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Chapter 20

Challenges for Dynamic Heterogeneous
Networks in Observational Sciences

Lisa Singh
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20.1 Introduction
In corporate and scientific domains there exist much data containing interrelated

entities that are linked together. While this data can be analyzed by assuming inde-
pendent instances and ignoring the relationships, the connectivity, relational structure,
~nd associated dependencies can provide valuable insights, leading to potentially
Interesting data mining results with clearer semantics and higher degrees of accu-
racy. Different representations exist for domains with large, feature-rich entities and
~elationships. One natural representation that we consider in this chapter for this
Interconnected data is a graph. In an age of information overload, graphs give us
~ tangible, interpretable construct that allows us to more readily incorporate rela-
tionships into our analysis. We use graphs as the basis for describing models and
abstractions that are useful for state-of-the-art visual mining of public and private
graph data.

But graphs are still a very general construct. What should these graphs look like?
~ow much detail is useful in the graph structure for data mining, more specifically
VISualmining? How much detail should be perturbed or removed in order to maintain
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400 Next Generation of Data Mining

privacy of individuals in a network? Even though simple graphs are easier to analyze
and interpret, more complex graphs are sometimes more beneficial for sophisticated
graph-mining tasks and domain-specific analysis. For example, using multiple node
or relationship types allows for clearer semantic interpretations of clusters and asso-
ciations, incorporates both node features and graph structural properties when build-
ing predictive models, and enables multiple abstractions of the data to help preserve
privacy of individuals and support visual analytics of large graphs.

In this chapter, we consider graph representations and abstractions for dynamic,
heterogeneous networks. A large number of domains contain dynamic, heterogeneous
networks with multiple edge types and relationship types over time, for example,
communication networks, protein interaction networks, social networks, transporta-
tion systems, and observational scientific networks. Here, we focus our discussion
on observational scientific networks. These networks have a number of challenges
for future researchers developing data mining algorithms and visual analytic tools,
including high dimensionality, varying degrees of observational certainty, incomplete
data, and highly fluid, dynamic network structures.

We begin by describing the semantics of the data associated with observational
scientific data sets in the next section. We then discuss a generic graph model that
can incorporate constraints useful for visual and graph mining of data generated by
observational scientists. Section 20.3 presents the current state of visual analytics
and mining as it relates to graph structures and describes both algorithmic and visu-
alization challenges. In Section 20A, we switch gears and consider situations were
the observed graph data need to remain private. This is a difficult problem since there
are many unique features of a graph. We formulate the problem and constraints for
privacy of graphs and identify some of the early work in that arena. Finally, Section
20.5 presents some concluding thoughts.

20.2 Observational Science Motivation
20.2.1 Background Scenario

Observational data is prevalent in many fields including biology, sociology,
medicine, and psychology. We begin by considering a simple observational science
data set where researchers monitor a subject for a specified period of time. Exam-
ple subjects include wild animals, humans, and planets. Each monitoring period
can be viewed as an event consisting of a number of observations. Events include
tracking a group of animals for a 30 min period, conducting a 30 min psycholog-
ical evaluation of a person, and taking a snapshot every minute of the interaction
between a planet and its moons. During a single event, researchers watch the subject
or group of subjects, taking notes throughout the process. Sometimes, computers
are used to record observations, but hand notes are common. These observational
data sets tend to contain a large number of events/observations (thousands to mil-
lions) and features (hundreds to thousands) for a small number of subjects (tens to
thousands).
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It is also not unusual for photos and videos to accompany the more structured
?ata. These data are used for identification of subjects in the wild. For example,
If researchers know that certain monkeys are seen regularly together and suddenly
the group composition changes, photos can be used to see if bites or injuries on
a subject may have caused misc1assification or if the community structure actu-
~l1ychanged. Using network connectivity in conjunction with image data can help
lncrease the quality of observational results and even help correct errors related to
potential duplication. This example also highlights an important feature of obser-
vational data-many measurements in the data contain a time element. This time
dimension is important for exploring questions regarding community stability and
group formation: (l) How stable are these complex graph structures over time? (2)
~hich modes or relationships change most frequently? (3) What is the topological
dIfference between a multi-featured community at time t1 and t2? (4) Why do some
communities grow while others get smaller? For more details on long-term animal
studies, we refer you to studies on dolphins and whales [1], pronghorn [2], and chim-
panzees [3].

