection, is that all these algorithms are designed to 

work one (or a small, fixed number of) attribute(s) at a time, to match the transposed file principle. In 

most of these algorithms, scanning a compressed transposed file is done by using the sequential read 

interface which retains run-compressed data. Internal sorting is carried out using a modified Quicksort 

algorithm, which for each (group of) attribute(s) produces a stream of tuple identifiers (TIDs) as 
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output, according to which subsequent attributes are to be permuted.  

2.7 Compression-aware optimizations for the equi-join operator 

In [AMF06], a discussion of a nested-loop join algorithm capable of operating directly on compressed 

data is presented, and the paper also contains pseudo-code showing how the join operator may take 

into account the compression state of the input columns. Combinations of the three cases 

uncompressed, RLE, and bit-vector encoded data are considered. For example, if one of the input 

columns is bit-vector encoded and the other is uncompressed, then the resulting column of positions 

for the uncompressed column can be represented using RLE coding and the resulting column of 

positions for the bit-vector column can be copied from the appropriate bit-vector for the value that 

matched the predicate. The authors also present results from several benchmark tests, showing clear, 

often order-of-magnitude, performance improvements from judicious use of data compression, in 

particular the use of RLE on ordered data. 

In [Sve82], the main equi-join algorithm used in Cantor, based on merging CFTOF-represented 

relations, was presented by way of a simple example. The paper states that “the search [scanning] 

phase of the equi-join operation … is so similar to conjunctive query search that it is to be expected 

that analogous results hold”, but no performance measurement data are given. The end result of the 

scanning phase is a compressed, ordered list of qualifying TID pairs, i.e., a compressed join index. 

When a join search is to be done on non-key attributes, one or both factors have to be re-sorted first. In 

such cases, sorting will dominate in the equi-join process, unless the resulting Cartesian product has 

much greater cardinality than its factors. However, in situations where no re-sorting of operands is 

necessary, this algorithm provides a fast way of allowing the equi-join operator to work directly on 

run-length compressed data. 

2.8 Two recent benchmark studies 

In the paper [SBC+07], results from a benchmarking study are presented, and performance 

comparisons are made between commercial implementations based on what these authors call 

“specialized architectures” and conventional relational databases. The tests involve a range of DBMS 

applications, including both a standard data warehouse benchmark (TPC-H) and several 

unconventional ones, namely a text database application, message stream processing, and some 

computational scientific applications. The “specialized architecture” system used in the data 

warehouse benchmarks was Vertica, a recently released parallel multi-node, shared-nothing, vertical 

database product [Ver08] designed along the lines of C-Store.  It utilizes a DSM data model, data 

compression, and sorting/indexing. On these examples, Vertica spent between one and two orders of 

magnitude less time than the comparison system, running in a big and expensive RDBMS installation.  

Another database design and benchmarking study using semantic web text data was reported in 

[AMM+07]. The vertical database used in this study was an extension of C-Store capable of dealing 

with Semantic Web applications, while the row-store system used for comparison was the open source 

RDBMS PostgreSQL [Pos08], which has been found more efficient when dealing with sparse data 

than typical commercial database products (in this application, NULL data values are abundant).  The 

authors showed that storing and processing Semantic Web data in RDF format efficiently in a 

conventional RDBMS requires creative representation of the data in relations.   But, more importantly, 

they showed that RDF data may be most successfully realized by vertically partitioning the data that 

obey logically a fully decomposed storage model (DSM).  The authors demonstrated an average 

performance advantage for C-Store of at least an order of magnitude over PostgreSQL even when data 

are structured optimally for the latter system.  

2.9 Scalability 

Over the last decade, the largest data warehouses have increased from 5 to 100 terabytes, and by 2010, 

most of today‟s data warehouses may be 10 times larger than today. Since there are limits to the 

performance of any individual processor or disk, all high-performance computers include multiple 

processors and disks. Accordingly, a high-performance DBMS must take advantage of multiple disks 

and multiple processors. In the note [DMS08], three approaches to achieving the required scalability 

are briefly discussed. 
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In a shared-memory computer system, all processors share a single memory and a single set of disks. 

Distributed locking and commit protocols are not needed, since the lock manager and buffer pool are 

both stored in the memory system where they can be accessed by all processors. However, since all 

I/O and memory requests have to be transferred over the same bus that all processors share, the 

bandwidth of this bus rapidly becomes a bottleneck so there is very limited capacity for a shared-

memory system to scale. 

In a shared-disk architecture, there are a number of independent processor nodes, each with its own 

memory. Such architectures also have a number of drawbacks that limit scalability. The 

interconnection network that connects each processor to the shared-disk subsystem can become a 

bottleneck. Since there is no pool of memory that is shared by the processors, there is no obvious place 

for the lock table or buffer pool to reside. To set locks, one must either centralize the lock manager on 

one processor or introduce a distributed locking protocol. Both are likely to become bottlenecks as the 

system is scaled up. 

