
INTERNATIONAL JOURNALOF HUMAN-COMPVTER INTERACTION, 42) . 13>149
Copyright0 1997, Lawrence Erlbaurn Associates, Im.

Desktop Agent Manager (DAM):
Decision Mechanism

Deborah Ann Guerrera Ercolini
The MITRE Corporation, Bedford, Massachusetts

Mieczyslaw M. Kokar
Department of Electrical and Computer Engineering, Northeastern University

Desktop software agents are background processes that notify a computer user of
certain predefined events. The complexity of desktop computing is increasing due to
the proliferation of software agents. A desktop agent manager (DAM) may become an
important component of desktop computing. This article focuses on the decision
mechanism for the DAM to decide which agents should be allowed to access the user,
which agents' results should be stored for future review by the user, and which of the
agents should be filtered out. We prove the validity of the concept of a DAM by
developing an architecture that includes both a prototypeof the DAM and a simulator
of various types of agents. In this article, we present the results of our simulations and
analyses of the DAM decision mechanism.

1. INTRODUCTION

There a re m a n y applications that res ideon the typicalofficecomputer: E-mail, word
processor, spreadsheet, personal database manager, corporate database manager,
scheduler, and so on. Many components of the shelf (COTS) have sofiuare agents a s
components. Typically, a software agent is defined a s a n autonomous background
process that communicates with bo th the user and other programs. Sometimes
agents can be configured by e n d users (the application provides a simple user
interface for the user t o describe their needs), a n d a t other times agents need to b e
developed by system programmers.

Deborah Ann Guerrera Ercolini is employed by The MCTRECorporation. The viewsexprssed in this
article are the author's and are not intended to remesent in anv wav The M I ' Cornoration or its , ,
opinions on this subject matter.

Deborah Ann Guerrera Ercolini wishes to thank former colleague Beth Lavender for her invaluable
contributions to the research dmaibed in this article.

Requestsfor reprinb should besent to Mieczyslaw M. Kokar, Department of Elechical and Computer
En~ineerinp, Northeastem Univeniw, 360 HuntinEton Avenue. Boston. MA 02115. E-mail:

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

134 Ercolini and Kokar

With the increased utilization of software agents comes distraction. Agents
interrupt workflow as they query for user feedback. The interruptions can be
random, scheduled, ad hoc,or triggered. Theseevents and interruptions can happen
while the user is writing a document, watching a class or lecture (via video on
desktop), or participating in an electronic meeting (via screen sharing, video tele-
conferencing). This article addresses the solution to the problem of many agents
interrupting the user's workflow.

Consider the following events that could be produced by various agents and
appear on the desktop at any one time:

Notifier (your automatic query is finished; your 10:OO a.m. meeting has been
changed to 11:OO am.; E-mail is in your in basket).
Workflow nohfier (sign this purchase requisition within 24 hr; review this
document by February 22,1994).
Yellow or red flag notifier (your budget is overrunning; schedule is slipping).
Alarm (printer is out of paper, final report is a month late).
Urgent request via desktop video teleconferencing (prepare a one-page
write-up for annual report on collaborative computing for specialty group).
Network load monitor (load is low).
Pseudo-monitor (you may have CNN running in the background to watch
the late-breaking news stories, weather, etc.).

There are many examples of COTS packages that incorporate agents as compo-
nents of their applications. For example, BeyondMail (Miley, 1993), an E-mail
system, can filter messages by the sender of the message, by the subject, or by certain
keywords in the body of the message. The user can specify to filter the messages
into aparticular folder or to automatically forward a message to someoneelse. Open
Sesame! (Streeter, 1993), from Charles River Analytics Inco rporated, provides intel-
ligent agents that mimic the user's repetitive general desktop movements, such as
opening and closing applications and files. This product uses neural networks and
expert-system knowledge bases to achieve this performance. Magnet from No
Hands Software (Tessler, 1993) incorporates intelligent agents for searching files on
Macintosh network systems. These agents can be scheduled to run at specific times
or can be triggered by specific events.

