
Modelling and Refining Hybrid Systems in

Event-B and Rodin

Michael Butler, University of Southampton
Jean-Raymond Abrial, Independent consultant
Richard Banach, University of Manchester

April 13, 2015

Abstract

We outline an approach to modelling and reasoning about hybrid sys-
tems with the Event-B method supported by the Rodin toolset. The ap-
proach uses continuous functions over real intervals to model the evolution
of continuous values over time. Nondeterministic interval events are used
to specify how continuous variables evolve within an operating mode. Re-
finement is used to constrain the choice of continuous functions and to
decompose a non-deterministic interval event into a series of periodic in-
terval events.

1 Introduction

Event-B is an established formalism that has been applied to a range of systems
especially control systems and distributed systems [1]. A key feature of Event-
B is the use of abstract modelling to represent the purpose of a system and
the use of refinement to demonstrate conformance between the abstract models
and more detailed models representing the designs that are intended to achieve
the desired purpose. An Event-B machine represents a single level of abstraction
and consists of state variables, invariants and events (i.e., parameterised guarded
atomic actions). The application of Event-B is enabled by the Rodin toolset [2]
which provides capabilities for proof obligations generation and automated and
interactive proof capabilities.

Event-B has largely been used to represent and reason about discrete mod-
els. In this chapter we are interested in hybrid models, that is, models containing
a mix of discrete and continuous behaviour. We focus on one kind of continu-
ous property, namely, bounds on a continuous function. A common approach
in modelling a hybrid system is to identify a number of discrete modes such
that within each mode the evolution of continuous variables is specified through
dynamic control laws (e.g., differential equations) [10, 12, 13]. We follow such an
approach here though we abstract away from control equations, instead specify-
ing assumptions about continuous functions; for example, we might assume that

1



a continuous function is monotonically increasing over an interval. At the ab-
stract level, an atomic event is used to specify the continuous behaviour within
a mode; such an event nondeterministically chooses a continuous function over a
time interval representing the continuous behaviour within that mode. We refer
to this as an interval event. We use refinement for two purposes. The first is to
make the choice of the continuous function more constrained (reduction of non-
determinism). The second use of refinement is to introduce additional discrete
steps within a mode to represent a periodic control strategy that determines, at
each period, whether to remain in a mode or switch to a different mode.

We illustrate the approach we have adopted using the classic example of
a controller for a water tank. The purpose of the water tank controller is to
maintain the water level in the tank between a low and a high level. This is
specified through bounds on a continuous function representing the evolution of
the water level within a mode. In a first refinement we constrain the choice of
continuous function further, specifying that it is monotonically increasing (or
monotonically decreasing) within a mode. In a second refinement, we introduce
periodic control events within the modes.

One objective of the work outlined here was the desire to follow an abstrac-
tion/refinement approach, starting with a model of the purpose and refining
this towards an implementation strategy. An additional key aim was to under-
stand the extent to which the existing Event-B refinement concepts and the
Rodin toolset could be used to achieve the modelling and proofs of the hybrid
water tank. A key enabler for mechanising the modelling and proofs in Rodin is
the Theory Plug-in for Rodin [7] . The Theory Plug-in allows us to extend the
mathematical language of Event-B with theories of real numbers and continuous
functions over intervals. The Theory Plug-in also allows us to define new proof
rules about reals and continuous functions that can be used by the Rodin proof
manager.

The work presented here uses the standard refinement proof obligations of
Event-B so that no changes where required in the Rodin tool. The Event-B proof
rules are defined in [1]. Proving refinement in Event-B requires gluing invariants
that relate abstract and concrete variables. Each event of a refining machine
either refines an event of the abstract machine or refines skip. For an event that
refines an abstract event, the guards of that refined event must entail the guards
of the abstract event under the gluing invariants and the actions must maintain
the gluing invariants. An event refines skip if it maintains the gluing invariants
when no change occurs in the abstract variables.

