Chapter 1

Mandatory and potential choice:
Comparing Event-B and STAIRS

Atle Refsdal
SINTEF ICT, Norway

Ragnhild Kobro Runde
University of Oslo, Norway

Ketil Stglen
SINTEF ICT, Norway and University of Oslo, Norway

1.1 Introductiono 3
1.2 Kinds of choiceo 5
1.3 Comparing Event-B and STAIRS at the syntactic level 8
1.4 Interaction-obligations versus failure-divergences 11
1.4.1 Interaction-obligationsccooiiiiiiii.. 12
1.4.2 Failure-divergencescoiiiiiiiiiiiiiiiiin.. 14
1.4.3 Relating the two models ...t 14
1.4.4 Sets of interaction-obligations, 15
1.5 COoNCIUSION .ottt 16

Abstract. In order to decide whether a software system fulfills a specification,
or whether a detailed specification preserves the properties of a more abstract
specification, we need an understanding of what it means for one specification
to fulfill another specification. This is particularly important when the spec-
ification contains one or more operators for expressing choice. Operators for
choice have been studied for more than three decades within the field of formal
methods in general, and within methods for action-refinement in particular.
As a more recent method within this tradition, in this paper we have chosen to
focus on Event-B. Another kind of method is STAIRS, focusing on UML inter-
actions and designed to provide the UML community with an understanding
of refinement and fulfillment. To provide the required expressiveness, STAIRS
distinguishes between potential and mandatory choice, where only the latter
is required to by preserved by refinement. In this paper, we investigate the
relationship between the operators for choice in Event-B and STAIRS.

4 From Action System to Distributed Systems: The Refinement Approach

1.1 Introduction

In order to decide whether a software system fulfills a specification, we need
a clear understanding of the concept of fulfillment. Similarly, when a specifi-
cation is developed further into a new more detailed (for example, platform-
specific) specification, the essential properties captured by the original speci-
fication must still be present in the new specification. This requires an under-
standing of what it means for one specification to fulfill another specification.

STAIRS [HHRSO05, RRS13] was designed to provide the UML community
with this kind of understanding at a level of abstraction that is easily compre-
hensible for UML practitioners. STAIRS is inspired by formal methods and
refinement theory. However, STAIRS is not really a formal method in the clas-
sical sense, as explained in the following. When formal methods are combined
with more applied methods for software engineering, the resulting approaches
may typically be classified according to whether:

e Artifacts of the applied method, typically specifications and models, are
translated into the formal method and used for formal analysis.

e Artifacts of the applied method, again normally specifications and mod-
els, are annotated with formal expressions and used for formal analysis
building on some unified underlying semantics.

STAIRS does not fit within this classification scheme since the emphasis of
STAIRS is to provide a foundation for fulfillment within the conceptual uni-
verse of UML rather than supporting formal analysis of UML specifications
and their relationships.

STAIRS addresses primarily sequence diagrams. Implicitely, STAIRS also
defines the notion of fulfillment for the other UML notations for modeling
dynamic behavior, where the behaviour may be captured by sets of sequence
diagrams. In many respects, sequence diagrams are more general than other
UML notations for dynamic behavior, e.g., state machines, because sequence
diagrams may be used to describe examples of required behavior, rather than
the complete allowed behavior. STAIRS provides this expressiveness by offer-
ing operators for potential as well as mandatory choice.

Operators for choice have been studied for more than three decades
within the field of formal methods in general, and within methods for action-
refinement in particular [BS91]. A prominent example of a method for action-
refinement is Event-B [Abr10]. The objective of this paper is to investigate
the relationship between the operators for choice in Event-B and STAIRS.