In a shared-nothing approach, each processor has its own set of disks. Every node maintains its own 

lock table and buffer pool, eliminating the need for complicated locking and consistency mechanisms. 

Data are “horizontally partitioned” across nodes, such that each node has a subset of the rows (and in 

vertical databases, maybe also a subset of the columns) from each big table in the database. According 

to these authors, shared-nothing is generally regarded as the best-scaling architecture (see also 

[DG92]). 

 

3.  Two contemporary systems based on DSM: MonetDB and C-Store 
Author: Per Svensson 

We give next a brief overview of two recently developed vertical database systems in order to contrast 

their styles.   

3.1 MonetDB 

MonetDB [Mon08, Boncz02] uses the DSM storage model. A commonly perceived drawback of the 

DSM is that queries must spend “tremendous additional time” doing extra joins to recombine 

fragmented data. This was, for example, explicitly claimed in [ADH+01]. According to the authors of 

[BK99], for this reason the DSM was for a long time not taken seriously by the database research 

community. However, as these authors observe (and as was known and exploited long ago [Sve79b, 

Sve82]), vertical fragments of the same table contain different attribute values from identical tuple 

sequences, and if the join operator is aware of this, it does not need to spend significant effort on 

finding matching tuples.  MonetDB maintains fragmentation information as properties (metadata) on 

each binary association table and propagates these across operations. The choice of algorithms is 

typically deferred until run-time, and is done on the basis of such properties.  

With respect to query processing algorithms, the MonetDB developers have shown that a novel radix-

cluster algorithm for hash-join is better than standard bucket-chained alternatives. In a radix cluster 

algorithm, both relations are first partitioned on hash number into a number of separate clusters which 

each fit the memory cache, before appropriately selected pairs of clusters are hash-joined together (see 

[MBK00a, MBK00b] for details). The result of a hash-join is a binary association table that contains 

the (TID1, TID2) combinations of matching tuples, i.e., a join index. As indicated above, subsequent 

tuple reconstruction is a cheap operation which does not need to be included in the analysis. 

The architectural design and key features of the MonetDB system are presented in section 4, and 

experience from using it in a large-scale scientific database application is presented in section 5. 

3.2  C-Store  

C-Store [C-S08; SAB+05] features a two-level store with one writable part and one, typically much 

larger, read-only part. Both storage levels are column-oriented. The use of this principle, called a 

differential file, in data management was studied in [SL76], although its full realization in a relational 

database may perhaps have been first achieved in C-Store much later. This way, C-Store attempts to 
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resolve the conflicting requirements for a fast and safe parallel-writable store (WS) and a powerful 

read-only query processor and storage system (RS). Tuples are periodically moved from WS to RS by 

a batch update process. Although the storage model of C-Store is more complex than the DSM in 

order to manage also queries of simple-transaction type efficiently, most of its basic design principles 

are similar to those of DSM and hence best suited for read-optimized databases. 

To store data, C-Store implements projections. A C-Store projection is anchored on a given relation 

table, and contains one or more attributes from this table, retaining any duplicate rows. In addition, a 

projection can contain any number of attributes from other tables as long as there is a complete 

sequence of foreign key relationships from the anchor table to the table from which an attribute is 

obtained. Hence, a projection has the same number of rows as its anchor table. The attributes in a 

projection are stored column-wise, using one separate storage structure per attribute. Tuples in a 

projection are sorted with respect to the same sort key, i.e., any attribute or sequence of distinct 

attributes of the projection. Finally, every projection is horizontally partitioned into one or more 

segments, each of which is given a segment identifier value sid, based on the sort key of the 

projection. Hence, each segment of a given projection is associated with a key range of the sort key for 

the projection. 

To answer SQL queries in C-Store, there has to exist at least one covering set of projections for every 

table in the logical schema. In addition, it must be possible to reconstruct complete rows of all tables 

from the collection of stored segments.  To do this, C-Store has to join segments from different 

projections, which is accomplished using storage keys and join indices. Each segment associates every 

data value of every column with a storage key SK. Values from different columns in the same segment 

with matching storage keys belong to the same row. Storage keys in RS are implicit, while storage 

keys in WS are explicitly represented as integers, larger than the largest storage key in RS. Assuming 

that T1 and T2 are projections that together cover the attributes of a table T, an entry in the join index 

for a given tuple in a segment of T1 contains the segment ID and storage key of the joining tuple in 

T2. Since all join indices are between projections anchored at the same table, this is always a one-to-

one mapping.  This strategy contributes to efficient join operations in C-Store. 