The approach presented here was inspired by previous work on reasoning
about hybrid systems using an abstraction/refinement approach. Continuous
Action Systems [4] are an extension of the classical Action System approach [3]
where variables are time dependent functions, that is, variables are functions
over non-negative reals. Hybrid Action Systems [13] provide the ability to spec-
ify evolution of continous functions using differential equations. Inspired by
Continuous Action Systems, Su et al [14] have developed an approach to mod-
elling hybrid systems in Event-B using a combination of discrete and time vary-
ing variables. The approach followed in [14] is to start with discrete models

2



and introduce continuous behaviour in refinement steps. When mechanising the
models and proofs in Rodin, [14] approximated reals using integers (because
of the lack of support for reals in Rodin at the time that the work was un-
dertaken). Hybrid Event-B is an extension of Event-B that distinguishes mode
variables (discrete) and pliant variables (continuous) [5]. Hybrid Event-B also
distinguishes mode events and pliant events; mode events model instantaneous
discrete changes while pliant events model continuous evolution of pliant vari-
ables over time intervals. The interval events used in this chapter are essentially
intended to mimic the pliant events of Hybrid Event-B. At the time of writing
there is no tool support for Hybrid Event-B.

We make a distinction between a control goal and a control strategy. We
outline how both can be modelled and how refinement can be used to prove
that a strategy satisfies a goal. In the case of the water tank system the control
goals is as follows:

The control goal is to maintain the water level between a high level,
H, and a low level, L.

Water may flow out of the tank according to some known maximum rate. To
maintain a satisfactory water level, the controller can switch on a pump which
causes the water level to increase according to some known maximum rate.

The control strategy is to sense the water level periodically and
switch the pump on or off as appropriate.

We find it useful to follow the categorisation of modelling variables given
in the Four-variable model of Parnas and Madey [11]. In this model, there are
two main groupings of variables, environment variables and controller variables.
Environment variables represent quantities in the environment of the controller.
Controller variables represent quantities inside the controller machine. There
are two kinds of environment variable as follows:

Monitored variables Environmental quantities whose value is not determined
by the controller but that can be monitored. For example, the water level
in the tank is a monitored variable.

Controlled variables Environmental quantities whose value is expected to be
determined by the controller. For example the pump status (on or off ) is
a controlled variable.

The approach we follow is to start with a model of the control goal expressed
in terms of monitored variables. We then refine this by a model of the strategy
which is expressed in terms of monitored and controlled variables.

2 Reals and continuous functions

We have defined a theory of real arithmetic using the Rodin Theory feature.
This introduces a new basic type, REAL, defines real versions of the standard

3



arithmetic operators (addition, subtraction, multiplication and division) and
defines the usual total order on reals. With the Theory feature, operators may
be defined directly (in terms of previously-defined operators), recursively (for
inductive data types) and axiomatically with a collection of axioms on a group
of operators. In our case we define the arithmetic operators axiomatically using
standard axioms for reals.

We define an interval between two reals as follows1 :

i..j = { k | k ∈ REAL ∧ i ≤ k ∧ k ≤ j }

This is an example of a direct definition in the Rodin Theory feature: the interval
operator is defined using existing operators (set comprehension) for arguments
i and j.

We use a standard definition of continuity. A function f is continuous at
point c, written cts(f, c), when it satisfies the following condition:

cts(f, c) ⇐⇒ f ∈ REAL 7→REAL ∧
∀ε · 0 < ε ⇒
∃δ · 0 < δ ∧
∀x · x ∈ dom(f) ∧

c− δ < x < c+ δ

⇒
f(c)− ε < f(x) < f(c) + ε

This states that for every neighbourhood around f(c), defined by f(c)± ε, there
exists a δ that defines a neighbourhood around c, defined by c ± δ, that yields
that neighbourhood around f(c).

An interval function is continuous if it is continuous at every point in its
domain so we define the set of continuous functions on the interval i..j, written
ctsF (i, j), as follows:

ctsF (i, j) = { f | f ∈ i..j→REAL ∧ ∀c · c ∈ i..j⇒ cts(f, c) }

3 Modelling a Continuous Control Goal

We specify a continuous control goal in terms of monitored variables repre-
sented by continuous functions on time intervals. We use a simple form of timed
automaton, where the state variables include a clock, clk, and monitored vari-
ables, m, specified as continuous functions from time zero up to clk (where
PosREAL = {r|r ∈ REAL ∧ r ≥ 0}):

clk ∈ PosREAL

m ∈ (0..clk)→REAL

1For readability, we use the usual symbols for real arithmetic (+, −, ≤, etc). These symbols
are used for integer arithmetic in Rodin and, since operator overloading is not allowed in Rodin,
we use different symbols (plus, sub, leq, etc) in our REAL theory.

