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A General Characterization of the
Variable-Sharing Property

by Means of Logical Matrices

Gemma Robles and José M. Méndez

Abstract As is well known, the variable-sharing property (vsp) is, according
to Anderson and Belnap, a necessary property of any relevant logic. In this pa-
per, we shall consider two versions of the vsp, what we label the “weak vsp”
(wvsp) and the “strong vsp” (svsp). In addition, the “no loose pieces property,”
a property related to the wvsp and the svsp, will be defined. Each one of these
properties shall generally be characterized by means of a class of logical matri-
ces. In this way, any logic verified by an actual matrix in one of these classes has
the property the class generally represents. Particular matrices (and so, logics)
in each class are provided.

1 Introduction

As is well known, according to Anderson and Belnap, the following is a necessary
property of any relevant logic S (see [1]).

Definition 1.1 (Variable-sharing property—vsp) If A ! B is a theorem of S,
then A and B share at least one propositional variable.

The main results on the vsp are the following [cf. [1]):
1. Any logic equivalent to (or included in) the logic of relevant implication, R,

has the vsp.
2. The logic R-Mingle, RM, and so, any of its extensions does not have the vsp.

The logic R-Mingle is the result of adding the axiom “mingle”

M. A! .A! A/

to R. And despite the fact recorded in (2), the vsp and M are not, in general, in-
compatible. In [7] (see also [8]), for example, it is proved that the vsp and M are
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compatible if the De Morgan negation characteristic of relevant logics is restricted.
And in [2], it is shown that the vsp is preserved when M is added, together with an
intensional conjunction, to the implication-negation fragment of R. Therefore, we
have a third result on the vsp of some interest:

3. The vsp and the axiom mingle are compatible if either the extensional con-
junction and disjunction of standard relevant logics or else the De Morgan
negation characteristic of these logics are dropped.

But let us now return to the fact stated in (1). Anderson and Belnap actually prove a
much stronger result in [1]. They prove that any logic equivalent to (or included in)
R has what we shall here name the “strong variable-sharing property” and the “no
loose pieces property.” In order to discuss these properties, the following definition
of antecedent parts and consequent parts of wff is needed (cf. [1], p. 240).

Definition 1.2 (Antecedent parts and consequent parts) Let A be a wff. Then
1. A is a cp of A,
2. If B ^ C is a cp (ap) of A, then both B and C are cps (aps) of A,
3. If B _ C is a cp (ap) of A, then both B and C are cps (aps) of A,
4. If B ! C is a cp (ap) of A, then B is an ap (cp) of A and C is a cp (ap) of A,
5. If :B is a cp (ap) of A, then B is an ap (cp) of A.

The properties referred to above are the following.

Definition 1.3 (Strong variable-sharing property—svsp) If A ! B is provable,
then some variable occurs as an ap of both A and B , or else as a cp of both A and B .

Definition 1.4 (No loose pieces property—nlpp) If A is provable and A contains
no conjunction as aps and no disjunctions as cps, every variable in A occurs once as
ap and once as cp.

The nlpp is named after an observation by Anderson and Belnap (cf. [1], p. 255)
remarking that any logic equivalent to (or included in R) lacks wff such as

.q ! p/! .p ! p/

p ! Œ.q ! p/! p�

.p ! q/! .p ! p/

p ! Œ.p ! q/! p�

Œ.p ! q/! p�! p

where q is in them, so to speak, a “loose piece.” On the other hand, the property
stated in Definition 1.3 is labeled the “strong” variable-sharing property because, as
it is proved in Theorem 3.10 below, it is a sufficient but not necessary condition for
the vsp. Now, as pointed out above, Anderson and Belnap actually prove that any
logic equivalent to (or included in) R has both the svsp and nlpp.

