Unsupervised Self-Organizing Texture Descriptor

Marco Vanetti & Ignazio Gallo & Angelo Nodari

Dipartimento di Scienze Teoriche e Applicate, Universita“ degli studi dell’Insubria

We propose a local texture descriptor based on a pyramidal composition of Self Organizing Map (SOM). As
with the SOM model, our visual descriptor presents two operational steps: a first unsupervised learning phase
and a second mapping phase involving a dimensionality reduction of the input data. During the first step a large
number of image patches, including different classes of textures, are presented to the model. At the end of
the learning process the neural weights on each layer of the SOM pyramid will contain good prototypes of the
patches used in training at different level of detail. During the mapping phase a new texture patch is presented
to the model and, by using a winner take all principle, a winner neuron is selected and its 2D spatial location is
used to describe the input patch. Exploiting the topological order of the SOM, two different texture descriptions
can be compared using the common Euclidean distance. In the experimental section we show that a simple
clustering algorithm like K-means, applied to the local descriptor responses, is able to segment complex texture
mosaics with very good results, even in difficult areas like boundaries which separate two different textures.

1 INTRODUCTION

In order to automatically produce a description of a
natural image, a fundamental role is played by texture
descriptors. Images representing real objects often do
not exhibit regions with uniform intensities but, due to
the physical properties of real surfaces, they contain
frequent variations of brightness which form certain
repeated patterns called visual texture or more simply:
texture.

Over the years, many problems involving texture
analysis have been proposed, the main ones are listed
below. Texture classification aims to produce a clas-
sification map of an image where each uniform tex-
tured region is identified by a particular texture class
which belong to. Texture segmentation is focused on
finding texture boundaries even if it is not possible to
classify each region. Figure 1 shows an example of
unsupervised texture segmentation obtained applying
a K-means clustering to the local descriptor proposed
in this paper. Texture synthesis is used for image com-
pression applications and in computer graphics, with
the aim of rendering object surfaces which need to be
as realistic as possible. Finally, with shape from tex-
ture, we aim to extract the three-dimensional shape
of objects in a scene using texture information, dis-
torted by imaging process and the perceptive projec-
tion (Tuceryan and Jain 1998). Despite the final pur-
pose is quite different, each of the problems listed
above requires a texture descriptor, which becomes an

Figure 1: Segmentation between two areas with dif-
ferent textures obtained using the proposed descriptor.
Segmentation border is depicted with a white line.

essential tool in many applications.

A common denominator for most successful tex-
ture descriptors is that the textured image is submit-
ted to a linear transform, filter or filter bank. Meth-
ods using this common scheme are called filtering ap-
proaches, and received an extensive survey in (Ran-
den and Husy 1999), a comparative study where vari-
ous filtering approaches have been evaluated within a
texture classification framework.

An important issue that characterizes most of the
filtering approaches is the selection of an appropriate
filter bank. The most commonly are the Gabor filters,
inspired by experiments with animal visual systems
(Daugman 1980), and signal-processing based filters,
designed with desirable band-pass properties in the



Fourier domain (Bovik 1991). However, the optimal
choice of a filter bank is often influenced by the par-
ticular application and may require a lot of experi-
mentation.

A simple and promising strategy to combine multi-
ple filters, resulting in a compact description of the
texture, is the spectral histogram, first suggested in
psychophysical studies on texture modeling (Bergen
and Adelson 1988) and later used for texture analysis
and synthesis (Heeger and Bergen 1995) (Zhu, Wu,
and Mumford 1997). Spectral histogram is based on
the assumption that all of the spatial information char-
acterizing a texture image can be captured in the first
order statistics of an appropriately chosen set of lin-
ear filter outputs. Spectral histogram can also be used
as a local descriptor, using and appropriately sized in-
tegration window, in this case the descriptor is often
called Local Spectral Histogram (LSH).

LSH is a powerful local texture descriptor, able to
seize general aspects of texture as well as non-texture
regions. In (Liu and Wang 2006) a LSH based on a
filter bank based composed of eight filter (pixel in-
tensity, two gradient filters, two-scales Laplacian of
Gaussian and three Gabor filters) has been used for
texture segmentation, attaining the state of the art in
the field of unsupervised texture segmentation meth-
ods based on filter bank.