A large literature exists on Event-B. There is no fixed semantics for Event-
B, instead the semantics is provided implicitly by proof obligations associated
with a model [Halll]. Nevertheless, several papers have suggested failure-
divergences inspired semantics as a formal underpinning [STW11, Butl2,

Mandatory and potential choice: Comparing Event-B and STAIRS 5

Preserved CSP STAIRS
by refinement | environment system
No Internal choice Potential choice
Demonic choice
Yes External choice Mandatory choice
Angelic choice

TABLE 1.1: Choice types in CSP and STAIRS

SB12]. This paper builds on this approach. Failure-divergences semantics was
originally developed for CSP [Hoa85]. In Section 1.2 we therefore start our in-
vestigation by comparing choice in CSP to choice in STAIRS. Then we conduct
a comparison of Event-B and STAIRS; first at the syntactic level in Section
1.3; then at the semantic level in Section 1.4. Finally, Section 1.5 provides a
summary and draws conclusions.

1.2 Kinds of choice

In this section, we relate the kinds of choice offered by CSP [Hoa85] and
STAIRS [HHRSO05]. We also classify the kinds of properties that may or may
not be captured depending on the available choice operators.

In order to understand the choice operators in CSP we need to under-
stand some underlying assumptions about the involved entities, as well as the
communication model. As explained by [Ros98, p. 13], in CSP a system! is
completely described by the way it can communicate with its environment.
Hence, CSP assumes a black-box view where internal communication within
the system itself, is hidden. Communication is synchronous (also known as
handshake communication), meaning that “events only happen when both
sides agree” [Ros98, p. 9]. This can be understood as follows: At any given
point the system offers a set of events to the environment. If the environment
accepts one of these events then the system moves on, otherwise a deadlock
occurs.

Choices made by the environment between available alternatives are called
external choices and represented by the [operator in CSP, while choices
made by the system are called internal? and represented by the M operator.
If one of the alternatives offered to the environment is removed, a deadlock
will be introduced if the environment is willing to synchronize only on the
removed alternative. Refinement in CSP therefore requires preservation of ex-

IThe CSP literature typically uses the term “process”.
2Hoare uses the term “nondeterministic or” or just “nondeterminism” for internal choice.

6 From Action System to Distributed Systems: The Refinement Approach

ternal choice. Internal choice, on the other hand, represents underspecification
and may be reduced in a valid refinement step, as motivated by the following
quote [Hoa85, p. 101-102]:

Sometimes a process has a range of possible behaviours, but the
environment of the process does not have any ability to influence
or even observe the selection between the alternatives [...] The
choice is made, as it were internally, by the machine itself, in an
arbitrary or nondeterministic fashion |...]

There is nothing mysterious about this kind of nondeterminism: it
arises from a deliberate decision to ignore the factor which influ-
ence the selection [...] Thus nondeterminism is useful for main-
taining a high level of abstraction in descriptions of the behaviour
of physical systems and machines [...]

A process specified as (PMQ) can be implemented either by build-
ing P or by building Q. The choice can be made in advance by the
implementor on grounds not relevant (and deliberately ignored) in
the specification [...]

The term angelic choice (or angelic nondeterminism) is sometimes used to
describe a choice that will always be made so that an undesirable result (a
deadlock) is avoided if possible. Hoare explains this in terms of an implemen-
tation that, when choosing between P and @), “minimises the risk of deadlock
by delaying the choice until the environment makes it, and then selecting
whichever of P and @ does not deadlock” [Hoa85, p. 105]. Similarly, Roscoe
explains angelic choice in terms of an operator that “keeps on giving the envi-
ronment the choice of action of P and @) as long as the environment picks an
event they both offer” [Ros10, p. 219]. Hence, angelic choice is a special kind
of external choice. Conversely, although not used in the above references, the
term demonic choice can be used to describe an internal choice that will (or
at least can) be made so that a deadlock will occur, if possible. In [MMSS96],
Morgan et al. use the terms demonic choice and internal choice interchange-
ably.

The two middle columns of Table 1.1 summarize the above discussion. The
system column represents choices resolved by the specified system, while the
environment column represents choices resolved by its environment. The col-
umn furthest to the left indicates whether choices are preserved by refinement.

