
Lawrence Berkeley National Laboratory
LBL Publications

Title
Accelerating Queries on Very Large Datasets

Permalink
https://escholarship.org/uc/item/3gb2f3wp

Authors
Otoo, Ekow
Wu, Kesheng

Publication Date
2009-08-31

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gb2f3wp
https://escholarship.org
http://www.cdlib.org/

Accelerating Queries on Very Large Datasets∗

Ekow Otoo and Kesheng Wu

Lawrence Berkeley National Laboratory

February 1, 2009

Abstract

In this chapter, we explore ways to answer queries on large multi-dimensional data efficiently. Given

a large dataset, a user often wants to access only a relatively small number of the records. Such a selection

process is typically performed through an SQL query in a database management system (DBMS). In

general, the most effective technique to accelerate the query answering process is indexing. For this

reason, our primary emphasis is to review indexing techniques for large datasets. Since much of scientific

data is not under the management of DBMS systems, our review includes many indexing techniques

outside of DBMS systems as well. Among the known indexing methods, bitmap indexes are particularly

well suited for answering such queries on large scientific data. Therefore, more details are given on the

state of the art of bitmap indexing techniques. This chapter also briefly touches on some emerging data

analysis systems that don’t yet make use of indexes. We present some evidence that these systems could

also benefit from the use of indexes.

1 Introduction

One of the primary goals of a data management system (DBMS) is to retrieve the records under its control

upon user request. In the SQL language, such retrievals are typically formed as queries. Answering these

queries efficiently is a key design objective of a data management system. To achieve this goal, one needs to

consider many issues including data organization, available methods for accessing the data, user interface,

effective query execution planning, and the overall system design. Other chapters in this book have touched

on many of these issues. In this chapter, we primarily focus on the aspects that have the most direct influence

on the efficiency of query processing, which primarily include three of them: the data organization, access

methods and query execution planning [67, 25, 47, 79, 99, 39].

Usually a query can be answered in different ways, for example, the tables and columns involved may

be retrieved in different orders or through different access methods [44, 81, 23]. However, these choices are

built on top of a set of good access methods and data organizations. Therefore, we choose to concentrate

more on the issues of data organizations and access methods. Furthermore, many common types of queries

on scientific data do not require complex execution plans as we explain in the next section. Thus optimizing

the execution plan is less important than the other two issues. Furthermore, much of the scientific data is not

under the control of a DBMS system, but are under the control of some stand-alone systems or emerging

scientific data management systems. A discussion on the core data access methods and data organizations

may influence the design and implementation of such systems.

On the issue of data organization, a fundamental principle of the database research is the separation

of logical data organization from the physical data organization. Since most data management systems

are based on software that does not have direct control of the physical organization on secondary storage

systems, we primarily concentrate on logical organization in this chapter. One common metaphor of logical

∗This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231.

1

data organization is the relational data model, consisting of tables with rows and columns. Some times, a

row is also called a tuple, a data record, or a data object; while a column is also known as an attribute of a

record, or a variable in a dataset.

There are two basic strategies of partitioning a table: the row-oriented organization that places all

columns of a row together, and the column-oriented organization that places all rows of a column together.

The row-oriented organization is also called the horizontal data organization, while the column-oriented

organization is also known as the vertical data organization. There are many variations based on these two

basic organizations, for example, a large table is often horizontally split into partitions, where each partition

is then further organized horizontally or vertically. Since the organization of a partition typically has more

impact on query processing, our discussion will center around how the partitions are organized. The data

organization of a system is typically fixed, therefore to discuss data organization we can not avoid touching

on different systems even though they have been discussed elsewhere already, most notably, Chapter 11 has

extensive information about systems with vertical data organizations.

This chapter primarily focuses on access methods and mostly on indexing techniques to speed up data

accesses in query processing. Because these methods can be implemented in software and have great po-

tential of improving query performance, there have been extensive research activities on this subject. To

motivate our discussion, we review key characteristics of scientific data and queries in the next section.

In Section 3, we present a taxonomy of index methods. In the following two sections, we review some

well-known index methods with Section 4 on single column indexing and Section 5 on multi-dimensional

indexing. Given that scientific data are often high-dimensional data, we present a type of index that have

been demonstrated to work well with this type of data. This type of index is the bitmap index; we devote

Section 6 to discussing the recent advances on the bitmap index. In Section 7 we revisit the data organiza-

tion issue by examining a number of emerging data processing systems with unusual data organizations. All

these systems do not yet use any indexing methods. We present a small test to demonstrate that even such

systems could benefit from an efficient indexing method.

2 Characteristics of Scientific Data

Scientific databases are massive datasets accumulated through scientific experiments, observations, and

computations. New and improved instrumentations now provide not only better data precision but also

capture data at a much faster rate, resulting in large volumes of data. Ever increasing computing power

is leading to ever larger and more realistic computation simulations, which also produce large volumes of

data. Analysis of these massive datasets by domain scientists often involve finding some specific data items

that have some characteristics of particular interest. Unlike the traditional information management system

(IMS), such as management of bank records in the 70’s and 80’s, where the database consisted of a few

megabytes of records that have a small number of attributes, scientific databases typically consist of ter-

abytes of data (or billions of records), that have hundreds of attributes. Scientific databases are generally

organized as datasets. Often these datasets are not under the management of traditional DBMS system,

but merely appears as a collection of files under certain directory structure or following certain naming

convention. Usually, the files follow a format or schema agreed among the domain scientists.

An example of such a scientific dataset with hundreds of attributes is the data from the High Energy

Physics (HEP) STAR experiments [87], that maintains billions of data items (referred to as events), on over

hundred attributes. Most of the data files are in a format called ROOT [18, 70]. To search for a subset of the

billions of events that satisfy some conditions based on a small number of attributes, requires special data

handling techniques beyond traditional database systems. We address specifically some of the techniques

for efficiently searching through massively large scientific datasets in this Chapter.

The need for efficient search and subset extraction from very large datasets is motivated by the require-

ments of numerous applications in both scientific domains and statistical analysis. Here are some such

application domains:

• high energy physics and nuclear data generations from experiments and simulations,

2

• remotely-sensed or in-situ observations in the earth and space sciences, e.g., data observations used

in climate models,

• seismic sounding of the earth for petroleum geophysics (or similar signal processing endeavors in

acoustics/oceanography),

• radio astronomy, nuclear magnetic resonance, synthetic aperture radar, etc.,

• large-scale supercomputer-based models in computational fluid dynamics (e.g., aerospace, meteorol-

ogy, geophysics, astrophysics), quantum physics and chemistry, etc.

• medical (tomographic) imaging (e.g., CAT, PET, MRI),

• computational chemistry,

• bioinformatic, bioengineering and genetic sequence mapping,

• intelligence gathering, fraud detection and security monitoring,

• geographic mapping and cartography

• census, financial and other ”statistical” data.

Some of these applications are discussed in [95, 92, 36]. Compared with the traditional databases man-

aged by commercial database management systems (DBMS), one immediate distinguishing property of

scientific datasets is that there is almost never any simultaneous read and write access to the same set of

data records. Most scientific datasets are Read-Only or Append-Only. Therefore, there is a potential to sig-

nificantly relax the ACID 1 properties observed by a typical DBMS system. This may give rise to different

types of data access methods and different ways of organizing them as well.

Consider a typical database in astrophysics. The archived data include observational parameters such

as the detector, the type of the observation, coordinates, astronomical object, exposure time, etc. Besides

the use of data mining techniques to identify features, users need to perform queries based on physical

parameters such as magnitude of brightness, redshift, spectral indexes, morphological type of galaxies, and

photometric properties, etc., to easily discover the object types contained in the archive. The search usually

can be expressed as constraints on some of these properties, and the objects satisfying the conditions are

retrieved and sent downstream to other processing steps such as statistics gathering and visualization.

The datasets from most scientific domains (with the possible exception of bioinformatics and genome

data), can be mostly characterized as time varying arrays. Each element of the array often corresponds to

some attribute of the points or cells in 2- or 3-dimensional space. Examples of such attributes are tempera-

ture, pressure, wind velocity, moisture, cloud cover and so on in a climate model. Datasets encountered in

scientific data management can be characterized along three principle dimensions:

Size: This the number of data records maintained in the database. Scientific datasets are typically very large

and grow over time to be terabytes or petabytes. This translates to millions or billions of data records.

The data may span hundreds to thousands of disk storage units and are often are archived on robotic

tapes.

Dimensionality: The number of searchable attributes of the datasets may be quite large. Often, a data

record can have a large number of attributes and scientists may want to conduct searches based on

dozens or hundreds of attributes. For example, a record of a High-Energy collision in the STAR

experiment [87] is about 5 MB in size, and the physicists involved in the experiment have decided to

make 200 or so high-level attributes searchable [101].

1Atomicity, Consistency, Isolation and Durability

3

Time: This concerns the rate at which the data content evolves over time. Often, scientific datasets are

constrained to be Append-Only as opposed to frequent random insertions and deletions as is typically

encountered in commercial IMS databases.

The use of traditional database management systems such as ORACLE, Sybase and Objectivity have not

had much success in scientific data management. These have had only limited applications. For example

a traditional relational database management system, e.g., MySQL, is used to manage the metadata, while

the principal datasets are managed by domain specific data management systems such as ROOT [18, 70]. It

has been argued by Gray et al. [35], that managing the metadata with a non-procedural data manipulation

language combined with data indexing is essential when analyzing scientific datasets.

Index schemes that efficiently process queries on scientific datasets are only effective if they are built

within the framework of the underlying physical data organization understood by the computational pro-

cessing model. One example of a highly successful index method is the bitmap index method [4, 102, 103,

48, 21], that is elaborated upon in some detail in Section 6. To understand why traditional database manage-

ment systems and their accompanying index methods such as B-tree, hashing, R-Trees, etc., have been less

effective in managing scientific datasets, we examine some of the characteristics of these applications.

Data Organizational Framework: Many of the existing scientific datasets are stored in custom-formatted

files and may come with their own analysis systems. ROOT is a very successful example of such a

system [18, 70]. Much of astrophysics data are stored in FITS format [41] and many other scientific

datasets are stored in NetCDF format [61] and HDF format [42]. Most of these formats including

FITS, NetCDF and HDF, are designed to store arrays, which can be thought of as a vertical data

organization. However, ROOT organizes data as objects and is essentially row-oriented.

High Performance Computing (HPC): Data analysis and computational science applications, e.g., Cli-

mate Modeling, have application codes that run on high performance computing environments that

involve hundreds or thousands of processors. Often these parallel application codes utilize a library

of data structures for hierarchical structured grids where the grid points are associated with a list of

attribute values. Examples of such applications include finite element, finite difference and adaptive

mesh refinement method (AMR). To efficiently output the data from the application programs, the

data records are often organized in the same way as they are computed. The analysis programs have

to reorganize them into a coherent logical view, which add some unique challenges for data access

methods.

Data Intensive I/O: Often highly parallel computations in HPC also perform data intensive data inputs and

outputs. A natural approach to meet the I/O throughput requirements in HPC is the use of parallel I/O

and parallel file systems. To meet the I/O bandwidth requirements in HPC, the parallel counterparts

of data formats such as NetCDF and HDF/HDF5 are applied to provide consistent partitioning of the

dataset into chunks that are then striped over disks of a parallel file system. While such partitioning is

efficient during computations that produce the data, the same partitioning is usually inefficient for later

data analysis. Reorganization of the data or an index structure is required to improve the efficiency of

the data analysis operations.

None-Transactional ACID Properties: Most scientific applications do not access data for analysis while

concurrently updated the same data records. The new data records are usually added to the data in

large chunks. This allows the data management system to treat access control in a much more op-

timistic manner than it is possible with traditional DBMS systems. This feature will be particularly

important as data management systems evolve to take advantage of multi-core architectures and clus-

ters of such multi-core computers, where concurrent accesses to data is a necessity.

4

3 A Taxonomy of Index Methods

An access method defines a data organization, the data structures and the algorithms for accessing individual

data items that satisfy some query criteria. For example, given N records, each with k attributes, one very

simple access method is that of a sequential scan. The records are stored in N consecutive locations and for

any query, the entire set of records is examined one after the other. For each record, the query condition is

evaluated and if the condition is satisfied, the record is reported as a hit of the query. The data organization

for such a sequential scan is called the heap. A general strategy to accelerate this process is to augment the

heap with an index scheme.