There are at least two possible strategies that can be used in the solution to the
problem of coordination of multiple agents communicating with the user (Bid,
1993): communication-based (distributed) or centralized. In the distributed ap-
proach, particular agents would have to come to an agreement on who should be
allowed to access the user and who should not through a rather extensive commu-
nication process. There are at least two problems with this k i d of approach. First,
agents developed by many vendors do not have a common standard communica-
tion protocol, and therefore to implement this approach, either a new standard
would have to be imposed, or interfaces would have to be developed for all the
kinds of agents. Second, for the user to be able to interact with all the agents in a
similar manner, all the agents would have to have a common mechanism that the
user could use to establish a user access control policy. For these two reasons, the

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

DesMop Agent Manager (DAM): Decision Mechanism 135

distributed solution is very difficult to implement. More discussion of distributed
heterogeneous agents can be found in Adler, Durfee, Huhns, Punch, and S i o u d i s
(1992). In the centralized approach, one agent would have to be designated as a
coordinator of all other agents. The user would need to interact only with this agent
to establish or change the user access policy. This seems to be a more feasible
approach to the coordination of multiple agents. For this reason, in our research we
focused on such a central agent coordinator, which we call the desktop agent
manager (DAM). Our focus is on heterogeneous agents working on unrelated tasks
and therefore communication among agents is of a lesser importance. The need for
a user interface agent was also identified by Avouris, van Liedekerke, Lekkas, and
Hall (1993) for a collection of homogeneous agents working on a common task.

The goal of our research (Ercolini, 1994) was to investigate the concept of a DAM.
Toward this goal, we first performed a literature search into the existing solutions.
A brief overview of existing solutions is presented in Section 2. Our first objective
was to understand the requirements for such an agent manager. Our second
objective was to find out whether either a solution that implements our require-
ments already exists, or identify such solutions that could be modified to fulfil the
DAM requirements. Because none of the existing solutions satisfied our require
ments, we decided to develop a DAM prototype. For this we had to define all the
necessary functional components of a DAM, the architecture of the DAM, and the
communication protocol to communicate with the user and with the managed
agents. Additionally, we had to develop anenvironment to simulatevarious agents.
From the user'spoint of view, themain functionalelement oftheDAM is the filtering
mechanism that makes a decision on whether an agent should report to the user or
not. This article addresses the decision mechanism proposed by Ercolini (1994); it
is described in Section3. The wholearchitectureis describedinSection4. Toevaluate
the decision mechanism, we developed the simulation described in Section 5. The
results of simulations with the DAM are described in Section 6. In Section 7, we
present the analysis of the simulation results. Section 8 contains conclusions and
suggestions for further research in this area.

2. EXISTING SOLUTIONS

There are many ongoing research efforts focused on software agents. Some efforts
are focused on the architecture of the agents, some are focused on how agents
interact, and others focus on how agents are made to be intelligent. No solutions
were found that addressed how to manage software agents for the user in the
manner proposed. However, several related research efforts could potentially
provide solutions if additional functionality or investigation was done.

The Envoy Framework (Palaniappan et al., 1992) includes two management
components: a Bureau Chief, who manages envoys (keeps track of user's envoys,
creates new envoys, assigns new tasks to envoys, and keeps track of envoy-aware
applications) and a Mission Summary, the user interface to Bureau Chief and
envoys, which displays the status of the envoys and their reports, and allows the
user to cancel or stop an envoy. Either of these components could potentially be

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

136 Ercolini and Kokar

modified to provide a solution to managing the agents. Our research can be viewed
as an extension to the Envoy Framework research. Our DAM is very similar to
Mission Summary, in that it keeps track of the existing agents and what tasks they
are performing. Envoy research indicated that users wanted a more sophisticated
Mission Summary. Our solution takes Mission Summary manager one step further.
The DAM has a decision mechanism to decide whether an agent can display its
results to the user.

The Object Management Group (OMG) is providing an architecture for distrib-
uted, cross-platform application communication. OMG has defied the standard
called the common object request broker architecture (CORBA) model. The CORBA
model defines the language and a set of services that can be used to define and
establish interagent communication. A manager of agents could communicate with
its agents and with the user using a CORBA compliant system, but CORBA does
not define any specifics that are directly related to the issue of agent management.