The aim of this paper is to define a general class of logical matrices for each one
of the properties in Definitions 1.1, 1.3, and 1.4, especially for those in Definition 1.3
and Definition 1.4. That is to say, the purpose of this paper is to define vsp-matrices,
svsp-matrices, and nlpp-matrices in a general way. Each one of these classes has the
following property. Let S be a logic verified (cf. §2) by a, say, svsp-matrix. Then S
has the svsp. And it is similarly the case with vsp-matrices and nlpp-matrices. These
facts are proved following Anderson and Belnap’s strategy in [1], §22.1.3.
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In this way, we have a simple method for checking immediately if there is some
logic with any of the referred properties in, say, a sequence of matrices generated by
a computer. Or, indeed, a simple method for building up (with or without a com-
puter) matrices such that any logic verified by them has one of the aforementioned
properties. In addition, these properties are, generally, algebraically characterized,
and so, in some respect, the logics possessing them are also characterized in the same
way.

Nevertheless, the usefulness of the method can be questioned on the basis of
facts (1) and (2) recalled at the beginning of this introduction. That is to say, no
method is needed to know that any logic included in R has the svsp and the nlpp;
neither is it needed to know that no logic including RM has these properties. But, as
was also recalled in (3), there are strong interesting logics with the said properties in
the vicinity of RM. And, moreover, as it will be shown in the sequel, there are strong,
and maybe interesting, logics not included in RM with one or more of the properties
considered in this paper.

The structure of the paper is as follows. In Section 2, a series if preliminary
definitions (“logical matrix,” etc.) is recalled. The aim of this short section is es-
sentially to set some terminology used throughout the paper. In Section 3, weak
relevant matrices (wr-matrices) are defined (wr-matrices are vsp-matrices). And it is
proved that the svsp is not a necessary condition for the vsp. In Section 4, Section 5,
svsp-matrices and nlpp-matrices are, respectively, characterized. In Section 6, we
define strong relevant matrices (sr-matrices). Sr-matrices are svsp-matrices as well
as nlpp-matrices. Finally, in Section 7, a note is included on relevance, the vsp
and two alternatives proposed to this last property: depth relevance and the relevant
equivalence property. Examples of each class of matrices featuring logics with the
respective property (properties) are provided.

2 Logical Matrices. Preliminary Definitions

We shall consider propositional languages with a set of denumerable propositional
variables and the following connectives: ! (conditional), ^ (conjunction), _ (dis-
junction), : (negation), the biconditional ($) being defined in the customary way.
The set of wff is also defined in the usual way. Then the notion of logical matrix is
defined as follows.

Definition 2.1 A logical matrix M is a structure .K, T , F , f!, f^, f_, f:/

where
1. K is a set,
2. T and F are nonempty subsets of K such that T [ F D K and T \ F D ;,
3. f!, f^, f_ are binary functions (distinct of each other) on K, and f: is a

unary function on K.

It is said that K is the set of elements of M; T is the set of designated elements, and
F is the set of nondesignated elements. The functions f!, f^, f_, and f: interpret
in M the conditional, conjunction, disjunction, and negation, respectively. In some
cases one or more of these functions may not be defined.

Now, let L be a propositional language, A1; : : : ; An, B be any wff of L, and S
be a logic defined on L. On the other hand, let M be a logical matrix and vm an
assignment of elements of M to the propositional variables of B . That B is assigned
the element j of K is expressed as follows: vm.B/ D j .
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Then we set the following definition.

Definition 2.2 Let M be a logical matrix. M verifies B if and only if for any
assignment, vm, of elements of K to the propositional variables of B , vm.B/ 2 T .

Definition 2.3 Let M be a logical matrix. M falsifies B if and only if for some
assignment, vm, of elements of K to the propositional variables of B , vm.B/ 2 F .

Definition 2.4 Let A1; : : : ; An `S B be a rule of derivation of S, and M
be a logical matrix. Then, M verifies A1; : : : ; An `S B if and only if for
any assignment, vm, of elements of K to the variables of A1; : : : ; An and B , if
vm.A1/ 2 T; : : : ; vm.An/ 2 T , then, vm.B/ 2 T .

Finally, we have the following.