An index scheme is the data structure and its associated algorithms that improve the data accesses such

as insertions, deletions, retrievals, and query processing. The usage and preference of an index scheme for

accessing a dataset is highly dependent on a number of factors including:

Dataset Size: Whether the data can be contained entirely in memory or not. Since our focus is on massively

large scientific datasets, we will assume the latter with some consideration for main memory indexes

when necessary.

Data Organization: The datasets may be organized into fixed size data blocks (also referred to as data

chunks or buckets at times). A data block is typically defined as a multiple of the physical page

size of disk storage. A data organization may be defined to allow for future insertions and deletions

without impacting the speed of accessing data by the index scheme. On the other hand the data

may be organized and constrained to be read-only, append-only or both. Another influencing data

organization factor is whether the records are of fixed length or variable length. Of particular interest

in scientific datasets are those datasets that are mapped into very large k-dimensional arrays. To

partition the array into manageable units for transferring between memory and disk storage, the array

is partitioned into fixed size sub-arrays called chunks. Examples of such data organization methods

are NetCDF [61], HDF5 [42] and FITS [41].

Index Type: A subset of the attributes of a record that can uniquely identify a record of the dataset is

referred to as the primary key. An index constructed using the primary key attributes is called the

primary index, otherwise it is a secondary index. An index may also be classified as either clustered

or non-clustered according to whether records whose primary keys are closely similar to each other

are also stored in close proximity to each other. A metric of similarity of two keys is defined by the

collating sequence order of the index keys.

Class of Queries: The adoption of a particular index scheme is also highly dependent on the types of

queries that the dataset is subsequently subjected to. Let the records of a dataset have k attributes

A = {A1, A2, . . . Ak}, such that a record ri = 〈a1, a2, . . . ak〉, where ai ∈ Ai. Typical classes of

queries include:

Exact-Match: Given k values 〈v1, v2, . . . vk〉 an exact-match query asks for the retrieval of a record

ri = 〈a1, a2, . . . ak〉 such that. ai = vi, 1 ≤ i ≤ k.

Partial-Match: Let A′ ⊆ A with a′j ∈ A′

j and aj ∈ Aj respectively, for j ≤ |A′| = k′ ≤ k. Given

values {v1, v2, . . . vk′} for the k′ attributes of A′, a partial-match query asks for the retrieval

of all records whose attribute values match the corresponding specified value, i.e, aj = vj , for

aj ∈ A′

j , 1 ≤ j ≤ k′. The exact-match query is a special class of a partial-match query.

Orthogonal-Range: For categorical attributes we assume that an ordering of the attribute values

is induced by the collating sequence order of the values and for numeric attribute values the

ordering is induced by their respective values. Then given k closed intervals of values 〈[l1, h1],
[l2, h2], . . . [lk, hk]〉 an orthogonal-range query asks for the retrieval of all records ri = 〈a1, a2,

. . . ak〉 such that li ≤ ai ≤ hi, 1 ≤ i ≤ k.

5

Partial-Orthogonal-Range: Let A′ ⊆ A with a′j ∈ A′

j and aj ∈ Aj respectively, for j ≤ |A′| =
k′ ≤ k. Under the same assumptions of attribute values as in Orthogonal-Range query, and given

values 〈[l1, h1], [l2, h2], . . . [lk′ , hk′]〉 for the k′ attributes of A′, a partial-orthogonal-range query

asks for the retrieval of all records whose attribute values lie the respective specified intervals, i.e,

lj ≤ aj ≤ hj , for aj ∈ A′

j , 1 ≤ j ≤ k′. The orthogonal-range query is a special case of a partial-

orthogonal-match query. Since partial-orthogonal-range query subsumes the preceding classes

we will use the measure of the efficiency of processing partial-orthogonal-range queries and the

measure of the efficiency of processing partial-match queries as the comparative measures of

the efficiencies of the various indexing schemes to be addressed. If the columns involved in a

partial-orthogonal range query vary from one query to the next, such queries are also known

as ad hoc range queries. In the above definition, the condition on each column is of the form

lj ≤ aj ≤ hj . Since it specifies two boundaries of the query range, we say it is a two-sided

range. If the query range only involves one boundary, e.g., lj ≤ aj , aj ≤ hj , lj < aj , and

aj > hj , it is a one-sided range.

Other Query Processing Considerations: There are numerous query processing conditions that in-

fluence the design and choice of an index scheme besides the preceding ones. For example, the

orthogonal range query is very straight forward to specify by a set of closed intervals. The range

coverage may be circular, spherical or some arbitrary polygonal shape. There is a considerable

body of literature that covers these query classes [79].

Attribute Types: The data type of the attribute keys, plays a significant role in the selection of an index

scheme used in an access method. For example when the data type is a long alphabetic string or

bit-strings, the selection of index scheme may be different from that when the data type of the index

is an integer value.

Index Size Constraint: The general use of an index structure is to support fast access of data items from

stored datasets. One desirably feature of an index is that its size be relatively small compared to

the base data. An index may contain relatively small data structures that can fit entirely in memory

during a running session of the application that uses the index. The memory resident information is

then used to derive the relative positions or block addresses of the desired records. Examples of these

indexing schemes include inverted indexes [47], bitmap indexing [21, 103], and direct access index

(or hashing [47, 79]). However, when the index structure is sufficiently large, this will require that it

be stored on a disk storage system and then page-in the relevant buckets of the index into memory on

demand in a manner similar to the use B-Tree index and its variants [24]

Developing an efficient access method in scientific applications is one of the first steps in implementing

an efficient system for a data intensive application. The key of which is to select an efficient indexing

scheme for accessing the data of the application. The question that immediately arises then is what measures

constitute a good metric for evaluating an efficient index scheme. Let an index scheme G be built to access

N data items. For a query Q, the most important metrics are the query response time and the memory

requirement, how long and how much memory does it take to answer the query. Often, the query response

time is dominated by I/O operations and the number of bytes (or disk sectors) read and written is some times

used as a proxy of the query response time.

Additional metrics for measuring an indexing scheme include: recall denoted by ρ, precision denoted

by π and storage utilization denoted by µ(G). Let r(Q) denote number of correct results retrieved for a

query and let R(Q) denote the actual number of results returned by a query in using G. Let c(Q) denote the

actual number of correct results desired where c(Q) ≤ r(Q) ≤ R(Q). The precision is defined as the ratio

of desired correct result to the number of correct results, i.e., π = c(Q)/r(Q), and the recall is the ratio

of the number of correct results to the number of retrieved results, i.e., ρ = r(Q)/R(Q). Let S(G) denote

the actual storage used by an index scheme for N data items where an average index record size is b. The

storage utilization is defined as µ(G) = bN/S(G).

6

Taxonomy of
Access Methods

Direct Access Hybrid Tree Based

External Memory

Cache Pool

Scan

Memory Based

Hybrid Tree BasedDirect Access

Single/Multi−Attrrib

HybridHash

Single/Multi−Attrrib

Single−Attr

K−D−B−Tree

R−Tree

SS−Tree

LSD−Tree

K−D−Tree

Scan

Seq−Scan

VA−File

Hash

Grid−File
Ext.−Hash
Linear

Hybrid

Inverted
Transposed
Bitmaps
Signature
Z−Order
Hilbert
QTM/SQC/HTM

Multi−Attrib

B+−Tree
ISAM/VSAM
Tries
PATRICIA
Suffix−Tree

Single−Attr Multi−Attrib

Figure 1: A Taxonomy of Indexed Access Methods

Another metric, sometimes considered, is the time to update the index. This is sometimes considered as

two independent metrics; the insertion time and the deletion time. In scientific data management, deletions

are hardly of concern.

There is a large body of literature on index structures. It is one of the highly researched subjects in

Computer Science. Extensive coverage of the subject is given by [25, 47, 79, 99, 39]. Together, these books

cover most of the indexing structures used in datasets and databases of various application domains. Index

schemes may be classified into various classes. Figure 1 shows a taxonomy used to guide our review of

known indexing methods.

The first level of classification distinguishes these schemes according to whether they are designed for

memory resident datasets or disk resident datasets. Each class is then partitioned into three subclasses of

whether accessing the data is by direct access method, tree-structured index or some combination of tree-

structured index and a direct access method which we term as a hybrid index. Each of these subclasses

can be subsequently grouped according to whether the search key is a single attribute or a combination of

multiple attributes of the data item. Such combined multi-attribute index schemes are also referred to as

multi-dimensional index schemes.

Since the classification of hybrid indexes is fuzzy, we will discuss them under direct access methods in

this chapter. Further, to restrict the classification space to a relatively small size, we will not distinguish

between single-attribute and multi-attribute indexing when we discuss both the direct-access and the hybrid

index methods. There is a further level of classification that distinguishes index schemes into those that

are more suitable for static data and those that more suitable of dynamic data. Most large scale scientific

datasets are append-only and as such are not typically subjected to concurrent reads and writes in a manner

that requires models of transactional accessing. As such, we do not consider index methods under further

classification of dynamic versus static methods.

In this chapter, we focus primarily on disk-based datasets that are stored on external memory and are

paged in and out of memory during processing using memory buffers or cache pools. Consequently, we

address access methods, denoted as the highlighted ovals of the leaf nodes of our classification hierarchy

shown in Figure 1 where we also show some examples of the indexing methods that have been used in

practice. In the next sections we describe methods of accessing massively large datasets by: i) simple

scans, ii) hashing, iii) single attribute indexes, iv) multi-attribute indexes, and v) hybrid schemes that are

comprised of one or more combinations of hashing and scanning, hashing and tree indexes or a combination

of hashing, tree index and scanning. Note also that methods that generate a single key by combining the

7

Rec No Y X Label

1 y0 x6 A

2 y2 x6 B

3 y4 x3 C

4 y5 x3 D

5 y2 x1 E

6 y4 x1 F

7 y1 x7 G

8 y2 x5 H

9 y1 x5 I

10 y6 x4 J

11 y7 x2 K

12 y6 x7 L

13 y5 x2 M

14 y3 x0 N

15 y4 x5 N

X-Vals Rec No

x6 1

x6 2

x3 3

x3 4

x1 5

x1 6

x7 7

x5 8

x5 9

x4 10

x2 11

x7 12

x2 13

x0 14

x5 15

X-Index List

x0 → {14}
x1 → {5, 6} B0

x2 → {11, 13}
x3 → {3, 4} B1

x4 → {10}
x5 → {8, 9, 15} B2

x6 → {1, 2}
x7 → {7, 12} B3

Figure 2: An Example of a Single-Attribute Index.

multiple attribute values of the data, either by concatenation or bit interleaving, and then using the generated

key in a single attribute index scheme, are considered under the hybrid methods.

4 Single Attribute Index Schemes

4.1 Sequential Scan Access

A natural approach to searching unordered datasets without an index is by a simple sequential scan. This

gives an O(N) search time for datasets of N items. Although seemingly naive and simplistic, it has the

advantage that insertions are fast since new data items are simply appended at the end of the existing file. If

order is maintained on either a single or combined attributes, searches can be performed in O(log N) time,

using a binary search. Of course, this requires a pre-processing cost of sorting the items. As new records

are added, one needs to ensure that the sorted order is preserved.

For very large high dimensional datasets, where searches are allowed on any combination of attributes, it

has been shown that such simple sequential scans of processing queries can be just as effective, if not more

efficient, as building and maintaining multi-dimensional indexes [97, 14, 82], particularly when nearest

neighbor queries are predominant. With parallel computing and parallel file systems, a sequential scan can

achieve near linear speed up with a balanced data partition. We revisit the case of sequential scans for

high-dimensional datasets in Subsection 5.4.

4.2 Tree-Structured Indexing

Most applications require accessing data both sequentially and randomly. The tree structured indexing

methods facilitate both of them. These indexing schemes are sometimes referred to as multi-level indexing

schemes. A file organization scheme, representative of a tree structured index is the indexed sequential

access method (ISAM). The index keys in the table shown in Figure 2 are first grouped into first level nodes,

or blocks, of size b records per node. The idea is illustrated in Figure 3 that represents the ISAM organization

of the blocked indexes shown in Figure 2. In the Figure 3, b = 2. The lowest index keys (alternatively the

largest index key), of a node, each paired with its node address, are formed into records that are organized

as the next higher (or second) level index of the first level nodes. The process is recursively repeated until a

single node (i.e., the root node) of size b can contain all the index records that point to the lower level nodes.

8

<x0,I1> <x4, I2>

I1 I2

I0

<x4,B2> <x6, B3><x0,B0> <x2, B1>

x0{15}, x1{5,6} x4{10}, x5{8, 9,16}x2{12,14}, x3{3,4} x6{1,2}, x7{7,13}

B0 B1 B2 B3

Figure 3: Illustrative Tree-Structured Index by ISAM organization. The data blocks are labeled I0, . . . , I2,

B0, . . . , B3.