20.2.2 Data Representation

The majority of graph-mining algorithms (see Refs. [4,5] for surveys) and visual
mining tools (see Ref. [6] for an overview) designed for graphs are developed for
unimode, unirelation networks, where each node represents an object of a single
type (e.g., an actor/subject, a Web page, or an observation) and each edge represents
a relationship of a single type between two nodes in the network (e.g., friendship,
kinship, or coauthorship) [7]. More formally, for a graph G containing n nodes or
vertices, G = (V,E), where V = {Vl,V2, ... .v»} and E = {(Vi,Vj)!Vi,Vj E V,i I- j,
1 :S i.] :s; n}. Here, V represents a set of nodes of a single type and E represents the
set of relationships or edges of a single type, where each edge is defined as a pair of
nodes from the set V.

However, in the simple example described in Section 20.2.1, four types of objects
exist (observer/scientist, subject, events, and observations within an event), each of
which can be viewed as a different vertex or node type. Also, both observations and
eVents may link to more than one subject at a particular time. Therefore, an extended
network is necessary to capture multiple node types and multiple edge types. Singh
et al. introduced the M*3 model as the basic data model for Invenio, a visual mining
tool for social networks with multiple node types and multiple edge types [8]. In
this model, a relation exists for each node type and each edge type. The relations are
semantically organized based on actors and events, similar to a traditional affiliation
network studied by sociologists. While there are many benefits to the M*3, there are
still some limitations. It does not allow for complex data types (e.g., texts, photos,
and videos). Nodes are simple objects and features of nodes and relationships are
well structured. It also does not incorporate semantics for time-varying networks.
While time can easily be represented as an attribute in the M*3 model, the model
does not support special semantics for aggregation and sophisticated time-varying
analysis of dynamic features.
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Therefore, we advocate a generic model that captures multiple node and object
types (multi-mode), multiple edge types (multirelation), and multiple static and
time-varying descriptive features (multi-feature) associated with each. Formally, a
more generic graph c' that captures any number of node types and edge types can
be represented as G' = {V,E}, where V = {VI, .. "Vnvs}' E = {EI, ... ,EnEs}' and
nvs and nES are the number of node sets and edge sets in d, respectively. The base
case remains a unimode, unirelation graph.

A multi-feature graph has features or attributes associated with each node and each
edge in the graph. Some nodes such as the observation event nodes are temporal and
will also have a time stamp and a duration time associated with them. This will be
crucial for supporting longitudinal graph-mining analysis.

Figure 20.1 shows an example observation network. Each node type is shown as a
different shape. Researchers are circles, observation events are squares, observations
within an event are diamonds, and subjects are triangles. Other possible node types
for these data include photos, geographic locations, and audio clips. For clarity, we
show only one link type between different node types and no links between nodes
of the same type. In reality, many different link types may exist between any twc
nodes in the graph. Each node and each edge in Figure 20.1 also has a set of features
or attributes associated with it. For example, the animal subject nodes may have the
following attributes: birth date, name, gender, mother, father, and pregnancy date for
females.

There are a number of advantages to use a graph model with numerous entity and
relationship types. First, users can represent a rich feature set for nodes and edges.
Next, underlying relational theory supports complex graph structures, allowing users
to translate between different graph topologies and abstraction levels. This means

R1 R2 R3 R4 R5 R6 R7 R8 R9

51 52 53 54 55 56

FIGURE 20.1: Observational network with four node types: researchers (cir-
cles), events (squares), observations within events (diamonds), and animal subjects
(triangles).
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FIGURE 20.2: Unimode projections of Figure 20.1: (a) connections between
animals observed exhibiting the same behavior when observed together and (b) con-
nections between animals seen together in the same event.