The main drawback of LSH is that it requires large
integration windows to extract meaningful texture
features from the image, this results in a poor relia-
bility of the description along texture boundaries. A
solution to the aforementioned problem has been pro-
posed in (Liu and Wang 2006) by using asymmet-
ric windows and a refined probability model based
on seed points automatically extracted from the seg-
mented regions.

Some work tried to generalize the methods based
on multichannel filtering by training: in a supervised
fashion, a neural network in order to find a minimal
set of specific filters. These methods may delegate to
the neural network the dual task of extracting features
and classifying textures (Jain and Karu 1996) (Kim,
Jung, Park, and Kim 2002), or perform separately the
second phase using a most powerful classifiers such
as Support Vector Machines (Melendez, Gironés, and
Puig 2011).

In this paper we propose an innovative texture de-
scriptor, based on a pyramidal composition of Self Or-
ganizing Map (SOM) (Kohonen 1990), that is capable
of extract a powerful local texture feature from an im-
age without requiring any supervision or handcrafted
filter bank. The pyramidal nature of the approach per-
form an image analysis using pixel contexts which be-
come progressively larger. At each layer of the pyra-
mid, only the most relevant feature for the particular
context will be extracted by the SOM and the image
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Figure 2: Two dimensional SOM.

will be “redrawn”, for the upper layer of the pyramid,
deprived of redundant information.

Considering the complexity of the non-linear di-
mensionality reduction introduced by each SOM, the
validity of the proposed approach is difficult to prove
analytically. However, to evaluate the method, we
used a very simple unsupervised texture segmentation
strategy, based on a K-means clustering algorithm.
In this way we highlight the goodness of the pro-
posed descriptor, excluding contributions attributable
to a supervised machine learning method or a post-
processing/refinement phase.

This work is organized as follow. In Section 2 is de-
scribed the proposed texture descriptor, based on the
SOM unsupervised learning method. In Section 3 are
shown and discussed experimental results, using the
K-means clustering algorithm for texture segmenta-
tion. Finally, Section 4 gives the conclusions.

2 PROPOSED DESCRIPTOR

As discussed in Section 1, the proposed descriptor is
based on a pyramidal composition of SOM. SOM is
an artificial neural network first proposed by Teuvo
Kohonen in early 1981, able to produce, without su-
pervision, a spatially organized internal representa-
tion of various features of input signals (Kohonen
1990). As depicted in Figure 2 we employ a two di-
mensional SOM, composed of a 2D lattice of neu-
rons, each of which is fully connected to the in-
put layer through a series of weighted links w; =
[wﬂ, Wi,y ... ,wm]T where 0 < Wy S 1, 1 18 the index
of a single neuron and 7 is the dimension of the input
data.

The proposed method involves an initial training
phase, where a large number of training vectors are
presented to the network and the neural weights are
updated according to a particular rule. Training vec-
tors are extracted from the input image using an over-
lapping sliding window approach, the window shall
henceforth be called context window.

A training vector is composed of the inten-
sity/brightness values of pixels within the context
window and denoted by b = [by, by, ..., b,]T where



0 < b; <1 and n is the total number of pixels. The in-
put image will be properly border-padded’ so that, in
total, H - W training vectors will be extracted, where
H 1is the height and W is the width in pixels of the
image.

Let us describe now how the unsupervised learn-
ing happens. By presenting a new input vector to the
SOM, a single neuron k will be activated in a par-
ticular location of the network, we call this neuron
“winner”. The winner selection occurs by satisfying
the following identity:

b — wi| = min {[[b — wi[|} (1)

The step just described is followed by the update of
the weights in the neighborhood of the winner neuron.
The update is described by the following equation:

Wi(t + 1) = Wi(t> + Ozhik [b(t) - Wi(t)] (2)

Referring to the equation 2, « is a scalar constant
called adaptation gain or learning rate, 0 < o < 1,
and the function h;; is a scalar ’bell curve” kernel
function defined as:

2
hix = exp (——”q‘ | ) 3)
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where the vectors qx = [qxr, qke] and @i = [gir, Gic]
denote the coordinates of the winning neuron k£ and
the neuron to be updated ¢, and the 7 in subscript is in
reference to the row number inside the neuron lattice
and c refers to the column number. Scalars o and «
can be chosen as time-variable functions, monotoni-
cally decreasing with iterations.