Searching for a record begins at the root node and proceeds to the lowest level node, i.e., the leaf node,

where a pointer to the record can be found. Within each node, a sequential or binary search is used to

determine the next lower level node to access. The search time for a random record is O(logb(N/b) given

a file of N data items. Note that, we are concerned with indexing very large datasets so that in practice

b >> 2. The early commercial design and implementation of the indexed sequential access method was

by IBM. The acronym ISAM actually implies this design approach. In this scheme the ISAM index was

mapped directly to the layout of data on a disk storage where the root level index searches gives the proper

cylinder number of the record. The first track of each cylinder gives the track number and this corresponds

to the second level of indexing for searches. At the lowest level, this corresponds to the locations of records

within a track. A sequential scan at this level is used to locate the records. The ISAM index method is a

static index method. Subsequent insertions require the records to be managed as overflow records that are

periodically merged by reorganizing the entire ISAM index.

The indexed sequential organization illustrates the structural characteristic of tree-structured index schemes.

To circumvent the static limitations of the ISAM, the B-Tree indexing scheme was developed. Detailed cov-

erage of the B-Tree and its variants such as B+-Tree, B∗-Tree Prefix-B-Tree are given in [9, 25, 24, 47].

The B-Tree is a dynamic height-balanced index scheme that grows and shrinks by recursively splitting and

merging nodes from the lowest level of the index tree up to the root node. The VSAM file organization [55],

is a B+-Tree that is mapped directly to the layout of data on disk storage.

Tree-structured index schemes typically maintain the fixed-sized keys, such as integers or fixed length

character strings, in the index nodes. When the keys are variable length strings, then rather than storing

the entire keys, only sufficient strings of leading characters that form separator keys, are stored. This is

the basic idea of the prefix-B-Tree. An alternative index method for long alphabetic strings is the use of a

trie [39, 47, 79, 99]. Suppose the keys are formed from a domain of alphabet set Σ with cardinality |Σ|.
Each node of the trie-index at level i is comprised of all occurrences of the distinct ith characters of keys

with the same i − 1 prefix string. A node in a trie index structure has size of at most |Σ| entries where each

entry is pair of a character and a pointer to the lower level node.

A special kind of trie, called the suffix tree [39, 47, 43, 37], can be used to index all suffixes in a text

in order to carry out fast full or partial text searches. A basic trie implementation has the disadvantage of

having single path which is not space efficient. A more efficient space efficient implementation of a trie

index is the PATRICIA index [58, 47]. PATRICIA stands for Practical Algorithm to Retrieve Information

coded in Alphanumeric. Tries are the fundamental index schemes for string oriented databases, e.g., very

large text database used in information retrieval problems, genome sequence database, bio-informatics, etc.

Tries can be perceived as generic index methods with variants such as Suffix-Trees, String B-Trees and Burst

Tries [39, 43, 37, 47, 31, 99].

9

4.3 Hashing Schemes

Hashing methods are mechanisms for accessing records by the address of a record. The address is computed

using a key of the record; usually the primary key or some unique combination of attribute values of the

record. The method involves a set of n disk blocks also termed buckets with index values numbered from 0
to n − 1. A bucket is a unit of storage containing one or more records. For each record 〈ki, ri〉, whose key

is ki and entire record is ri, a hash function H() is used to compute the bucket address I where the record

is stored, i.e., I = H(ki). The result I of computing the hash function, forms the index into the array of

buckets or data blocks that hold the records. A hashing scheme can either be static or dynamic.

In static hashing, the number of buckets is pre-allocated. Records with different search-key values may

map to the same bucket, in which case we say that a collision occurs. To locate a record in a bucket with

multiple keys the entire bucket has to be searched sequentially. Occasionally a bucket may have more

records that hash into it than it can contain. When this occurs it is handled by invoking some overflow

handling methods. Typical overflow handling methods include, separate chaining, rehashing, coalesced

chaining, etc. To minimize the occurrence of overflow, a hash function has to be chosen to distribute the

keys uniformly over the allocated buckets. Hashing methods on single attributes are discussed extensively

in the literature [25, 47, 79].

An alternative to static hashing is dynamic hashing. Dynamic hashing uses a dynamically changing

function that allows the addressed space, i.e., the number of allocated buckets, to grow and shrink with

insertions and deletions of the records respectively. It embeds the handling of overflow records dynamically

into its primary address space, to avoid explicit management of overflow buckets. Various techniques for

dynamic hashing have been proposed. Notable among these are: dynamic hashing [51], linear hashing [54],

extendible hashing [30, 68].

5 Multi-Dimensional Index Schemes

Multi-Dimensional indexing arises from the need for efficient query processing in numerous application

domains where objects are generally characterized by feature vectors. They arise naturally from represen-

tation and querying of geometric objects such as points, lines, and polyhedra in computational geometry,

graphics, multimedia and spatial databases. Other applications that have seen a considerable research in

multi-dimensional data structures include data mining of scientific databases and geographic information

systems. Objects characterized by k-dimensional feature vectors, are typically represented either by their

spatial extents in the appropriate metric space or mapped as points in k−dimensional metric space that de-

fines an appropriate metric measure of relationship between any two points [33, 15, 74, 79]. Depending on

the types of queries on the objects, different data structures that recognize the spatial extents of the objects

can be utilized. A more general approach however is still the mapping of these objects as points and then

partitioning either the points or the embedding space. To illustrate these general approaches of representing

objects that can be characterized by feature vectors, we consider the representation of line segments as in

Figure 4, that are subjected to stabbing line and intersection queries.

Two well known memory resident data structures for representing such line segments for efficient pro-

cessing of the stabbing line queries are the interval tree and segment tree [74, 79]. They also have corre-

sponding disk based counterparts [96]. Since each line segment is characterized by a vector 〈lx, rx〉 of its

left and right x-values, these can be mapped as points in 2-dimensional space as shown in Figure 5. The

stabbing line query Q1 = 4.5 translates to a range query of finding all line segments whose lx ≤ 4.5 and

rx ≥ 4.5 as depicted in Figure 5. Similarly, a query that asks for all lines that overlap line F = 〈2, 6〉 also

translates to a range query of finding all lines whose lx ≤ 6 and rx ≥ 2. The shaded region of Figure 6 is

the area where the points of the response to query lie. In the illustrative example given, all lines are mapped

onto points that lie above the 45-degree line. It is possible to choose a mapping that distributes the points

uniformly in the embedding space. The basic idea is easily extended to objects of arbitrary shapes and

dimensions such as rectangles, circles, spheres, etc. For example, a collection of rectangles may be repre-

10

0 1 2 3 4 5 6 87 9 10 11

BA

C D E

GF][

Q1

Figure 4: A collection of X-Axis parallel line segments

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

2 4 6 8 10

2

4

6

8

10

12

12 lx

rx

A

C

F
D

G B

E

Figure 5: Shaded region representing a stab-

bing query.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

2 4 6 8 10

2

4

6

8

10

12

12 lx

rx

A

C

F
D

G B

E

Figure 6: Shaded region representing an in-

tersection query.

sented either explicitly as rectangles with the appropriate index structure, such as R-trees [94] layered over it

to processing queries on them, or mapped as points in a four dimensional data-space. In the subsequent dis-

cussion, we focus mostly on datasets that are k−dimensional and are perceived as points in k−dimensional

space.

A sample of a 2-dimensional dataset is given in the table shown in Figure 7. The first three columns

give the Y-values, the X-values and the labels respectively. The mapping of the dataset as points in a two

dimensional space is shown in Figure 8, and is based on the Y- and X-values. The indexing mechanism

used to access the data is highly dependent on the physical organization of the datasets. In high dimensional

very large scientific datasets, the datasets are typically vertically partitioned and stored by columns. Such

physical storage of datasets is amenable to efficient access by bitmaps and compressed bitmap indexes [4,

21, 48, 38, 102, 103]. Another popular physical representation of datasets, particularly when the datasets

are perceived as points in a k-dimensional data space, is by tessellating the space into rectangular regions

and then representing each region as a chunk of data, i.e., all the points in a region are clustered in the

same chunk. A chunk typically corresponds to the physical page size of disk storage but may span more

than one page. The different methods of tessellating and indexing the corresponding chunks give rise to the

numerous multi-dimensional indexing methods described in the literature. For example, the tessellation of

the data space may be:

• overlapping or non-overlapping,

• flat or hierarchical, and

11

Linear Linear Binary

Y X Label Quad-Code Gray-Code

y0 x6 A 110 010001 ⇒ 30

y2 x6 B 130 011011 ⇒ 18

y4 x3 C 211 101100 ⇒ 55

y5 x3 D 213 101110 ⇒ 52

y2 x1 E 021 001011 ⇒ 13

y4 x1 F 201 101001 ⇒ 49

y1 x7 G 113 010010 ⇒ 28

y2 x5 H 121 011111 ⇒ 21

y1 x5 I 103 010111 ⇒ 26

y6 x4 J 320 110110 ⇒ 36

y7 x2 K 232 100101 ⇒ 57

y6 x7 L 331 110010 ⇒ 35

y5 x2 M 212 101111 ⇒ 53

y3 x0 N 023 001000 ⇒ 15

y4 x5 N 301 111101 ⇒ 41

Figure 7: A Sample Multi-attribute data

A

I G

E H B

N

F C O

M D

K

LJ

y0

y1

y2

y3

y4

y5

y6

y7

x0 x1 x2 x3 x4 x5 x6 x7

Figure 8: Multi-attribute data in 2D Space

• based on equalizing the points in each region as much as possible or based on generating equal regions

of spatial extents.

These chunking methods give rise to typical formats for array files. Examples of array files include the

file formats known as NetCDF (network Common Data Format) [61], HDF4/HDF5 (Hierarchical Data For-

mat) [42]. We briefly explore some of the widely used indexing methods that are based on tessellation of

the data-space.

5.1 Multi-Dimensional Tree-Structured Indexing Methods

From the general approach of designing multi-dimensional index schemes, we examine now some special

cases that lead to the class of tree-structured multi-dimensional indexing.

5.1.1 K-D-Tree and LSD-Tree

The K-D-Tree [11, 33, 25] was designed as a memory resident data structure for efficient processing of range-

, partial-match and partial-range queries. Given the k-dimensional data-space of a collection of points, the

K-D-Tree is derived by tessellating the space with (k-1)-dimensional hyper-planes that are parallel to all

but the axis being split. The split plane occurs at the position that splits the number of points as evenly as

possible within the subspace being split. The choice of which axis to split is done cyclically. The subspace

12

A

B

C

GI

H

LJ

K

DM

F

N

E

O

y1

y0

y2

y3

y4

y5

y6

y7

x0 x1 x2 x3 x4 x5 x6 x7

(a) K-D-Tree Induced Region Parti-

tioning

x5

y5 y2

x7 x6x1 x3

y3N

E C,F

K,M D,J A,I G H,D B,L

< >=

(b) Region K-D-Tree (Also LSD-Tree)

Figure 9: K-D-Tree Indexing of 2-D dataset

tessellation proceeds recursively until the number of points in a region forms the desired chunk size of the

data-space. Figure 9a illustrates the idea for a 2D-space tessellation that is represented explicitly as a tree

structure in Figure 9b, for a chunk size of 2. Such a K-D-Tree is referred to as a region K-D-Tree as opposed

to a point K-D-Tree. Rather than maintaining the leaf nodes, i.e., the data chunks, in memory these can

be maintained on disks while the internal nodes of comparator values remain in memory. This variant of

the K-D-Tree is referred to as the LSD-Tree (or Local Split Decision Tree), and is more suitable of large

disk resident datasets. The idea is that when insertion causes a data chunk to exceed its capacity, a decision

can be made to split the data chunk and to insert the split value as an internal node with pointers to the

newly created leaves of data chunks. The memory resident tree nodes can always be maintained persistent

by off-loading onto disk after a session and reloading before a session.

The complexity of building the a K-D-Tree of N points takes O(N/B log2(N/B)), for a chunk size

of B. Insertion and deletion of a new point into a K-D-Tree takes O(log(N/B)) time. One key result of

the K-D-Tree is that partial-match and partial-range queries that a query involving s of k dimensions take

O((N/B)1−s/k + r) time to answer, where r is the number of the reported points, and k the dimension of

the K-D-Tree.