that we can use relational algebra to easily create a subgraph that is projected on
a single node type. For our example, we may want to create a unimode network
~f animal subjects. In this case, each node is a particular animal subject and each
lInk represents animals that are observed together. Figure 20.2 shows two exam-
ple projections. Figure 20.2a shows connections between animal subjects that have
been observed together exhibiting the same behavior. Nodes that have a connection
are highlighted in gray. Notice that there are few relationships in this unimode,
~nirelation representation. Figure 20.2b shows the connections between animal sub-
jeers that have been observed together in the same event. Here, all the animals have
been seen with at least one other animal. Inside each node is the number of connec-
tions an animal has to other animals in the network. This network view highlights
the link structure of the animal subject network, without displaying the structure of
events or observations.

20.2.3 Challenging Data Features

While one can focus on any single node type, integrating the data can help explore
methodological questions, data-quality issues, and graph-mining research questions
that are obscured in graphs containing only one node type and one edge type. For
example, are certain subjects oversampled by certain researchers? Answering this
question requires investigation of three node types: researchers, events, and subjects.
. Researchers within disciplines involving observational sciences are interested in
Individual behaviors as well as group dynamics. Because of the large number of
features collected by observational researchers, targeted data exploration is neces-
sary. We have observed that visualization can enhance the process considerably.
Researchers can then visually see the results of sophisticated graph-mining algo-
rithms and determine whether or not clusters and predictions coincide with their
domain knowledge. They can use visual analytics to enhance their understanding
of community structure and alliance creation, information transmission or behav-
ior propagation through the community, and synergies between genetic relationships
and community substructure. Further, observational scientists can use advanced sta-
tistical analysis on robust graph structures to visually discover patterns that may be
difficult to interpret when looking at the statistical results alone.
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There are a number of defining features associated with data generated by obser-
vational scientists. Here, we identify the most relevant.

1. Because the data are observed, it is incomplete by nature. The behavior of
most subjects cannot be monitored 24 h a day. This incomplete ground truth
is very similar to terrorist network data sets, where associations, clusters, and
classifiers need to be developed using partial information.

2. Many of the observed attributes have an element of uncertainty associated with
them. It can occur that a researcher monitoring animals in the field may be
uncertain about a behavior that has occurred (e.g., Was animal Sl petting or
hitting?) or the individuals involved in the behavior (e.g., Was that S2 or S3
that was jumping?). Are the observations reliable? Using the observational
certainty information, is there a relationship between the field condition or the
animal subject and the quality of the observation? These uncertainties need to be
considered so that confidence in associations, clusters, and predictive models are
tempered and new ways to understand and interpret the results are con.sidered.

3. The data are dynamic. Many longitudinal studies of people or animals already
have decades of data. Therefore, they are well suited for investigating changing
community structures or behaviors over time. Information transmission can
also be analyzed in this context. Are behaviors taught based on social rela-
tionships or are they self-learned? How are community structures of promi-
nent subjects, exhibiting given behaviors, changing over time? How does their
community structure compare to the norm of the entire population? Do certain
patterns of behavior occur from generation to generation?

4. These data are feature rich and heterogeneous. The dimensionality is large
compared to other social network data sets (e.g., blogs and e-mail). Which
attributes and relationships are most r.elevant for pattern discovery, clustering,
and classification? Which ones are noisy? How do we integrate knowledge
from diverse types of data, for example, minute by minute focal data and snap-
shot survey data, for mining applications?

5. Researchers have observational bias. When building predictive models from
real data, the sample used is very important. Machine-learning researchers use
different techniques to reduce bias in samples that are used to train classifiers.
If there are a large number of researchers monitoring subjects, observational
bias may be very subtle and difficult to detect. Do some observers have
favorites that are oversampled in the population? When there are teams of
observers, is the terminology consistent across the team, for example, does
"large" mean the same size to all the observers?