CUBRICON Intelligent Window Manager (Funke, Neal, & Paul, 1993) is a
prototype that defines where particular types of windows (e.g., text, graphical map,
table, and form windows) should be placed on opening, or which of the open
windows should be closed if there is no more screen space for another window. In
designing our solution, we considered similar variables as described in Funke et al.
(1993): priority of the agent; importance of the results of the agent both with
keywords and with prioritized results; when the agent was initiated; given a time
limit on the agent, how late is the agent; what is the current user status; and so forth.

Research presented in Zlotkin and Rosenschein (1993) addresses the issue of
fairness in interaction mechanisms among agents. Without fairness, some agents
can take advantage of others and the efficiency of the system will suffer. We
benefitted from the researchpresentedby ZlotkinandRosenschein by incorporating
the results into the design of the decision mechanism of our DAM.

Research reported in Maes and Kozierok (1993), Kozierok and Maes (1993), and
Sheth and Maes (1993) focuses on using machine learning techniques to develop
intelligent agents, rather than have the user program the agents. The authors
claimed that machine learning techniques can only be used in systems where there
is repetitive behavior (without it, agents will not be able to learn) and where the
repetitive behavior differs depending on the user (if all users were the same, then
there would only be one environment to learn). So far, we have implemented a
"smart" manager in that it decides whether to report the results of various agents
to the user.

3. DECISION MECHANISM

The principal components of the system in which the DAM would operate are the
user and the multiple heterogeneous agents. The following scenario is an example
of interactions of the DAM with these components. When an agent is created, the
application has the ability to register the agent with the DAM. The agent reports to
the DAM before notifying the user. The DAM decides whether the agent is impor-
tant enough to directly report the results to the user or the agent should be filtered

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

Desktop Agent Manager (DAM): Decision Mechanism 137

by the DAM. The DAM returns one of two results: do not filter agent (i.e., report
directly to the user) orfilter agent (i.e., do not report to the user). There may be a case
in which the user wants to quickly see the results and then delve into them later, so
the user should be able to specify that both actions take place; in other words, the
user should be notified immediately and the DAM should also have a log of the
situation.

In order to implement this scenario, the DAM must have the following function-
ality: (a) manage the different types of agents, (b) collect and manage requirements
from the user, and (c) keep track of the data that the agents provide to the user and
display the results of theagentsinan intuitivemanner. Becauseour primary concern
is with the decision mechanism of the DAM, in the rest of this section we discuss
the f i t of these functions. The decision mechanism of the DAM must be based on
parameters representing both the user requirements and theagents that try to access
the user. Because the decision mechanism is to be generic, appropriate for various
agents, the parameters must be obtainable from all the agents. The following
parameters have been selected based on the review of various kinds of agents
(numbers in parentheses represent numerical values of the variables that are used
in the computation of the importance of the agent):

User status: bored (lO),jIexible (ZO), busy (30), do-not-disturb (50).
Agent priority: defied by the application: lou~ (I), medium (Z), high (3).
Keyword association level for a keyword found in the agent's result: general
(2), associated with the agent category (3), agent specific (4).
Keyword priority: loru (I), medium (Z), high (3).
Time h i t (in minutes) for processing agent's task as specified by the
application (optional).
Priority of the result (optional): low (I), medium (Z), hi,$? (3).

User status is a parameter that the user of the DAM can vary depending on how
much responsibility the user wants to delegate to theDAM. Agent priority represents
the priority of a specific application. The user will be able to specify keywords as
part of the profile. The user can associate keyu~ords at different keyztlord association
levels. A keyword can be associated with a specific agent, to allow all instances of
that agent to be associated with this keyword. Keywords can also be associated at
the agent category level. This allows keywords to be associated with any agent that
falls into a particular category. Fially, a keyword can be associated with all agents.