5.1.2 R-Tree and its Variants

The R-Tree, first proposed by Guttman [40], is an adaptation of the B+-Tree to efficiently index objects

contained in k-dimensional bounding boxes. The R-Tree is a height balanced tree consisting of internal and

leaf nodes. The entries in the leaf nodes are pairs of values of the form 〈RID, R〉, where RID is the row

identifier and R is a vector of values that defines the minimum rectilinear bounding box (MBR) enclosing

the object. Note that the object may simply be a point. An internal node is a collection of entries of the

form 〈ptr, R〉, where ptr is a pointer to a lower level node of the R-Tree, and R is a minimum bounding

box that encloses all MBRs of the lower level node. Figure 10a, shows a collection of points grouped into

rectangular boxes of at most 3 points per box and indexed by an R-Tree.

Like the B+-Tree, an R-Tree specifies the maximum number of entries B, that can be contained in a

node and satisfies the following properties:

i. A leaf node contains between B/2 and B entries unless it is the root node.

ii. For an entry 〈RID, R〉 in a leaf node, R is the minimum rectilinear bounding box of the object RID.

13

x0 x1 x2 x3 x4 x5 x6 x7

y0

y1

y2

y3

y4

y5

y6

y7

R1

R2

R3

R4
R5

R6

R7

L1

L2

L3

L4

T1 T2

(a) Rectilinear Bounded Regions

T1 T2

L1 L2 L3 L4

R1 R2 R3 R4 R5 R7R6

(b) R-Tree Representation

Figure 10: R-Tree Indexing of Bounded Rectilinear 2-D dataset

iii. An internal node contains between B/2 and B entries unless it is the root node.

iv. For an entry 〈ptr, R〉 in an internal node, R is the minimum rectilinear bounding box that encloses

the MBRs in the node pointed to by ptr.

v. A root node can contain at least two children unless it is a leaf node.

vi. All leaf nodes appear at the same level.

The R-Tree representation of the rectangular regions of Figure 10a is shown in Figure 10b. Since the

introduction of the R-Tree, various variants have been introduced. The R-Tree portal [94] gives implemen-

tation codes and papers of the different variants. It has had numerous applications in spatial databases,

GIS, VLSI design and applications that depend on nearest neighbor searching in low multi-dimensional

space. The R-Tree and its variants use rectilinear bounding boxes. The use of other geometric shapes as

bounding boxes, such as circles/spheres have led to the development of similar index schemes such as the

SR-Tree [46],

5.2 Multi-Dimensional Direct Access Methods

The conceptualized optimal multi-dimensional access method is one that can be correctly defined as a dy-

namic order preserving multi-dimensional extendible hashing method. The idea being that the location

where a record is stored is derived by a simple computation; the utilized data space of the dataset will grow

and shrink with insertions and deletions of data items and accessing records in consecutive key order should

be just as efficient as a simple sequential scan of the data items given the first key value. Such a storage

scheme is impossible to realize. However numerous close approximations to it have been realized. Notable

among these is the Grid-File [62]. Other related multi-dimensional storage schemes are the optimal partial-

match retrieval method [2], the multi-dimensional extendible hashing [69], and the BANG-file [32]. Other

similar methods are also presented in [33, 79].

Consider the mapping of the dataset of Figure 7, as points in a two dimensional space as shown in

Figure 8. The mapping is based on the Y- and X-values. A 2-dimensional Grid-File partitions the space

rectilinearly into a first level structure of a grid-directory. The Y-values define a Y-axis that is split into

IY segments. Similarly the X-values define an X-axis that is split into IX segments. The grid-directory is

comprised of an array of IY ×IX elements. An element of the grid-directory array stores the bucket address

of the data buckets where the data item is actually stored. Given a key value 〈y, x〉, the y-value is mapped

14

(c) Hilbert Order (d) Gray−Code Order

0 2 4 6

0

2

4

6

0

2

4

6

0

000
010

100
110

110

100

010

000

000

011

110

101

000
011

101
110

2 4 6

(b) Morton or Z−Order (a) Row−Major Order

Figure 11: Examples of 2-dimensional Space Curves

onto a y-coordinate value iy and the x-value is mapped onto an x-coordinate value ix. A look up of the

grid-directory array entry 〈iy, ix〉 gives the bucket address where the record can be found or inserted. Since

grid-directory and data buckets are disk resident, accessing an element using the grid director requires at

most 2 disk accesses. The basic idea, illustrated with a 2-dimensional key space, can easily be generalized

to arbitrary number of dimensions. For a dataset of n-buckets, a partial-match retrieval that specifies s out

k-dimensional values can be performed in O(n1−s/k + r) time where r is the number of records in the

response set.

5.3 Hybrid Indexing Methods

The term hybrid index refers to index structures that are composed of two or more access structures such as

hashing (or direct access method), tree-based indexes, and simple sequential scans. In the preceding section

on Grid-File, we saw that in the 2-dimensional grid-directory mapping, the key value of the form 〈y, x〉
is first translated into a 〈iy, ix〉 coordinate index that is used as an index of an array entry. The use of the

〈iy, ix〉 coordinate index is actually a mapping onto a 1-dimensional array which in a 2-dimensional array,

happens to be either a row-major or a column-major addressing method. In general, given a k-dimensional

index K = 〈i0, i1 . . . ik−1〉 one can generate a 1-dimensional mapping denoted as IK , of the k-dimensional

key and then use this in any of the tree-based index schemes described in the preceding sections. There are

different methods by which 1-dimensional mapping can be formed. These are formally referred to as space

filling curves [78]. Figure 11 gives some typical space filling curves generated from a 2-dimensional index

and mapped onto 1-dimensional codes.

The most popular of the space filling curves that have been used in numerous application is the Morton

or Z-order mapping. It is generated simply by k-cyclic interlacing of the bits of the binary representation

of the k-dimensional index of the data-space. Its simplicity and the fact that it is consistent with the linear

quad-tree encoding of the space, makes it one of the most widely encoding methods in applications [34, 52,

71, 79]. Alternative methods to the Z-order encoding are the Hilbert order encoding [57] and the Gray-Code

encoding [79]. In the table shown in Figure 7, column 4 shows the linear quad-code (or Z-order code),

generated from a 8 × 8 grid partitioning of the data-space. Note that linear quad-code is a base k string of

digits formed by taking k-bits of the Z-order codes. The Gray-Code encodings of the points are shown in

column 5. The Figures 12a and 12b depict the spatial representations and code labels of points in a 2-D

data-space for the Z-order and Gray-Code encoding respectively.

15

A

I G

E H B

N

F C O

M D

K

LJ

023

021

201

212 213

211 301

320

232

331

110

103

121 130

113

0 1

2 3

y0

y1

y2

y3

y4

y5

y6

y7

x0 x1 x2 x3 x4 x5 x6 x7

(a) Morton-Order (or Z-Order) Labeling

A

I G

E H B

N

F C O

M D

K

LJ

000 001 011 010 110 111 101 100

000

001

011

010

110

111

101

100

001001

010111

010001

010010

011111 011011

001000

101001 101100 111101

101111 101110

110110 110010

100101

0 1 2 3 4 5 6 7

0

2

3

4

5

7

6

1

(b) Gray-Code Order Labeling

Figure 12: Hybrid Indexing by Space-Filling Curves of 2-D dataset

5.3.1 Quaternary/Hierarchical Triangular Mesh

While most database applications deal with planar and hyper-rectilinear regions, some large scientific appli-

cations deal with datasets that lie on spherical surfaces. Examples of these are datasets from climate models,

GIS and Astronomy. The approach to indexing regions on spherical surfaces is similar to the method of lin-

ear quad-code or Morton-sequence order encoding of planar regions. The basic idea is to approximate the

sphere by a base platonic solid such as a tetrahedron, hexahedron (or cube), octahedron, icosahedron, etc.

If we consider say the octahedron, a spherical surface is approximated at level 0 by 8 planar triangular sur-

faces. By bisecting the mid-points of each edge and pushing the mid-pints along a ray from the center of

the sphere that passes through the mid-point to the surface, 4 × 8 triangular surfaces are generated at level

1. Using such recursive edge bisection procedure, the solid formed from the patches of triangular planes

approximates closer and closer to the sphere. The process is depicted in Figure 13. Two base platonic solids

that have been frequently used in such approximation schemes of the sphere are the octahedron and the

icosahedron shown in Figures 14a and 14b respectively. Consider the use of an inscribed octahedron as the

base solid. Indexing a point on a spherical surface, at any level of the tessellation, amounts then to indexing

its projection on the triangular patch that the point lies at that level. If we now pair the triangular upper

and lower triangular patches to form four quadrants, then the higher level tessellation of each quadrant is

similar to the higher level tessellation of planar regions that can now be encoded using any of the space

filling curve encoding scheme. In the Figure 14a we illustrate such a possible encoding with the Z-order

encoding. Variations of the technique just described, according to whether the base inscribing platonic solid

is either an octahedron, cube or an icosahedron, and the manner of labeling the triangular regions form the

basis of the various techniques known as the Quaternary Triangular Mesh (QTM), Hierarchical Triangular

Mesh, Semi-Quadcode (SQC), etc., [7, 8, 53, 79, 93].

5.4 Simple Scanned Access of Multi-Dimensional Datasets

Most of the multi-dimensional access methods described in preceding sections are only suitable for low

dimensional datasets of the order of k ≤ 8. For datasets with higher dimensionality the Curse of Dimen-

sionality sets in. The term curse of dimensionality was coined by Bellman to describe the problem caused

by the exponential increase in volume associated with adding dimensions to a metric space [10]. This has

two main implications on an indexing method. As the number of dimensions of data increases, the index

size increases as well. Such indexes are usually only effective for exact-match queries and range queries

16

(a) Inscribed Base Octahe-

dron

(b) Level 1 Hierarchical Tes-

sellation

(c) Level 3 Hierarchical Tes-

sellation

Figure 13: Spherical Indexing with HTM (Courtesy of [93]).

00 02 04 06

07050301

(a) Spherical Indexing by Base Octahedron

00 01 02 03 04

09080607
10

15 16 17 18 19

14131211
05

(b) Spherical Indexing by Base Icosahedron

Figure 14: Spherical Indexing with Quaternary/Hierarchical Triangular Mesh

where all indexed dimensions are used, if only a few of the indexed dimensions are used, the effectiveness

of the index deteriorates dramatically.

Many index methods have been proposed to address the curse of dimensionality including the well-

known X-Tree [13] and pyramid tree [12]. These methods typically address the index size issue, but fail to

address the performance issue on partial range queries. For a k-dimensional data structure partitioned into n
buckets, the complexity of processing a partial range query involving s out of k dimensions is O(n1−s/k+r)
for both X-Tree and pyramid tree. If s = d, which is the case for an exact match query or a full range query,

O(1) buckets are accessed. If k is large and s = 1, nearly all the pages are accessed. This prompted the

question of whether a simple sequential scan is satisfactory for high dimensional data sets [14, 82]. In the

case of similarity searches in high-dimensional space, one effective method is the use of sequential scan but

with the attribute values mapped onto fixed length strings of about 64˜128 bits. The method is termed the

VA-File approach [97]. Other more efficient methods are the bitmap indexes described in the next section.

17

bitmap index

RID A =0 =1 =2 =3

1 0 1 0 0 0

2 1 0 1 0 0

3 2 0 0 1 0

4 2 0 0 1 0

5 3 0 0 0 1

6 3 0 0 0 1

7 1 0 1 0 0

8 3 0 0 0 1

b1 b2 b3 b4

Figure 15: An illustration of the basic bitmap index for a column A that can only take on four distinct values

from 0 to 3. Note RID is the short-hand for “row identifiers”.

6 Bitmap Index

In this section, we separately review the current work on bitmap indexes because it is a more effective in

accelerating query processing on large scientific datasets than other techniques reviewed earlier. The bitmap

indexes are generally efficient for answering queries. In fact, certain compressed bitmap indexes are known

to have the theoretically optimal computational complexity [103]. They are relatively compact compared to

common implementations of B-Trees, and they scale well for high-dimensional data and multi-dimensional

queries. Because they do not require the data records to be in any particular order, they can easily take on

data with any organization to improve the overall data processing task beyond the querying step.

In this section, we explain the key concept of bitmap index, and review three categories of techniques for

improving bitmap indexes: compression, encoding and binning. We end this section with two case studies

on using a particular implementation of bitmap indexes called FastBit2.

