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We propose a new algorithm for multivalued discrete tomplgyathat reconstructs images from few projections
by approximating the minimum of a suitably constructed gndunction with a deterministic optimization
method. We also compare the proposed algorithm to othenstemtion techniques on software phantom
images, in order to prove its applicability.
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1 Introduction efficients. Binary tomography — as a special case of

Tomographydeals with the reconstruction of objects DT — makes the addltlo_nal restriction that t_he recon-
from a given set of their projections. This is usually Structed volume contains only two materials. With
done by exposing the object to some eIectromagneti%UCh prior information, the reconstruction can be per-
or particle radiation, and measuring the loss of the enformed even from a few projections. DT can be par-
ergy as the beams pass through it. With this informaficularly useful, e.g., in non-destructive testing (6),
tion one can derive the integrals of attenuation coefWhere the goal is to gain some information of the inte-
ficients along the path of the beams, and obtain th&0r of —usually homogeneous — objects without dam-
inner structure of the object. aging the_m. _ _ _

There are several suitable algorithms for tomogra- There is a wide range of algorithms for binary and
phy, which can provide satisfactory reconstructions ofion-binary (called multivalued) discrete tomography.
arbitrary objects, when a sufficiently high amount of For example, the DART, Discrete Algebraic Recon-

information (which usually means hundreds of pro-Struction Technique (4) is capable of producing highly
jections) is available (12). accurate reconstructions by thresholding a continuous

In discrete tomograph§DT) (10; 11), one assumes reconstruction and then adjusting the object bound-
that the object to be reconstructed consists of onlf'€s: Also, there are recor}struc_tlonbalg dorlthm_s based
a few different materials with known attenuation co- 2" Minimizing an energy function by deterministic

(13; 15; 16; 18) or randomized (1; 2; 8; 14) optimiza-
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case of multivalued DT. Although other simple exten- 7T T,

sions of the DC algorithm also exist (see, e.g., (13; ., Detector
16; 18)), we propose significant modifications of the| ™ | “o| *7| *s % b
original method, to supply an algorithm that is fully | v, | v.| 21| @1 — N
adjusted to multivalued DT. We introduce a new en-——— 1 =] i

ergy function for modeling the possible values of thel ™[ ™| " "¢~ Sowee\\

reconstruction, and we also define a new process that
can perform a fast approximate optimization of the
energy function.

The paper is structured as follows. In Section 2

we give a brief description of the theoretical back- d oft derd ined . hel b
ground of discrete tomography. Then, in Section 3 we*N@ O'ten under etermined (owing to the low number

describe the proposed method, and in Section 4 wal Projections) or inconsistent (due to measurement
provide experimental results. Finally, in Section 5 Weg\r,g)rfg'm\éa{r']oeﬁ tﬁgg?é?;’sesbgfgﬁ Cﬂiﬁgrﬁﬁgeﬁ;ﬂ;?
summarize the results. p '

tic methods. Efficient exact reconstruction algorithms

2 Discrete Tomography ﬁ;](i:gt; é):l()g ;oer Zc-)gle(gp%:)iél classes of (mostly binary)

For a simple formalism we present our reconstruction
algorithm in the case of two-dimensional tomogra-3  The Pronosed Method
phy, but the method can easily be extended to highe P

dimensions, too. The model we use assumes that L roblem is NP-hard if the number. of broiections
single slice of the reconstructed object is representef" P ne 0T proj
IS more than two (9), our aim is to provide an approx-

by ann x n size digital image. Moreover, we assume.

parallel beam projection geometry, i.e., a Iorojection|mate solution of the reconstruction task. The algo-

is given by projection values corresponding to paral-”thm we propose performs the discrete reconstruction

lel projection rays, where each value is given by theby minimizing a suitably constructed energy function.

integral of the image on a straight line. ,
With the above considerations the discrete recon:-g'1 The Energy Function

struction problem can be represented by a system dfhe energy function consists of two terms. Using the
equations notation of Sect. 2 it can be given as

Figure 1: Representation of the parallel beam geome-
try on a discrete image.