According to [HHRS05], STAIRS is an approach to compositional develop-
ment of UML interactions that assigns a precise interpretation to the various
steps in incremental system development based on an approach to refinement
known from the field of formal methods. There are a couple of ways in which
STAIRS differs from CSP of immediate relevance for our discussion of choice
here. First, STAIRS assumes an asynchronous communication model with
infinite buffering, and is therefore not concerned with deadlock. Second, in
STAIRS there is no implicit hiding of internal communication when compos-
ing specifications.

Mandatory and potential choice: Comparing Event-B and STAIRS 7

STAIRS offers two different choice operators: one for potential choice and
one for mandatory choice. Along the same lines as internal choice in CSP,
potential choice is motivated by the need for abstraction. This is explained by
the following requirement to STAIRS stated in [HHRSO05]:

Should allow specification of potential behavior. Underspecifica-
tion is a well-known feature of abstraction. In the context of inter-
actions, “under-specification” means specifying several behaviors,
each representing a potential alternative serving the same purpose,
and that fulfilling only some of them (more than zero but not all)
is acceptable for an implementation to be correct.

Mandatory choice, on the other hand, is motivated as follows:

Should allow specification of mandatory behavior [...] Sometimes
[...] it is essential to retain non-determinism in the implementa-
tion reflecting choice. For example, in a lottery, it is critical that
every lottery ticket has the possibility to win the prizes [...] As
a consequence, we need to distinguish explicit non-determinism
capturing mandatory behavior from non-determinism expressing
potential behavior.

Since potential choice facilitates underspecification by offering alternatives
serving the same purpose, STAIRS allows potential choice to be reduced or
removed by refinement. A mandatory choice, on the other hand, needs to be
preserved in order to ensure that all intended behavior will be implemented.
This applies regardless of whether the choice is made by the system or by
the environment. The distinction between potential and mandatory choice in
STAIRS is summarized in the right-hand column of Table 1.1.

Another kind of choice is probabilistic choice, meaning that each alterna-
tive should be selected according to a given probability. Probabilistic choice
is beyond the scope of this paper and has therefore not been included in
Table 1.1. However, mandatory choice (as understood in STAIRS) can be un-
derstood as probabilistic choice where all of the probabilities should be higher
than 0, but where nothing more is known/specificed about the probabilities.

The constructs for expressing choice offered by a specification language and
its notion of refinement restrict the kinds of properties that can be captured.
System properties are typically analyzed on the basis of system traces, each of
which characterizes a possible run or execution. Properties can then be classi-
fied according to their means of falsification. Properties that can be falsified by
a tester on the basis of a single trace are called trace properties, while proper-
ties that can be falsified on the basis of trace sets are called trace set properties
[McL94]. The former include safety and liveness as originally investigated by
Alpern and Schneider [AS85, Sch00]. The latter include information security
flow properties and are what McLean referred to as possibilistic properties
[McL94].

As an example, assume we want to specify a simulator to simulate user

8 From Action System to Distributed Systems: The Refinement Approach

behavior for automatic testing of vending machines offering tea and coffee.
The simulator should then be able to choose both alternatives, and the choice
should be made internally by the simulator (thus reflecting a user’s preference)
rather than by its environment. Before using the simulator to automatically
test a vending machine, we need to test the simulator itself. When testing the
simulator, if we observe a single trace yielding tea, we cannot deduce that the
simulator is not able to choose coffee or vice versa; such falsifications can only
be made by considering all traces of the system.

Specification approaches allowing all choices made internally by the speci-
fied system (as opposed to its environment) to be reduced by refinement, have
no means to ensure that trace set properties are preserved. This is referred to
as the refinement paradox in [JO1]. In the following, we discuss the syntax and
semantics of choice in Event-B and STAIRS in the light of trace properties
and trace set properties.

1.3 Comparing Event-B and STAIRS at the syntactic
level

The essence of an Event-B specification is a set of guarded events, where
an event is enabled and may be chosen to occur when its guard is true. More
than one event may be enabled at the same time, and the choice between
enabled events is an external choice made by the environment. Internal choice
made by the system itself is modeled more indirectly, using nondeterministic
assignment to internal variables in order to influence the enabledness of other
events.

