
UC Irvine
ICS Technical Reports

Title
A computational theory of learning causal relationships

Permalink
https://escholarship.org/uc/item/3qd2r2gw

Author
Pazzani, Michael J.

Publication Date
1990-11-14
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qd2r2gw
https://escholarship.org
http://www.cdlib.org/


A Computational Theory

of Learning Causal Relationship^

Michael J. Pazzan]^
pcizzani@ics.uci.edu

Technical Report 90-39

November 14, 1990

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

To appear in Cognitive Science.

Z

6ff
e3
y\o.





A Computational Theory of Learning Causai Reiationships

Michael PazzanI
Department of Information and Computer Science

University of California
Irvine, CA 92714

pazzani@ics.uci.edu

Running Head: Learning Causal Relationships

Abstract

We present a cognitive model of the human ability to acquire causal relationships. We report on

experimental evidence that demonstrates that human leamersacquire accuratecausal relationships more

rapidly when training examples are consistent with a general theory of causality. This paper describes a

learning process that uses a general theory ofcausality as background knowledge. The learning process,

which we call theory-driven learning (TDL), hypothesizes causal relationships consistent with both

observed data and the general theory of causality. TDL accounts for data on both the rate at which

human learners acquire causal relationships and the types of causal relationships they acquire.

Experiments with TDL derrwnstrate the advantage of theory-driven learning for acquiring causal

relationships over similarity-based approaches to learning: fewer examples are required to learn an

accurate relationship.
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Holyoak were useful in designing the experiments. This work is supported by National Science
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1

1. Introduction

There are many tasks that require an understander to reason atx)ut causal relationships. Indeed, it is

hard to imagine how we could survive if we were not able to reason aisout actions and thier effects. To

illustrate the importance, and ubiquity, of causal reasoning consider the following three key reasoning

tasks:

• Prediction: Foreseeing what will happen if a balloon is pricked by a pin;

• Planning: Specifying an action to achieve the goal of bursting a balloon - or specifying an
action to avoid if the balloon is to remain inflated;

• Abductive inference (Peirce, 1932): Inferring what (unobserved) action(s) may have occurred
to account for a balloon bursting.

Because of the importance of causal reasoning, our primary goal in this paper is to describe, and

demonstrate, a computational learning procedure that accounts for the following critical fact: human

learners acquire causal relationships more rapidly than would be exposed if the learning mechanism

relied solely on correlations between actions and state changes. That is, a leamer somehow brings to

bear on the task of leaming causal relationships knowledge that facilitates the acquisition of accurate

causal relationships. We call this knowledge a theory of causality.

In the remainder of this paper, we first define the leaming task in terms of the knowledge acquired by

the leamer and the theory of causality that the leamer starts with. Next, we argue that human leaming of

causal relationships is facilitated by a theory of causality. We introduce a new leaming procedure called

theory-driven leaming (TDL) and compare it to similarity-based and explanation-based approaches on the

task of acquiring causal relationships.

1.1. A Theory of Causation

In order to predict state changes, the leamer must acquire what we will call a theory of causation. A

theory of causation is a collection of domain-specific causal relationships that indicate the state changes

that result from a particular class of actions. Each causal relationship consists of a description of a class

of actions and a description of a class of state changes connected by causal links (Schank & Abelson,

1977). Causal relationships state things such as striking a balloon with a sharp object results in the

balloon bursting.

The theory of causation enables the reasoner to predict the effects of actions, to generate plans that

result in state changes and to infer what actions may have occurred to explain state changes. For the



purposes of tfiese tasks, it does not matter how the causal relationships that comprise the theory of

causality are acquired. Any learning procedure, including a neural network leaming algorithm (e.g.,

(Rumelhart et al., 1986)), could acquire the theory of causation by associating classes of state changes

with classes of actions.

1.2. A Theory of Causality

A human learner brings to this leaming task a set of domain-independant principles that allows the

learner to conclude that a particular class of actions necessarily results in a state change (Shuttz, 1982,

Bullock et al., 1982). We call this knowledge a theory of causality and distinguish it from a theory of

causation. A theory of causality indicates the conditions under which an action appears to result in a

state change. For example, the theory of causality may include the condition that when an action on an

object precedes a state change for that object, then the action appears to cause the state change. Note

that the theory of causality is not able to predict what woukJ happen if a balloon were poked with a pin.

Rather, when an example of a balloon bursting after being poked with a pin has been observed, the

theory of causality is able to attribute the state change of the balloon to the fact that the balloon was

poked with a pin, rather than an arbitrary action which may have occurred at the same time (e.g., a child

eating a lollipop).

In contrast to a theory of causality, a theory of causation indicates the conditions under which an action

results in a state change. For example, a reasoner's theory of causation may include a causal

relationship that indicates that striking a balloon with a sharp object results in the balloon bursting. This

causal relsitionship can be used to infer that a particular red balloon will burst if it is poked with a pin.

Note that for this action, a variety of state changes including the balloon catching fire and the pin

shattering are consistent with the theory of causality, but not the theory of causation.

In the computer implementation, the theory of causality is represented by a set of causal patterns. A

total of 30 causal pattems have been identified and implemented. Appendix I lists the pattems for

physical causality. The causal pattems of theory-driven leaming encode constraints that have been

empirically determined to influemethe acquisition of causal relationships. These constraints include:
• Regularity: Since a cause nxjst necessarily result in an effect, the cause and the effect must

co-occur (Shultz & Mendelson, 1975). Note that causality does not demand a perfect
correlation.

• Temporal order: Children as young as four require a potential cause to precede an effect
(Shuttz & Mendelson, 1975). Although this may seem like a trivial constraint, existing
leaming systems (Salzberg, 1985, Lebowitz, 1986a) that predict the outcome of actions do



not make use of temporal information.