Definition 2.5 Let M be a logical matrix. M verifies S if and only if M verifies all
axioms and rules of derivation of S.

3 The SVSP Is Not a Necessary Condition for the VSP

First, it is clear that we have the following.

Proposition 3.1 Let S be a logic with the svsp. Then S has the vsp.

Proof It is obvious.

Therefore, the svsp is a sufficient condition for the vsp, but it is not a necessary
condition: as it will be shown, there are logics with the vsp lacking the svsp. In order
to prove this, we set the following definition.

Definition 3.2 (wr-matrices) Let M be a logical matrix in which ai , ar , and aF

are elements of K distinct of each other such that aF 2 F and the following condi-
tions are fulfilled:

1. F^.ai ; ai / D F_.ai ; ai / D F!.ai ; ai / D F:.ai / D ai ,
2. F^.ar ; ar / D F_.ar ; ar / D F!.ar ; ar / D F:.ar / D ar ,
3. F!.ai ; ar / D aF .

It is said that M is a weak relevant matrix (wr-matrix, for short).

Remark 3.3 The label weak relevant matrix is intended to distinguish wr-matrices
from strong relevant matrices to be defined with stricter conditions in Section 6.

Next, the following is proved.

Proposition 3.4 Let M be a wr-matrix and S a logic verified by it. Then S has the
vsp.

Proof Assume the hypothesis of Proposition 3.4, and let A ! B be a wff in
which A and B do not share propositional variables. Then, let vm be an assignment
of elements of M to the variables of A and B such that vm.pn/ D ai for each
variable pn in A, and vm.pn/ D ar for each variable pn in B . By conditions (1)
and (2) in Definition 3.2, vm.A/ D ai and vm.B/ D ar . So vm.A ! B/ D aF by
condition (3) in Definition 3.2. Therefore, if A! B is a formula in which A and B

do not share a propositional variable, A! B is not a theorem of S. Consequently, if
A ! B is a theorem of S, A and B do share at least one propositional variable. In
other words, S has the vsp.
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Now we shall provide a class of logics with the vsp but lacking the svsp.

Definition 3.5 Consider the matrix MDF3:5 D .K; T ; F ; f!; f^; f_; f:/ where
1. K D f0; 1; 2; 3g

2. T D f1; 2; 3g

3. F D f0g

4. the functions f!; f^; f_; f: are defined as shown in the tables below:

! 0 1 2 3 :

0 3 3 3 3 3

1 0 1 2 3 1

2 0 0 2 3 2

3 0 0 0 3 2

^ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 2 3

_ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3

5. ai D 2

6. ar D 1

7. aF D 0

Remark 3.6 The following is a Hasse diagram of MDF3:5.

3

2

1

0

Proposition 3.7 Matrix MDF3:5 is a wr-matrix.

Proof By checking that conditions (1)–(3) in Definition 3.2 are fulfilled by MDF3:5.

Let us now describe some of the logics verified by MDF3:5.

Proposition 3.8 The schema

(1) A! A

and the rules
(2) If A, then .:A ^ B/! :B

and
Modus Ponens (MP) If A and A! B , then B

are verified by MDF3:5.

Proof It is left to the reader.

Proposition 3.9 Let S be any logic verified by MDF3:5 in which (1), (2), and MP
are derivable. Then S has the vsp but not the svsp.

Proof (a) S has the vsp. By Propositions 3.4 and 3.7. (b) S does not have the svsp.
It is clear that

(3) Œ:.p ! p/ ^ q�! :q

is a theorem of S. But there is no propositional variable as ap or as cp of both an-
tecedent and consequent of (3). Therefore, S does not have the svsp.
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Finally, the section is ended with the following theorem.

Theorem 3.10 The svsp is a sufficient but not a necessary condition for the vsp.

Proof Propositions 3.1 and 3.9.

4 SVSP-Matrices

In this section svsp-matrices shall be characterized generally. Then, it will be proved
that any logic S verified by an svsp-matrix has the svsp. That is, in any theorem of S
of the form A! B some variable occurs as an ap or as a cp of both A and B .