4



This gives us two ways of specifying continuous goals in Event-B:

• Invariants are used to specify a property satisfied by the entire evolution
of continuous variables.

• Interval events are used to specify a property on the continuous evolution
within a behaviour mode.

Boundary constraints can be specified independently of time, that is, the
value of a continuous variable at each point in its interval remains within some
fixed boundaries. If we characterise the boundary as the set of values B within
the boundary, then satisfaction of the boundary by all points of the continuous
variable can be specified by range inclusion:

ran(m) ⊆ B

Requiring that the water level is always between the low and high marks is
an example of a boundary constraint defined by the set L..H. Another form
of pointwise property could involve the relationship between several continuous
variables. For example, in a cruise control system for a car, the speed should be
close to the target speed. Assuming target and speed are continuous functions
on interval i..j, this can be specified as a pointwise predicate as follows:

∀t·t ∈ i..j ⇒ target(t)− δ ≤ speed(t) ≤ target(t) + δ

Other properties, such as monotonicity, smoothness, responsiveness and stabil-
ity, span an interval and cannot be specified on individual time points. We do
not consider a full range of interval properties here, but we do make use of
monotonicity. For example, we define the set of monotonically increasing inter-
val functions as follows:

mono inc = { f, i, j | f ∈ ctsF (i, j) ∧
(∀k, l · i ≤ k ≤ l ≤ j ⇒ f(k) ≤ f(l)) • f }

The control goal for the water tank is a boundary property (defined by
constants H and L) that should always be true so we use a boundary constraint
on the continuous variable to model this:

inv1 : clk ∈ PosREAL

inv2 : wl ∈ ctsF (0, clk)

inv3 : ran(wl) ⊆ L..H

To model the dynamics within a mode, we use a nondeterministic interval
event that extends the continuous behaviour for an interval of nondeterministic
length. Such an event chooses some future time t and a continuous function f
over the future interval and updates the clock and the continuous variables in
a way that satisfies a property P . It has the following form:

5



m"

Interval"1" Interval"2"

Figure 1: Evolution of continuous function during intervals.

Event UpdateMonitored =̂

any

t,f

where

grd1 : t ≥ clk + ε

grd2 : f ∈ ctsF (clk, t)

grd3 : f(clk) = m(clk)

grd4 : P (f)

then

act1 : m := m ∪ f
act2 : clk := t

end

Possible continuous behaviour allowed by this event is illustrated by the graph
in FIGURE 1. In the graph, the behaviour within each interval is defined by
a continuous function over that interval and continuity is maintained between
intervals. The function is monotonically increasing in Interval 1 and monoton-
ically decreasing in Interval 2.

Each of the guards in the UpdateMonitored event is essential:

• Guard grd1 requires the next interval to have a duration of at least ε where
ε is a constant. This is to prevent zeno behaviour where the time interval
continually gets smaller and smaller.

• Guard grd2 requires the next interval function f to be continuous.

• Guard grd3 requires the endpoint of the existing interval function m and
the starting point of the next interval function f to agree. This is to ensure
that continuity is preserved when the interval function m is extended in
action act2.

• Guard grd4 requires the next interval function f to satisfy the interval
property P .

6



We require that interval events always preserve continuity of the continuous
variables (so grd2 and grd3 are essential). Some interval properties P are pre-
served under extension, that is, if the existing interval function m satisfies P
and the next interval f satisfies P , that the extended interval function m ∪ f
also satisfies P . It is easy to show that boundary properties are preserved when
extending an interval function since they are time independent. Monotonicity
is also reserved by interval extension, e.g., if m is monotonically increasing and
f is monotonically increasing, then m∪ f is monotonically increasing (provided
m∪f is continuous). Clearly there are interval extensions that are not property
preserving, e.g., extending a monotonically increasing function with a monoton-
ically decreasing function does not preserve monotonicity.