• Temporal contiguity; An effect must immediately follow a cause (Michotte, 1963). When all
other factors are equal, people select a cause that is closest in time to an effect.

• Spatial contiguity: An effect must tje in contact with (or near) a cause (Bullock, 1979). When
all other factors are equal, people select a cause that is closest in space to an effect.

The first constraint, regularity, is not explicitly represented by the causal pattems. Instead, the theory-

driven learning procedure directly insures that causal relationships obey the regularity constraint. The

remaining constraints are explicitly represented in the theory of causality.

There are two ways that theory of causality constrains the search for a hypothesis:
• Determining the true cause in an ambiguous situation. For example, consider the following

observation. First, two actions occur at the same time: Karen is eating a lollipop and Chris
pokes a balloon with a pin. Next, the balloon bursts. By ruling out eating the lollipop as a
cause for the balloon bursting, the search space for the problem of determining what causes
balloons to burst can be reduced.

• Selecting relevant features. A theory of causality can focus attention on the potentially
relevant features of the objects that are involved in an action. For example, the features of
the object that pokes a balloon, and the features of the balloon itself may determine whether
or not the balloon bursts. However, it unlikely that the features of the person that pokes the
balloon are significant.

1.3. The learning task

This paper describes a leaming procedure called theory-driven teaming whose objective is to construct

a theory of causation given a theory of causality and a number of observations. Table 1 summarizes this

leaming task.

The input to the theory-driven teaming procedure is a sequence of observations. Each observation

consists of several actions and state changes^ connected by temporal links. The teaming task is

complicated by the fact that several actions may occur at the same time. Therefore, the teamer must be

able to distinguish between those actions that temporally preceded a state change and tlx>se actions that

resulted in a state change.



Table 1. A summary of theory-driven learning.

• Given:

1. A series of observations.

2. A theory of causality (i.e., a set of causal pattems).

• Create: A theory of causation (i.e., a set of causal relationships).

1.4. Learning causal relationships: An example

In this section, we present an example of teaming causal relationships to provide an overview of

theory-driven teaming. Table 2 is a protocol of a child trying to figure out when she can inflate balloons

and when she cannot.

Table 2. Protocol of Lynn (age 3 years 11 months) trying to blow up balloons.

1. Mix* is blowing up s xad balloon.
2. Lynn: "Lot mo blow it up."
3. Miko lots tho aiz out of tho balloon and bands it to Lynn.
4. Lynn blows up tho rod balloon.

5. Lynn picks up a gzoon balloon and trios to inflato it.
6. Lynn cannot inflato tho groon balloon.
7. Lynn puts down tho groon balloon and looks around.
8. Lynn: "How como they only gave us ono red one?"
9. Mike: "Why do you want a rod ono?"
10. Lynn: "Z can blow up tho red ones."

11. Mike picks up a green balloon and inflates it.
12. Mike lets the air out of the green balloon; hands it to Lynn.
13. Mike: "Try this ono."
14. Lynn blows up tho green balloon.
15. Lynn gives Miko an uninflatod blue balloon.
16. Lynn: "Hero, let's do this one."

It appears from the first observation in Table 2 (lines 1 through 4) that Lynn has acquired a causal

relationship that indicates that she can inflate any balloon by blowing air into the balloon. A causal

pattern that states an action on a particular object followed bya state change oftheobject, suggests that

the action results In the state change focuses theory-driven learning to hypothesize this same causal

relationship.

After the second observation (lines 5 through 10) a counterexample to the initial hypothesis isseen and



the learner must generate a new hypothesis that accounts for a different result. The two balloons differed

in color and the hypothesis can be accounted for by a causal pattem that states two actions that have

different results and that are performed on different objects, suggests that a feature that differs between

the two actions enatties the action to produce the result.

The second hypothesis is contradicted by the third observation (lines 10 through 16) when she

determines that the color of the balloon is not important. Instead, she attributes the different result to a

different action that preceded her successfully inflating a balloon. In theory-driven leaming, this

hypothesis would be produced by a causal pattem that states an initial action on an object preceding a

subsequent action that precedes a state change for the object, suggests that the initial action results in a

state change that enables the subsequent action to result in the state change. In the next section, we

report on an experiment whose goal is to determine whether leaming new causal relationships is

facilitated when a causal relationship conforms to this causal pattem.

2. Constraints on learning causal relationships: Experimental results

The purpose of this experiment was to investigate how a theory of causality affects the numtier of trials

required to leam to make accurate predictions. We investigated the last causal pattem from the previous

section. This pattem postulates an intermediate enabling state when a prior action on one object is

present when a subsequent action on the same object results in a state change. Section 3.3 discusses

this pattem in more detail (see Figure 6). We predicated that it would take fewer trials for subjects to

leam a new causal relationship that conforms to this pattem than a similar causal relationship that does

not conform to this pattem.

One group of subjects had to leam that a child would be able to inflate a balloon only if she dipped the

balloon in water before blowing air into it. Another group of subjects had to leam that a child would be

able to inflate a balloon only if she snapped her fingers before blowing air into the balloon. The former

relationships is consistent the causal pattem tested. The latter is not consistent with any causal pattem

used by theory-driven leaming.

To eliminate cue salience (Bower & Trabassp, 1968) as a possible explanation for the increased

leaming rate, we ran two control groups that performed a concept identification task (Bruner et al.,

1956) rather than a prediction task with the same stimuli. Instead of predicting whether a balloon could

be inflated, the control groups had to associate the category name, "alpha", with the action sequence of
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dipping a balloon into water followed by blowing air into it (orsnapping fingers followed by blowing air into

a balloon).