6.1 The basic bitmap index

Figure 15 shows a logical view of the basic bitmap index. Conceptually, this index contains the same

information as a B-tree [24, 65]. The key difference is that a B-tree would store a list of Row IDentifiers

(RIDs) for each distinct value of column A, whereas a bitmap index represents the same information as

sequences of bits, which we call bitmaps. In this basic bitmap index, each bitmap corresponds to a particular

value of the column. A bit with value 1 indicates that a particular row has the value represented by the

bitmap. What is required here is a durable mapping from RIDs to positions in the bitmaps [63].

The mapping used by the first commercial implementation of bitmap index [65] is as follows. Let m
denote the maximum number of rows that can fit on a page, assign m bits for each page in all bitmap. The

first record in a page is represented by the first bit assigned for the page, the second record by the second

bit, and so on. If a page contains less than m records, then the unused bitmaps in the bitmap are left as 0.

An additional existence bitmap may be used to indicate whether a bit position in a bitmap is used or not.

Such existence bitmap may also be used to indicate whether a particular record has been deleted without

recreating the whole bitmap index. This mapping mechanism is robust to changes and can be applied to all

bitmap indexes of a table.

In most scientific applications, data records are stored in densely packed arrays [35, 49, 59], therefore, a

more straightforward mapping between the RIDs and positions in bitmaps can be used. Furthermore, most

scientific data contain only fix-sized data values, such as integers and floating-point values, and are stored

in multi-dimensional arrays. In these cases, the array index is a durable mapping between bit positions and

data records. Usually such RIDs are not stored explicitly.

2FastBit software is available from https://codeforge.lbl.gov/projects/fastbit/.

18

The bitmap indexes are particular useful for query-intensive applications, such as data warehousing and

OLAP [66, 112]. One of the key reasons is that queries can be answered with bitwise logical operations on

the bitmaps. In the example shown in Figure 15, a query “A < 2” can be answered by performing bitwise

OR on b1 and b2 (b1 | b2). Since most computer hardware support such bitwise logical operations efficiently,

the queries can be answered efficiently in general. Another key reason is that answers from different bitmap

indexes can be easily combined. This is because the answers from each bitmap index is a bitmap and

combining the different answers simply requires additional bitwise logical operations. Because combining

answers from different indexes efficiently is such an important consideration, a number of DBMS that do

not support bitmap indexes, such as PostgreSQL and MS SQL server, even convert intermediate solutions

to bitmaps to combine them more effectively.

Because results from different indexes can be efficiently combined, a bitmap index is built for one col-

umn only, and composite bitmap indexes for multiple columns are rarely used. This simplifies the decisions

on what indexes to build because one does not need to consider composite indexes. This also simplifies the

query optimization because there are less indexes to consider.

The biggest weakness of the basic bitmap index is that its size grows linearly with the number of distinct

values of the column being indexed. Next we review three sets of strategies to control the index sizes and

improve the query response time, namely, compression, encoding and binning.

6.2 Compression

Each individual bitmap in a bitmap index can be compressed with a data compression method [60]. Any

lossless compression may be used. However, the specialized bitmap compression methods typically offer

faster bitwise logical operations and consequently faster query response time [3, 45]. The most widely used

bitmap compression method is Byte-aligned Bitmap Code (BBC) [4, 5]. More recently, another bitmap com-

pression method called Word-Aligned Hybrid (WAH) code was shown to perform bitwise logical operations

more than 10 times faster than BBC [107, 109].

WAH gains its speed partly from its simplicity. For long sequences of 0s or 1s, it uses run-length

encoding to represent them and for relatively short sequences of mixed 0s and 1s, it represents the bits

literally. Hence, it is a hybrid of two methods. Another key feature that enables it to achieve performance is

that the compressed data are word-aligned. More specifically, WAH compressed data contains two types of

words; literal words and fill words.

A literal word contains one bit to indicate its type and uses the remaining bits to store the bitmap literally.

On a 32-bit word system, it may use the most significant bit to indicate the type of the word, and use the

remaining 31-bit to store the bitmap. A fill word similarly needs 1 bit to indicate its type. It uses another bit

to indicate whether the bits are all 0s or all 1s, and the remaining bits is used to store the number of bits in a

bitmap it represents. The number of bits represented by a WAH fill word is always a multiple of the number

of bits stored in a literal word. Therefore, the length of a fill is stored as this multiple instead of the actual

number of bits. For example, a fill of 62-bits will be recorded as being of length 2 because it is 2 times

the number of bits that can be stored in a literal word (31). This explicitly enforces the word-alignment

requirement and allows one to easily figure out how many literal words a fill word corresponds to during

a bitwise logical operation. Another important property is that it allows one to store any fill in a single fill

word as long as the number of bits in a bitmap can be stored in a word. This is an important property that

simplifies the theoretical analysis of WAH compression [103]. An illustration of WAH compression on a

32-bit machine is shown in Figure 16(a).

Figure 16(b) shows some examples to illustrate the effects of compression on overall query response

time. In this case the commercial DBMS implementation of compressed bitmap index (marked as “DBMS

bitmap index”) uses BBC compression, while “FastBit index” uses WAH compression. The query response

time reported are average time values over thousands of ad hoc range queries that produce the same number

of hits. Over the whole range of different number of hits, the WAH compressed indexes answer queries

about 14 times faster than the commercial bitmap indexes.

19

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

10
1

fraction of hits

q
u

e
ry

 r
e
s
p

o
n

s
e
 t

im
e
 (

s
e
c
)

DBMS B−tree

DBMS bitmap index

FastBit index

(a) an illustration of WAH (b) time (s) to answer queries

Figure 16: The effects of compression on query response time. The faster WAH compression used in FastBit

reduces the query response time by an order of magnitude. (Illustration adapted from [89])

In addition to being efficient in timing measurements, WAH compressed basic bitmap index is also

theoretically optimal. In the worst case, the query response time is a linear function of the number of hits

according to our analysis in [102, 103]. A few of the best B-tree variants have the same theoretical optimality

as the WAH compressed bitmap index [24]. However, bitmap indexes are much faster in answering queries

that return more than a handful of hits as illustrated in Figure 16. Since the basic bitmap index contains the

same information as a typical B-tree, it is possible to switch between bitmaps and RID lists to always use the

more compact representation as suggested in the literature [65]. This is an alternative form of compression

that was found to perform quite well in a comparison with WAH compressed indexes [63].

The bitmap compression methods are designed to reduce the index sizes and they are quite effective at

this. Discussions on how each compression method controls the index size are prominent in many research

articles. Since there is plenty of information on the index sizes, we have chosen to concentrate on the query

response time. Interested readers can obtain more information on discussions on the index sizes in [109, 45].

6.3 Bitmap encoding

Bitmap encoding techniques can be thought of as ways of manipulating the bitmaps produced by the basic

bitmap index to either reduce the number of bitmaps in an index or reduce the number of bitmaps needed

to answer a query. For example, to answer a range query of the form “A < 3” in the example given in

Figure 15, one needs to OR the three bitmaps b1, b2 and b3. If most of the queries involve only one-sided

range conditions as in this example, then it is possible to store C bitmaps that correspond to A ≤ ai for

each of the C distinct values of A. We call C the column cardinality of A. Such a bitmap index would

have the same number of bitmaps as the basic bitmap index, but can answer all one-sided range queries by

reading one bitmap. This is the range encoding proposed by Chan and Ioannidis [21]. The same authors

also proposed another encoding method called the interval encoding that uses about half as many bitmaps

as the basic bitmap index, but answers any range queries with only two bitmaps [22]. The encoding used in

the basic bitmap index is commonly referred to as the equality encoding. Altogether, there are three basic

bitmap encoding methods: equality, range, and interval encodings.

The three basic bitmap encodings can be composed together to form two types of composite encoding

schemes: multi-component encoding [21, 22] and multi-level encoding [86, 108]. The central idea of multi-

component encoding is to break the key value corresponding to a bitmap into multiple components in the

same way an integer number is broken into multiple digits in a decimal representation. In general, each

“digit” may use a different basis size. For an integer attribute with values between 0 and 62, we can use two

20

0 2 4 6 8 10

x 10
7

0

2

4

6

8

10

12

number of hits

q
u

e
ry

 r
e
s
p

o
n

s
e
 t

im
e
 (

s
e
c
o

n
d

s
)

BN

E1

EE

RE

IE

Figure 17: The query response time of five different bitmap encoding methods with WAH compression (BN:

binary encoding, E1: the basic one-component equality encoding, EE: two-level equality-equality encoding,

RE: two-level range-equality encoding, IE: two-level interval-equality encoding).

components of basis sizes 7 and 9, and index each component separately. If the equality encoding is used

for both components, then we use 7 bitmaps for one component and 9 bitmaps for the other. Altogether we

use 16 bitmaps instead of 63 had the equality encoding been used directly on the key values. It is easy to see

that using more components can reduce the number of bitmaps needed, which may reduce the index size.

To carry this to the extreme, we can make all base sizes 2 and use the maximum number of components.

This particular multi-component encoding can be optimized to be the binary encoding [100], which is also

known as the bit-sliced index [64, 66]. This encoding produces the minimum number of bitmaps and the

corresponding index size is the smallest without compression. A number of authors have explored different

strategies of using this type of encoding [20, 112].

To answer a query using a multi-component index, all components are typically needed, therefore, the

average query response time may increase with the number of components. It is unclear how many com-

ponents would offer the best performance. A theoretical analysis concluded that two components offer the

best space-time trade-off [21]. However, practitioners have stayed away from two-component encodings;

existing commercial implementations either uses one-component equality encoding (the basic bitmap index)

or the binary encoding. This discrepancy between the theoretical analysis and the current best practice is

because the analysis has failed to account for compression which is a necessary part of a practical bitmap

index implementation.

A multi-level index is composed of a hierarchy of nested bins on a column. Since a level in such an

index is a complete index on its own, a query may be answered with one or a combination of different levels

of a multi-level index. Therefore, this type of composite index offers a different type of trade-off than the

multi-component index [86, 108]. We will give more detailed information about the multi-level indexes in

the next subsection after we explain the basic concept of binning.

Because of the simplicity of WAH compression, it is possible to thoroughly analyze the performance of

WAH compressed indexes [110]. This analysis confirms the merit of the basic equality encoding and the

binary encoding. Among the multi-level encodings, the new analysis reveals that two levels are best for a

variety of parameter choices. More specifically, it identifies three two-level encoded indexes that have the

same theoretical optimality as the WAH compressed basic index, but can answer queries faster on average.

Figure 17 shows some timing measurements to support the analysis. In this case, we see that two-level

21

encodings (equality-equality encoding EE, range-equality encoding RE, and interval-equality encoding IE)

can be as much as ten times faster than the basic bitmap index (marked E1). On the average, the two-level

encoded indexes are about 3 to 5 times faster than both the basic bitmap index and the binary encoded index

(BN) [110].

6.4 Binning

Scientific data often contains floating-point values with extremely high column cardinality. For example,

the temperature and pressure in a combustion simulation can take on a large range of possible values and

each value rarely repeats in a dataset. The basic bitmap index will generate many millions of bitmaps in a

typical dataset. Such indexes are typically large and slow to work with, even with the best compression and

bitmap encoding. We observed that such precise indexing is often unnecessary since the applications don’t

usually demand full precision. For example, a typical query involving pressure is of the form “pressure

> 2 × 107 Pascal.” In this case, the constant in the query expression has only one significant digit. Often,

such constants have no more than a few significant digits. One may take advantage of this observation and

significantly reduce the number of bitmaps used in a bitmap index.

In general, the technique of grouping many values together is called binning [48, 83, 88, 105]. The

values placed in a bin are not necessarily consecutive values [48]. However, the most common forms of

binning always place values from a consecutive range into a bin. For example, if the valid pressure values

are in the range between 0 and 109, we may place values between 0 and 1 in the first bin, values between

1 and 10 in the second bin, values between 10 and 100 in the third bin, and so on. This particular form of

binning is commonly known as logarithmic binning. To produce a binned index that will answer all range

conditions using one-digit query boundaries, we can place all values that round to the same one-digit number

into a bin3.

A simple way to divide all pressure values between 0 and 109 into 100 bins would be to place all values

between i× 107 and (i + 1)× 107 in bin i. We call them equal-width bins. Since each equal-width bin may

contain a different number of records, the corresponding bitmaps will have varying sizes and the amount of

work associated with them will be different too. One way to reduce this variance is to make sure that each

bin has the same number of records. We call such bins equal-weight bins. To produce such equal-weight

bins, we need to first find the number of occurrences for each value. Computing such detailed histogram

may take a long time and a large amount of memory, because there may be a large number of distinct values.