As an example of how choice is treated in Event-B, in Fig. 1.1 we look at
the two vending machine specifications given by Butler in [But12]. An Event-B
specification consists of a specification name, a declaration and initialization
of variables and a set of named events. Each event is on the form when guard
then body end, where the guard is a boolean statement over the variables
and the body is a (possibly non-deterministic) variable assignment. An event
is said to be enabled if its guard evaluates to true, otherwise it is disabled.

The difference between the two specifications in Fig. 1.1 is that in VM1,
the internal variable m1 is set to vend after the Coin event has been executed,
thus enabling both the Tea and the Coffee event, while in VM2, the internal
variable m2 is set to either tea or coffee, thus enabling only one of Tea and
Coffee. This means that in VM1, the choice between Tea and Coffee is
to be made by the environment, and is thus an example of external choice.
In [Butl2], it is argued that from a customer’s point of view, this external
choice should be preserved by refinement, meaning that VM2 should not be

Mandatory and potential choice: Comparing Event-B and STAIRS 9

machine VM1 machine VM2
variables ml € {idle,vend} variables m2 € {idle,tea,coffee}
initialisation initialisation
m1l :=idle m2 :=idle
events events
Coin = when Coin = when
ml =idle m2 = idle
then then
ml :=vend m2 :€ {tea,coffee}
end end
Tea= when Tea= when
m1l =vend m2 = tea
then then
ml :=idle m2 :=idle
end end
Coffee = when Coffee = when
m1l =vend m2 = coffee
then then
ml :=idle m2 :=idle
end end

FIGURE 1.1: Two Event-B vending machines as specified by [But12]

a valid refinement of VM 1. This could be achieved for instance by requiring
that a refinement should preserve the enabledness of individual events.

In VM2, the choice between Tea and Coffee is made by the machine itself,
and this is an example of internal choice. An internal choice may be refined
by an external choice, as this ensures that all events enabled in the original
machine will also be enabled in the refined one. Consequently, VM1 should
be a valid refinement of VM?2.

As an example of potential choice in STAIRS, Fig. 1.2 gives a sequence
diagram specification of a vending machine with messages that correspond to
the events in VM1 and VM2 from Fig. 1.1. The main ingredients of a sequence
diagram are a set of lifelines (depicted as vertical lines) and a number of
messages (arrows) between the lifelines. In Fig. 1.2, the choice operator alt is
used to signify that this diagram specifies two example scenarios, both starting
with the vending machine receiving a coin from the environment, followed by
the vending machine providing tea in one scenario, coffee in the other. As alt
is used to model potential choice, a sequence diagram where only one of these
scenarios is positive, and the other one is specified as negative, would be a
valid refinement of Vending Machine 1.

In STAIRS, there is no fundamental distinction between internal and ex-
ternal choice. The choice between sending Tea or Coffee in Fig. 1.2 is an
internal choice when seen from the sending lifeline VM, and an external choice
when seen from the receiving lifeline Env. For a real vending machine, the
choice between tea and coffee would be made by the user. In STAIRS, this

10 From Action System to Distributed Systems: The Refinement Approach

sd Vending Machine l)

|
[
|

Coin
%

)

%
|

1

|

[

alt }
|

! Tea }
_———
[[
|

[

|

|

[

\

[

\

Coffee

FIGURE 1.2: A simple vending machine with potential choice in STAIRS

may be modeled for instance by selection messages from Env to VM as seen in
Fig. 1.3. Note, however, that the choice between the two alternatives is still
specified using alt, meaning that in a valid implementation, only one of the
tea and coffee scenarios may be present.

Back to Event-B, Butler [But12] argues that experience with Event-B mod-
eling has demonstrated the need to be able to model both internal and external
choice between enabled events more directly, in particular in situations where
the guards are equal only as a result of abstraction. In reality, such a choice
is not really external, but rather internal due to some condition not included
in the abstract specification.

For instance, the choice between Tea and Coffee in VM1 in Fig. 1.1 should
in some cases be seen as internal due to some condition abstracted away in
VM1. A refinement may for instance add internal variables and guards so
that coffee is always served in the morning, while tea is always served in the
afternoon.