6. As more data are collected, graphs will continue to grow. While the number
of subjects in the network may be small, the number of observations, rela-
tionships, and attributes tend to be larger than blog, e-mail, or communication
networks. How do we reduce the graph size prior to exploration while main-
taining the properties necessary for accurate analysis?
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7. Privacy concerns may not apply to wild animals, but they do to patients. If there
are privacy constraints, how must we alter the graph to decrease the likelihood
of a privacy breach while still maintaining a reasonable accuracy for mean-
ingful graph-mining analysis? Which abstractions and perturbation strategies
balance the goals of preserving privacy with the utility of the data?

Computer science researchers in machine learning, data mining, statistics, and
graph theory have begun developing approaches that consider some of these issues.
What is missing is an integrated environment that facilitates data exploration as
~dynamic, iterative process. An important component of this environment is a sophis-
tIcated visual-mining component that incorporates interactive visual exploration of
complex data mining results.

20.3 Visual Mining of Complex.Graphs
One reason why we like graphs is because they are naturally visual. We can look

at.them and begin interpretation before any formal analysis begins. While the visu-
ahzation community has come up with some exceptional visual representations of
n~tworks (see Freeman survey [9] and Keim overview [10] for more details), visu-
ahzation is different from visual analytics and visual mining. Visualization shows
a view of the data and provides certain insight resulting from the interface design
and layout decisions. The benefits are related to the old cliche, "a picture is worth a
thousand words." In contrast, visual mining combines visualization, data mining, and
?ther analytic techniques to support advanced data-exploration tasks [11]. The goal
is to help users sift through and manipulate the data more effectively, particularly
large or complex data sets, to better understand the data space. Visual analytic and
mining tools may serve to help identify and interactively explore clusters or groups,
find common structures in the network, compare roles of different classes of people,
and visually analyze changes to community structures over time. These capabilities
parallel the needs identified in the last section for observational scientists.

20.3.1 Visual Analytic Tools
Over the last few years, numerous toolkits and tools have been developed that use

visualization to help represent patterns and results from mining algorithms graphi-
cally. Tools fall into two categories, those that have sophisticated statistical analysis
Using matrix operations [12-14] and those that focus on interactive visualization of
unimode networks [15-19] and multi-mode, heterogeneous networks [8,20-22].

The first category of tools is less interactive; their strength is the sophisticated
statistical calculations. For example, VCINet calculates social network centrality
measures, permutation-based statistics, matrix algebra, and multivariate statistics
[13]. StOCNET calculates some similar metrics, but focuses on using stochastic
methods to analyze longitudinal data [14]. Finally, Pajek contains sophisticated block-
modeling to support analysis of large networks [12].
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The more interactive tools lack the sophisticated statistical analysis, but allow
users to switch between different visual layouts and levels of data detail with ease.
Some tools look at the entire network, while others focus on a piece of the network.
Views of graph data range from the more traditional node-edge views similar to
Figure 20.1 [8,15,l7,18,20,21] to tree-structure representations of subgraphs in the
network [19], maps, histograms and nested rectangles [16], and hybrids [22].

Various toolkits have also been developed to help programmers create interactive
visualizations and visual-mining tools themselves. The most robust include JUNG
[23], Prefuse [24], Piccolo [25], and GUESS [26]. These toolkits support the rapid
development of graphic-based applications. JUNG has the largest support for graph
mining and path algorithms. Prefuse contains a large number of visual layouts for
graphs. Piccolo allows developers to create applications that incorporate different
visual and graphic features beyond network-based visualizations with ease. Finally,
GUESS contains database support and a simple query language that can be used to
focus on analysis and easily change the perspective of a graph.

Even though the tools we have described identify patterns in the graph, zoom in
on interesting groups or clusters in the graph, and allow for interactive exploration
of the graph, we are missing visual analytic tools that allow us to answer sensitiv-
ity or what-if questions: What if we remove this node from the network? What if
we add a new member to this clique? What nodes need to be added or removed so
the distribution of node degree approximates a power law distribution? These ques-
tions are very relevant to group and network stability, information flow, and network
characterizations.