In the water tank example, we use the following nondeterministic interval
event to represent the required evolution of the water level during a mode:

Event WaterLevelInterval =̂

any

t,f

where

grd1 : t ≥ clk + ε

grd2 : f ∈ ctsF (clk, t)

grd3 : f(clk) = wl(clk)

grd4 : ran(f) ⊆ L..H
then

act1 : wl := wl ∪ f
act2 : clk := t

end

The interval property (grd4 ) for this event is a boundary property, and as
just discussed, is preserved by interval extension, i.e., this event preserves the
boundary invariant on the water level.

4 Distinguishing modes

Our simple water tank system has two modes of operation: when the pump
is on, the water level is monotonically increasing and when the pump is off,
it is monotonically decreasing. In both cases the boundary property must be
maintained. The interval event WaterLevelInterval of the previous section is an
abstraction of both of these modes of operation. We construct a refined model
of the water tank machine with two interval events, one for increasing the water
level and the other for decreasing the water level. We require both of these to be
refinements of WaterLevelInterval and thus they need to preserve the boundary
property.

The specification of the interval event for increasing the water level is as
follows:

7



Event IncreaseWaterLevelInterval =̂

refines WaterLevelInterval

any

t,f

where

grd1 : t ≥ clk + ε

grd2 : f ∈ ctsF (clk, t)

grd3 : f(clk) = wl(clk)

grd4 : f ∈ mono inc
grd5 : f(t) ∈ L..H

then

act1 : wl := wl ∪ f
act2 : clk := t

end

Here we replace the abstract interval property (ran(f) ⊆ L..H) with refined
interval properties stating that f is monotonically increasing and that the
endpoint of f is within the boundaries (the start-point is also bounded be-
cause of grd3 and the invariants specifying that wl is bounded). The refine-
ment is valid because, if f is monotonic and its endpoints are bounded, then
f is bounded at all points. This is capture by the follow inference rule (here
mono = mono inc ∪mono dec):

f ∈ cstF (i, j), f ∈ mono,
f(i) ∈ L..H, f(j) ∈ L..H

ran(f) ⊆ L..H

The interval event for decreasing the water level can be defined in a similar
way. Note that we have not yet introduced a controller variable representing
the status of the pump . At this level of refinement we remain focused on the
monitored variable representing the water level.

5 Modelling the Control Strategy

To model the control strategy we introduce controlled variables whose value is
modified at discrete steps. We make the assumption that the value of a controlled
variable may influence the value of a monitored variable. For example, in the
water tank we introduce a pump variable representing the status of the pump (on
or off ). If the pump is on, we assume that the water level increases monotonically
while if the pump is off, then the water level decreases monotonically. For the
water tank, we assume a periodic controller with a fixed period of length T that
uses the following strategy at each control period:

8



C1 If the level is below a low threshold LT , the pump is switched on.

C2 If the level is above a high threshold HT , the pump is switched off.

C2 If the level is between LT and HT , the pump status does not change.

We assume that constants LT and HT lie in between L and T as follows:

axm1 : L < LT < HT < H

Furthermore we assume that the rate of increase in the water level is bounded
by constant RI, that is, the water level can increase by a maximum of RI × T
during one fixed-length period. Similarly we assume the rate of decrease of the
water level is bounded by constant RD. The values for LT and HT are chosen
such that if the water level is within LT..HT at a periodic control point, then
the water level cannot go outside L..H by the next control point, i.e.,

axm2 : L ≤ LT − (RD × T )

axm3 : HT + (RI × T ) ≤ H

The interval events introduced in the previous modelling level represent the
evolution of a continuous variable during an entire control mode throughout
which the controlled variables remain unchanged. For example, the IncreaseWa-
terLevelInterval event represents the water level increasing while the pump is
on. We refer to these as big step events. When introducing the periodic controller
in a refinement, the effect of a single interval event at the abstract level, e.g.,
IncreaseWaterLevelInterval, will be achieved by multiple sequential fixed-length
periodic intervals. To model this we represent the evolution of the continuous
variables during a mode using more fine-grained periodic interval events. The
periodic events extend the continuous variables by fixed length intervals, each
of size T . We refer to these as small step events. In addition to the controlled
variables, we introduce additional variables in the refinement to represent the
changes made by the periodic controller events: a clock variable to represent
the periodic steps of time during a single mode, and continuous variables to
represent the periodic evolution of the continuous variables during the mode.
For the water tank example, we introduce two variables, one representing the
periodic steps in time within a pump mode (clkm), and another representing the
periodic evolution of the water level during a mode (wlm). This is illustrated in
FIGURE 2: the left hand graph represents a series of periodic evolutions of the
newly introduced wlm variable within a mode; once sufficient periodic intervals
have been defined by small step events, the big step event extends wl for a full
mode interval using the periodic interval functions accumulated in wlm.