 

4. The Architecture and Evolution of MonetDB 
Author: Peter Boncz 

4.1  Design principles 

MonetDB has been introduced in the previous section as a database system that uses vertical 

decomposition in order to reduce disk I/O.  However, the principal motivation to use this storage 

model was not so much to reduce disk I/O in scientific or business intelligence query loads -- though 

that is certainly one of its effects. Rather, the MonetDB architecture was based on other considerations 

given in the original Decomposition Storage Model (DSM) [CK85] paper, namely it focused on data 

storage layout and query algebra, with the purpose of achieving higher CPU efficiency.  

 

At the time the original relational databases appeared, CPU hardware followed an in-order, single-

pipeline one-at-a-time design, using a low clock frequency, such that RAM latency took just a few 

cycles and disk I/O was the strongest performance factor in database performance. In modern multi-

GHz computers, however, the cycle cost of a CPU instruction is highly variable, and depends in 

pipelined CPU designs with multiple instructions per clock, on CPU cache hit ratio, on branch 

misprediction ratio (see [Ross02]), and on dependencies on other instructions (less dependencies 

leading to faster execution). In other words, the difference in throughput between “good” and “bad” 

program code has been increasing significantly with newer CPU designs, and it had become clear that 

traditional database code turned out to fit mostly in the “bad” basket [ADH+99]. Therefore, MonetDB 

attempted to follow a query execution strategy radically different from the prevalent tuple-at-a-time 

pull-based iterator approach (where each operator gets its input by calling the operators of its children 

in the operator tree), as that can be linked to the “bad” performance characteristics of database code. 

MonetDB aimed at mimicking the success of scientific computation programs in extracting efficiency 

from modern CPUs, by expressing its calculations typically in tight loops over arrays, which are well-



 15 

supported by compiler technology to extract maximum performance from CPUs through techniques as 

strength reduction (replacing an operation with an equivalent less costly operation), array blocking 

(grouping subsets of an array to increase cache locality), and loop pipelining (mapping loops into 

optimized pipeline executions). 

 

4.2 The Binary Association Table Algebra  

The distinctive feature of MonetDB thus is the so-called Binary Association Table (BAT) Algebra 

which offers operations that work only on a handful of BATs. The term Binary Association Table 

refers to a two-column <surrogate,value> table as proposed in DSM. The left column (often the 

surrogate of the record identity) is called the “head” column, and the right column “tail”. The BAT 

Algebra is closed on BATs, i.e. its operators get BATs (or constants) as parameters, and produce a 

BAT (or constant) result. Data in execution is always stored in (intermediate) BATs, and even the 

result of a query is a collection of BATs.  Some database systems using vertical fragmentation 

typically use a relational algebra that adopts the table data model, i.e. horizontal records inside the 

execution engine. In the implementation, this leads to query processing strategies where relational 

tuples (i.e. horizontal structures) are reconstructed early in the plan, typically in the Scan operator. 

This is not the case in MonetDB; data always remains vertically fragmented. 

 

BAT storage takes the form of two simple memory arrays, one for the head and one for the tail column 

(variable-width types are split into two arrays, one with offsets, and the other with all concatenated 

data). MonetDB allows direct access to these entire arrays by the BAT Algebra operators. In case that 

the relations are large, it uses memory mapped files to store these arrays. This was in line with the 

philosophy of exploiting hardware features as much as possible. In this case, allowing array lookup as 

a way to locate tuples in an entire table, in effect means that MonetDB exploits the MMU (memory 

management unit) hardware in a CPU to offer a very-fast O(1) lookup mechanism by position – where 

the common case is that the DSM surrogate columns correspond to positions. 

 

As shown in Figure 11.2, MonetDB follows a front-end/back-end architecture, where the front-end is 

responsible for maintaining the illusion of data stored in some end-user format (i.e. relational tables or 

objects or XML trees or RDF graphs in SQL, ODMG, XQuery and SPARQL front-ends, respectively).  

In the MonetDB backend, there is no concept of relational tables (nor concepts of objects), there are 

only BATs. The front-ends translate end-user queries in (SQL, OQL, XQuery, SPARQL) into BAT 

Algebra, execute the plan, and use the resulting BATs to present results. A core fragment of the 

language is presented below: 

 
reverse(bat[t1,t2] B) : bat[t2,t1] = [ <B[i].tail,B[i].head> | i < | B| ] “swap columns” 

mirror(bat[t1,t2] B) : bat[t1,t1]  = [ <B[i].head,B[i].head> | i < | B| ] “make tail equal to head” 

mark(bat[t1,t2] B) : bat[t1,TID] = [ <B[i].head,i> | i < | B|] “number tail” 

 

join(bat[t1,t2] L, bat[t2,t3] R) : bat[t1,t3]  = [ <L[i].head,R[j].tail> |  i < |L|, j < |R}, L[i].tail = R[j].head ] “inner join” 

uselect(bat[t1,t2] B, t2 v) : bat[t1,void]      = [ <B[i].head,nil> | i < |B|, B[I].tail = v ] “selection on tail” 