At the end of the training phase, the spatial loca-
tion, represented by the coordinates of each neuron
in the network, corresponds to a particular domain
or feature of input signal patterns (Kohonen 1990)
and the weights of each neuron contain a good pro-
totype of the input patches (Gersho and Gray 1992).
By using a small window of local context around
each pixel, the proposed method tries to discover local
salient features from the image.

Once the SOM is trained, its neural weights w can
be treated as constant values, and employing the same
sliding window approach used during the previous
training phase, we can map each pixel of the input
image in the two dimensional Euclidean space of the
activated neurons within the SOM lattice. Using again
Equation 1, we thus generate a new image with two
channels, the first dependent on the row number of the
winner neurons and the second on the column num-
ber. The new image, that we call remapped image, can

"'We used a “mirror” border padding strategy, as explained in
(Szeliski 2010).

Table 1: Parameter configuration of the model pro-
posed in the experiments.

Context Window SOM size

size (pixels) (neurons)
Layer1 2x2 10 x 10 1 0.1
Layer2 4 x4 15 x 15 3 0.01
Layer3 8 x8 15 x 15 3 0.01

be formally calculated from the input image Iy(z,y)
using:

Ii(x,y) = [Q_}lc%r’ %]T

where, for each pattern b centered on the pixel (z,y)
of the input image [, the winner neuron k is found us-
ing Equation 1. R and C refer to the size, in rows and
columns, of the neural lattice. Note that /; is a two-
channels image, therefore each pixel contains two in-
tensity values.

Since each pattern is extracted by simply concate-
nating the values of the pixels within the context win-
dow, the input image can have an arbitrary number
of channels. In this way the learning process and the
subsequent remapping can be performed iteratively
on more layers, following a pyramidal approach. For
each layer of the pyramid, the parameters involved are
the context window size, the size of the SOM and the
learning parameters o and «. Figure 3 graphically ex-
plains the remapping strategy just described.

In the following section we show a sample config-
uration based on three layer and applied to some real
and synthetic images.

4)

3 EXPERIMENTS

To test the proposed method, we used a configuration
based on a three-layers pyramid, with a context win-
dow of 2 x 2 pixels for the layer that operates on the
input image. The second layer involves a 4 X 4 con-
text window and the third layer further doubles the
window size. Table 1 collects the parameters used for
experiments. The SOM parameters were chosen pri-
marily taking into account the size of the input pat-
tern. Note that a 15 x 15 sized SOM contains about
twice the neurons of a 10 x 10 sized SOM.

Using the architecture described above, the overall
training/mapping pipeline can be schematized as fol-
lows: (1) the first layer is trained using the input im-
age [y, (2) the first layer performs the remapping, (3)
the second layer is trained using the remapped image
provided by the first layer /1, (4) the second layer per-
forms the remapping, (5) the third layer is trained us-
ing the remapped image provided by the second layer
I5, (6) the third layer performs the final remapping
providing the output image /3.

To evaluate the proposed texture descriptor, we em-
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Figure 3: Schema representing the image remapping strategy, performed exploiting the SOM competitive be-

havior.

ployed a simple segmentation strategy based on the
K-means algorithm. Pattern set was created by con-
catenating pixel intensities from the last layer to their
normalized coordinates, in order to create a raw topo-
logical constraint. Formally:

P=UU (s[5 2])  ©

z=0y=0

Figure 4(a) depict a 5-texture mosaic used in (Liu
and Wang 2006) to test an unsupervised segmenta-
tion method. The authors have obtained a 3.90% error
using a LSH texture descriptor with a 19 x 19 pix-
els integration window and a filter bank composed
of one intensity filter, two gradient filters, two-scales
Laplacian of Gaussian and three Gabor filters. By
applying a refined probability model to localize the
region boundaries, they have reduced the error to
0.95%. The proposed method performs with an error
of 1,83%, Figure 4(e) shows the resulting segmenta-
tion, the ground truth segmentation and a map that
highlights wrong segmented pixels. The reported er-
rors refer to the percentage of pixels incorrectly seg-
mented.