We can sample the data to produce an approximate histogram, or produce a set of fine-grain equal-width

bins and coalesce the fine bins into the desired number of nearly equal-weight bins.

The multi-level bitmap indexes are composed of multiple bitmap indexes; each one corresponding to a

different granularity of binning. To make it easier to reuse information from different levels of binning, we

ensure that the bin boundaries from coarser levels are a subset of those used for the next finer level of bins.

This generates a hierarchy of bins. To minimize the average query processing cost, the multi-level bitmap

indexes mentioned in the previous subsection always uses equal-weight bins for the coarse levels. These

indexes all use two levels of bins with the fine level having one bitmap for each distinct value. We consider

such indexes to be precise indexes because they can answer any queries with the bitmaps, without accessing

the base data.

Even though, binning can reduce the number of bitmaps and improve the query response time in many

cases. However, for some queries, we have to go back to the base data in order to answer the queries

accurately. For example, if we have 100 equal-width bins for pressure between 0 and 109, then the query

condition “pressure > 2.5 × 107” can be resolved with the index only. We know bins 0 and 1 contain

records that satisfy the query condition, and bins 3 and onwards contain records that do not satisfy the

condition, but we are not sure which records in bin 2 satisfy the condition. We need to examine the actual

values of all records in bin 2 to decide. In this case, we say that bin 2 is the boundary bin of the query

3A caveat: we actually split all values that round to a low precision number x̄ into two bins, one for those round up to x̄ and one

for those that round down to x̄.

22

(a) individual query (b) average time

Figure 18: Time needed to process range queries.

and call the records in bin 2 candidates of the query. The process of examining the raw data to resolve the

query accurately is called candidate checking. When a candidate check is needed, it often dominates the

total query response time. There are number of different approaches to minimize the impact of candidate

checks. One approach is to reorder the expression being evaluated to minimize the overall cost of candidate

checks [88]. Another approach is to place the bin boundaries to minimize the cost of evaluating a fixed set

of queries [48, 77, 76, 75].

Both approaches mentioned above do not actually reduce the cost of a candidate checking operation.

More recently, a new approach was proposed to do just that [111]. It does so by providing a clustered copy

named Order-preserving Bin-based Clustering (OrBiC) of the base data. Since the values of all records

in a bin are organized contiguously, the time needed for a candidate checking operation is minimized. In

tests, this approach was shown to significantly outperform the unbinned indexes. Figure 18 shows some

performance numbers to illustrate the key advantages of the new approach. In Figure 18(a), we see that the

binned index with OrBiC outperforms the one without OrBiC for all query condition tested. In Figure 18(b),

we see how the advantage of OrBiC varies with the number of bins. Clearly, we see that the advantage of

OrBiC is significantly affected by the number of bins used. The analysis provided by the authors can predict

the optimal number of bins for simple types of data [111], but additional work is needed to determine the

number of bins for more realistic data.

6.5 Implementations

The first commercial implementation of a bitmap index was in Model 204 from early 1980s [65], and it is still

available as a commercial product from Computer Corporation of American. A number of popular DBMS

products have since implemented variants of bitmap index. For example, ORACLE has a BBC compressed

bitmap index, IBM DB2 has the Encoded Vector Index, IBM Informix products have two versions of bitmap

indexes (one for low cardinality data and one for high cardinality data), and Sybase IQ data warehousing

products have two versions of bitmap indexes as well. These bitmap index implementations are either based

on the basic bitmap index or the bit-sliced index, which are two best choices among all multi-component

bitmap indexes [110].

There are a number of research prototypes with numerous bitmap indexes [63, 106]. In particular,

FastBit is freely available for anyone to use and extend. We next briefly describe some of the key features

of the FastBit software.

FastBit is distributed as C++ source code and can be easily integrated into a data processing system. On

its own, it behaves as a minimalistic data warehousing system with column-oriented data organization. Its

strongest feature is a comprehensive set of bitmap indexing functions that include innovative techniques in

23

all three categories discussed above. For compression, FastBit offers WAH as well as the option to uncom-

press some bitmaps. For encoding, FastBit implements all four theoretically optimal compressed bitmap

indexes in addition to a slew of bitmap encodings proposed in the research literature. For binning, it offers

the unique low-precision binning as well as a large set of common binning options such as equal-width,

equal-weight and log-scale binning. Because of the extensive indexing options available, it is a good tool

for conducting research in indexing. In 2007, two PhD theses involving FastBit software were successfully

completed, which demonstrate the usefulness of FastBit as a research tool [72, 85]. FastBit has also been

successfully used in a drug screening software TrixX-BMI, and was shown to speed up virtual screening by

12 times on average in one case and hundreds of times in another [80]. The chapter on visualization de-

scribes another application of using FastBit for network traffic analysis. Later in Section 7.3 we will briefly

describe another application of using FastBit in analysis of High-Energy Physics data.

7 Data Organization and Parallelization

In this section, we briefly review a number of data management systems to discuss the different aspects of

data organizations and their impact on query performance. Since many of the systems are parallel systems,

we also touch on the issue of parallelization. Most of the systems reviewed here don’t have extensive

indexing support. We also present a small test comparing one of these systems again FastBit to demonstrate

that indexing could improve the query performance. Finally, we discuss the Grid Collector as an example of

a smart iterator that combines indexing methods with parallel data processing to significantly speed up large

scale data analysis.

7.1 Data processing systems

To access data efficiently, the underlying data must be organized in a suitable manner, since the speed of

query processing depends on the data organization. In most cases, the data organization of a data processing

system is inextricably linked to the system design. Therefore we can not easily separate the data organization

issue from the systems that support them. Next, we review a few example systems to see how their data

organizations affects the query processing speed. Since most of the preceding discussion applies to the

traditional DBMS systems, we will not discuss them any further.

Column-based systems The column-based systems are extensively discussed in Chapter 11. Here, we

will only mention some names and give a brief argument on their effectiveness.

There are a number of commercial database systems that organize their data in column-oriented fashion,

for example, Sybase IQ, Vertica, and Kx Systems [98]. Among them, Kx Systems can be regarded as

an array database because it treats an array as a first-class citizen like an integer number. There are a

number of research systems that uses vertical data organization as well, for example, C-Store [91, 90],

MonetDB [17, 16], and FastBit. One common feature of all these systems is that they logically organize

values of a column together. This offers a number of advantages. For example, a typical query only involves

a small number of columns, the column-oriented data organization allows the system to only access the

columns involved, which minimizes the I/O time. In addition, since the values in a column are of the same

type, it is easier to determine the location of each value and avoid accessing irrelevant rows. The values

in a column are more likely to be the same than values from different columns as in row-oriented data

organization, which makes it more effective to apply compression on data [1].

Special-purpose data analysis systems Most of the scientific data formats such as FITS, NetCDF and

HDF5 come with their own data access and analysis libraries, and can be considered as special-purpose

data analysis systems. By far the most developed of such systems is ROOT [18, 70, 19]. ROOT is a data

management system developed by physicists originally for High-Energy Physics data. It currently manages

many petabytes of data around the world, more than many of the well-known commercial DBMS products.

24

Figure 19: An overview of the MapReduce execution process (adapted from [28]).

ROOT uses an object-oriented metaphor for its data, a unit of data is called an object or an event (of High-

Energy collision), which corresponds to a row in a relational table. The records are grouped into files and

the primary access method to records in a file is to iterate through them with an iterator. Once an event is

available to the user, all of its attributes are available. This is essentially the row-oriented data access. In

recent versions of ROOT, it is possible to split some attributes of an event to store them separately. This

provides a means to allow for column-oriented data access.

ROOT provides an extensive set of data analysis framework, which makes analyses of High-Energy

Physics data convenient and interactive. Its interpreted C++ environment also offers the possibility of in-

finitely complex analysis that some users desire. Since each ROOT file can be processed independently,

the ROOT system also offer huge potential for parallel processing on a cluster of commodity computers.

This is a nice feature that enabled the cash strapped physicists to effectively process petabytes of data be-

fore anyone else could. The ROOT system is now being extensively used by many scientific applications,

and has even gained some fans in the commercial world. More information about ROOT can be found at

http://root.cern.ch/.

MapReduce parallel analysis system The MapReduce parallel data analysis model has gained consid-

erable attention recently [27, 28, 50]. Under this model, a user only needs to write a map function and

a reduce function in order to make use of a large cluster of computers. This ease of use is particularly

attractive because many other parallel data analysis systems require much more programming effort. This

approach has been demonstrated to be effective in a number of commercial settings.

There are a number of different implementations of MapReduce system following the same design

principle. In particular, there is a open-source implementation from the Apache Hadoop project which

is available for anyone to use. To use this system, one needs to place the data on a parallel file system

supported by the MapReduce run-time system. The run-time system manages the distribution of the work

onto different processors, selecting the appropriate data files for each processor, and passing the data records

from the file to the map and reduce functions. The run-time system also manages the coordination among

the parallel tasks, collects the final results, and recovers any errors. An illustration of these steps is shown

in Figure 19 [28].

25

Figure 20: An overview of Netezza architecture (adapted from [26]).

The MapReduce system treats all data records as key/value pairs. The primary mechanism offer in this

model is an iterator (identified by a key). Recall that the ROOT system also provides a similar iterator for

data access. Another similarity is that both ROOT and MapReduce can operate on large distributed data. The

key difference between ROOT and MapReduce is that the existing MapReduce systems rely on underlying

parallel file systems for managing and distributing the data, while the ROOT system uses a set of daemons to

deliver the files to the parallel jobs. In a MapReduce system, the content of the data is opaque to the run-time

system and the user has to explicitly extract the necessary information for processing. In the ROOT system,

an event has a known definition and accessing to attributes of an event therefore requires less work.

The data access mechanism provided by a MapReduce system can be considered as row-oriented be-

cause all values associated with a key are read into memory when the iterator points to the key/value pair.

On structured data, for a typical query that requires only a small number of attributes, a MapReduce system

is unlikely to deliver poorer performance than a parallel column-oriented system such as MonetDB, C-Store,

or Vertica. The MapReduce systems is proven effective for unstructured data.

Custom data processing hardware The speed of accessing secondary storage in the past few decades

practically remain unchanged compared with the increases in the speed of main memory and CPU. For

this reason, the primary bottleneck for efficient data processing is often the disk. There has been a number

of commercial efforts to build data processing systems using custom hardware to more efficiently answer

queries. Here we very briefly discuss two such systems: Netezza [26] and Teradata [29, 6].

Netezza attempts to improve query processing speed by have smart disk controllers that can filter data

records as they are read off the physical media. An high-level illustration of the system is shown in Fig-

ure 20 [26].

In a Netezza server, there is a front-end system that accepts the usual SQL commands, so the user can

continue to use the existing SQL code developed for other DBMS systems. Inside the server, a SQL query

is processed on a number of different Snippet Processing Units (SPUs), where each SPU has its own disk

and processing logic. The results from different SPUs are gathered by the front-end host and presented to

the user. In general, the idea of off-loading some data processing to the disk controllers to make an active

storage system could benefit many different applications [73, 56].

The most unique feature of Teradata warehousing system is the BYNET interconnect that connects the

main data access modules called AMPs (Access Module Processors). The designed of BYNET allows

bandwidth among the AMPs to scale linearly with the number of AMPs (up to 4096 processors). It also is

26

fault tolerant and performs automatic load balancing. The early versions of AMPs are similar to Netezza’s

“smart disk controllers,” however, the current version of AMPs are software entities that utilizes commodity

disk systems.

To the user, both Netezza and Teradata behave as a typical DBMS system, which is a convenience feature

for the user. On disks, both systems appear to be followed the traditional DBMS systems, i.e., storing their

data in the row-oriented organization. Potentially, using the column-oriented organization may improve

their performances. Teradata has hash and B-Tree indexes, while Netezza does not use any index method.

7.2 Indexes still useful

Many of the specialized data management systems mentioned above do not employ any index method.

When the analysis task calls for all or a large fraction, say one-tenth, of records in a dataset, then having an

index may not accelerate the overall data processing. However, there are plenty of cases where indexes can

dramatically speed up the query processing. For example, for interactive exploration, one might selected a

few million records from a dataset with billions of records. Going through the whole dataset to find a few

million is likely to take longer than using an effective index. Another example is in query estimation. Often,

before users commit to evaluate subsets of data records, they may want to know the size of the result and

the possible processing time. This task is usually better accomplished with indexes. Additionally, indexes

may provide a faster way to gather some statistics. To illustrate the usefulness of an index in accomplishing

such tasks, we next give a specific example of answering count queries from the Set Query Benchmark.