To summarize, there were four conditions in this experiment:

• Dip/lnftate- Thiscondition requires predicting that a balloon could be inflated only after itwas
dipped in water.

• Snap/Inflate- This condition requires predicting that a balloon could be inflated only after the
actor first snaps her fingers.

• Dip/Alpha- This condition requires learning that examples of a person difiping a balloon in
water and attemptingto inflate a balloon belong to a category called "alpha".

• Snap/Alpha- This condition requires learning that examples of a person snapping herfingers
and attempting to inflate a balloon belong to a categorycalled"alpha".

We predicated that the Dip/Inflate inflate condition would be easiest for subjects to learn. This is the

only condition in which theory-driven learning is applicable. The subjects in the remaining conditions

must rely solely on correlation since the theory of causality is either irrelevant to the task or contradicted

by the training data.

Method

Subjects. The subjects were 80 male and female undergraduates attending the University of

Caiifomia, Los Angeles who participated in this experiment in partial fulfillment ofcourse requirements for

an introductory psychology course. Each subject was tested individually. Subjects were randomly

assigned to one of the four conditions.

Stimuli. The stimuli consisted of four videotapes, one for each condition. Each tape consists of a

seriesofobservations (e.g., dipping a balloon in water and attempting to inflate the balloon). In the Inflate

conditions, each observation was followed by a continuation in which the balloon was either inflated

successfully or not inflated. In the Alpha conditions, each obsen/ation was followed by a display of the

word "alpha" orthe phrase "not alpha". Action sequences differed according tothe prior action (either the

actor dipped a balloon in water, put a necklace on, or snapped her fingers), the color of the balloon

(orange oryellow), orthe size of the balloon (small or large). The sequential nature of videotape required

us to control the order of the presenting the observations: the dipping and snapping actions were

interchanged between the Dip and Snap conditions. Afi^ndix il contains the order in which examples

are presented. The ordering insures that the subjects saw positive and negative examples in the same

order. The observations in the Alpha tapes are in the same order as the observations on the



corresponding Inflate tapes.

Procedures. Each subject was shown an observation on a color television screen. The tape was

paused and the subject was asked to make a prediction. Then, the tape was resumed and the subject

was able to judge the accuracy of the prediction. This process was repeated until the subject was able to

predict correctly on six consecutive observations. We recorded the number of the last trial on which the

subject made an error.

Results

The result of this experiment (illustrated in Figure 1) confirmed our prediction (F(3,76) - 8.88, p < .05).

Subjects required fewer trials to leam to predict that a balloon that had been dipped in water could be

inflated (3.5 trials) than to predict that a balloon could be inflated after the child snapped her fingers (7.6

trials). One possible explanation for this result is that dipping a balloon in water is perceptually more

salient than snapping fingers. If this were the case, we would expect the same preference to hold in

when associating a name with an class of observations. However, subjects required approximately the

same number of trials to determine that a balloon being dipped in water is an alpha (5.7 trials) and to

determine that the child snapping her fingers is an alpha (5.9 trials).

Place rigur* 1 about h«r«.

Discussion

These results support the hypothesis that subjects first focus on relationships that are consistent with a

general theory of causality. In the Dip/Inflate condition, subjects can ignore correlations between the size

or color of the balloon and the result. In the Snap/Inflate condition, the observations of the subject do not

conform to any causal pattern and the subject must consider the size and color of the balloon as well as

the type action as a possible cause.

This experiment suggests that certain stmctural configurations of actions are cues for causal

relationships. When observations conform to common patterns of causal relationships, it is easier to

induce a causal relationship. Although there may be many regularities in the obsenred data, theory-

driven leaming focuses on those regularities that are likelyto play a part in a causal relationship.



8

This experiment provides evidence for just one of the causal pattems in the computer implementation.

The remaining causal pattems encode principles that have t^en empirically determined to influence the

attribution of causality (see Section 1.2). In the next section, we describe the process of theory-driven

leaming in more detail.

3. Theory-driven learning

In this section, we describe the representation of observations, causal relationships and causal

patterns and elaborate on the theory-driven leaming process.

3.1. Observations

In the computer implementation of theory-driven leaming, observations, the training data for theory-

driven leaming, are represented in Conceptual Dependency (Schank & Abelson, 1977). Figure 2

illustrates one sequence of actions and state changes. This figure contains the representation of two

actions that occur at the same time: John is eating a life saver in the kitchen and John touches a red

balloon with a pin. A state change occurs immediateiy after these two actions: the balioon bursts. Each

action and state change is described by a number of roies (e.g., actor, object, type, to, etc.). Roles are

indicated by lowercase letters in figures. The vaiues of roies, indicated by aii capitai letters, may be

simple objects (e.g., BROWN) or composite objects that have additionai roles (e.g. PP color RED).

Plactt Figur* 2 about h«x«.

3.2. Causal Relationships

Conceptual Dependency is aiso used to represent causai reiationships. Causai iinks (Schank &

Abelson, 1977) are used to specify the relationships between actions and states. The following causai

links are used:

• An action can result in a state change.

• A state can enable an action to occur.

One causai relationship is illustrated in Figure 3. This relationship indicates that striking a balloon with

a sharp object results in the bailoon bursting. The variable in the reiationship, preceded by a question

mark in the figure, ensures that the bailoonthat is struck is identical to the balloonthat bursts.

Place Figure 3 about here.



3.3. Causal Patterns

The theory-driven learning procedure can only learn causal relationships that conform to one of the

causal patterns that conprise the theory of causality. Figure 4 illustrates one causal pattern. A causal

pattern matches an observation and proposes a causal relationship. This pattem states; An action with a

particular destination followed by a state change for the destination, suggests that the action results in the

state change. The antecedent (on the left side of the bold arrow) is matched against observations to

produce a causal relationship (on the right side of the bold arrow). The bold arrow does not mean logical

implication. It can be read as "suggests that."