As can be seen in Figure 4(d), the local texture de-
scription is smoothed near the boundary between two
different textures, this is due to the context window
size. Despite this fact, the local texture description is
still reliable, since the K-means clustering, using the
common Euclidean distance as a metric of distance, is
able to recognize and separate with a good precision
the two textures along the boundary. Considering that
we do not use any “handcrafted” feaure/filter and our
method does not rely on a specific border localization
technique, the result obtained is very challenging.

Figure 5(a) is another 5-texture mosaic used in
(Karoui, Fablet, Boucher, Pieczynski, and Augustin
2008) to test a supervised approach based on empiri-
cal marginal distributions of local texture features like

Table 2: Segmentation results obtained using different
subsets of the proposed 3-layers architecture.

Figure 4(a) Figure 5(a)

error (%) error (%)
Only Intensity 29.45 52.45
Only Layer 1 17.39 19.98
Only Layer2  28.97 23.77
Only Layer3  29.17 35.95
Layer 1 +2 10.14 9.22
Layer 1 +3 8.68 4.86
All layers 1.83 5.14

co-occurrence distributions, Gabor magnitude distri-
butions, etc. They have obtained a 3.1% error while
our error is 5.14%. The two results are comparable,
but the problem studied here is essentially more diffi-
cult, given the unsupervised nature of the feature ex-
traction process and of the image segmentation.

(Awate, Tasdizen, and Whitaker 2006) proposed
the 2-class mosaic in Figure 1 as a challenging im-
age since it show two textures that are both irregu-
lar and have similar means and gradient-magnitudes.
No numerical result is available in their paper, but the
results that we obtained is qualitatively comparable
with that shown in (Awate, Tasdizen, and Whitaker
2006), obtained using an unsupervised approach that
minimizes the entropy-based metric on the probabil-
ity density functions of image neighborhoods.

All the proposed texture mosaics are composed of
textures taken from the Brodatz album (Brodatz 1966)
and the Vision Texture Dataset®.

To investigate the contribution of each layer in the
overall process, we evaluated the method by exclud-
ing different subsets of layers. The worst result is ob-
tained by applying the K-means clustering directly on

2The Vision Texture Dataset is provided by the MIT Vision
and Modeling Group, http://vismod.media.mit.edu/
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Figure 4: (a) Input image, a mosaic composed of 5
textures. (b)(c)(d) Two channels images remapped by
the first (b), second (c¢) and third (d) layers of the SOM
pyramid. (e) From the left, the final segmentation, the
ground truth segmentation and the segmentation error
map. Wrong pixels are shown in black.

(b)

Figure 5: (a) Texture mosaic composed of 5 textures.
(b) From the left, the final segmentation, the ground
truth segmentation and the error map. Wrong pixels
are shown in black.

the intensity levels of the input image, while the best
configuration involves all the three levels. Results in
Table 2 show that the strength of the descriptor lies
primarily in the pyramidal approach and, using a shal-
low architecture, the segmentation accuracy suddenly
decreases.

As a final experiment we tested the method on
three synthetically generated images. The first image
in Figure 6(a), is composed by two wave-gradient re-
gions with two different orientations. The mean in-
tensity is constant within the two regions and the
only discriminant information is the orientation of the
wave pattern. The second image shows two regions,
one with a wave-gradient texture and one with a solid
color. Also in this case both regions have the same
mean intensity. The third image contains two non-
textured areas with different intensities. As can be
seen in Figure 6(b), in all three cases, the proposed
method has been able to distinguish the two regions
almost perfectly. This result experimentally prove that
the proposed descriptor can handle, at the same time,
texture regions as well as non-texture regions.