The Set Query Benchmark is a benchmark designed to evaluate the performance of OLAP type appli-

cations [67, 63]. The test data contains 12 columns of uniform random numbers plus a sequence number

that serves as row identifiers. Our test uses queries of the form “Select count(*) From Bench Where

...,” which we call count queries [63]. We use a test dataset with 100 million rows instead of the original

specification of 1 million rows. In the test dataset, we also adjust the column cardinality of the two random

columns to be 25 million and 50 million instead of 250,000 and 500,000 as the benchmark specification

indicated. We note that such uniform random values with extremely high column cardinalities are the worst

type of data for the compressed bitmap indexes. The table in Figure 21 contains the names of these count

queries, Q1, Q2A, Q2B, and so on. Each of these queries have a number of different instances that involves

different columns or different query conditions. Figure 21(a) shows the total time to complete all instances

of a query and Figure 21(b) shows the query response time for each instance of Q1.

The query response times are gathered from two systems; one with a compressed bitmap index and the

other with compressed columns but without any index. The bitmap index is from FastBit and the indexless

system is a commercial product that reorders and compresses the base data. This indexless system is adver-

tised as the fastest data processing system. During our testing, we consulted with the vendor to obtain the

best ordering and compression options available at the time. The two systems are run on the same computer

with a 2.8GHz Intel Pentium CPU and a small hardware RAID that is capable of supporting about 60MB/s

throughput.

The time results in Figure 21 clearly indicate that indexes are useful for these set of queries. Overall, one

can answer all the queries about 11 times faster using bitmap indexes than using the compressed base data.

Figure 21(b) shows some performance details that helps to explain the observed differences. The horizontal

axis in Figure 21(b) is the column cardinality. The best reordering strategy that minimizes the overall

query response time is to order the lowest cardinality column first, then the next lowest cardinality column,

and so on. More specifically, the column with cardinality 2 (the lowest cardinality) is complete sorted;

when the lowest cardinality column values are the same, the rows are ordered according to the column

with cardinality 4; when the first two columns have the same value, the rows are ordered according to the

next lowest cardinality column. This process continues on all columns including the column of sequence

numbers. After this reordering, the first few columns are very nearly sorted and can be compressed very

well. Their compressed sizes are much smaller than the original data and Q1 queries (Select count(*)

From Bench Where :col = 2, where :col is the name of a column in the test dataset) can be answered very

27

FastBit index Comp. Data

Q1 1.157 66.436

Q2A 0.540 28.478

Q2B 0.541 28.367

Q3A0 1.004 76.431

Q3B0 4.995 128.688

Q4A0 9.799 5.235

Q4B0 12.784 0.015

total 30.819 333.65
 0

 2

 4

 6

 8

 10

 12

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

Q
u
er

y
 R

es
p
o
n
se

 T
im

e
[s

ec
]

Column Cardinality

Comp. Data

FastBit Index

(a) Total query response time (b) Time to answer Q1 queries

Figure 21: Time needed to answer count queries from the Set Query Benchmark with 100 million records.

quickly. In these cases, the time required by two test systems are about the same. However, when higher

cardinality columns are involved in the queries, the indexless system requires much more time. Overall, the

total time required to answer all 13 instances of Q1 is about 1.2 seconds with the FastBit indexes, but about

66 seconds with the compressed base data. The indexless system works well on queries Q4A0 and Q4B0

because these queries only involve low cardinality columns where the compressed columns are very small.

Note that the bitmap indexes were built on the data that were reorder in the same way that the indexless

system did. Had we not reorder the data and built the bitmap indexes on the data in the original order,

the differences would be smaller because the reordering also helps reduce the sizes of bitmap indexes.

Nevertheless, even without reordering the data, the overall performance of compressed bitmap index is

about 3 times better than the indexless system. In short, the indexes are very useful in some applications;

indexless approaches are unlikely to completely replace systems with indexes.

7.3 Using Indexes to Make Smart Iterators

The previous set of tests demonstrate that one can use indexes to count the number of results of queries.

Next, we present another example where indexes can be used to make “smart iterators” to speed up data

analysis. More specifically, we present a case where FastBit is used to implement an efficient Event Iterator

for a distributed data analysis of a large collection of High-Energy Physics data from STAR.

The Event Iterator was implemented for a plug-in to the STAR analysis framework called Grid Collec-

tor [101, 104]. STAR is a high-energy physics experiment that collects billions of events on collisions of

high-energy nuclei. The records about collisions are organized into files with a few hundred events each.

Most analysis tasks in STAR go through a relatively small subset of the events (from a few thousand of

events to a few million events out of billions) to gather statistics about various attributes of the collisions.

The basic method for analyzing the volumes of data collected by the STAR experiment is to specify a set of

files and then iterate through each collision events in the files. Typically, a user program filters the events

based on a set of high-level summary attributes called tags and compute statistics on a subset of desired

events. The Grid Collector allows the user to specify the selection criteria as conditions on the tags and

directly deliver the selected events to the analysis programs. Effectively, the Grid Collector replaces the

existing simple iterator with a smart iterator that understands the conditions on the tags and extracts events

satisfying the specified conditions for analysis. This remove the need for users to manage the files explic-

itly, reduce the amount of data read from the disks and speed up the overall analysis process as shown in

Figure 22.

In Figure 22(a), we show a block diagram of the key components of the Grid Collector. The main

Grid Collector component can be viewed as an Event Catalog that contains all tags of every collision events

collected by the STAR experiment. This component runs as a server and is also responsible for extracting the

28

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
selectivity

s
p

e
e

d
u

p

Sample 1

Sample 2

Sample 3

Sample 4

(a) Schematics of Grid Collector (b) Speedup using Grid Collector

Figure 22: Using Grid Collector can significantly speed up analysis of STAR data [101, 104].

tag values, building bitmap indexes, resolving conditions on tags to identify relevant data files, locating these

files, and coordinating with various storage resource managers [84] (see Chapter 3 for details) to retrieve the

files when necessary. All of these tasks together delivers the selected events to the analysis code.

In Figure 22(b), we show the observed speedup values versus the selectivity of the analysis task. In

this case, the selectivity is defined as the fraction of events in the data files that are selected for an analysis

task. The Grid Collector speeds up analysis tasks primarily by reducing the amount of disk pages accessed.

Because the selected events typically are randomly scattered in the data files, the data files are compressed

in blocks [18], and the analysis jobs often involve significant amount of computation, therefore, the speed up

is not the inverse of selectivity. However, as the selectivity decreases, the average speedup value increases.

When one out of 1000 events is selected, the speedup values are observed to be between 20 and 50. Even

if one in ten events are used in an analysis job, the observed speedup is more than 2. STAR has hundreds

of users at their various analysis facilities, improving these facilities overall throughput by a factor of 2 is a

great benefit to the whole community.

As mentioned before, other parallel data management systems such Hadoop currently iterate through all

data records as well. A smart iterator similar to that of Grid Collector could benefit such a system as well.

8 Summary and Future Trends

In this chapter, we discussed two basic issues for accelerating queries on large scientific datasets, namely

indexing and data organization. Since the data organizations are typically tied to an individual data man-

agement system, we also briefly touched on a number of different systems with distinct data organization

schemes.

The bulk of this chapter discusses different types of index methods; most of which are better suited for

secondary storage. Applications that use scientific data don’t require simultaneous read and write accesses

of the same dataset. This allows the data and indexes to be packed more tightly than in transactional ap-

plications. Furthermore, the indexes can be designed to focus more on query processing speed and with

less on updating of individual records. In general, scientific data tend to have a large number of searchable

attributes, and require indexes on every searchable attribute, whereas a database for a banking application

may require only one index for the primary key.

After reviewing many of the well-known multi-dimensional indexes, we concluded that the bitmaps are

the most appropriate indexing schemes for scientific data. We reviewed some recent advances in bitmap

index research and discussed their uses in two examples. These examples use an open-source bitmap index

29

software called FastBit. The first example demonstrated the usefulness of indexes by measuring the time

needed to answer a set of queries from the Set Query Benchmark. We saw that FastBit outperforms the best

available indexless system by an order of magnitude. This demonstrates that there are situations where the

use an index significantly improves performance of an application. The second example demonstrated the

use FastBit indexes to implement a smart iterator for a distributed data analysis framework. Since an iterator

is a convenient way to access a large datasets on parallel systems, the example demonstrated an effective

way of using indexes for parallel data analysis.

As datasets grow in size, all data analyses are likely to be performed on parallel computers. Off-loading

some data processing tasks to the disk controller (as the Netezza system does) or other custom hardware

could be an effective strategy to improve the efficiency of query processing. However, advanced indexing

techniques will continue to be an indispensable tool for analyzing massive datasets.

References

[1] D. Abadi, S. R. Madden, and M. C. Ferreira. Integrating compression and execution in column-oriented

database systems. In SIGMOD. ACM, 2006.

[2] A. V. Aho and J. D. Ullman. Optimal partial-match retrieval when fields are independently specified. ACM

Trans. Database Syst., 4(2):168–179, 1979.

[3] S. Amer-Yahia and T. Johnson. Optimizing Queries on Compressed Bitmaps. In International Conference on

Very Large Data Bases, Cairo, Egypt, September 2000. Morgan Kaufmann.

[4] G. Antoshenkov. Byte-aligned bitmap compression. In Data Compression Conference (DCC), March 28 1995.

[5] G. Antoshenkov and M. Ziauddin. Query Processing and Optimization in ORACLE RDB. VLDB Journal,

5:229–237, 1996.

[6] C. Ballinger and R. Fryer. Born to be parallel: Why parallel origins give teradata an enduring perfor-

mance edge. IEEE Data Eng. Bull., 20(2):3–12, 1997. An updatet version of this paper is available at

http://www.teradata.com/library/pdf/eb3053.pdf.

[7] P. Barrett. Application of linear quadtree to astronomical database. Astronomical Data Analysis Software and

Systems IV, 77:1–4, 1995.

[8] J. Bartholdi and P. Goldsman. Continuous indexing of hierarchical subdivisions of the globe. Int. J. Geograph-

ical Information Science, 15(6):489–522, 2001.

[9] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. Acta Informatica, 1:173–

189, 1972.

[10] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.

[11] J. L. Bentley. Mutidimensional binary search tree in database applications. IEEE Trans. Soft. Eng., SE-

5(4):333–337, 1979.

[12] S. Berchtold, C. Bohn, and H-P. Kriegel. The pyramid technique: Towards breaking the curse of dimensionality.

In SIGMOD, pages 142–153, 1998.

[13] S. Berchtold, D. Keim, and H-P. Kriegel. The X-tree: An index structure for high -dimensional data. In VLDB,

pages 28–39, 1996.

[14] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest neighbor” meaningful? In ICDT,

volume 1540 of Lecture Notes in Computer Science, pages 217–235. Springer, 1999.

[15] C. Böhm, S. Berchtold, and Hans-Peter Kriegel. Multidimensional index structures in relational databases.

Journal of Intelligent Info Syst., 15(1):322–331, 2000.

[16] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized for the new bottleneck: Memory

access. In The VLDB Journal, pages 54–65, 1999.

[17] P. A. Boncz, W. Quak, and M. L. Kersten. Monet and its geographic extensions: A novel approach to high

performance gis processing. In EDBT’96, volume 1057 of Lecture Notes in Computer Science, pages 147–166.

Springer, 1996.

30

[18] R. Brun and F. Rademakers. ROOT : An object oriented data analysis framework. Nuclear instruments &

methods in physics research, Section A, 289(1-2):81–86, 1997.

[19] J. J. Bunn and H. B Newman. Data intensive grids for high energy physics, 2003. Available at

http://pcbunn.cithep.caltech.edu/Grids/GridBook.htm.

[20] A. Chadha, A. Gupta, P. Goel, V. Harinarayan, and B. R. Iyer. Encoded-vector indices for decision support and

warehousing, 1998. US Patent 5,706,495.

[21] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation. SIGMOD Rec., 27(2):355–366, 1998.

[22] C. Y. Chan and Y. E. Ioannidis. An Efficient Bitmap Encoding Scheme for Selection Queries. In SIGMOD,

Philadelphia, PA, USA, June 1999. ACM Press.

[23] S. Chaudhuri. An overview of query optimization in relational systems. In PODS’98, 1998.

[24] D. Comer. The ubiquitous B-tree. ACM Comput. Surveys, 11(2):121–137, 1979.

[25] C. Cormen, T. Stein, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Mass.,

2nd edition, 2001.