In [But12], the main goal is to allow both external and internal choice to be
represented directly. This is achieved by letting the specifier divide the events
into groups. The intuitive interpretation is that a choice between groups of
events is external, while a choice between events within a group is internal.
For VM1 in Fig. 1.1, the specifier may state that the choice between Tea
and Coffee is internal by grouping them together, giving the following event
groups for VM1: G1 = {Coin}, G2 = {Tea, Coffee}.

In [But12], the refinement relation is modified so that preservation of en-
abledness is preserved for event groups rather than for single events, thus en-
suring that external choices are preserved (or increased) through refinement
while at the same time allowing the amount of internal choice to be reduced.
With the event groups GI and G2 given above, this would mean that a valid
refinement of VM1 may choose to offer only Coffee (or Tea).

Mandatory and potential choice: Comparing Event-B and STAIRS 11

sd Vending Machine 2/

_ -

SelectTea

L

|

‘ SelectCoffee
[
|

! Coffee
|

|
|
|
|
|
|
|
|
|
|
Tea !
|
|
|
|
|
|
|
|
|
L

FIGURE 1.3: A simple vending machine with external choice in STAIRS

Mandatory choice is not discussed in [But12], and the introduction of event
groups is not sufficient to capture system choices that must be preserved by
refinement, i.e., trace set properties. Assume, for illustration purposes, that
the specifier wants to model a machine which arbitrarily chooses between tea
and coffee at run-time (similar to the user simulator described in Section 1.2).
As putting Tea and Coffee in the same event group might lead to an imple-
mentation offering only one of them as seen above, the only other possibility
is to put them in separate event groups. However, the semantics of such a
specification would allow Tea (and similarly, Coffee) to be refused only when
its guard is false, meaning that neither Tea nor Coffee could be refused after
Coin, so that the choice between the two remains external and not internal.

A vending machine where the internal choice is made arbitrarily as de-
scribed above, may be modeled in STAIRS by using the mandatory choice
operator xalt as shown in Fig. 1.4. To simplify the main diagram Vending
Machine 3, the diagram refers to two sub-diagrams Provide tea (also pro-
vided in Fig. 1.4) and Provide coffee (not shown, but symmetrical to
Provide tea). The refuse operator is used to model that a specific alterna-
tive should be considered negative, e.g., in Provide tea the vending machine
should serve tea and not coffee. The main diagram Vending Machine 3 then
requires the vending machine to have two mandatory behaviors, one with tea
and not coffee, and one with coffee and not tea. Neither of these can be re-
moved by refinement. Also, the mandatory choice in Vending Machine 3 in
Fig. 1.4 is a valid refinement of the potential choice in Vending Machine 1 in
Fig. 1.2, as should be expected. Further refinements may increase the manda-
tory behavior required by adding more xalt-operands, e.g., a third alternative
providing chocolate but not tea or coffee.

12 From Action System to Distributed Systems: The Refinement Approach

sd Vending Machine C’) sd Provide teaJ

| Coin | | |
‘ - 1 1
xalt J i alt i
‘ ‘ Tea |

ref/ Provide tea }
‘ ‘ refuse J }
! ! | Coffee |
ref Provide coffee i i
| |
| | | |
| |
1 1

FIGURE 1.4: Mandatory choice in STAIRS

1.4 Interaction-obligations versus failure-divergences

In the previous section, we compared Event-B and STAIRS at the syntactic
level. Semantically, an Event-B specification may be represented by a failure-
divergences pair while a sequence diagram in STAIRS corresponds to a set of
interaction-obligations. If the sequence diagram does not contain mandatory
choice, a single interaction-obligation is sufficient. In the following, we out-
line the intuition behind interaction-obligations and failure-divergences and
how they are related. We also explain how mandatory choice is represented
semantically and discuss the relationship to external choice.

1.4.1 Interaction-obligations

A trace in STAIRS is a finite or infinite sequence of events where an event
is either the sending or the reception of a message. A trace is required to fulfill
certain well-formedness conditions [RHS05]. Informally, a trace is well-formed
if, for each message, the send event is ordered before the corresponding receive
event.