ince, even in the binary case, the discrete reconstruc-

Ax=b, AecR™" L™, beR™ 1 2
x=Db, Ac ,XeL", beR™, (1) E.X) = FX) +p-g(x), xX€lo,l]” . (2)

In more detail, the first function

where

¢ X is the vector of alk? unknown image pixels, .
— S IAX— D2+ & .xT
e m is the total number of projection lines used, F(x) = 2 1AX = blf3 + 5 X X )
e b is the vector of alln measured projection val- js a formulation of the continuous reconstruction
ues, problem, wheré is a matrix such that

e A describes the projection geometry with al| n2
elements giving the length of the line segment of Tey N2
thei-th projection line through thg-th pixel, S ;E;m(% ") @
e andL = {ly,ly,...,l.} is the set of the possible . o
intensities (assuming that< I, < ... < L.). and N, (i) is the set of pixel indexes 4-connected to
thei-th pixel.
An illustration of the applied projection geometry can Informally, f(x) consists of arjAx — b||2 projec-
be seenin Fig. 1. tion correctness (or data fidelity) term, anddrx
Note that — as a special case — with= {0,1} we  smoothness prior, that is lower if the reconstructed
arrive to the well-known model of binary tomography. image is smooth, and thus it forces the results to con-
With the above formulation the reconstruction istain larger homogeneous regions.
equivalent to the task of solving the equation system The secondy - g(X), term of (2) is a formulation of
given in (1). Unfortunately, beside the problems aris-the discreteness, which propagates solutions contain-
ing from the fact that we search a discrete-valued soing values only from thd. predefined set of intensi-
lution, the system of (1) is usually extremely huge,ties. Hereyu > 0 is a constant weight that can be used
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0.0154 reconstruction is found, the weight of the discretiza-

tion term will be increased, thus the optimization pro-
0.010- cess is steered towards a discrete solution.

g (2) The description of the algorithm uses the following

notations.

e A, b, xandn are as defined in Sect. 2,

0 02 04 06 08 1 e Vg,(z;) denotes the derivate of the discretization
z term applied for the-th x; pixel of the recon-
Figure 2: Example of they,(z) one-variable dis- structed image,
cretization function with intensity valued. =
{0,0.25,0.5,1}. V(%) - h)E-B)E 2 - )
8 (lj = lj-1)? ’
to balance between the two separate parts of the en-
ergy function, and(x) is constructed to take its min- if z €[l ,
imal values at discrete solutions (i.e., whes L") (6)
and higher positive values otherwise. The) dis-
cretizing function is given in the form e G,(%) is an unnormalized Gaussian function
with 0 mean andr deviance, that is
g(X) = ng(xl) ) { € {1727 cee 7”2} ) (5) GO,J(Z) = 6_(2‘2?) y (7)
=1

. . : e a>0,u>0,ando > 0 are predefined constants
whereg, is a one-variable function composed of a set controlling in the energy function, respectively,

of forth-grade polynomial functions defined over the the weight of the smoothness term, the weight of

intervals of in the way the discretization term, and the deviance of the
) Gaussian function applying the adaptive weight-
Mol Gl i e 1,y 1] for ing of the discretization,
(2) 2:(Lj—1;—1)2 J {7 J )
9p\Z) = eachj € {1,...,¢c}, . .
undefined otherwise e )\ is an upper bound of the largest eigenvalue of

the matrix(ATA + « - S), that is used for reasons

Anillustration of ag, function can be seenin Fig. 2. described in (15).

Informally, this discretization function assignsasmall  For gbtaining the result, the optimization method

tion is close to an element df, and higher values (in-  of the discretization term. The detailed description of
creasing with the distance) otherwise. There are sewe glgorithm is given in Algorithm 1.

eral other possible functions which could be used for The optimization process makes a connection be-

such purposes (see, e.g., (13; 16; 18)). We have deyeen the two parts of the energy function (i.e., the
cided to construct this novel one, since it is easy tGormulation of the continuous reconstruction prob-

handle and can be efficiently computed. lem, and the discretization term), and assumes that
o the first part has a higher priority (as our first con-
3.2 The Optimization Process sideration is to find a reconstruction that satisfies the

The process of the optimization in our proposedprojections, but we would also like to get a discrete
method is based on breaking the energy function (2)esult if possible).