Definition 4.1 (svsp-matrices) Let M be a logical matrix in which aT 2 T ,
aF 2 F , and ai , ar , al , and as are elements of K. And let us designate by K1,
K2, and K3 the subsets of K fai ; arg, fal ; asg, and faT ; aF g, respectively. The sets
K1, K2, and K3 are disjoint, and the members in K1 as well as those in K2 are pos-
sibly (but not necessarily) distinct from each other. Finally, the following conditions
are fulfilled:

1.
(a) f^.aT , aT / D f_.aT ; aT / D f!.aF ; aT / D f:.aF / D aT .
(b) f^.aF , aF / D f_.aF ; aF / D f!.aT ; aF / D f:.aT / D aF .

2.
(a) 8x8y 2 K1 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K1.
(b) 8x8y 2 K2 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K2.

3. 8x 2 K1

(a) f^.aT ; x/ & f^.x; aT / & f_.aT ; x/ & f_.x; aT / & f!.x;

aT / & f!.aF ; x/ 2 K1 [ faT g.
(b) f^.aF ; x/ & f^.x; aF / & f_.aF ; x/ & f_.x; aF / & f!.aT ;

x/ 2 K1 [ faF g.
4. 8x 2 K2

(a) f^.aT ; x/ & f^.x; aT / & f_.aT ; x/ & f_.x; aT / & f!.x;

aT / & f!.aF ; x/ 2 K2 [ faT g.
(b) f^.aF ; x/ & f^.x; aF / & f_.aF ; x/ & f_.x; aF / & f!.x;

aF / 2 K2 [ faF g.
5.

(a) 8x 2 K1 f!.x; aF / D aF

(b) 8x 2 K2 f!.aT ; x/ D aF

(c) 8x 2 K18y 2 K2 f!.x; y/ 2 F .

Then it is said that M is a matrix for the strong variable sharing property (svsp-
matrix, for short).

Remark 4.2 The following diagram is intended to help the reader to visualize the
general structure of svsp-matrices. Only elements of K referred to in Definition 4.1
are included. The order in which the elements are displayed in the matrix schema is
of course purely conventional. That is, aT , aF , ai , ar , al , and as can be displayed
differently in actual svsp-matrices. Similar diagrams for other classes of matrices to
be defined in this paper shall be included in the following sections.
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! F i r l s T :

F T ir T ir T ls T ls T T

i F ir ir F F F F T ir ir

r F ir ir F F F F T ir ir

l F ls ls ls T ls ls

s F ls ls ls T ls ls

T F F ir F ir F F F

^ F i r l s T

F F F ir F ir F ls F ls

i F ir ir ir T ir

r F ir ir ir T ir

l F ls ls ls T ls

s F ls ls ls T ls

T T ir T ir T ls T ls T

_ F i r l s T

F F F ir F ir F ls F ls

i F ir ir ir T ir

r F ir ir ir T ir

l F ls ls ls T ls

s F ls ls ls T ls

T T ir T ir T ls T ls T

Remark 4.3 T , F , i , r , l , and s designate aT , aF , ai , ar , al , and as , respectively.
F designates an arbitrary element of F . Certain blocks contain more than one ele-
ment. It means, of course, that any one of them can appear in svsp-matrices. Empty
blocks can contain any element of M.

Next, we prove that any logic S verified by a svsp-matrix has the svsp. In order to do
this, the following lemma is useful.

Lemma 4.4 (Cf. [1], §22.1.3) Let M be a svsp-matrix and A ! B be a wff in
which no variable occurs as an ap of both A and B or as a cp of both A and B . Then
there is an assignment vm of elements of M to the variables of A! B such that

1. for every ap C of A, vm.C / 2 fai ; ar ; aF g, and for every cp C of A,
vm.C / 2 fai ; ar ; aT g;

2. for every ap C of B , vm.C / 2 fal ; as; aT g, and for every cp C of B ,
vm.C / 2 fal ; as; aF g.