Let H denote the set of all well-formed traces. An interaction-obligation is a
pair (p,n) of trace-sets which classifies the elements of H into three categories:
the positive traces p, the negative traces n, and the inconclusive traces H \
(pUn). The inconclusive traces are those traces that are neither specified as
positive nor as negative by the sequence diagram in question.

A pre-post specification (pre, post) in Hoare-logic may be used as a first ap-
proximation of the intuition behind an interaction-obligation (p,n). Roughly
speaking:

Mandatory and potential choice: Comparing Event-B and STAIRS 13

e A positive trace (in p) corresponds to an execution initiated in a state
fulfilling pre that if it terminates, does so in state fulfilling post (given
Hoare-logic for partial correctness).

e Aninconclusive trace (in #\(pUn)) corresponds to an execution initiated
in a state fulfilling —pre.

e A negative trace (in n) corresponds to an execution initiated in a state
fulfilling pre that terminates in state fulfilling —post.

It is worth noticing that while the inconclusive behavior corresponding to a
pre-post specification is chaotic, meaning that anything is allowed, the incon-
clusive behavior of an interaction-obligation is not necessarily so. For example,
if the finite trace t is inconclusive then the result ¢t ~¢' of extending ¢ with ¢’
is not necessarily inconclusive; t ~t' may be positive (t € pUn At—~t' € p)
and another extension ¢ may be negative (t € pUn At—~t" € n). In fact,
an interaction-obligation may for the same environment behavior allow incon-
clusive, positive as well as negative behavior. A pre-post specification on the
other hand, classifies executions initiated in a state (in a pre-post setting, rep-
resenting the environment behavior) as either positive or negative if it fulfills
pre and as inconclusive, otherwise.

It is also worth mentioning that for interaction-obligations as for pre-post
specifications, there may be environment behaviors for which no behavior is
allowed. An example of a pre-post specification of this kind is

(true , x =0 = false)

It disallows any behavior for the initial state = 0. In classical Hoare-logic,
such a specification is not implementable because any real program has some
kind of behavior whatever the environment does. In other words, no real pro-
gram is partial. Hence, any implementable pre-post specification is total; it
allows at least one system behavior for each possible initial state. The same
is not true for interaction-obligations because sequence diagrams only spec-
ify example runs and not the full behavior of a real program. Hence, a se-
quence diagram only considering some input behaviors is unproblematic from
a methodological point of view.

In Hoare-logic, refinement corresponds to weakening the pre-condition and
strengthening the post-condition. Refinement of an interaction-obligation cor-
responds to reducing inconclusive behavior and redefining positive behavior
as negative. Formally:

Definition 1 An interaction-obligation (p',n’) refines an interaction-obligation
(p,n) if pCp ' Un' andn Cn'.

Given the mapping to pre-post specifications outlined above, reducing incon-
clusive behavior may be understood as weakening the pre-condition; redefin-
ing positive behavior as negative may be understood as strengthening the

14 From Action System to Distributed Systems: The Refinement Approach

post-condition. Hence, refinement of interaction-obligations reflects very well
refinement of pre-post specifications.

1.4.2 Failure-divergences

In the setting of Event-B, a specification may be described by a pair (f, d)
of a set of failures f and a set of divergences d. A failure is a pair (¢, X) of
a finite trace t and a set of events X that the specified system may refuse
after having engaged in the external interaction corresponding to ¢. In other
words, the specified system may deadlock after having engaged in ¢ if offered
only X or a subset of X by the environment. A divergence is a trace t after
which the systems may diverge, meaning that it performs an infinite unbro-
ken sequence of internal (and hence invisible) actions without any external
communication happening at all, also referred to as livelock. Well-formedness
constraints [Hoa85, p. 130] are imposed on failure-divergence pairs that imply
that any such pair is total; it allows some behavior (possibly consisting of
doing nothing) whatever the environment does.