While a wealth of tools exist for visualization of graph structures, approaches that
integrate measures and algorithms from graph theory with interactive visualizations
are still in its infancy. Therefore, the next step is to tightly integrate data mining
and visualization so that user-selected subsets and abstractions of the graph can be
used as inputs into different data mining algorithms and intermediate results can be
visually explored and manipulated, iteratively. Accomplishing this using a flexible
framework with a high degree of interactivity that supports a range of analytic tasks
is still an open question. One reason is that a platform of this magnitude transcends
cutting edge research in many areas of computer science, requiring sophisticated data
management and indexing schemes, robust software engineering design, alternative
visual paradigms, and scalable statistical and graph-mining procedures.

20.3.2 Developing Metrics for Understanding Complex Structures

Many measures have been developed for characterizing structural or topological
features of a graph. Centrality measures are those that are node specific. Some of
the more well-known ones include degree (the number of connections an arbitrary
node Vi has to other nodes in the network), clustering coefficient (an indicator of
the number of neighbors of node Vi that are connected to each other), betweenness
(a metric based on the number of shortest paths going through node Vi), and eigen-
vector (a metric that determines Vi'S relative importance in the network based on the
importance of its neighbors). More general graph invariants include the number of
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nodes, the number of edges, the graph density, and the diameter of the graph (the
longest shortest path in the graph) [7] .
.While all these metrics and properties are very important for understanding cer-

tam abstraction levels of the graph, not all nodes and edges have the same intrinsic
properties in heterogeneous graphs. Understanding the relationship between differ-
ent node types (modes) and relationship types is necessary to understand the detailed
~ynamics of the network and the effects of specific graph invariants and proper-
ues ,within and across modes. Therefore, in order to mine heterogeneous networks,
We need to extend the unimode, unirelation measures to meaningful multi-mode,
multirelation measures. As an example, Singh et al. developed a measure for
multi-mode hop expansion [27]. This centrality metric identifies neighborhood size
of different modes at different distances from each node Vi. This information can be
used to see which nodes have similar positions in the network in terms of distances
to other nodes in different modes.

Building on this work, we suggest developing measures that take varying edge
~ypes, node types, and feature distributions into consideration. Possible examples
Include multiedge path length (the number of edges traversed between two nodes in
a multi-relational path), strength of connections (frequency and duration of different
tYpes of interactions), multi-mode density (a measure of the number of edges con-
necting nodes in different modes as a fraction of the total number of edges in the
graph), transmission rate (path lengths of feature value expansion through differ-
ent modes), and network turnover (a longitudinal measure that captures affiliation
changes over time) .
. With these topological metrics, we can use the structure to understand the growth

dIstribution of temporal networks. We can analyze the effect of growth rates in one
mode on growth rates of others and consider the relationship between attribute fea-
tures and structural properties of the network. While physicists have been studying
the dynamics of network formation and growth [28,29], only the simplest of models
are understood. Those findings need to be extended to more complex structures and
Specialized metrics for measuring individual local community and global network
statistics will be vital for exploration of heterogeneous graphs. As we describe in the
next section, for large graphs, these metrics can also be useful for eliminating irrel-
eVant or noisy parts of the graph prior to execution of graph-mining algorithms. We
now consider possible preprocessing of large graphs.

20.3.3 Preprocessing Prior to Visualization
It is difficult to interpret a graph with a large number of nodes and edges. If the

network is well connected, the initial visualization using a traditional layout may
appear to be a large black ball containing hundreds if not thousands of nodes. Statis-
tics of node distributions and connectivity structure are useful, but visual analysis
of such a large graph is limited. Therefore, initial preprocessing of the graph to
identify important components of the graph, hiding irrelevant data, for the specific
task of interest makes the problem more tractable [30]. Many techniques have been
used to find the important nodes including the following: using structural metrics
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that' capture important attributes of the graph [31,32], using clustering algorithms
and blockmodeling to decompose large structures on attribute features or graph-link
information [33], applying known compression techniques to graph structures [34],
and using graph-matching techniques to identify substructures of interest [35].