into two parts, and prioritizing between them. The With this, the algorithm is based on optimizing the
first part is given by thef(x) defined in (3), i.e., energy function with a simple projected subgradient
two terms responsible for projection correctness andnethod, while applying an automatic weighting be-
smoothness. The other part is provided bythg(x)  tween the two terms of the energy function. In each
discretization term. iteration step of the optimization process, one can cal-

In the beginning, the reconstruction algorithm as-culate the gradient of thgAx — b||3 projection cor-

sumes that the first two terms in the energy functiorrectness term in the energy function by computing
prioritizes the discretization term. Therefore, the pro-the AT (Ax — b) vector. For each pixel, this vector ex-
cess will first focus on finding a continuous recon-plicitly contains an estimation of correctness of the
struction, and neglect the discretization term. After-pixel in the current solution according to the projec-
wards, when a good approximation of the continuougions (the higher this value is the more responsible the
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Algorithm 1 Energy-Minimization Algorithm for
Multivalued DT

Input: A projection matrix,b expected projection
values x? initial solution,a, 11,0 > 0 predefined con-
stants, and. list of expected intensities.

&= E
n D
1: A < an upper bound for the largest eigenvalue of a) b) c)

N .
the (AA +a - S) matrix. Figure 3: Some of the software phantoms used for

2 k <_Ot testing. a) a binary image; b) a multivalued image
jj reE)/ei AT(AXF — b) from (4); c) the well-known Shepp-Logan head phan-
5 W Sxk tom (see, e.g., page 53 of (12)).
. : 2
6. for I?flcm Ek{l’ 3’ }&Qﬁu}c;??(vi)-vg () The final thresholding of the result can be performed
7 Yi T — pwwn — with values chosen half-way between neighboring in-
lo, if i+t <1y, tensity levels as
8 aile gyt il <yt <L,
H k+1
9: end for - oo o, ifaf<(lo+1)/2,
100 ke k+1 ri=q by (o +1)/2 <af <+ a)/2
11: until a stopping criterion is met. le,  1f (lemr +1)/2 < af, .
12: Apply a discretization ok* to gain fully discrete
repsrfj?t/s_ J Y wherex* is the result of the iterative optimization pro-

cess of Alg. 1,j € {1,...,¢— 1}, andi takes each

2
pixel is for causing incorrect projections). If we ap- element of the sefll, ..., n°} as a value.

ply a Gaussian function on these values we can get

weight, that is smaller when the corresponding pixegil Experimental Regults
needs further adjustments, and higher if the projecYVe conducted experiments to compare our method to

tion rays connected to that specific pixel are morePther published algorithms. On one hand, on binary
or less satisfied. By weighting the discretization withimages, we compared our new method to the DC algo-
this value calculated from the gradient of the projec-ithm, to see how the original, and our new approach
tion correctness, one can apply an automatic adjusRerforms related to each other. Unfortunately, due to
ment of the discretizing term for each pixel, omitting the limitations of the DC algorithm (as it is not suited

it when the projections are not satisfied, and slowlyfor multivalued tomography), we could only do this

increasing its effect as the pixel values get closer tgomparison for binary images. Also, we ran tests with
an acceptable reconstruction. the recently published DART (4) in order to compare

In practice this means that the method starts with afin€ reconstruction of multivalued images.

arbitrary initial solution, and first approximates a con-_ e performed the evaluations, by using a set of
tinuous reconstruction based on the given set of proPhantom images (all having a size of 256 by 256 pix-

jections. Later, as the projections of the solution geﬁ’_ls)' Three of these phantoms can be seen in Fig. 3.

closer to the described vectors, the automatic weight! € reconstructions were performed from projection
: - fsets containing 2 to 18 projections, distributed equian-

pixel. Thus the pixels will be slowly steered towards 9ularly on the half circle, assuming that the projection
discrete values of.. with 0° angle corresponds to vertical rays. The angle