Although the pattem in Figure 4 appears to be very simple, it encodes three important assumptions

about causal relationships. First, it encodes the constraint that the destination of an action (i.e., the object

that fills the "to" role of an action) must be the object whose state has changed. This constraint would

rule out a wide variety of arbitrary actions from being considered as potential causes. Second, it indicates

that the only important roles of the action are the type of action and the object. The actor who performs

the action, and the time that the action is performed are not relevant. Third, the pattem also contains the

terrporal ordering constraint that the action must precede the state change.

Place Figure 4 about here.

When this particular pattem is applied to the observation of the balloon being stuck with a pin by

someone eating a life saver candy (see Figure 2), it results in the causal relationshipthat applying a force

to a balloon results in the balloon bursting. Note that the causal relationship created by this pattem does

not require that the object that applies the force be pointed. Leaming this additional constraint requires

observations of balloons not bursting when being touched by blunt objects.

The causal patterns in Figure 4 is called an exceptionless causal pattem because it applies when

similar actions result in the same state change. Other causal pattems focus on reasons that similar

actions have different results. With.the representation we use for observations and causal relations, there

are two reasons that similar actions have different results:

1. A role of the action differs. For example, the action may be performed on a different object
or have a different destination.

2.Aprior action is needed to change the state of an object so that a subsequent action may
result in a state change.

There is a separate type of causal pattems for each reason. For the first reason, the causal pattems
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are called dispositional causal patterns because they attribute a different result to differing dispositions

(i.e., potential or capacities) of actors or objects. The causal patterns that account for the second reason

that similar actions have different resuits are called historical causal patterns because they attribute a

different result to different histories of the objects involved.

The protocol in Table 1 illustrates all three types of causal pattems. The first causal relationship (that

the child can inflate all balloons) can be produced by the exceptionless pattern illustrated in Figure 4. The

second causal relationship (that the child can inflate red balloons) can be produced by the dispositional

causal pattern illustrated in Figure 5.

Place Figure 5 about here.

The fact that the search for a difference is constrained to differences in the destination is indicated by

boldtype for the destination in the figure. In the protocol inTable 1, the two destinations differ only in the

color of the balloon. If there were several differences, it would be necessary to correlate roles of the

destination over additional examples to discover a reliable causal relationship.

The historical pattem displayed in Figure 6 attributes the difference in a result to an initial action that

results in a state that enables the second action to result in the state change. The fact that the search for

a difference is constrained to differences in a prior action is indicated by bold type for the prior action in

the figure. This pattem would find relationships such as that stretching a balloon results in a state that

enables blowing air into the balloon to inflate the balloon. This causal pattem was tested in the

experiment reported in Section 2.

Place Figuxa 6 about haxa.

The types of causal pattems are ordered by the simplicity of the causal relationship that they create.

Exceptionless pattems produce the simplest relationships. Causal relationships produced by

dispositional pattems are more corrplex than those created by exceptionless pattems because they

require additional conditions to be true for the action to have an effect (e.g., that the balloon be red).

Historical pattems produce the most complex causal relationships (i.e., relationships that postulate

unseen intermediate states).
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3.4. The theory-driven learning procedure

The theory-driven learning procedure has two functions. First, it ensures that a proposed causal

relationship obeys the regularity principle. Second, it more than one causal pattern applies to a set of

observations, it determines what causal relationship will be created.

A current best hypothesis (Mitchell, 1982) for a causal relationship is created from one causal pattern

rather than maintaining a set of consistent hypotheses (e.g., (Vere, 1975, Mitchell, 1982)). Psychological

evidence (e.g., (Bower & Trabasso, 1968, Levine, 1967)) indicates that only one or a small number of

hypotheses are considered at one time. Simplicity is the criteria used for selecting the best hypothesis.

In a given situation, more than one type of causal pattern may apply. For example, the exceptionless

pattem in Figure 3, the dispositional pattem in Figure 6 and the historical pattern in Figure 7 all match the

first observation in Table 1. TDL orders the types of causal patterns by simplicity. Within each type of

pattem, it is also possible that more than one pattem may match an observation. In this case, one

pattem is arbitrarily chosen to create a causal relationship. If further observations prove the causal

relationship to be inaccurate, the relationship will be discarded and an altemath/e pattem may be applied

in this situation.

Leaming occurs whenever a state change that was not predicted is observed. The following algorithm

describes the leaming procedure:

1. Collect similar observations: Obsenrations with actions similar to the action of the current
observation, are retrieved from memory (if there are any).^

2. Partition observations: Two sets of observations are created: the positive examples are
those similar observations with the same state change as the new observation and the
negative examples are those observations with different state changes (or no state change
at ail).

3. Match observation and causal patterns: If there are no observations with a different state
change, the exceptioniess patterns are applicable. Otherwise, dispositional or historical
pattems might apply. To apply a causal pattem, first a generalized observation is created
by finding all roles common to the set of observations with the same state change. Next,
the generalized observation is matched against the antecedents of the causal patterns.

4. Instantlats causal relationship: If the antecedent of causal pattem matches (and the
proposedcausal relationship is consistent with observation retrieved from memory), a new
causal relationship is created using a procedure that depends on the type of pattem:

• Exceptionless: A new causal relationship is constructed by replacing each of the

'in this paper, we do not address the Issue of memory retrieval. The Important point Is that some, but not all prior actions and
sut>sequent state changes arerecalled. An action and the state change Is retrievable If the action is rrxiexed In memory l)y a unique
role that Is present In the current observation (Kolodner, 1984, Letiowltz, 1980). The Interested reader Is referred to (Pazzani,
1990) for a description of the memory retrieval process.
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variables in the causal relationship of the pattern with the corresponding binding with
all roles removed in the generaiiz^ observation.