Several proposed methods for classification of network objects consider the
link structure of the network (see Getoor survey [36]). When considering link-
based approaches for prediction in heterogeneous networks, the logical relationship
between objects and the probabilistic dependencies between attributes may cause a
huge search space for subgraph mining. By removing some of the less relevant com-
ponents of the data, we can improve predictive accuracy of classifiers and extract
smaller, more meaningful clusters and graph substructures from the data, enabling
analysts to focus on the most meaningful set of patterns.

In previous work, we showed that predictive accuracy can be maintained on affili-
ation network (two- mode network) objects if instead of random pruning, the network
under consideration is pruned or reduced in size based on attribute values or struc-
tural properties like degree and betweenness [32,37]. The goal here was to maximize
predictive accuracy on attributes of event nodes in affiliation networks. Standard clas-
sifiers were built using pruned networks, where edges were removed based on cen-
trality measures of nodes in the network, feature values, and random sampling. Two
affiliation-network data sets were analyzed, an executive corporation network con-
taining board of directors information for a subset of companies traded on the NAS-
DAQ and the NYSE, and an author publication network based on the ACM SIGMOD
anthology. For both data sets, pruning on descriptive attributes and graph invariants
outperformed random pruning. Further, the underlying networks created using these
pruning strategies had significant differences, meaning that each strategy was opti-
mized differently. This finding is also consistent with Airoldi and Carley [38]. They
found that pure network topologies are sensitive to random sampling.

Still, further investigation is necessary to determine the role topological structure
plays in dynamic, heterogeneous networks in terms of graph-mining accuracy. Is
structure less of a predictive indicator for multi-mode networks? Given that no one
pruning approach will work across data sets, we suggest selecting a pruning approach
prior to subgraph extraction and classification based on local, structural graph invari-
ants (hop expansion, clique structure, clustering coefficient, etc.) and node-specific
feature measures (behaviors, gender, lineage, etc.). We can then compare the struc-
tural similarities and the predictive accuracies of these pruned networks to the full
network to, better understand the strengths and weaknesses of the different pruning
strategies on networks with specific topological structures.

20.3.4 Graph Mining Applicability to Observational Sciences

Many algorithms have been developed to uncover community substructure, flow
of information, and prominent node identification on unimode networks with few, if
any, features associated with each node. In the case of unimode networks, various
local and global network statistics are used to help interpret network relationships,
influence, clusters, or flows. For a recent survey, see Newman [30].



Challenges for Dynamic Heterogeneous Networks in Observational Sciences 409

There are a number of problems being explored in the graph-mining community
that can benefit from interactive visual analytics and are applicable to research con-
dUcted by observational scientists. Here, we describe the most relevant and explain
their significance to this domain.

Hi.dden community identification or group clustering. This problem involves identi-
Iying groups of individuals or clusters of individuals that interact frequently together
or share some common properties [39--44]. For example, if a scientist is observing
a community of monkeys, he may identify a few pockets of 5-10 monkeys that
play together regularly. Other significant features may be how often they play or
the location where they play. Different unsupervised algorithms have been proposed
f?r identifying hidden communities, including approaches based on subgraph iden-
tIfication, exhaustive search, and greedy heuristics. This problem also has similarity
to the graph cut problem [45]. A tangential line of work investigates changes in com-
munity structure over time [46--48] and longitudinal network analysis that examines
changes to network structural properties over time [7,49]. The networks being used,
~or the analysis contain a single node and a single edge type. We are also interested
In extracting unknown or hidden substructures across features and relations. To this
end, Cai and colleagues [50] used a linear combination of weighted matrices for each
relation to extract unknown community substructures. Because of the volume of data
that needs to be analyzed when multiple relations are combined, the preprocessing
Options discussed in Section 20.3.3 are very relevant here.

Information diffusion and transmission. Here researchers investigate how informa-
~ion spreads through a network [29,51-53]. These papers attempt to find the most
Influential nodes in the network. How fast will information disseminate if we tell the
right people? Who are the right people? Two well-known applications are disease
transmission and viral marketing. For animals, behavior transmission is an important
a~plication. Approaches included using a global, probabilistic model [51], using a
dIffusion process that begins with an initial set of active nodes and adds neighbors
based on different weighting schemes [52], and using graph invariants [53].