The importance lare1 of the agent calculated by the decision mechanism will be
higher for any agent reporting results that contain the defined keywords in either
the message or the brief report. The weight of the keyword association will be higher
for the more specific level of association. Keywords can also be assigned keyuwrd
priority levels, which are used in calculating the importance of an agent.

Agent process time h i i t is an optional parameter that an agent can require the
user to specify. It is the time duration of processing an agent's task. The importance
of the agent is increased if the agent is early and decreased if the agent is overdue
with respect to this time limit. When reporting its results, the agent has the option
to include a priority ofthe result that it gathered. This option allows agents, who can

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

138 Ercolini and Kokar

evaluate their own results, to pass this information to the DAM to use in its
decision-making process.

Using these variables, the procedure presented in Pigure 1 is used to calculate
the importance value of the agent.

4. DAM ARCHITECTURE

To evaluate and verlfy the concept of the DAM, a prototype of the DAM has been
developed. Because agents are required to interact with the DAM, rather than
interfacing directly to the agents that are available today, we implemented an
environment in which various kinds of agents can be simulated. The benefit of this

FIGURE 1 DAM decision mechanism.

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

Desktop Agent Manager (DAM): Decision Mechanism 139

approach is one common interface for all the agents. The major components of our
architecture (the object model) are shown in Figure 2. A more detailed description
of the whole system can be found in Ercol'ii (1994). The DAM is represented in the
bottom part of the figure. The upper part shows the simulator, the simulated agent,

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

140 Ercolini and Kokar

the repository of simulated agents, and the user. The user can interact with the
simulator, the simulated agent, and the DAM.

The DAM has a User Profile, a Decision Moker, and an Agent Record as associated
objects. The simulator is the object that controls the simulation environment. The
simulated agent is the object that represents the external agents of the system. The
Generic A p t (not shown in Figure 2) and all of its subclasses represent the different
types of simulated agents and is the repository for the canned results of the
simulated agents. Figure 2 is an overview of the entire object model with the Agent
Representation subject collapsed into a simple list of the objects contained in the
subject.

Once the agent is created, it registers with the DAM. The agent must provide the
DAM with its name, its priority as assigned by the user, the agent category that it
belongs to (if no category is passed, then the default value is unknown), and
user-desired result time limit. The DAM returns a unique identifier to the agent that
is used when reporting results or status change to the DAM. Once registered, the
agent begins processing its task. When its task is completed, it sends its results to
the DAM for approval.

Following the specs of the Envoy Framework (Palaniappan et al., 1992), the agent
must provide a simple message to the user. The agent can also provide either a brief
report to the DAM, which contains a more detailed explanation than the message,
or a detailed report in the form of a f i e with the results of the task. The agent must
also provide the application that is invoked for the user to view the results. This
information can either be provided to the DAM at the time of registering or at the
time of reporting results. This flexibility allows for a one-time setup if the agent
always uses the same application for reporting its results as well as for an agent to
be able to return results from many different applications. Another parameter the
agent may report is the priority of the results of its task. Some software agents
understand what they are reporting and can judge the importance of the results.

When the DAM responds, the simulated agent receives a decision. If the decision
is "do not filter agent," then the simulated agent can report its results to the user. If
the decision is "filter agent," the simulated agent must not report its results to the
user. In either case, the simulated agent ends its task.

On request, the DAM will provide the user with the information of the currently
stored agents. The DAM stores the time at which the agent was created, the name
of the agent, and category of the agent. The DAM also stores the message, the brief
report, and the detailed report of the agent (if applicable). The user is able to access
the detailed report in the form of the native application of the data. The DAM
invokes this application with the appropriate data at the request of the user. The
DAM also stores what its own decision was when the agent reported (i.e., whether
or not the agent was filtered). The user is able to delete agents from the stored agent
information, to sort the view of the agents on several areas, like priority, category,
name, time created, status, and so forth.

The simulated agent may report a change in status to the DAM. This function
shouldnot be used tochangeits status tocompleted. Theagent may updateitsstatus
with thefollowingvalues: working, stopped, anderror.Theagent must also provide
the unique identifier that the DAM returned when the agent registered. An optional

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

Desktop Agent Manager (DAM): Decision Mechanism 141

parameter to this function is a simple message that may explain why the change in
status occurred. Examples of the simple message for the stopped status value could
contain by whom and when, and for the error status, values could contain a reason
for the error. The agent should not expect a return value from the DAM in response
to status change.