• Dispositional; Dispositional causal patterns restrict the search for a condition that
differs between the positive and negative examples to an object tfiat plays a specified
role (indicated by bold type in the figures) in the action. The features common to all
objects that play this role in all positive examples are collected. Next, those features
that are present in any object that plays this role in negative examples are eliminated
from consideration. One feature is selected from the candidates at random and
hypothesized to be responsible for the different state change (i.e., the causal
relationship only holds when that feature is present).^ The causal relationship is
created in a manner identical to the exceptioniess pattems except it also contains the
feature (or conjunction of features) hypothesized to be responsible for the different
state change.

• Historical: The causal pattem indicates the causal relationship is conditionally
dependent on some previous action (indicated by bold type and a bold box in the
figures). These pattems are processed in a manner similar to the dispositional
pattem except that a prior action instead of a role is blamed for the different state
change.

The matching process used by TDL is a strict match that succeeds only if the antecedent of the pattem

subsumes a generaiized observation. The antecedent of causal pattems are matched against

generaiized observations to enforce the regularity principle by ensuring that the causal relationship is

consistent with the previous recallable observations. If the antecedent of a pattem does rwt match the

generalized observation, a causal relationship cannot be created from that pattem. Note that the

generaiized observations only summarizes those priorobservations that can retrieved from memory.

A causal relationship is created from as few as one observation in TDL. Such a causal relationship is

subject to revision when more examples are observed. A causal relationship con^ructed by TDL

contains a counter that is incremented when a successful prediction is made, and another counter that is

incremented when an incorrect prediction is made. When the ratio of correct predictions and total

predictions is lower than a certain value^, then the causal relationship is eliminated. TDL does not use a

backtracking mechanism to generate a new causal relationshipwhen an erroneous relationship has been

eliminated. Rather, the observations that can be recalled will prevent the system from applying the causal

pattem that created the inaccurate causal relationship. An altemativecausal pattem will applyto the new

set of recalled observations and generate a new hypothesis. In the next section, we present an example

ofthe theory-driven teaming procedure and the evaluation ofcausal relationships when new observations

^If there are no candkiate features, then tfteconjunction of cdl candidate features Is tried,

^is Isa parameter In occam. Thecurrentvalue ofthe parameterIs0.8.
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are encountered.

3.5. Theory-driven learning: An example

In this section, we trace the execution of occam, a learning program that implements the theory-driven

learning procedure. The program is presented with the following three observations:

• John, who has brown hair and brown eyes, is eating a life saver in the kitchen and John
touches a red balloon with a silver pin. A state change occurs immediately after these two
actions: the balloon bursts. The representation for this observation was given in Figure 2.

• John touches a red balloon with his finger in the living room and the balloon does not burst.

• Bob, who has black hair and brown eyes, touches a yellow balloon in the kitchen with the
blade of a silver knife and the balloon bursts.

We are assuming here that occam starts off with no causal relationships and with all of the causal

patterns listed in Appendix I. Of particular importance are the causal pattems in Figures 4 and 7.

Place Figure 7 about here.

When the first observation is encountered, an unexpected state change occurs. Since there are no

recalled situations in which a balloon did not burst when a force was applied, only exceptionless pattems

will be matched against this situation. There is only one pattern that matches any part of this observation

(see Figure 4). This pattem suggests the causal relationship that applying a force to a balloon results in

the balloon bursting. (This causal relationship is not shown in any figure. However, it is identical to the

situation in Figure 3 except it does not contain the constraint that the object be pointed.)

in the next observation, a balloon is touched with a finger, occam uses the causal relationship to

predict that the balloon will burst. However, the balloon did not burst. The cause relationship formed

from the first example is deleted. Since occam focuses on explaining unexpected state changes, and

there is no state change for the current observation, the two observations are simply stored in memory.

When the third observation is encountered, an unexpected state change occurs, occam retrieves the

previous two obsenrations from memory, and creates a generalized observation by finding the roles

common to the first and third observation, since these precede the same type of state change. The

generalized observation is shown in Figure 8.

Place Figure 8 about here.
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By correlating over the recalled observations, many roles need not be considered as tieing potential

candidates to account for the difference in the outcome. These include the color of the actor's hair and

the color of the balloon. When the generalized observation is matched against the causal patterns,

additional roles will be considered irrelevant.

This generalized observation matches the dispositionai causal pattern in Figure 7. This pattern

encodes the knowledge that some difference in the object used in an action can result in a different state

change. There are two differences between the object of the generalized observation and the object of

the observation with a different state change; the color and the shape, occam randomly selects one of

these roles and creates a causal relationship.^ In this example, occam makes a fortuitous selection and

chooses the shape. The resulting causal relationship is shown in Figure 3. If color were chosen instead

of shape, then occam would create an inaccurate causal relationship that would make an error if a

balloon were touched with a pointed object that was not silver or a silver object that was not pointed. In

either case, the inaccurate causal relationship would be retracted and replaced by the more accurate

relationship in Figure 2.

Notice that there are many roles shared by the two observations with the same state. TDL does not

consider many of these similarities, such as the location of the action or the color of the actor's eyes, to

be relevant to the causal relationships. This permits TDL to rapidly converge on an accurate causal

relationship that is consistent with the the theory of causality. The price it pays for this increased speed is

the inability to learn a relationship that is not consistent with the theoiy of causality.