~roup formation. The growth of communities in a network and the likelihood that
Individuals will join a particular community has dependencies to the underlying net-
work structure. Given members in groups, what are the structural features that influ-
~nce whether an individual will join a particular group? Can we use topological
Information to determine whether a group will grow or whether the group focus will
change? The groups and communities can be viewed as subgraphs of the network,
growing and overlapping in complex ways [48,54,55].

Detecting and matching subgraph patterns. In observational sciences that monitor
groups of animals, researchers are interested in matching patterns of animal groups
based on subgraph structure and feature distributions of nodes and links in a network.
For example, does the calf's network emulate that of her mother and is it dependent
on the sex of the offspring? The subgraph isomorphism problem looks at matching
exact graph structures between two different graphs [56]. Many algorithms have been
developed for finding subgraph patterns in massive unimode graphs. Approaches
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include greedy algorithms [57] and indicative logic programming approaches [58].
For visual exploration, it is important to integrate these approaches with meaningful
visualization that can help detect stable subgraphs for more dynamic networks.

Understanding network growth. Many social networks, including the World Wide Web,
follow a power law growth distribution [28,59,60]. In order to better understand the
growth distribution of temporal heterogeneous networks created from observational
scientific data, we need to analyze how growth rates of one relationship or mode
affect the growth rates of others and consider how different attribute features relate to
the structural properties of the network. How do growth rates of these more complex
networks compare to growth rates of known unimode, unirelation networks?

20.4 Complex Social Networks and Privacy

As if the horizon was not complicated enough with the heterogeneity of the data,
the dynamic nature of the data, and the graph mining and visual analytic complex-
ities of working with large observational data, a need sometimes exists to keep the
identities of the individuals in the data private. While wild animals do not have any
well-established privacy rights, human subjects have varying levels of guaranteed
privacy. In this scenario, the data need to be released for graph-mining analysis, but
some level of privacy must be maintained.

While privacy preservation of data mining approaches has been an important
topic for a number of years (see Verykios et al. [61] for an overview), privacy of
multirelational medical and social network data is a relatively new area of interest
[62-65]. One reason is its complexity. Social networks, human or animal, are not
random. This is one reason that anonymization alone is not sufficient for hiding
identity information on certain real-world data sets [62,63]. These networks contain
topological structures that are identifying marks of the network. If we analyze an
unlabeled graph of the Web link structure, finding the Google homepage node may
be straightforward because of its dense incoming link structure. This is an example
of a unimode network. If we consider complex networks containing more unique
features, identification of individuals in the network becomes easier.

How do we combat this? To what degree is network topology a factor compared to
node and edge features? Are relationships between nodes more apparent when local
neighborhoods have certain topological structures? How can we use the topological
structure of complex networks to measure the level of anonymity in the network? To
study some of the behaviors associated with social networks, how accurate do the
network measures need to be for data mining applications, for example, clustering,
community discovery, prominent-node identification, etc. In other words, how much
error in the released data is acceptable? While we anticipate many of these topics will
be explored soon for unimode networks, a far-reaching goal is to consider privacy
preservation in the context of dynamic, heterogeneous networks.

In order to begin to answer these questions, we must first define "What constitutes
a privacy breach?" While this may seem straightforward on the surface, many of the
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authors that have written on this topic have defined different types of adversaries
and breaches. In the remainder of this section, we explore different types of attack
models, adversaries, and privacy breaches.

Graphs have a great deal of variation. This variation is particularly important in
t?e context of privacy. One may release a single graph or multiple graphs at different
time points, depending on the analysis task. Irrespective of the number of graphs,
What are the properties of the nodes and edges being released? How many object or
node types are there in the network? How many relationship or edge types are in the
network? Do the objects or relationships have features?