It is possible that the process will get stuck in a lo-Sets describing the projgction directions fop @ro-
cal minimum of the energy function. In this case theJeCtIon number can be given as

process will stop in a semi-continuous solution, where 180°

some pixels are properly discretized, and the rest of S(p)=A{i- | i=0,...,p—1}. 9)
them are left continuous, since the projection correct- p

ness did not allow a full discretization. Theando As mentioned above, we used a parallel beam pro-

parameters, are used to control the maximal strengtfection geometry, where projection values were given
of the discretizing term, and the speed at which theby line integrals on the image. The distances between
discretizing term gets strengthened during the proneighboring projection lines were set to be one unit
cess, respectively. (the width of one pixel on the image), the rotation cen-
Finally, after the optimization process we completeter of the projections was located in the center of the
the discretization by simply thresholding the pixel image half way between two projection lines, and in
values, to gain a fully discrete reconstruction resulteach projection the rays covered the whole image.
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In our tests, the parameters of the DART and DC
algorithms were mostly set from the literature, with
slight adjustments to get the best performance of all
the methods in our tests. The parameters of the DC
algorithm were set as given in (17) except that the
strength of the smoothness term was= 2.5. In
DART, we used 10 iterations of the Simultaneous It-

erative Reconstruction Technique (see, e.g., (12)) for DART, Prop. meth.,
performing the continuous reconstructions, applied 5 proj. 5 proj. 5 proj
the same smoothing kernel as described in (3), and
terminated the algorithm when the thresholded image
did not change in the last 10 DART iterations or the
number of iterations reached a limit of 500.

For the parameters of the proposed method, we
used the values = 2.5, ;= 20, 0 = 1, and in the
x? initial solution all thez! positions were set to the DC, DART, Prop. meth.,
same value in the middle of the range of possible in- 6 pro;j. 6 pro;j. 6 proj

tensities (i.e.z) = (I. — lp) /2, foralli € {1,...,n?}). . _ . . .
The iteration was stopped when the difference beFigure 4: Reconstructions of a binary phantom (Fig-

tween the solutions of the-th and (k + 1)-th itera-  Ure 3a), produced by the three compared algorithms,
tion steps computed "+ — x*||, became less then from projection sets containing different numbers of

0.001 or the number of iterations reached a limit of Projections.
5000. Although, the convergence of the optimization
process is not yet proven, we found the algorithm to
be convergent in all our tests with these parameter set-
tings.

We implemented the algorithms in C++ with GPU
acceleration using the NVIDIA CUDA C sdk. The
computation was performed on a PC, with an Intel | Fig. 3b,
Q9500 CPU, and an NVIDIA Geforce GTS250 GPU. | 6 proj.

After reconstructing the results using all three algo-
rithms, we compared them visually, and by using the

error measurement
D(x,x*) i
Brr =2 100% |, (10) Fig. 3b, -
O(x*) 9°proj.
where D(x, x*) is the number of misclassified pixels
m
\ /

Prop. meth.

on the result, and)(x*) is the number of non-zero
pixels on the original phantom.

In addition, we also measured the computation Fig. 3¢
times of the algorithms in each case. A summary of | 15°hroj!
the numerical results can be seen in Table 4, while
Fig. 4 and Fig. 5 give some examples of the recon-

structed results of binary and multivalued images.

Based on the results we can deduce the following.
In case of using very few projections (i.e., 2-3 pro- _
jections for simple images like the phantoms of fig- i'gg f’(;:
ures 3a-b, and up to 5-6 projections for more complex Proj.

ones like Figure 3c), there was obviously not enough

information for the reconstruction algorithms to give

accurate solutions. Usually DART produced the bestigure 5: Sample of reconstructions of multivalued

results, but this seems to be irrelevant since the recophantoms of Figure 3b-c, produced by the DART

struction error is unacceptably high. and our proposed algorithm, from different number
of projections.




Starting to increase the number of projections, the
amount of information in the data was also increasing
and the results provided by the algorithms began to

Table 1: Reconstruction errors and computation timegnprove as well. The optimization based algorithms
of the compared algorithms, reconstructing the phan(DC and the proposed method) showed a faster im-
toms of Figure 3. The error measurement is computeg@rovement with the increasing of the projection num-
by (10), and the computational time is given in sec-bers, therefore after a certain number of projections
onds. Reconstructions of the DC algorithm could onlythey started to give better results than the DART. Usu-
be performed on binary test images. In each row, thally, the advantage of the optimization-based meth-

best result is highlighted in bold.