Failures-divergences refinement corresponds to removing failures and di-
vergences. This means set inclusion with respect to the failures and the diver-
gences. Formally:

Definition 2 A failures-divergences pair (f’,d") refines a failures-divergences

pair (f,d) iff f' C f and d’ C d.

External choice cannot be reduced by refinement, as this would imply adding
new failures in order to allow the specified system to refuse some of the events
offered to the environment according to the more abstract specification.

1.4.3 Relating the two models

In the case of total correctness the relationship between an Event-B specifi-
cation captured by (f,d) and a sequence diagram captured by the interaction-
obligation (p,n) may be characterized as follows:

e The positive behavior p corresponds to e \ d, where e = {t | (¢,0) € f}.
e The inconclusive behavior H \ (p Un) corresponds to d.

e The negative behavior n corresponds to H \ (e U d).

Given the mapping above, reducing inconclusive behavior in STAIRS may be
understood as reducing the set of divergences, while redefine positive behavior
as negative in STAIRS may be understood as reducing the set of traces that are
not divergences. This mapping is not information preserving since semantically
different failure-divergences are mapped to the same interaction-obligation.
In particular, the semantic difference between external and internal choice
disappears.

Mandatory and potential choice: Comparing Event-B and STAIRS 15

Contrary to a failure-divergences pair, an interaction-obligation may be
partial in the sense that there may exist environment behavior for which
no positive system behavior is defined. It may be argued that a refinement
should not impose additional constraints on the environment behavior and
thereby increase partiality. Although this constraint may easily be imposed, it
is not enforced by STAIRS because there are situations where this is not very
practical. We may for example use the operator for potential choice to specify
two different protocols for interaction with the environment and then leave it
to the implementor to select which one to use. This choice will also restrict
(or impose additional assumptions about) the behavior of the environment
because the specified system will only work properly if the environment sticks
to the selected protocol.

1.4.4 Sets of interaction-obligations

Sequence diagrams with mandatory choice is in STAIRS represented by a
set of interaction-obligations. Informally speaking, each interaction-obligation
represents an alternative that must be reflected in any correct implementation.
In the most general case, refinement corresponds to:

Definition 3 A set of interaction-obligations o' refines a set of inter-
action-obligations o if for each interaction-obligation (p,n) € o there is an
interaction-obligation (p’',n’) € o’ such that (p’,n’) refines (p,n).

Hence, each interaction-obligation at the more abstract level must be refined
by at least one interaction-obligation at the more concrete level. On the other
hand, o’ may have interaction-obligations that do not refine any of those is 0. In
the STAIRS literature this notion of refinement is called general refinement.
A more restrictive version is limited refinement which also requires each of
the more concrete interaction-obligations to be a refinement of at least one
abstract one at the more abstract level.

In the mapping from failure-divergences to interaction-obligations defined
in the sub-section above, we lost the distinction between external and internal
choice. When mapping failure-divergences to sets of interaction-obligations
we have the expressiveness required to keep this distinction. Roughly speak-
ing, each external choice alternative corresponds to a separate interaction-
obligation as outlined by the example in Figure 1.5. The assert, which is a
standard UML 2.x operator, makes any inconclusive trace in its body neg-
ative. From the perspective of the System lifeline, the diagram captures an
external choice between receiving either a or b. If neither behavior-if-a nor
behavior-if-b contain xalt-operators, the semantics of the diagram is a pair of
two interaction-obligations; one corresponding to receiving a and one corre-
sponding to receiving b.

16 From Action System to Distributed Systems: The Refinement Approach

sd external choice J

‘ Env ‘ ‘System‘
‘ 1
xalt
a
—_——
I

|
|
i
assert J |
|
ref) behavior-if-a
3
| b

| -

assert J
L

ref / behavior-if-b

FIGURE 1.5: External choice represented by a sequence diagram in STAIRS

1.5 Conclusion

This paper compares Event-B (with a failure-divergences semantics) and
STAIRS with particular focus on mandatory and potential choice. While the
failure-divergences semantics gives a pure black-box interpretation of the spec-
ified system, STAIRS offers a white-box interpretation in terms of interaction-
obligations and sets of interaction-obligations. Sets of interaction-obligations
are required to capture mandatory choice while a single interaction-obligation
is sufficient to model potential choice.