As the complexity of the data increases, the data become more unique. These
unique components can be exploited by adversaries. The goal of any adversary is to
determine the identity of one or more individuals or relationships in the social net-
Work. In previous work, we investigate ways to determine the level of uniqueness
of nodes and edges in a unimode graph by introducing a metric called topological
anonymity [66]. This measure combines different structural components, variations
of degree, and clustering coefficient to measure the hideability of nodes in the net-
Work. If the hideability is low, then perturbation strategies [62,63,65] or abstractions
of the original graph [64] need to be investigated.

Since adversaries have varying degrees of information about the original social
network, we need to define different adversaries based on their background knowledge.
Example adversary-background models include (1) a single adversary that is amember
of the network and knows his own degree; (2) a single adversary that is a member of
the network, knows own degree, and degree of some neighbors; (3) a single adversary
that is a member of the network, knows own degree, and knows if his neighbors are
connected; (4) a single adversary that is a member of the network and has insight about
a community within the network; (5) a single adversary that is not part of network, but
has insight about a community within the network; and (6) two or more adversaries
COlluding and having varying degrees of information based on Models (l )-(5).

Any of the adversaries listed above may attack the network in different ways. Two
Possible types of attacks are passive and active [62]. A passive attack occurs when the
adversary is trying to learn the identity of nodes after the data are released. In other
Words, the adversary does not have access to the data before they are released. An
active attack occurs when the adversary adds an arbitrary set of nodes to the original
data. Edges are placed in a unique structure to targeted users that the adversary wants
to identify. Once the data are released, the adversary then looks for a pattern of
connections that correspond to a subgraph created by the adversary.

Finally, how can we maintain some level of privacy if a subset of nodes and edges
can be labeled correctly by adversaries? As previously mentioned, if the data have
breached nodes or edges, then the graph either needs to be altered through perturba-
tion or deletion or generalized, that is, abstracted to hide the individual details of the
data. The better approach depends upon the mining task that needs to be executed
on the released graph. If the strategy we choose alters the graph significantly, the
results of the data mining algorithm will be inaccurate and useless. Further, because
real-world graphs have many nodes with more unique centrality measures, random
perturbation strategies have a large effect on the accuracy of the released graph [63].
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Strategies that incorporate the distribution of the graph invariants into the perturba-
tion strategy may perform better. More research is necessary in this area.

k-Anonymity was introduced for privacy preservation of independent, unlinked
data records. Using this approach, each individual should not be distinguishable from
k - 1 other individuals [67]. However, because our nodes are not independent and are
linked together, we believe k-anonymity as identified in Ref. [67] is difficult to achieve
in graphs where clear semantic dependencies exist in the data. We feel that it is even
more difficult for the newer metrics of i-diversity [68] and z-closeness [69]. Two nodes
that are indistinguishable across some node structural metrics or whose distribution is
similar across different structural attributes do not guarantee that they are across other
nodes, particularly path-related measures for nodes in the network. However, if we
limit anonymity to local neighborhood structure of a node, k-anonymity, l-diversity,
and t-closeness can be an important metrics for improving privacy of a graph.

20.5 Final Thoughts

While we are still investigating ways to analyze simple networks with a single node
type and a single edge type, the complexity of today's network data forces us to begin
thinkingofwaystohandleandanalyzemoreheterogeneousdata.Inordertominethedata,
we need to develop robust models that capture the interconnected nature of the data, while
allowing for the inclusion of complex features and time-varying attributes. Integrating
longitudinal statistical analysis, graph-mining exploratory analysis, and visual analytic
approaches to interpret complex, heterogeneous networks with incomplete, uncertain
data and potentially, additional privacy constraints is an outstanding challenge. In
2006, a group of data mining researchers created a list of the top 10 data mining
challenges [70]. The integration proposed here encompasses portions of six of the
challenges mentioned. While researchers are working on these challenges, harnessing
and integrating the advances in different areas of computer science in a meaningful,
intuitive way are difficult. However, these advances in computer science are necessary
to help researchers in other sciences advance their fields at a faster pace than they can
today. As the last decade has shown, baby steps in computer science can translate to
large strides in other disciplines.
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