 [+](bat[t1,t2] L, bat[t1,t2] R) : bat[t1,t2]   = [ <L[i].head,L[i].tail+R[i].tail> | i < |L|, j < |R|, L[i].head=R[i].head ] “map [op]” 

group(bat[t1,t2] L, bat[t1,t2] R) : bat[t1,t2]= [ <L[i].head,unique(L[i].tail,R[j].tail)> | i < |L|, j < |R|, L[i].head=R[i].head ]    

“groupby” 

unique(bat[t1,t2] B) : bat[t1,t2]  = { <B[i].head,B[i].tail> | i < |B| } “duplicate elimination” 

{sum}(bat[t1,t2] B) : bat[t1,t2]  = [ <U[i].head,sum(select(reverse(L)),h.head)> | U= unique(mirror(B)) ] “aggr {op}” 

 

The BAT-algebra notation used above consists of an operation applied to an operand on the left of the 

“:”, and the result in the right.  For example, the “join” operator is applied to left (L) and right (R) 

BATs, and for entries where tail of L is equal to head of R, it generates a result with columns 

corresponding to head of L and tail of R. 

 

The reverse(), mirror() and mark() operators all produce a result in which at least one of the input 

columns appears unchanged. In the MonetDB implementation, these operations have a constant-cost 

implementation that just manipulate some information in the column descriptor, since the result BAT 

shares the (large) array data-structures holding the column data with its input BAT. The [op]() and 
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{op}() are second-order operators that take a operator name “op” and construct for it a map-operator 

(that works on the natural join of all input BATs on head column), and a grouped aggregate function, 

respectively. 

 

                                           
 

Figure 11.2 MonetDB architecture: the front-end translates queries into  

BAT Algebra expressions; the backend executes the BAT plan. 

 

 

 

4.3  Efficiency advantages of using the BAT Algebra 

The main advantage of the BAT Algebra is its hard-coded semantics, causing all operators to be 

predicate-less. For comparison, in relational algebra, the Join and Select operators take an arbitrary 

Boolean column expression that determines which tuples must be joined and selected. The fact that 

this Boolean expression is arbitrary, and specified at query time only, means that the RDBMS must 

include some expression interpreter in the critical runtime code-path of the Join and Select operators. 

Such predicates do not occur in BAT Algebra; therefore we also say it has a “zero degree of freedom”. 

For instance, the hard-coded semantics of join(L,R) is that the predicate is a simple equality between 

the inner columns of the left BAT, L and right BAT, R and its output are the outer columns for the 

matching tuples. In case of select, the predicate is equality on the tail column.  This absence of 

freedom allows the implementation of the query algebra to forsake an expression interpreting engine; 

rather all BAT algebra operations in the implementation map onto array operations. For instance, the 

expression “select(bat[TID,int] B, int V) : bat[TID,TID] R” in BAT Algebra can be represented at the 

C level code as something like: 

 

for(i=j=0; i<n; i++)  

    if (B.tail[i] == V) R.tail[i] = j++; 

 

Note that in the “select” BAT statement above: 

- the select operator has two parameters B and V and one result R 

- B is a BAT with a head-column of type TID, and a tail-column of type “int” 

- V is a constant (a single) value of type int 

- R is a BAT with both head and tail column of type TID, where the head represents a surrogate 
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sequence (=0,1,2, …) and the tails contains the qualifying row-IDs of the rows that matched the int=V 

condition (in the example shown in Figure 11.2, these are rows 1,2).  

 

Such simple loops are amenable to compiler optimization and CPU out-of-order speculation, which 

lead to high performance. The philosophy behind BAT Algebra can be paraphrased as “the RISC 

approach to database query languages”: by making the algebra simple, the opportunities are created for 

implementations that execute the common case very fast. 

 

Note that the above code is only correct if the head column of a BAT, B contains a densely ascending 

TID (tuple identifier, i.e. surrogate) sequence starting with 0 (i.e. B.head = 0,1,2,…). This happens to 

be a common case, and MonetDB recognizes this as the “dense” property. Dense TID columns are in 

fact not stored at all in the implementation, as they are the same as the array index in the column. As 

many head columns are dense, MonetDB BAT processing often equates to simple array processing.  In 

addition to denseness, MonetDB keeps a series of other run-time properties on columns (uniqueness, 

sortedness, min/max) that are exploited at run-time under various circumstances.  We show below an 

example of translating an SQL query into expressions in the BAT Algebra, in order to illustrate the 

advantages of executing the BAT Algebra expressions.  The details of the algebra are not important, 

but rather this example is intended to illustrate the operators used that execute this query.   Note that 

the algebraic expressions represent an execution plan. 