The agent is the initiator of communication with the DAM. If the agent does not
receive a response, then the agent assumes that there is a problem and continues
processing. Whenit finishes its task, theagent reports to the user as itnormally would
do. When reporting to theDAM, if theagent doesnothave aresponse from theDAM,
it reports directly to the user assuming that the DAM is no longer functional.

5. DESCRIPTION OF SIMULATION

5.1. Simulation Environment

The simulation environment has been incorporated into this development as a
mechanism to generate and gather data and to simulate how the DAM may act if
actually put in produaion mode. The user of the simulation environment is the
system evaluator. The simulation environment includes (ref. Figure 2) simulated
agents, a simulation controller (simulator), and a simulated agent repository (agent
representation). A simulated agent was described in Section 3.

The simulator allows the user to automatically generate random agents, vary the
rate of simulation, and create ad hoc agents. In the automatic generation mode,
agents (names and types) are selected randomly from the available agents in the
simulated agent repository. Each agent is provided a random processing time and
random priority. Random canned results and scenarios are also selected from a pool
of agent scenarios in the repository. This information repository contains data files
and associated applications so that the agent can display different types of data.

When creating ad hoc agents, the system evaluator has to specify the name of the
agent. If the agent is already defined in the system, the simulation environment
provides the type of agent. If the agent created is not in the predefined set, then the
type of agent is automatically unknown. The userneeds to provide the priority and,
if desired or applicable, the time limit desired on the return of the results. Like with
the automatic generation of agents, the simulator provides the canned results,
including the simple message and the brief or detailed reports, and the approximate
length of time that the agent takes to complete its task.

5.2. Simulated Agents

There are many different types of agents and many different ways in which to
categorize these agents. One categorization of agents is by how or where they are
invoked. Externally invoked (external) agents are generated when another user
requests them. This is seen in applications today IiieTibuktu, E-mail, and Desktop
VTC. In these cases, some external entity is invoking an interruption. The DAM
must be able to intercept these types of agents. Internally invoked agents can be
further classified into two categories. A single task agent is created once to do a

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

142 Ercolini and Kokar

specific task and once it is done, it is destroyed. The other type is a k i d of agent
that does its task over and over, referred to as a reoccurring qmt. This can be a
scheduled query agent or an agent that is monitoring for a specific event and when
the event occurs, the agent is activated. In our system, the software agents defined
in Table 1 have been simulated. They are briefly described using the types of
categories described previously.

6. TESTING RESULTS

For testing purposes, three sets of simulated agents were generated randomly using
the simulator's Control Panel, described in detail in Ercolini (1994). The reason for
generating three scenarios instead of one was to show that the performance of the
DAM does not significantly depend on the selection of the variables defining
scenarios. These scenarios were used at each rate of the simulation with and without
the DAMactivated. There wasalsoa predefined keyword set used during the testmg
of the system. All other decision mechanism variables were varied randomly on all
levels.

In the following figures, we present the results of our simulations. Figures 3 and
4 present the raw data collected when runningthe three test scenarios. These figures

Table 1: Simulated Agents

Nanre Today'sApplication Category Vcscnptiun

Desktop VTC
agent

Shared screen
agent

Database search
agent

Internet search
agent

Bulletin board
agent

Automatic
download agent

Reporl generation
agent

Workflow notifier
agent

Evem notifier
aeent

Farallon
Timhuktu

SQL Sever, Oracle

Gopher, WWW,
Mosaic

Patty Maes's
agents

Lobs Notes

Mncras within
M~rowrft Word
and Excel

Reach Workman

IRM's IntelliAgent

External

External

Single task

Single task

Monitoring

Scheduled

Scheduled

Monitoring

Monitoring

Provides live video teleconferencing
on the desktop. Randomlv
invoked by external user.

Allows the sharing of windows on
the desktop.