4. The scope and limitations of theory-driven iearning.

To gain an understanding of the limitations and scope of TDL, it is necessary to describe occam

(Pazzani, 1990), the ieaming architecture that includes TDL as one component. Occam's other leaming

components are an explanation-based leaming (EBL) component (Mitcheil et al., 1986, DeJong &

Mooney, 1986) and a similarity-based leaming (SSL)component (Lebowitz, 1986b, Mitchell, 1962).

The SBL component creates causal relationships from several observations with the same state

change. The conditions under which an action will result in a state change are learned incrementally by

finding all roles in common to observations with the same state change (cf. (Bruner et al., 1956)). SBL

^In (Pazzani et al., 1987), we discuss anextension tooccam that learns conditions under which one role should tie favored.
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does make use of either the theory of causality or the theory of causation to guide the learning process.

This is both an advantage (i.e., SBL is not restricted to acquiring concepts that are consistent with existing

knowledge) and a disadvantage (i.e., the prior knowledge of the learner does not constrain the leaming

process (Mitchell et al., 1986, DeJong & Mooney, 1986)).

The EBL component creates new causal relationships by using the theory of causation (as opposed to

the theory of causality) to explain a single observation that has an unpredicted state change. A state

change is explained by chaining together two or more causal relationships. For example, consider what

happens when vinegar and baking soda are put in a bottle and a balloon is placed on the opening of the

bottle. In this situation, the balloon will expand. This can be explained by chaining together three simple

causal relationship. First, mixing vinegar and baking soda results in the production of carton dioxide gas.

Second, the production of gas results in an increased pressure in the bottle and the balloon. Third, an

increase of pressure in the balloon results in the balloon expanding. EBL creates a new causal

relationship by finding the most general conditions that this same explanation will apply. This new causal

relationship can be created analytically from just one example by taking advantage of an interaction

between existing causal relationships.

When an unpredicted state change is observed, occam must determine which of its three leaming

methods to apply, occam uses EBL if it can explain the state change by chaining together existing causal

relationships. If an explanation cannot be produced and the obsen/atlon is consistent with the theory of

causality (i.e., the observation matches a causal pattern), then occam uses TDL. As a last resort, occam

attempts SBL.

An important implication of this architecture is that SBL and TDL create the causal relationships that

are needed by EBL. This permits occam to use the results of its initial data-intensive leaming in its later

knowledge-intensive leaming. For this reason, it is not necessary to have historical causal pattems of

arbitrary length in occam. Rather, several simple causal relationships created by TDL can be chained

together by EBL to learn complex causal relationships with several intermediate states.

TDL's role is restricted to those observations that cannot be explained by the current theory of

causation (otherwise, EBL would be used) and that meet the constraints of a potential causal relationship.

Regularities between observations that cannot be explained, and that do not match a causal pattem (e.g.,

the opening of a garage door by pressing the button on a remote control) can be detected and
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generalized by the SBL component of occam. The data on human learners does not show that people

are incapable of leaming causal relationships that are not consistent with their theory of causality.

Rather, people learn nnore slowly when observations do not conform to common pattems of causal

relationships.

Figure 9 shows the result of running occam on the observations from the experiment in Section 2. In

this simulation, occam was able to use TDL only on the Difi/lnflate condition. In the Alpha conditions,

only SBL can be used. In the Snap/Inflate condition, the first few observations may fit a causal pattem

and a relationship such as "blowing into a yellow balloon results in a balloon being inflated" will be

created. Later observations prove this relationship to be inaccurate and the series of observations do not

match any causal pattem. Therefore, occam uses SBL to learn the accurate relationship for the

Snap/Inflate condition.

Plac* rigura 9 about haxa.

The data from the simulation indicate that learning causal relationships is facilitated when the

relationships are consistent with the theory of causality. In the data with human subjects, leaming causal

relationships that are not consistent with the theory of causality takes longer than simple concept

identification. Although there is a difference in the computer simulation it is not statistically significant.

We speculate that smaller magnitude of the difference is caused by the fact that cxcam may be able to

accurately retrieve more prior obsenrations than the human subjects.

4.1. Comparison to EBL

There are two primary differences between explanation-based and theory-driven approaches to

leaming causal relationships. First, the causal relationships produced by EBL deductively follow from the

existing knowledge (i.e., the theory of causation). EBL does not increase the set observations that can tie

explained by the deductive closure of the theory of causation (Dietterich, 1986), tiut it does increase the

set of observations whose state change can be predicted by the application of a single causal

relationship. In contrast, the causal relationships produced by TDL follow from both the existing

knowledge (i.e., the theory of causality) and the set of obsen/ations. EBL uses the obsen/ations only to

focus the search for an explanation. TDL needs the the observations to deterrrane which states result

from each type of action. For this reason, standard explanation-based algorithms (e.g., (Mitchell et ai.,

1986, DeJong &Mooney, 1986)) cannot make use ofa theory ofcausality tocreate causal relationships.
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A second difference between EBL and TDL Is tfie metfiod that is used to learn the conditions under

which an action results in a state change. EBL produces generalizations by summarizing an inference

chain. The preconditions acquired by EBL are operational descriptions of the the preconditions the rules

used to produce the inference chain. TDL learns the conditions under which an action results in a state

change by a focused correlation among several observations.

4.2. Determinations

Theory-driven learning is in some ways similar to teaming with determinations (Russell, 1986).

Determinations, like causal pattems, are not sufficient to make a prediction atiout an unobserved

example. Once an obsen/ation has been encountered, properties of additional observations can be

deduced. For example, one determination states that nationality determines language. After an example

of an American speaking English has been seen, a generalization that all Americans speak English can

be created. There are two differences between TDL and leaming with determinations. First, TDL does

not require that the obsen/ations and the causal pattem logically entail the causal relationship. Rather,

the causal pattem is a heuristic that suggests a relationship that is subject to empirical validation.