Figure 3a
DC DART Proposed method
P.Num. | Error Time Error Time Error Time
2 90.7% | 12.1s| 856% 6.6s | 107.4% | 10.1s
3 22.0% | 124s| 52.9% | 54s | 30.8% | 11.2s
4 1.2% 13.6s| 449% | 80s | 224% [ 11.8s
5 0.3% 125s] 29.9% | 95s 7.9% 12.7s
6 0.2% 8.1s 0.2% 27s 0.8% 76s
9 0.2% 6.5s 0.0% 0.8s 0.3% 46s
12 0.0% 72s 0.0% 09s 0.1% 48s
15 0.0% 8.7s 0.0% 1.2s 0.1% 5.8s
18 0.0% 8.7s 0.0% 09s 0.1% 5.8s
Figure 3b
DC DART Prop. meth.
P.Num. | Error Time Error Time Error Time
2 - - 62.9% | 6.7s | 52.7% 104s
3 451% | 8.0s | 41.9% 114s
4 43.4% | 8.6s | 354% 12.2s
5 36.4% | 9.4s | 26.4% 13.2s
6 27.0% | 10.2s| 11.6% 13.8s
9 0.7% 45s 1.9% 15.6s
12 0.4% 149s| 1.0% 11.6s
15 0.3% 2.3s 0.8% 116s
18 0.1% 21.3s| 0.6% 109s
Figure 3c
DC DART Prop. meth.
P.Num. | Error Time Error Time Error Time
2 - - 84.4% 6.7s | 85.7% | 9.3s
3 77.3% 82s | 825% | 6.0s
4 75.3% 88s | 81.0% | 80s
5 73.3% 9.7s | 742% | 10.2s
6 74.1% | 10.2s| 70.0% 12.7s
9 57.0% | 12.6s| 46.8% 14.7s
12 33.9% | 145s| 24.8% 11.4s
15 22.0% | 18.0s| 16.3% 86s
18 15.7% | 20.8s| 14.0% 8.0s

a)
Figure 6: Continuous results of the proposed recon
struction algorithm, without the final thresholding.
(The images a), b) and c) were reconstructed from
6, and 15 projections, respectively.)

c)

ods caused a sudden drop in the reconstruction error,
when the algorithms started to give more accurate re-
sults. Thus, we can deduce that these two algorithms
can ensure more or less accurate reconstructions from
fewer projections than the DART.

Later, when we had even more projections with
more than sufficient information for an accurate re-
construction, again the DART provided the best re-
constructions, by producing slightly better results
than the other two methods.

When comparing the energy minimization based
methods, we can observe that on binary images the
DC algorithm works better than our proposed method.
This might be due to the form of the discretization
term in the energy function. The DC algorithm is spe-
cialized for binary tomography, and aims a full bina-
rization in the optimization process. The drawback is
that the original DC algorithm is not capable of per-
forming multivalued tomography at all.

On the other hand, our algorithm needs a different
approach for having the generality to be able to re-
construct multivalued images, and it only makes an
approximate discretization. This means that in a later
state of the energy minimization process — without
the final thresholding — we get a semi-discrete, semi-
continuous result. This intermediate result is pro-
duced by taking into account that we are looking for
a discrete solution, but still contains some uncertainty
of the values (some of the examples of such results
can be seen in Fig. 6). This kind of soft discretization
is necessary for the multivalued reconstruction in our
method, but it reduces the accuracy of the algorithm
on binary images.

Finally, regarding the computational time of the al-
gorithms, we found that depending on the conditions
of the reconstruction and the image processed, one or
another algorithm gave results faster than the other
ones. Still, in general the time requirements showed
to be similar.

In summary, the performance of the algorithms
were similar on our dataset. All three methods can
yield highly accurate reconstructions. Nevertheless,
e found that the energy minimization-based meth-
ods gave slightly better results when the reconstruc-
tions were performed from a low number of projec-
tions, but the results of DART were better with more
projections. This diversity makes all the algorithms
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imization of a suitably constructed energy function.
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