Query for information, ad hoc query,
searchg on specific keywords.

Search for information on the
Internet.

Monitor for articles tu he published
on a bulletin board on the Internet.

Scheduled query for information.
Note automatically calls another
Notes server and downloads any
additions, deletiuns, or changes to
the replicated database.

Automatic rrport generator. Word
and Excel can have macros that will
generate a periodic report given n
certain set of idomation exisb.

Sign thisPRwith 24 hr, review this
dmrnen t by next Tuesday.

Budget is overnmnin,g, schedule is

', slipping, someone changed a Mr..

Not?. VTC = video teletnnferenrinp; PR = purchase requisition.

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

1 44 Ercolini and Kokar

7. ANALYSIS OF RESULTS

Although our overall goal was toinvestigate the whole concept of a DAM, including
the specifications, the design and the user interface, in this article we focus only on
the decision mechanism of the DAM. Our primary interest was to investigate the
effectiveness of the DAM with respect to its decisions on which agents and under
what conditions should be filtered out and not allowed to access the user, and when
they should be allowed to present their results to the user directly. Although the
effectiveness of the decision mechanism can be def ied as thenumber of agents not
filtered by thedecision mechanism, the realquestionsare (a) whether the user agrees
with the DAM's decisions on which of the agents should be filtered out and which
should not, and @) whether the DAM's global policy on the number of agents that
are filtered out is well synchronized with the user as represented by the user status
variable (i.e., whether the user will be able to control the strictness of the filtering
mechanism through this variable). To answer the first question, a human factors
study is needed, including real users in real scenarios. This kind of study is beyond
the scope of this article. We concentrated on the second question (i.e., on the relation
between the user status and the number of filtered agents).

To assess the validity of the agent's global policy we need to understand what
kind of relation should we expect, what kind of relation is "good" or "correct?" In
our investigations, we assumed that the characteristic of the DAM in terms of the
number of agents that are filtered should be "linear" with respect to the user status
value. Linear is in quotes because user status is not a quantitative variable. Never-
theless, it is an ordinal-scale variable. Intuitively, the linearity means that if user
status changes by one unit (e.g., from bored toflexible) the increase in thenumber of
filtered agents should be the same as when user status changes from busy to do not
disturb. It also means that the number of agent interruptions should decrease as the
user status level increases.

Figures 5 and 6 show the percentage of agents that were not filtered by the DAM
versus the user status level. Figure 5 is for the agents running without using a
keyword set and Figure 6 is for the agents using the keyword set. As expected, the

Do Not Busy Flexible Bored
Disturb

User S ta tus Level

FIGURE 5 Average percentage of agents not filtered.

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

DesMop Agent Manager (DAM): Decision Mechanism

I

Do Not Busy Flexible Bored
Disturb

User Status Level

FIGURE 6 Average percentage of agents not filtered using keywords.

percentage of agents not filtered increases monotonically as the user status level
moves from do not disturb to bored, approaching the number of agents generated. At
the do not disturb level, a small percentage of agents are not filtered and at the bored
level, all agents are not filtered. User status levels busy and bored fall in between
these extremes roughly linearly. It can be concluded that the decision mechanism
filters agents correctly with respect to the user status level.

In analyzing how the keywords affect the decision mechanism, using Figures 5
and 6, we can see that although the keyword capability of the decision mechanism
increases the importance of agents, the increase in importance values is not constant
across all agents and that keywords do not make a predictable impact. The keyword
importance values increased sensitivity slightly, but not enough to conclude that
they have a significant weighting in the decision mechanism.

In order to better understand the effects of the decision mechanism we analyzed
the distribution of the importance values. Figures 7 and 8 show the distribution of
the importance values calculated for all the agents for the test scenarios being run
without and with using keywords, respectively. The distribution charts indicate that
the importance values calculated by the decisionmechanism are mostly in the range
of 15 to 40. This could result in uneven sensitivity of the decision mechanism with
respect to user status. In our definition of the user status variable, we partially
addressed this issue by scaling this variable in such a way that its value increases
faster for the upper end than for the middle. This scaling can be optimized further
toward the linearity of the decision mechanism characteristic.