 

Example: the SQL query: 

 

SELECT DISTINCT P.firstname,P.lastname, SUM(I.price) 

FROM Person P, Item I 

WHERE P.id = I.buyer and I.year = 2007 

GROUP BY P.Firstname,P.lastname 

 

translates into BAT algebra: 

 

s := reverse(mark(uselect(Item_year, 2007))) 

b := join(s,Item_buyer) 

p := join(b,reverse(Person_id)) 

r := reverse(mark(reverse(p))) 

g := group(join(r,Person_firstname), join(r,Person_lastname)) 

a := {sum}(join(join(reverse(g),r),Item_price) 

[print](join(g,Person_firstname), join(g,Person_lastname), a) 

 

A potential disadvantage of the DSM model is the large number of joins needed to relate columns, also 

visible in the above plan, which has 8 join operators.  However, note that only a single join operation 

is a real value-based join (shown in boldface); all other joins are cases where a TID tail-column from a 

known min/max range is joined into a dense head-column that spans that range. The property detection 

in MonetDB successfully derives all such joins into a “fetchjoin” algorithm which for each left input 

fetches a single tail result from the right input using a positional array lookup. Note that fetchjoin is a 

linear operation at very low CPU cost (a single load instruction). Therefore, MonetDB turns out to 

perform no expensive additional joins relative to N-ary Storage Model (NSM) execution engines that 

store tuple records contiguously in disk pages. 

 

The BAT Algebra core process arrays directly and thus foregoes locking and other transaction 

processing operations. Rather, a separate module with explicit locking primitives and WAL (Write 

Ahead Log) functionality is offered. Thus, it is up to the various front-ends to ensure that queries do 

not conflict (referred to as ACID properties), if needed. Note that some front-ends do not perform on-

line updates (which is typical in scientific applications and data mining tools) and therefore do not 

need to use any transaction management. The advantage in MonetDB is that such applications do not 

suffer any overhead from transaction facilities that they do not use. The SQL and XQuery front-ends 

both offer full ACID properties, showing that a separation of execution and transaction processing 
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enforcement can indeed be achieved in database architecture. 

 

4.4 Further improvements 

The original design of MonetDB had two main weaknesses. First, the reliance on virtual memory for 

disk storage means that the buffer manager is removed from the system architecture. While removing 

this layer makes it easier to write efficient data processing algorithms, it means that MonetDB relies 

on virtual memory advice calls to perform buffering policies. The downside is mainly practical, that is, 

the implementation of such virtual memory advice can often be incomplete or ineffective, depending 

on the OS (version). Furthermore, virtual memory prefetching is configured at the OS kernel level, and 

tuned for different access patterns than those that MonetDB targets. This often leads to I/O prefetch 

sizes that are too small (and thus, lower bandwidth is achieved). The second main problem in the 

design is that the BAT Algebra implementation follows a design of full materialization. An algebra 

operator fully consumes its input BATs, producing a full result BAT. Again, while such loop code is 

simple and efficient, problems may occur if the result arrays are large. If these are huge, which is often 

the case with queries on scientific data, output flows via virtual memory to disk, and swapping may 

happen, deteriorating performance.  Both these problems have been fixed in the subsequent 

MonetDB/X100 system, which introduces a pipelined model operating on small BAT pieces (vectors), 

and introduces a buffer manager that can perform efficient asynchronous I/O. The use of a buffer 

manager in MonetDB/X100 also means that compression techniques which work well with vertical 

storage can be exploited.  Furthermore, vertically oriented compressed indexes, such as FastBit 

(described in Chapter 10) can be exploited as well. 

 

4.5 Assessment of the benefits of vertical organization 
 

The vertical organization of storage in MonetDB led to the achievement of the original goal of high 

performance and CPU efficiency, and was shown to outpace relational competitors on many query-

intensive workloads, especially when data fits into RAM (see case study in the next subsection).  

Because of the vertical data layout, it was possible to develop a series of architecture-conscious query 

processing algorithms, such as for instance radix-partitioned hash-joins and radix-cluster/decluster 

(cache-efficient permutation). Also, pioneering work in architecture-conscious cost modeling and 

automatic cost calibration were done in this context. 

 

The approach taken by MonetDB of using a front-end/back-end architecture provides practical 

advantages as well.  It is relatively easy to extend with new modules that introduce new BAT Algebra 

operators. This ease can be attributed to the direct array-interface to data in MonetDB, which basically 

implies that no API is needed to access data (therefore database extenders do not have to familiarize 

themselves with a complex API).   

 

The use of a vertical data layout not only on disk, but also throughout query processing turned out to 

be beneficial, especially when operators access data sequentially. Random data access, even if data fits 

into RAM, is difficult to make efficient, especially if the accessed region does not fit into the CPU 

cache. In fact, random access does not exploit all the RAM bandwidth optimally; this is typically only 

achieved if the CPU detects a sequential pattern and the hardware prefetcher is activated. Therefore 

main-memory algorithms that have predominantly sequential access tend to outpace random-access 

algorithms, even if they do more CPU work. Sequential algorithms, in turn, strongly favor vertical 

storage, as memory accesses are dense regardless of the fact whether a query touches all table 

columns. Also, sequentially processing densely packed data allows compilers to generate Single 

Instruction, Multiple Data (SIMD) code, which further accelerates processing on modern machines.  