Second, more than one determination cannot apply to a given observation. Therefore, leaming with

determinations does not require a mechanism to select among alternatives.

5. Implications of TDL

The distinction between a theory of causation and a theory of causality is usefui for interpreting the

results of experiments assessing the causal reasoning capabilities of human subjects. For example, in

one study (Ausubel & Schiff, 1954), kindergarten students and sixth grade students were asked to predict

which side of a teeter-totter would fall when the correct side was indicated by a relevant role (length) or an

irrelevant role (color). They found that the kindergarten children learned to predict on the basis of

relevant or irrelevant roles at approximately the same rate (3.7 trials for relevant, 3.4 trials for irrelevant).

However, the older children required significantly fewer trials to predict on the basis of a relevant role than

an irrelevant one (.83 vs. 3.1 trials). The relevant and irrelevant conditions are identical with respect to a

theory of causality. Both conditions require finding a difference in an object that is responsible for the

difference in a state change. Without any priorknowledge of causation, either role is equally likely. This

experiment does not demonstrate that the older children have a tietter theory of causality than the

younger children. Rather, the experiment shows that the olderchildren have a more conplete theory of

causation. This theory includes relationships such as "a teeter-totter falls on the heavier side" and "the



18

longer side is likely to be the heavier side." In the relevant condition, the correct prediction deductively

follows from this knowledge.

Some experiments have shown that younger children have a less complete theory of causality than

older children. For example, (Bullock, 1979) presents evidences that 3-year-old children do not make use

of the spatial contiguity principle as much as 5-year-old children do. This difference is not due to

knowledge of causation (e.g., familiarity with materials in the experiment). Rather, the difference is

attributable to a difference in the 3-year-old and 5-year-old theory of causality.

It has been found (Shuitz et al., 1986), that when subjects have a detailed knowledge of the causal

mechanism (i.e., a theory of causation sufficient to explain a state change), they do not require temporal

and spatial contiguity. We view this as evidence that supports our decision in occam to prefer EBL to

TDL if both apply. Furthermore, we view the principles of temporal and spatial contiguity as heuristics

that allow an observer to infer a causal mechanism. For example, the causal pattem in Figure 7 changes

temporal links in the observation into causal links in the causal relationship and postulates a state as an

intermediate result.

6. Extensions to theory-driven iearning

In addition to causal patterns that guide the search for relationships of physical causation, we have

also developed causal patterns for social causation. In physical causality, a state change occurs as a

consequence of transmission of some sort of force. In contrast, transmission of forces does not play a

major role in determining human behavior. Instead, human behavior is considered to be a consequence

of intentions to achieve some goal. The social causal pattems postulate intentional relationships (Dyer,

1983) between goals, plans and actions. For example, one social pattem is: An event (?e) that motivates

a goal (?g) for one person (?p1) is observed by another person (?p2) who performs an action (?a) that

achieves ?g for ?pl, suggests that ?e motivates ?g for ?p2.

OCCAM uses this pattem when it is given a series of observations of parents helping their children and

strangers not assisting a child, occam hypothesizes that parents have a goal of preservingthe health of

their children. (Of course, before being ruled out by additional examples, occam also entertained a

number of incorrect hypotheses such as persons with brown hair have a goal of preserving the health of

children). Once occam has constructed the social relationship that parents havea goalof preserving the

healthof theirchildren, itcan use it as background knowledge for EBL. Thisparticular relation is useful in
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explaining and generalizing an observation inwhich a parent pays the ransom ina kidnapping episode.

1

We have also experimented with causal pattems that facilitate learning about electronic devices. For

example, the following causalpattern may be used to focus the search for causal relationships; Pressing

a switch followed by a state change of an electronic device suggests that pressing the switch results in a

state change of the electronic device. This causal pattern encodes the fact that as adults we are more

likely to attribute a change in an electronic device to a pushing of a button or the flicking of a switch than

to an other random action (such as a cat meowing). This is tme even if the wires are hidden (as in a light

switch) or the connection is not observable (as in the remote control for a television). Similarly, one would

be surprised if pressing a button resulted in a change in some non-electronic device, such as the inflation

of a balloon.

This last example raises the question of how a theory of causality might be acquired. Early work on

children's understanding of causality (Piaget, 1930) pointed out many differences in causal explanations

among various age groups. In spite of more recent evidence that very young infants are able to perceive

causal relationships (Leslie & Keeble, 1987), there is no question that older children are better at

attributing causality than younger children (Bullock, 1979).

Currently, in Occam there is a fixed set of causal pattems that never changes as the program learns.

When the program starts, it has its complete theory of causality. We believe that a general theory of

causality can be acquired arxl refined from experience. We are currently developing an extension that

would find higher-order regularities (Goodman, 1983) among the causal relationships that are created by

similarity-based leaming. These higher-order regularities become the causal pattems needed by theory-

driven leaming.

7. Conclusion

We have argued that leaming causal relationships is facilitated by a general theory of causality that

constrains the set of possible causal relationships. We have presented a process called theory-driven

leaming that proposes causal hypotheses that are consistent with both observed data and the generai

theory of causaiity. A computer implementation of the theory is one component of occam. Simulation of

the theory provides empirical support for the advantage of theory-driven leaming over purely correlational

approaches to leaming: fewer examples are required to leam a causal relationship. We have provided

experimental evidence that people possess the kind of causal knowledge encoded in Occam's causal
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patterns.
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I. A list Of OCCAM'S causal patterns

This appendix contains a listing of causal patterns for postulating causal relationships. The

corresponding dispositional pattems follow each exceptionless pattem.