The main inspiration for writing this paper was Butler’s proposal to cap-
ture external and internal choice directly by letting the specifier divide the
events into groups. The approach seemed to resemble our proposal to capture
mandatory and potential choice by sets of interaction-obligations.

Our conclusion is that it does. The expressivity offered by Butler’s proposal
is also provided by STAIRS. In the same sense as a single event group cap-
tures internal choice, single interaction-obligations captures potential choice.
When potential choice is restricted to the specified system, internal and po-
tential choice is the same — both represent underspecification. Moreover, in the
same sense as sets of event groups capture external choice, sets of interaction-
obligations capture mandatory choice. When mandatory choice is restricted to
the environment, external and mandatory choice is the same — both represent

Mandatory and potential choice: Comparing Event-B and STAIRS 17

nondeterminism that must be preserved by refinement.

Acknowledgments. This work has been conducted as a part of the DI-
AMONDS (201579) project and the AGRA (236657) project, both funded
by the Research Council of Norway, and the CONCERTO (232059) project
funded by the Research Council of Norway and by ARTEMIS Joint Undertak-
ing - a public private partnership in the field of embedded systems supported
under the Seventh Framework Programme of the European Commission.

Bibliography

[Abr10]
[AS85]
[BSY1]
[But12]
[Hall1]

[HHRSO5]

[Hoa85]

[J01]

[McL94]

[MMSS96]

[RHS05]

[Ros98]

J.-R. Abrial. Modeling in Event-B: System and Software Engineer-
ing. Cambridge University Press, 2010.

B. Alpern and F. B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181 — 185, 1985.

R.-J. Back and K. Sere. Stepwise refinement of action systems.
Structured Programming, 12(1):17-30, 1991.

M. Butler. External and internal choice with event groups in
Event-B. Formal Aspects of Computing, 24(4-6):555-567, 2012.

S. Hallerstede. On the purpose of Event-B proof obligations. For-
mal Aspects of Computing, 23(1):133-150, 2011.

@. Haugen, K. E. Husa, R. K. Runde, and K. Stglen. STAIRS to-
wards formal design with sequence diagrams. Journal of Software
and Systems Modeling, 4:355-367, 2005.

C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

J. Jirjens. Secrecy-preserving refinement. In Proceedings of For-
mal Methods Europe (FME’01), volume 2021 of Lecture Notes in
Computer Science, pages 135—152. Springer, 2001.

J. McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, pages 79-93.
IEEE Computer Society, 1994.

C. Morgan, A. Mclver, K. Seidel, and J.W. Sanders. Refinement-
oriented probability for CSP. Formal Aspects of Computing,
8(6):617-647, 1996.

R. K. Runde, . Haugen, and K. Stglen. Refining UML interac-
tions with explicit and implicit nondeterminism. Nordic Journal
of Computing, 12:157-158, 2005.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1998.

19

20

[Ros10]
[RRS13]

[SB12]

[Sch00]

[STW11]

Bibliography
A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

R. K. Runde, A. Refsdal, and K. Stglen. Relating computer
systems to sequence diagrams: the impact of underspecification

and inherent nondeterminism. Formal Aspects of Computing,
25(2):159-187, 2013.

R. Silva and M. Butler. Shared event composition/decomposition
in Event-B. In B. K. Aichernig, F. S. de Boer, and M. M. Bon-
sangue, editors, Formal Methods for Components and Objects, vol-
ume 6957 of Lecture Notes in Computer Science, pages 122-141.
Springer, 2012.

F. B. Schneider. Enforceable security policies. ACM Transactions
on Information and Systems Security, 3(1):30-50, February 2000.

S. Schneider, H. Treharne, and H. Wehrheim. A CSP account of
Event-B refinement. In Proceedings 15th International Refinement
Workshop, Refine 2011, Limerick, Ireland, 20th June 2011., pages
139-154, 2011.