 

Finally, the idea articulated in the DSM paper [CK85] that DSM could be the physical data model 

building block that can power many more complex user-levels data models, was validated in the case 

of MonetDB, where a number of diverse front-ends were built.  We describe briefly below the way 

BATs were used for processing of different front-end data models and their query languages. 

 SQL. The relational front-end decomposes tables by column, in BATs with a dense (non-stored) 
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TID head, and a tail column with values. For each table, a BAT with deleted positions is kept. For 

each column an additional BAT with insert value is kept. These delta BATs are designed to delay 

updates to the main columns, and allow a relatively cheap snapshot isolation mechanism (only the 

delta BATs are copied). MonetDB/SQL also keeps additional BATs for join indices; and value 

indices are created on-the-fly. 

 XQuery. The work in the Pathfinder project [BGV+06] makes it possible to store XML tree 

structures in relational tables as <pre,post> coordinates, represented in MonetDB as a collection of 

BATs. In fact, the pre-numbers are densely ascending, hence can be represented as a (non-stored) 

dense TID column, saving storage space and allowing fast O(1) lookups. Only slight extensions to 

the BAT Algebra were needed, in particular a series of region-joins called “staircase joins” were 

added to the system for the purpose of accelerating XPath predicates. MonetDB/XQuery provides 

comprehensive support for the XQuery language, the XQuery Update facility, and a host of 

specific extensions. 

 Arrays. The Sparse Relational Array Mapping (SRAM) project maps large (scientific) array-based 

data-sets into MonetDB BATs, and offers a high-level comprehension-based query language 

[CHZ+08]. This language is subsequently optimized on various levels before being translated into 

BAT Algebra .  Array front-ends are particularly useful in scientific applications. 

 SPARQL. The MonetDB team started work in 2008 to offer scalable RDF storage and support for 

the W3C query language SPARQL to the system. 

 

5. Experience with SkyServer data warehouse using MonetDB 

Authors: Milena Ivanova, Martin Kersten, Niels Nes 

5.1  Application description and planned experiments 

To illustrate the advantages of vertical databases for scientific data management we summarize the 

experiences from porting the SkyServer application [SGT+02] onto MonetDB. The SkyServer 

application is a good example of a read-optimized database system with long periods of ad-hoc 

querying of large data volumes, and periodic bulk-loading of new data. In these settings a column-

store architecture offers more efficient data access patterns for disk-bound queries, flexibility in the 

presence of changing workloads, and reduced storage needs. The MonetDB/SkyServer project 

[ING+07] started with the purpose of providing an experimentation platform to develop new 

techniques addressing the challenges posed by scientific data management. Our intent was to examine 

and demonstrate the maturity of column-store technology by providing the functionality required by 

this real-world astronomy application. The project shows the advantages of vertical storage 

architectures for scientific applications in a broader perspective. It goes way beyond micro 

benchmarks and simulations typically used to examine individual algorithms and techniques. 

MonetDB/SkyServer allows testing the performance of the entire software stack. 

The SkyServer application gives public access to data from the Sloan Digital Sky Survey [SDSS], an 

astronomy survey with the ambition to map one-quarter of the entire sky in detail. The survey has 

already collected several terabytes of data. The sky object catalog stored in a relational database 

reached the volume of 4TB for data release 6 in 2007. The database schema is organized in several 

sections among which Photo and Spectro contain the most important photometric and spectroscopic 

factual data from the survey. The Photo section has a structure centered in the PhotoObjAll table. The 

table contains more than 440 columns and more than 270 million rows, which already stresses the 

capabilities of most DBMSs. A single record in a row-store representation occupies almost 2KB, and 

the majority of the fields are real numbers representing CCD measurements.  

Porting of the SkyServer application to MonetDB was organized in three phases. The goal of the first 

phase was to develop and enhance MonetDB's features to handle the functionality requirements of the 

SkyServer application. The target dataset during this phase was the so-called Personal SkyServer, a 

1% subset of the archive with a size of 1.5GB, approximately. Since this dataset fits entirely in 

memory, there were no scalability issues with the main-memory orientation of MonetDB. The large 

vendor-specific schema (consisting of 91 tables, 51 views, and 203 functions of which 42 are table-
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valued) and its extensive use of the SQL persistent storage module functionality required an 

engineering effort. We had to cast vendor-specific syntax (such as identifiers „datetime‟ vs. 