• An action on an object followed by a state, change for the object, suggests that the action
results in the state change.

• actor disposition

• object disposition

• An action with a particular destination followed by a state change for the destination.
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suggests that the action results in the state change.
• actor disposition

• object disposition

• destination disposition

• An action on a component of an object foilowed by a state change for the object, suggests
that the action results in the state change.

• actor disposition

• object disposition

• An action with a particular component as a destination followed by a state change for the
destination, suggests that the action results in the state ctiange.

• actor disposition

• object disposition

• destination disposition

• An initial action on an object preceding a subsequent action that precedes a state change for
the object, suggests that the initial action results in a state change that enables the
subsequent action to result in the state change.

• There are three other variations of this pattem that permit the object that changes to
be the destination of the initial actnn, the subsequent action, or both. In CD. the
destination or the object can be affected by an action.

• An initial action on an object preceding a subsequent action that does not precede a state
change for the object, suggests that the initial action results in a state change that disables
the subsequent action to result in the state change.

• There are three other variations of this pattem that permit the object that changes to
be the destination of the initialaction, the subsequent action, or both.

II. Order of Stimuli

The stimuli used In the experiment discussed in Section 2 were shown to subjects from videotape. The

following is the ordering of the obsen/ations on the videotapes:

Slza Color Action Action Result

Dip/Inflate Snap/Inflate

Small Yellow Dip Snap Inflated

Large Yellow Snap Dip Not Inflated

Large Orange Necklace Necklace Not Inflated

Small Yellow Necklace Necklace Not Inflated

Small Orange Dip Snap Inflated

Large Yellow Necklace Necklace Not Inflated

Large Orange Dip Snap Inflated

Small Orange Snap Dip Not Inflated

Large Orange Snap Dip Not Inflated

Large Yellow Dip Snap Inflated

Small Orange Necklace Neclclace Not Inflated

Small Yellow Snap Dip Not Inflated
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Figure 1. The results of the experiment indicate that subject require fewer trials to leam a
relationship that conforms to a common pattern of causal relationships.



ACT type PROPEL
actor PP type HUNAN

noae JOHN

hair BROUN

eyes BROUN
object PP type PHVSOBJ

color SILUER

shape POINTED
to PP type TOV

subtype BALLOON
color RED

rooB KITCHEN

ACT type INGEST
actor PP type HUNAN

nose JOHN

hair BROUN

eyes BROUN
object PP type FOOD

subtype CANDV
shape ROUND
color UNITE

to PP type BODV-PRRT
subtype STONACH
of PP type HUNAN

naae JOHN

hair BROUN

eyes BROUN
loc LOG type INSIDE

rooB KITCHEN

FTER

STATE type BROKEN
object PP type TGV

subtype BALLOON
color RED

AFTER

Figure 2. An example of an observation used as a training example for theory-driven learning.
This is the Conceptual Dependency representation for : "John, who has brown hair and brown
eyes is eating a lifesaver candy in the kitchen when he touches a red balloon with a pin. The
balloon bursts." Role names sre in lower case letters. Values of roles are capitalized.



ACT type PROPEL
object PP shape POINTED

subtype BALLOON

RESULT STRTE type BROKEN
object ?X

Figure 3. An example of a causal relationship that is acquired via theory-driven learning:
Touching a balloon with a pointed object results in the balloon bursting. Variables are preced^
by a question mark.



ACT type ?A
to ?X

AFTER

STATE type ?S
object ?X

ACT type ?A

RESULT

j r

STATE type ?S
object ?X

Figure 4. A causal pattern: An action with a particular destination (indicated by the variable
?X) followed by a state change for the destination suggests that the action results in the state
change.



ACT typo 7A

to ?X

AFTER

STATE type 7S

object ?X

ACT typo 7A

RESULT

STATE typo ?S

object ?X

Figure 5. A dispositional causal pattern: Similar actions with different destinations followed by
different state changes for the destination suggests that a role of the destination is required for an
action to result in &e state change. The bold type indicates that the search for a difference is
constrained to the destination role.



ACT type ?R1

AFTER

ACT type ?A2
to ?X

AFTER

STATE type ?S
object ?X

ACT type ?A1
object ?X

RESULT

STATE ob ect ?X

ENABLES

ACT type ?R2
object ?X

RESULT

STATE type ?S
object ?X

Figure 6. A historical causal pattern: An initial action with a destination that precedes a
subsequent action with the same destination suggests that the initial actions results in an
intermediate state change that enables the subsequent action to result in the final state change.
The bold type for the initial action indicates that a different initial action will not result in the
same final state change.



ACT type ?A

to ?X

object ?Y

AFTER

STATE type ?S

object ?X

ACT type ?A

object ?Y

RESULT

STATE type ?S

object ?X

Figure 7. A dispositional causal pattern: Similar actions with the same destinations and with
different objects followed by different state changes for the destination suggests that a role of
the object is required for an action to result in the state change.



ACT type PROPEL
actor PP type HUMRH

eyea BROUH
object PP type PHVSGBJ

color SILUER RFTER .

STRTE type BROKEN
object PP type TGV

ahape POIHTEO aubtype BRLLGON

to PP type TQV
aubtype BALLGOM

loc LGC type INSIDE
rooa KITCHEN

Figure 8. A generalized observation formed from finding the common roles of two
observations. This generalized observation indicates thatafter a person with brown eyes touched
a balloonwith a silver pointedobject in the the kitchen, the balloon popped.
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Figure 9. Data from running OCCAM on observations simulating the experiment in Section 2.
The data points are averaged over 30 simulations. As in the experiment, fewer trials were
needed to learn a relationslup that conforms to a common pattern of causal relationships.