In the next step, we investigated which parameters used for calculating the
importance value of the agent are affecting the importance values. Figure 9 shows
which combinations of parameters were present in the simulated data and contrib-
uted in calculating the importance value of the agents with the test case scenarios.
The following legend was used in the figure for particular parameters: F denotes
agent priority, R denotes priority of the results, T denotes time limit, and K denotes
keywords found in the results. Only 6 of the possible 16 combinations of parameters
were used for two reasons. Fit, the priority criteria factor (P) is always present,
eliminating the eight combinations that do not include P. Second, all simulated

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

Importance Values

FIGURE 7 Average distribution of agent importance values

Importance Values

FIGURE 8 Average distribution of agent importance values using keywords.

1

, 0.8
PRTK

rn
0.6

C
U

0.4

% 0.2 n,D
0

Average Agent Agent Agent
Set 1 Set 2 Set 3 PRT

Data Sets I
FIGURE 9 Percentage of parameters used hy the decision mechanism

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

Desktop Agent Manager (DAM): Decision Mechanism 147

1
0.9
0.8 PRTK

g 0.7
2 0.6
u 0.5
f 0.4
0.3
0.2 p

0.1
0

Do Not Busy Flexible
Disturb

User Status

FIGURE 10 Percentage of parameters found to be critical

agents that allow the user to specify a time limit also allow the agent to prioritize
its results. This eliminates the combinations that involve T without R (i.e., PT and
PTK). This chart indicates that the combinations of parameters were essentially the
same throughout all test scenarios. The leftmost bar is the average of the combina-
tions contributing to the importance values in all three test scenarios.

Figure 10 shows the percentage of the parameters that were critical to the
decision-making process for different user status levels. Critical parameters were
defined as the parameters that were necessary for the calculated importance value
of the agent to be equal to or higher than the user status threshold. From Figure 10,
it can be seen that as the user status threshold value decreases, the priority of the
agent becomes the predominant critical criteria parameter. The other parameters
have less significance in determining whether the agent should be filtered or not.
At the bored user status level, the only critical parameter is the priority of the agent.
Even at theflcxible level, priority is the predominant parameter. This concludes that
the decision mechanism relies heavily on the priority of the agent.

8. CONCLUSIONS AND FUTURE DIRECTIONS

As more software agents are being developed in the research community as well as
for commercial products, the issue of agents competing for the user's attention and
agent management should be recognized. What needs to be addressed is the issue
of the user being overwhelmed by the number of agents processing tasks on a single
desktopcomputer. Thisarticle presents a possible solution to managingtheseagents
for the user.

The goal of this research was to investigate the concept of a DAM. Toward this
goal, we implemented a prototype of a DAM and a simulation environment to
generate various agents and to evaluate the performance of the DAM. Overall, the
DAM development achieved many of its goals. The DAM (a) captured, filtered, and
managed the different types of agents; (b) collected and managed requirements
from the user; and (c) displayed the results of the agents in a conclse manner.

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

148 Ercolini and Kokar

Our primary focus was on the decision mechanism of the DAM, which makes
the decision to either allow the agent to access the user or to filter the agent. Our
goal was to develop a decision mechanism that can be understandable to the user
and through which the user can easily control the number of agents not filtered by
varying the user status variable and by using keywords. As shown in the previous
analysis, the DAM performed as expected. As the user status level decreased, the
number of agents not filtered increased proportionally.

All testing was performed both without using keywords and using a certain
keyword set. We found that although keywords increased the importance values,
the increase was not constant across all agents, because it depends on the keyword
set def ied by the user and the number of matches to the agent results. Because no
one keyword set can be considered the "typical" keyword set chosen by any user,
the only way to truly judge whether keywords have a major impact is to perform a
user evaluation of the system with many users and keyword sets.