„timestamp‟) in the schema definition into the SQL:2003 standard supported by MonetDB/SQL. We 

also adapted the application to the column-store architecture and slightly modified the schema 

reducing data redundancy.  

The challenge addressed in the second phase was to scale the application to sizes beyond the main 

memory limit. The target dataset was a 10% subset of approximately 150GB. The project is currently 

in its third phase aiming to support the full-sized 4TB database. Some interesting techniques yet to be 

investigated that may increase system efficiency are: exploring parallel load, interleaving of column 

I/O with query processing, self-organizing indexing schemes, and exploitation of commonalities in 

query batches. 

5.2 Efficient vertical data access for disk-bound queries 

As explained in the introductory section, the major advantage of column-wise storage comes from 

minimizing the data flow from disk through memory into the CPU caches. Many scientific analytical 

applications involve examination of an entire table, or a big portion of it, while at the same time 

spanning just a few attributes at a time. The immediate benefit the column-wise storage brings is that 

only data columns relevant for processing are fetched from disk. 

In contrast, the access pattern in a row-wise storage of wide tables, such as the PhotoObjAll table, 

might require hundreds of columns to be transferred from disk, where many of the columns are 

irrelevant to the query. This becomes the major performance bottleneck for analytical queries. To 

illustrate the problem consider the following SQL query searching for moving asteroids (Q15 in 

[GST+02]).  

 

SELECT objID, sqrt(power(rowv,2) + power(colv,2)) as velocity   

FROM PhotoObj  

WHERE (power(rowv,2) + power(colv,2)) > 50  

     and rowv >= 0 and colv >= 0; 

 

The execution plan for a row-wise storage organization involves a full table scan which leads to 

transferring entire records of 440+ columns in order to process the four columns referred to in the 

query. For the 150GB dataset, the volume transferred is almost 50GB. The execution plan in 

MonetDB involves scans strictly limited to the columns directly referenced in the query, which 

amounts to 370MB for the example query above. 

The access pattern problem in row-wise storage systems has already been addressed by a variety of 

techniques, such as indices, materialized views, and replicated tables. For example, if all the columns 

in a query are indexed, the query can be substantially sped up by scanning the shorter index records 

instead of touching the wide records of the main table. We illustrate this with the next query example. 

It extracts celestial objects that are low-z quasar candidates, a property specified through correlations 

between the objects' magnitudes in different color bands (query SX11 in [GST+02]).  

 

SELECT g, run, rerun, camcol, field, objID 

FROM Galaxy 

WHERE ( (g <= 22) 

     and (u - g >= -0.27) and (u - g < 0.71) 

     and (g - r >= -0.24) and (g - r < 0.35) 

     and (r - i >= -0.27) and (r - i < 0.57) 

     and (i - z >= -0.35) and (i - z < 0.70) );   

 

The query predicates do not allow efficient index search of the qualifying rows, instead scanning of all 

the rows is needed. However, a full table scan can be avoided using available indices that contain all 
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the necessary columns. The data volume transferred for the 150GB dataset is 1.8GB, a substantial 

reduction with respect to the full table scan, but still twice as large as the 850MB transferred in 

MonetDB for the same query. The reason is that the indices chosen for the query execution contain 

several additional columns irrelevant for this query. 

5.3 Improved performance 

In addition to the efficient vertical access pattern, MonetDB employs a number of techniques to 

provide high performance for analytical applications. Among these are run-time optimization, such as 

choosing the best algorithm fitting the argument properties, and efficient cache-conscious algorithms 

exploiting modern computers architecture. To demonstrate the net effect of these techniques on the 

performance experienced by the end user, we performed a few experiments with the above table- and 

index-scan queries against both the 1.5GB and 150GB datasets. The elapsed times in seconds are 

shown in the table below. The performance of the vertical database for index-supported queries is 

comparable for the small dataset, and 30% better for the large dataset. Queries involving full table 

scans are sped up by a factor of 5 for the large dataset.  

 

 Table scan 

1.5GB 

Index scan 

1.5GB 

Table scan 

150GB 

Index scan 

150GB 

Row-store 6.6 0.4 245 24 

Column-store 0.4 0.47 53 16 

 

5.4 Reduced redundancy and storage needs 

The original SkyServer system utilizes indices and replication to speed up important disk-bound 

queries. All tables have primary and foreign key constraints supported by B-tree indices, and many 

tables have covering indices created after careful workload analysis. Replicated tables are also used to 

speed up some frequent classes of queries. For instance, the PhotoTag table is a vertical partition of 

the PhotoObjAll table that stores redundantly its most popular 100+ columns. The SpecPhotoAll table 

stores the most popular of the columns from the pre-computed join of photo and spectrum tables. 

In order to support the original queries we replaced the PhotoTag and SpecPhotoAll tables with views 

exploiting the advantages of the column-wise storage of MonetDB. This replacement had little impact 

on the performance of queries that involve those tables because of the column-wise storage 

organization.  However, generating the views was still worthwhile since this saved approximately 10% 

of the storage needs.  