We introduce invariants representing properties of the newly introduced vari-
ables in the refinement. For the water tank example we have the following in-
variants:

inv11 : clk ≤ clkm

inv12 : wlm ∈ ctsF (clk, clkm)

9



Small%step%intervals%

wlm%

Big%step%interval%

wl%

Figure 2: Small step and big step intervals.

inv13 : wlm(clk) = wl(clk)

inv14 : wlm(clkm) ∈ L..H

inv15 : pump = on ⇒ wlm ∈ mono inc

inv16 : pump = off ⇒ wlm ∈ mono dec

In interpreting these invariants, it is important to understand that the new
variables clkm and wlm will be updated within a mode by the periodic con-
troller events (small step events), while the original variables (which remain
part of the refined model) will be updated by the refinements of the abstract
nondeterministic interval events (big step events). The invariants specify that
clkm is never behind clk (inv11) and that wlm is a continuous function over the
interval clk..clkm (inv12) whose start point is fixed (inv13) and whose end point
is bounded (inv14). Depending on whether the pump is on or off, determines
whether wlm is monotonically increasing or monotonically decreasing (inv15,
inv16).

The periodic events for a mode will be continually executed, once per control
period, while it is ok to remain within that mode. For the water tank, the
following periodic event specifies the system behaviour during a single period
while the pump is in the on mode:

Event PeriodicIntervalIncrease =̂

any

f

where

grd1 : pump = on

grd2 : wlm(clkm) ≤ HT
grd3 : f ∈ ctsF (clkm, clkm + T )

grd4 : f(clkm) = wlm(clkm)

grd5 : f(clkm + T ) ≤ wlm(clkm) + (RI × T )

grd6 : f ∈ mono inc

10



then

act1 : wlm := wlm ∪ f
act2 : clkm := clkm + T

end

Here the first two guards specify an enabling condition for the event, i.e., that
the pump is on and that the current water level has not exceeded HT . The
remaining guards specify constraints on the choice of interval function used to
extend wlm, i.e., f is an interval of length T starting from the current time
(grd3), its starting value is the current water level grd4, its ending value is
bounded by the rate of increase (grd5) and it is monotonically increasing (grd6).
As well as extending wlm by f , the actions of the event increase clkm by a fixed
amount T representing the fixed duration of a period.

There are two key reasons why the PeriodicIntervalIncrease event maintains
the invariants on wlm:

• The level at the end of the interval, f(clkm + T ) is bounded above by
HT + (RI ×T ) (from grd2, grd5) which means it is bounded above by H
(axm3).

• The continuous composition of two monotonically increasing function is
monotonically increasing:

f ∈ cstF (i, j), f ∈ mono inc,
g ∈ cstF (j, k), g ∈ mono inc,

f(j) = g(j)

f ∪ g ∈ mono inc

The periodic event for decreasing the water level is defined and verified in a
similar way.

The events that represent the end of a mode are specified as refinements of
the abstract nondeterministic interval events. The events are made deterministic
by providing witness for the nondeterministic parameters of the abstract events
and the witnesses are provided by the variables introduced to represent the
evolution of time and of the continuous variables during a mode. For example,
the nondeterministic interval event representing the monotonically increasing
mode is refined as follows:

Event IncreaseWaterLevelInterval =̂

refines IncreaseWaterLevelInterval

where

grd1 : pump = on

grd2 : wlm(clkm) > HT

with

11



t : t = clkm

f : f = wlm

then

act1 : wl := wl ∪ wlm
act2 : clk := clkm

act3 : wlm := {clkm}C wlm

act4 : pump := off

end

The refined event is enabled when the pump is on (grd1) and the water level
exceeds HT (grd2). In the abstraction of this event, t and f are nondetermin-
istically chosen parameters. In the refinement they are eliminated as parame-
ters and their values are represented by deterministic witness predicates (with
clause). The invariants of this refined model ensure that the witness values
satisfy the constraints on the choice of values for the parameters in the more
abstract model. The original actions of the abstract event are retained in the
refinement event, and additional actions are added to reset wlm to be a point
interval on the current time and change the pump status to off.