The analysis of the decision mechanism that we performed resulted in several
suggestions for the design of this mechanism. We concluded that, depending on the
values of user status, the sensitivity of the decision mechanism can become biased
for or against some of the parameters. For instance, when the threshold value is low
(i.e., bored orflcxible), the priority of the agent is the only parameter that is critical.
When setting user status to bored, the user should understand that all agents will
not be filtered because the priority of the agent is the only parameter taken into
account. Unless we provide the user with the feedback showing them why the
decisions were made, the user may never understand the reasoning behind the
decision mechanism.

We showed that the characteristic of the agent can be optimized by the user
toward a h e a r characteristic through adjusting the scaling of the user status
parameter. Another possibility is to allow the user to change the weights for
particular parameters. The next level of flexibility would be to allow the user to
change the decision mechanism algorithm. This is a much more involved solution
and it would require providing the user with a programming language in which to
set the decision mechanism rules. The next step would be to incorporate machine
learning into the DAM. The DAM would learn by watching how the user interacts
with the agents that exist and generate its own rules.

Although all of these solutions are feasible from the technical point of view, the
final recommendation requires more research involving users. Any change in the
decision mechanism leads to a leaming curve for the user. For instance, in both the
rule-based and learning approaches, the DAM would have to have a language for
defining new rules. The user would have to have a good understanding of this
language in order to be able to either change or learn the new rules. Also, although
a DAM with leaming capabilities is desirable, the user of such an agent must be
provided with a mechanism to control such an agent. The main decision now would
be when to allow the agent to make independent decisions. To further analyze the
effectiveness of the DAM, a user study should be performed in which all of these
possibilities are evaluated.

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

Desktop Agent Manager (DAM): Decision Mechanism 149

REFERENCES

Adler, M., Durfee, E., Huhns, M., Punch, W., & Simoudis, E. (1992, Summer). AAAl Work-
shop on Cooperation Among Heterogeneous Intelligent Agents. A1 M a p i n e , pp. 3 9 4 .

Avouris. N., Van Liedekerke, M., Lekkas, G., & Hall, L. (1993). User interface design for
cooperating agents in industrial process supervision and control applications. Intento-
tionnl Io~irnnl of Man-Machine Studies, 38.873490.

Bird, S. (1993). Toward a taxonomy of multi-agent systems. Internationnl~ournnIofMn~t-Ma-
chine Sttrdies, 39, 68P-704.

Ercolini, D. A. G. (1994). An nrchitecttrre for n desktop agent mnnnger. Unpuhlished master's
thesis, Northeastern University, Boston.

Funke, D., Neal, J., & Paul, R. (1993). An approach to intelligent automated window
management. Interrrnfiorrnl Iorrrnd of Man-Mnclritre Studies, 38, 949-983.

Kozierok, R., & Maes, P. (1993). A learning interface agent for scheduling meetings. In
Internntional workshop for intelligent trser interfnres (pp. 81-88). Orlando, FL: ACM Press.

Maes, P., & Kozierok, R. (1993). Learning interface agents. Proceedings o fAAAI '93,459465.
Milev, M. (1993). Agent technology: The fine line hetween smart design and intelligent

software. MncWEEK, 7,4145.
Palaniappan, M., Yankelovich, N., Fitzmaurice, G., Loomis, A,, Haan, B., Coombs, J., &

Meyrowitz, N. (1992). The envoy framework: An open architecture for agents. ACM
Tmnsnctions on Infonnnfion Systems, 10, 233-264.

Sheth, B., & Maes, P. (1993, March). Euohri~tg agents for perso~mlized informntionfiltering. Paper
presented at the 9th IEEE Conferenceon Artificial Intelligence for Applications, Orlando,
Fl .. . -

Streeter, A. (1993). Open Sesame! summons agents to automate tasks. MncWEEK, 7, 1-2.
Tessler, F. (1993). Magnet 1.0 intelligent agent-based utility. Mncumrld, 10,220.
Zlotkin, G., & Rosenschein, J. (1993). A domain theory for task oriented negotiation. Proceed-

in@ of lJCnl'93.4I6422.

D
ow

nl
oa

de
d

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v

B
ib

lio
te

]
at

 0
5:

35
 2

4
Ja

nu
ar

y
20

13