The index support in MonetDB is limited to primary and foreign keys. The system generates indices 

on-the-fly when columns are touched for the first time. The net effect of reducing data volume is that 

the storage needs of MonetDB database image decreased by approximately 30%. 

5.5 Flexibility 

Although secondary access structures in row-wise storage systems improve performance substantially 

in comparison to full table scans, they exhibit relatively static behaviors with respect to changing 

workloads. Modern DBMSs come with advanced database design tuning wizards which derive design 

recommendations using representative workloads. Due to its complexity, the workload analysis is 

mostly performed off-line and requires data base administrator (DBA) competence to decide on the 

final database design. When the workload changes, it is probable that the new, unanticipated queries 

are not supported (or partially supported) by the existing indices which leads to sub-optimal system 

performance. The typical solution is that the DBA monitors the system functionality and periodically 

re-runs the workload analysis and modifies the supporting secondary structures.  

Recently on-line tuning tools have been proposed [BC07] that take the burden from the DBA, but still 

incur overhead for monitoring and creation of secondary structures. Dealing with this issue is 

completely avoided in MonetDB. When the query load changes to incorporate new attributes, the 
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execution plans simply transfer to memory only the new columns of interest. This is achieved without 

any storage, creation, or monitoring overhead for secondary structures, but simply based on the 

architectural principles of the column-wise storage systems.  

5.6 Use cases where vertical databases may not be appropriate 

There are a number of situations where column-wise storage is comparable or slower than row-wise 

systems. The category of point and range queries is usually efficiently supported in the row-store 

databases since the available indices enable quick retrieval of qualifying rows. For a small number of 

qualifying rows, the data transfer is sufficiently efficient and is not perceivable by the end user. For 

the same query category MonetDB often uses a sequential scan which might be slower than searching 

with a B-tree index. However, for append-only data, which is the case for scientific data, new types of 

compressed bit-map indices (described in Chapter 10) require a relatively small space overhead of 

only 30% of the original data. If this overhead is not prohibitive, then all columns (or columns 

searched often) can be indexed to provide efficient point and range queries in vertical databases. 

Another source of performance overhead in vertical databases are tuple reconstruction joins. Despite 

their efficient implementation, they may still contribute a substantial cost for queries that request all 

attributes (referred to as “SELECT *” queries), or queries with a large number of attributes.  Here 

again, using compressed bitmap indices can mitigate this overhead, since joining the results of 

qualifying tuples from each column can be done by logical operations (AND, OR, NOT) over multiple 

bitmaps, where each bitmap represents the result of searching the index of each column. 

There are some uncommon applications where all (or most) columns are needed in every query. In 

such cases there is no value to using column-wise organization, and row-wise organization with 

appropriate indexing (for selecting the desired tuples given predicate conditions) may prove more 

efficient.  Also, row-wise organization may be more appropriate in applications where very few rows 

are selected, and several columns are involved.  An extensive analysis of which organization is best 

was conducted in [OOW07]. Given a characterization of the query patterns, a formula was developed 

in order to determine which organization is better. By and large, for applications where a large number 

of rows is selected, and only a subset of the columns are involved in the query, column-wise 

organization is superior.  Furthermore, in practical experiments described in [OOW07], it was shown 

that when sequential reads (which are much faster than random read operations) are considered as a 

possible strategy, column-wise organization is even more favorable because it is much easier to utilize 

sequential read operations with the vertical data organization. 

Although we prefer to reduce data redundancy, in some cases it may prove useful to store derived data 

when generated, for instance, by expensive computations. For example, the Neighbors table groups 

together pairs of SDSS objects within an a-priori distance bound of 0.5 arc-minutes. Our attempt to 

replace this table with a view computing the distances showed to be less efficient than accessing the 

pre-computed table. 

5.7 Conclusions and future work 

Our experiences with MonetDB/SkyServer application confirm the advantages of column-wise storage 

systems for scientific applications with analytical disk-bound processing. To improve the performance 

for point and range queries several techniques for workload-driven self-organization of columns have 

been developed in MonetDB, such as cracking (continuous physical organization based on access 

patterns) [IKM07], and adaptive segmentation and replication (splitting columns into segments or 

replicating segments) [IKN08]. We intend to integrate those techniques in support of the SkyServer 

application. Since compression has shown to be particularly efficient in combination with column-

wise storage [AMF06], we also intend to investigate and utilize appropriate compression schemes for 

the SkyServer application. 

The MonetDB execution engine differs in a fundamental way from state-of-the-art commercial 

systems. The execution paradigm is based on full materialization of all intermediate results in a query 

plan. This opens another direction of research exploiting commonalities in query batches by carefully 

preserving and reusing common intermediate results. 
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