6 Merging big and small step variables

In the refinement just outlined, we retain the variable updated by the big step
events (wl) and we introduced a new variable that is updated by the small step
events (wlm). Variable wl represents the history of the water level from time
zero up to the most recent big step interval while wlm represents the recent
history from the most recent big step interval up to the most recent small step
interval. It is possible in a further refinement to merge the big step and small
step variables into a single variable wls representing the full history from time
zero to the most recent small step interval. This merge means that the big
step clock is not required since it is no longer used in any guards and can be
eliminated. The elimination and merge is characterised by the following simple
invariant:

inv21 : wls = wl ∪ wlm

This merge leads to a simplification of the actions of the IncreaseWaterLevelIn-
terval event: the update of clk is eliminated and the simultaneous update of wl
and wlm is realised by a skip action on wls (thus no change to wls is required).
The only remaining action is the update to the pump status. We also take the
opportunity to rename this event to PumpOff to indicate the control purpose
that it now represents. The simplified event is specified as follows:

Event PumpOff =̂

refines IncreaseWaterLevelInterval

12



where

grd1 : pump = on

grd2 : wls(clkm) > HT

then

act1 : pump := off

end

Through this merging of continuous variables, the PumpOff event has be-
come an instantaneous event whereas previously it was an interval event. We
say it is now instantaneous since it does not update a clock and it does not
extend a continuous variable. We are able to simplify PumpOff to be instanta-
neous because the overall effect of the abstraction of this event is achieved by
a sequence of periodic interval events. Once sufficiently many small step events
have been executed to accumulate the recent history of the water level within
the mode, the instantaneous mode change event is enabled and the effect spec-
ified by the abstraction of that instantaneous event will have been achieved by
the accumulation of small step interval since the most recent big step events.

7 Derivatives

In control systems it is common to specify properties of interval functions in
terms of properties of derivatives of those functions. For example, a function is
monotonically increasing if its derivative is always positive, a function is linear
if its derivative is a constant. Rather than defining derivatives exactly, we can
characterise them axiomatically. Since not all functions have a derivative, we
capture the set of differentiable functions over interval i..j with a set diff(i, j).
We write der(f) for the derivative of f . We assume (axiomatically) that all
differentiable functions are also continuous and that the derivative of a differ-
entiable function f is a continuous interval function over the same interval as
f :

axm : ∀i, j · diff(i, j) ⊆ ctsF (i, j)

axm : ∀f, i, j · f ∈ diff(i, j) ⇒ der(f) ∈ ctsF (i, j)

We can capture the property that functions with positive derivatives are mono-
tonically increasing through the following axiom:

axm : ∀f, i, j · f ∈ diff(i, j) ∧ ran(der(f)) ⊆ PosREAL ⇒ f ∈ mono inc

This axiom allows us to refine an event guard f ∈ mono inc by a guard requiring
f to be a differentiable function with positive derivative.

13



8 Concluding

We summarise our approach as follows: Continuous behaviour is specified
through nondeterministic big step interval events that constrain the shape of
continuous interval functions during a mode. We can refine these nondeterminis-
tic events by further constraining the shape of the continuous interval functions,
e.g., we refined an interval function, that is bounded at every point, to a mono-
tonically increasing function, that is bounded at its end points. We can also
introduce periodic small step events within a mode as new events in a refine-
ment to represent the strategy to be followed by a control system. Preservation
of properties of continuous functions is key to ensuring the correctness of the
refinements. For example, the most abstract interval event for the water tank
preserves boundary invariants, the small step events in the water tank preserve
monotonicity.