[26] G. S. Davidson, K. W. Boyack, R. A. Zacharski, S. C. Helmreich, and J. R. Cowie. Data-centric computing

with the netezza architecture. Technical Report SAND2006-3640, Sandia National Laboratories, 2006.

[27] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI’04, 2004.

[28] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–

113, 2008.

[29] D. J. DeWitt, M. Smith, and H. Boral. A single-user performance evaluation of the teradata database machine.

In Proceedings of the 2nd International Workshop on High Performance Transaction Systems, pages 244–276,

London, UK, 1989. Springer-Verlag.

[30] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing - a fast access method for dynamic

files. ACM Trans. on Database Syst., 4(3):315–344, 1979.

[31] P. Ferragina and R. Grossi. The string B-tree: a new data structure for string search in external memory and its

applications. J. ACM, 46(2):236–280, 1999.

[32] M. Freeston. The bang file: a new kind of grid file. In SIGMOD, pages 260–269, 1987.

[33] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys, 30(2):170–231, 1998.

[34] I. Gargantini. An effective way to represent quad-trees. Comm. ACM, 25(12):905–910, 1982.

[35] J. Gray, D. T. Liu, N. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber. Scientific data management in

the coming decade. SIGMOD Rec., 34(4):34–41, 2005.

[36] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt, and Gerd Heber. Scientific

data management in the coming decade. SIGMOD Rec., 34(4):34–41, 2005.

[37] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string

matching. SIAM J. Comput., 35(2):378–407, 2005.

[38] A. Gupta, K. C. Davis, and J. Grommon-Litton. Performance comparison of property map and bitmap indexing.

In DOLAP’02, pages 65–71. ACM, 2002.

[39] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology.

Cambridge University Press, Cambridge, Mass., 1997.

[40] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47–57. ACM, 1984.

[41] R. J. Hanisch, A. Farris, E. W. Greisen, W. D. Pence, B. M. Schlesinger, P. J. Teuben, R. W. Thomp-

son, and A. Warmork III. Definition of the flexible image transport system (FITS). Astronomy and Astro-

physics. Supp. Ser., 376:359–380, 2001.

[42] Hdf5 home page.

[43] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: a fast, efficient data structure for string keys. ACM

Trans. Inf. Syst., 20(2):192–223, 2002.

31

[44] Matthias Jarke and Jürgen Koch. Query optimization in database systems. ACM Computing Surveys, 16(2):111–

152, 1984.

[45] T. Johnson. Performance Measurements of Compressed Bitmap Indices. In VLDB, Edinburgh, Scotland,

September 1999. Morgan Kaufmann.

[46] N. Katayama and S. Satoh. The SR-tree: An index structure for high-dimensional nearest neighbor queries. In

SIGMOD’97, pages 369–380. ACM, 1997.

[47] D. Knuth. The art of computer programming: Sorting and searching, volume 3. Addison-Wesley, Reading,

Mass., 2e edition, 1973.

[48] N. Koudas. Space efficient bitmap indexing. In CIKM’00, pages 194–201. ACM, 2000.

[49] Z. Lacroix and T. Critchlow, editors. Bioinformatics: Managing Scientific Data. Morgan Kaufmann, 2003.

[50] R. Lämmel. Google’s mapreduce programming model - revisited. Science of Computer Programming, 70(1):1–

30, 2008.

[51] P. Larson. Dynamic hashing. BIT, 18:184–201, 1978.

[52] J. K. Lawder and P. J. H. King. Using space-filling curves for multi-dimensional indexing. In BNCOD, volume

1832 of Lecture Notes in Computer Science. Springer, 2000.

[53] M. Lee and H. Samet. Navigating through triangle meshes implemented as linear quadtrees. ACM Transactions

on Graphics, 19(2):79–121, 2000.

[54] W. Litwin. Linear hashing: a new tool for table and file addressing. In VLDB’80, pages 212–223, 1980.

[55] D. Lovelace, R. Ayyar, A. Sala, and V. Sokal. VSAM demystified. Technical Report Redbook Series SG246105,

IBM, 2001.

[56] X. Ma and A. L. N. Reddy. MVSS: An active storage architecture. IEEE Transactions on Parallel and Dis-

tributed Systems, PDS-14(10):993–1005, October 2003.

[57] B. Moon, H. V. Jagadish, and C. Faloutsos. Analysis of the clustering properties of the hilbert space-filing

curve. IEEE Trans. on Knowledge and Data Eng., 13(1), 2001.

[58] D. R. Morrison. Patricia: Practical algorithm to retrieve information coded in alphanumeric. J. ACM, 15(4):514–

534, 1968.

[59] Ron Musick and Terence Critchlow. Practical lessons in supporting large-scale computational science. SIG-

MOD Rec., 28(4):49–57, 1999.

[60] Mark Nelson and Jean loup Gailly. The Data Compression Book. M&T Books, New York, NY, 2nd edition,

1995.

[61] NetCDF (network common data form) home page.

[62] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable symmetric multikey file structure.

ACM Trans. on Database Syst., 9(1):38–71, 1984.

[63] Elizabeth O’Neil, Patrick O’Neil, and Kesheng Wu. Bitmap index design choices and their performance impli-

cations. In IDEAS 2007, pages 72–84, 2007.

[64] P. O’Neil and D. Quass. Improved query performance with variant indexes. In SIGMOD, Tucson, AZ, USA,

May 1997. ACM Press.

[65] P. O’Neil. Model 204 architecture and performance. In Second International Workshop in High Performance

Transaction Systems. Springer Verlag, 1987.

[66] P. O’Neil. Informix indexing support for data warehouses. Database Programming and Design, 10(2):38–43,

February 1997.

[67] P. O’Neil and E. O’Neil. Database: pronciples, programming, and performance. Morgan Kaugmann, 2nd

edition, 2000.

[68] E. J. Otoo. Linearizing the directory growth of extendible hashing. In ICDE. IEEE, 1988.

32

[69] E. J. Otoo. A mapping function for the directory of a multidimensional extendible hashing. In VLDB, pages

493–506, 1984.

[70] F. Rademaker and R. Brun. ROOT: An object-oriented data analysis framework. Linux Journal, July 1998.

ROOT software is availe from http://root.cern.ch/.

[71] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Integrating the UB-tree into a database

system kernel. In VLDB’2000, 2000.

[72] F. R. Reiss. Data Triage. PhD thesis, UC Berkeley, Jun 2007.

[73] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large-scale data mining and multimedia. In VLDB’98,

pages 62–73, New York, NY, August 1998. Morgan Kaufmann Publishers Inc.

[74] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases, With Applications to GIS. Morgan Kaufmann, San

Francisco, 2002.

[75] D. Rotem, K. Stockinger, and K. Wu. Minimizing I/O costs of multi-dimensional queries with bitmap indices.

In SSDBM, Vienna, Austria, July 2006. IEEE Computer Society Press, 2005.

[76] D. Rotem, K. Stockinger, and K. Wu. Optimizing candidate check costs for bitmap indices. In CIKM, Bremen,

Germany, November 2005. ACM Press, 2005.

[77] D. Rotem, K. Stockinger, and K. Wu. Optimizing I/O costs of multi-dimensional queries using bitmap indices.

In DEXA, Copenhagen, Denmark, August 2005. Springer Verlag, 2005.

[78] H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.

[79] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco,

CA, 2006.

[80] J. Schlosser and M. Rarey. TrixX-BMI: Fast virtual screening using compressed bitmap index technology for

efficient prefiltering of compound libraries. ACS Fall 2007 Boston MA, 2007.

[81] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems, 13(1):23–52, 1988.

[82] U. Shaft and R. Ramakrishnan. Theory of nearest neighbors indexability. ACM Trans. Database Syst.,

31(3):814–838, 2006.

[83] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim. Multidimensional indexing and query

coordination for tertiary storage management. In SSDBM, pages 214–225, 1999.

[84] A. Sim and A. Shoshani. The storage resource manager interface specification, 2008.

http://www.ogf.org/documents/GFD.129.pdf (also in: http://sdm.lbl.gov/srm-wg/doc/GFD.129-OGF-GSM-

SRM-v2.2-080523.pdf)

[85] R. R. Sinha. Indexing Scientific Data. PhD thesis, UIUC, 2007.

[86] R. R. Sinha and M. Winslett. Multi-resolution bitmap indexes for scientific data. ACM Trans. Database Syst.,

32(3):16, 2007.

[87] Star: Solenoidal tracker at rhic (star) experiment.

[88] K. Stockinger, K. Wu, and A. Shoshani. Evaluation strategies for bitmap indices with binning. In DEXA,

Zaragoza, Spain, September 2004. Springer-Verlag.

[89] K. Stockinger and K. Wu. Bitmap Indices for Data Warehouses, chapter VII, pages 179–202. Idea Group, Inc.,

2006.

[90] M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers,

and S. B. Zdonik. One size fits all? part 2: Benchmarking studies. In CIDR, pages 173–184. www.crdrdb.org,

2007.

[91] S. Stonebraker, D. J. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,

E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: A column-oriented DBMS. In VLDB’05,

pages 553–564. VLDB Endowment, 2005.

[92] A. Szalay, P. Kunszt, A. Thakar, J. Gray, and D. Slutz. Designing and Mining Multi-Terabyte Astronomy

Archives: The Sloan Digital Sky Survey. In SIGMOD, Dallas, Texas, USA, May 2000. ACM Press.

33

[93] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R. J. Brunner. Designing and mining multi-terabyte

astronomy archives: the sloan digital sky survey. SIGMOD Rec., 29(2):451–462, 2000.

[94] Yannis Theodoridis. The r-tree-portal, 2003.

[95] L. A. Treinish. Scientific data models for large-scale applications, 1995.

[96] J. S. Vitter. External memory algorithms and data structures: Dealing with massive data. ACM Computing

Surveys, 33(2):209–271, 2001.

[97] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search meth-

ods in high-dimensional spaces. In VLDB’98, pages 194–205. Morgan Kaufmann, 1998.

[98] Arthur Whitney. Abridged kdb+ database manual. http://kx.com/q/d/a/kdb+.htm, 2007.

[99] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing, and Indexing documents and

Images. Van Nostrand Reinhold, International Thomson Publ. Co., New York, 1994.

[100] H. K. T. Wong, H.-F. Liu, F. Olken, D. Rotem, and L. Wong. Bit transposed files. In Proceedings of VLDB 85,

Stockholm, pages 448–457, 1985.

[101] K. Wu, J. Gu, J. Lauret, A. M. Poskanzer, A. Shoshani, A. Sim, and W.-M. Zhang. Grid collector: Facilitating

efficient selective access from datagrids. In International Supercomputer Conference, Heidelberg, Germany,

June 21-24, 2005, May 2005.

[102] K. Wu, E. J. Otoo, and A. Shoshani. On the performance of bitmap indices for high cardinality attributes. In

VLDB’2004, 2004.

[103] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient compression. ACM

Trans. Database Syst., 31(1):1–38, 2006.

[104] K. Wu, W.-M. Zhang, V. Perevoztchikov, J. Lauret, and A. Shoshani. The grid collector: Using an event catalog

to speedup user analysis in distributed environment. In Computing in High Energy and Nuclear Physics (CHEP)

2004, Interlaken, Switzerland, September 2004.

[105] K.-L. Wu and P.S. Yu. Range-Based Bitmap Indexing for High-Cardinality Attributes with Skew. Technical

report, IBM Watson Research Center, May 1996.

[106] Kesheng Wu. FastBit reference guide. Technical Report LBNL/PUB-3192, Lawrence Berkeley National Lab-

oratory, Berkeley, CA, 2007.

[107] K. Wu, E. Otoo, and A. Shoshani. A performance comparison of bitmap indices. In CIKM. ACM Press,

November 2001.

[108] K. Wu, E. J. Otoo, and A. Shoshani. Compressed bitmap indices for efficient query processing. Technical

Report LBNL-47807, LBL, Berkeley, CA, 2001.

[109] K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap indexes for faster search operations. In SSDBM,

pages 99–108, 2002.

[110] K. Wu, K. Stockinger, and A. Shoshani. Performance of multi-level and multi-component compressed bitmap

indexes. Technical Report LBNL-60891, Lawrence Berkeley National Laboratory, Berkeley, CA, 2007.

[111] K. Wu, K. Stockinger, and A. Shoshani. Breaking curse of cardinality on bitmap indexes. In SSDBM’08, pages

348–365, 2008.

[112] M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing for data warehouses. In International Conference

on Data Engineering, Orlando, Florida, USA, February 1998. IEEE Computer Society Press.

34