Before being processed, the input image is scaled
to 100 x 100 pixels. Under these conditions, the com-
putational time required to process an image is about
15 seconds®, where more than half of the time is spent
training the third layer. This is due to the large patches
(8 x 8 pixels) used on the layer, which generate big

SResults were obtained using an unoptimized, single C#
thread, on an Intel(R) Core(TM) i5 mobile CPU at 2.30Ghz.
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Figure 6: (a) Three synthetically created texture-non
texture mosaics. (b) Segmentation results obtained
with the proposed method.

training patterns.

4 CONCLUSIONS

In this paper we have presented a new texture de-
scriptor that is able to characterize textured as well as
non-textured regions with high accuracy. The poten-
tial of the method lies in its independence from a fea-
ture bank and its ability to automatically extract, with-
out supervision, salient information using only small
image patches. The descriptor exploits the important
topological ordering property of the SOM allowing a
smoothed and reliable image description even in areas
with strong transitions, such as the boundary between
two different textures or two different colors.
Comparison with other state of the art methods
shows that our solution gives comparable results even
without a directly managing of difficult areas, such
as texture boundaries. The provided three-layers con-
figuration offers good results on images of different
types. Future research is focused in improving the
segmentation accuracy and defining a method to au-
tomatically find an optimal parameters setting.

REFERENCES
Awate, S. P, T. Tasdizen, and R. T. Whitaker
(2006). Unsupervised texture segmentation
with nonparametric neighborhood statistics. In

European Conference on Computer Vision, pp.
494-507.

Bergen, J. R. and E. H. Adelson (1988). Early vi-
sion and texture perception. Nature 333, 363—
364.

Bovik, A. C. (1991). Analysis of multichannel

narrow-band filters for image texture segmen-
tation. IEEE Transactions on Signal Process-

ing 39, 2025-2043.

Brodatz, P. (1966). Textures: a photographic album
for artists and designers.

Daugman, J. (1980). Two-dimensional spectral
analysis of cortical receptive field profiles. Vi-
sion Research 20, 847-856.

Gersho, A. and R. M. Gray (1992). Vector quanti-
zation and signal compression.

Heeger, D. J. and J. R. Bergen (1995). Pyramid-
based texture analysis/synthesis. In Annual

Conference on Computer Graphics, pp. 229—
238.

Jain, A. K. and K. Karu (1996). Learning texture
discrimination masks. IEEE Transactions on

Pattern Analysis and Machine Intelligence 18,
195-205.

Karoui, I., R. Fablet, J.-M. Boucher, W. Pieczyn-
ski, and J.-M. Augustin (2008). Fusion of tex-
tural statistics using a similarity measure: ap-
plication to texture recognition and segmen-

tation. Pattern Analysis and Applications 11,
425-434.

Kim, K. L., K. Jung, S. H. Park, and H. J. Kim
(2002). Support vector machines for texture
classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24, 1542—
1550.

Kohonen, T. (1990). The self-organizing map. Pro-
ceedings of the IEEE 78, 1464—1480.

Liu, X. and D. Wang (2006). Image and texture
segmentation using local spectral histograms.
IEEE Transactions on Image Processing 15,
3066-3077.

Melendez, J., X. Gironés, and D. Puig (2011). Su-
pervised texture segmentation through a multi-
level pixel-based classifier based on specifi-
cally designed filters. In ICIP, pp. 2869-2872.

Randen, T. and J. H. Husy (1999). Filtering for tex-
ture classification: A comparative study. /[EEE

Transactions on Pattern Analysis and Machine
Intelligence 21, 291-310.

Szeliski, R. (2010). Computer Vision: Algorithms
and Applications.

Tuceryan, M. and A. K. Jain (1998). Texture anal-
ysis. The Handbook of Pattern Recognition and
Computer Vision.

Zhu, S. C., Y. N. Wu, and D. Mumford (1997).
Minimax entropy principle and its application

to texture modeling. Neural Computation 9,
1627-1660.