We need to be very careful in how we allow the clocks and continuous func-
tions to be modified in order to reflect assumptions about the progression of
time: time must move forwards, not backwards, and zeno behaviour must be
avoided; continuous functions are extended in a forward direction only. It should
be possible to enforce these idioms through a syntactic layer and this is one of
the features of Hybrid Event-B [5].

Our approach fits with the abstraction/refinement approach of Event-B and
the water tank development is supported by the Rodin toolset through the use of
theories to define operators and proof rules for continuous functions. What is less
clear is how well the approach scales to the case of high degrees of concurrency
with multiple continuous functions operating to different mode intervals. This
is the subject of future work.

The approach outlined here is influenced by the approach of [6] to the Steam
Boiler Problem. In that paper, actions systems (the basis of Event-B) are used
to construct a model of the system that includes the monitored variables and
the controlled variables. Although [6] uses a very simple model of discrete time
whereby the environment actions model the update to monitored variables in
one complete control cycle, it does encourage a system-level approach. By this we
mean that rather than modelling the environment and controller separately, the
abstract model captures the overall system and refinement is used to introduce
more distinction between the environment and controller. In fact in our approach
we take the abstraction one level further than in [6] by focusing on monitored
variables (water level) in the abstraction and only introducing the controlled
variable (the pump) through refinement.

Besides monotonicity, we have focused on expression of control goals that
refer to individual time points, i.e., the monitored variables are required to
satisfy some property at each time point. Treatment of properties over time
intervals, as expressible in the Duration Calculus [8] or the approach of Hayes,
Jackson and Jones [9], merits further investigation. We have yet to include the
treatment of faults (e.g., pump or sensor failure) and fault tolerance in our
approach though we believe it is sufficiently flexible to support instantaneous
(e.g., sensor failure) and continuous faults (e.g., water level is decreasing when

14



it should be increasing).

References

[1] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engi-
neering. Cambridge University Press, 2010.

[2] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling
and reasoning in Event-B. STTT, 12(6):447–466, 2010.

[3] Ralph-Johan Back and Reino Kurki-Suonio. Distributed cooperation with
action systems. ACM Trans. Program. Lang. Syst., 10(4):513–554, 1988.

[4] Ralph-Johan Back, Luigia Petre, and Ivan Porres. Continuous action sys-
tems as a model for hybrid systems. Nord. J. Comput., 8(1):2–21, 2001.

[5] Richard Banach, Huibiao Zhu, Wen Su, and Runlei Huang. Continuous
kaos, asm, and formal control system design across the continuous/discrete
modeling interface: a simple train stopping application. Formal Asp. Com-
put., 26(2):319–366, 2014.

[6] M. J. Butler, E. Sekerinski, and K. Sere. An action system approach to
the steam boiler problem. In J.-R. Abrial, E. Börger, and H. Langmaack,
editors, Formal Methods for Industrial Applications – Specifying and Pro-
gramming the Steam Boiler Control, LNCS 1165, pages 129–148. Springer-
Verlag, Berlin, 1996.

[7] Michael Butler and Issam Maamria. Practical theory extension in event-b.
In Theories of Programming and Formal Methods - Essays Dedicated to
Jifeng He on the Occasion of His 70th Birthday, volume 8051 of Lecture
Notes in Computer Science, pages 67–81. Springer, 2013.

[8] Zhou Chaochen and Michael Hansen. Duration Calculus: A Formal Ap-
proach to Real-Time Systems. Springer, Heidelberg, 2004.

[9] Ian Hayes, Michael Jackson, and Cliff Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, LNCS
2805. Springer-Verlag, Berlin, 2003.

[10] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, pages 278–292. IEEE Computer Soci-
ety, 1996.

[11] David Lorge Parnas and Jan Madey. Functional documents for computer
systems. Sci. Comput. Program., 25(1):4161, 1995.

15



[12] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg, 2010.

[13] Mauno Ronnko, Anders P. Ravn, and Kaisa Sere. Hybrid action systems.
Theor. Comp. Sci., 290(1):937–973, 2003.

[14] Wen Su, Jean-Raymond Abrial, and Huibiao Zhu. Formalizing hybrid sys-
tems with event-b and the rodin platform. Sci. Comput. Program., 94:164–
202, 2014.

16