Proof Assume the hypothesis of Lemma 4.4. Then each variable p occurring in
A! B has to appear in A and/or in B in one of the six situations tabulated below:

A B

p W cp -
ap -
- ap
- cp
cp ap
ap cp
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The first row is read “p occurs as a cp in A, but does not occur in B ,” and the rest of
the rows are read similarly.

According to these possibilities, the following assignment vm of elements of M is
defined for each variable p in A! B:

A B

p W cp - ai

ap - ar

- ap al

- cp as

cp ap aT

ap cp aF

We remark that if p appears both as a cp and an ap of A (respectively, B) and not in
B (respectively, A), then p can equivalently be assigned ai or ar .al or as). Let us,
for definiteness, assign ai .al ) to p if such is the case.

Then the proof of Lemma 4.4 is by induction on the length of C . Let us prove by
way of an example a couple of cases. By (3a), (4b), (5c) and so on we refer to the
clauses in Definition 4.1.

First the conditional case in Lemma 4.4(1): Suppose that C is of the form
D ! E.

1. C is an ap. Then D is a cp and E is an ap by Definition 1.2. By hypothesis
of induction (H.I), vm.D/ 2 fai , ar , aT g and vm.E/ 2 fai , ar , aF g, whence
by (1b), (2a), (3b), and (5a), vm.D ! E/ 2 fai , ar , aF g as it was to be
proved.

2. C is a cp. Then D is an ap and E is a cp by Definition 1.2. By H.I,
vm.D/ 2 fai , ar , aF g and vm.E/ 2 fai , ar , aT g, whence by (1a), (2a),
and (3a), vm.D ! E/ 2 fai , ar , aT g; as it was to be proved.

Next the negation case in Lemma 4.4(2): Suppose that C is of the form :D:

1. C is an ap. Then D is a cp by Definition 1.2. By H.I, vm.D/ 2 fal , as , aF g.
Then vm.:D/ 2 fal , as , aT g by (1a) and (2b).

2. C is a cp. The proof is similar to the previous one by (1b) and (2b).

By Lemma 4.4, the following is proved.

Theorem 4.5 Let M be a svsp-matrix and S be a logic verified by it. Then, if
A ! B is a theorem of S, some variable occurs as an ap or else as a cp of both A

and B . That is, S has the svsp.

Proof Let A ! B be a wff in which no variable occurs as an ap of both A

and B or as a cp of both A and B . And let M be an svsp-matrix verifying S. By
Lemma 4.4 there is an assignment vm of elements of M to the variables of A ! B

such that for every cp C of A, vm.C / 2 fai , ar , aT g and for every cp C of B ,
vm.C / 2 fal , as , aF g. As A and B are cps of themselves, vm.A/ 2 fai , ar , aT g

and vm.B/ 2 fal , as , aF g, whence by conditions (1b), (5a), (5b), and (5c) in Defi-
nition 4.1, vm.A! B/ 2 F . That is, A! B is not a theorem of S. Consequently,
if A! B is a theorem of S, some variable occurs as an ap of both A and B , or else
as a cp of both A and B .
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Next, as a way of an example, a strong logic with the svsp not included in R-Mingle
shall be provided.

Definition 4.6 Consider the matrix MDF4:6 D .K; T ; F ; f!; f^; f_; f:/ where
1. K D f0; 1; 2; 3; 4; 5g,
2. T D f1; 2; 3; 4; 5g,
3. F D f0g,
4. the functions f!; f^; f_; f: are defined as shown in the tables below:

! 0 1 2 3 4 5 :

0 1 1 2 3 4 5 5

1 0 1 2 3 4 5 4

2 0 0 2 0 4 5 2

3 0 0 0 3 4 5 3

4 0 0 0 0 4 5 1

5 0 0 0 0 0 5 0

^ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 1 1 1

2 0 1 2 1 2 2

3 0 1 1 3 3 3

4 0 1 2 3 4 4

5 0 1 2 3 4 5

_ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 2 3 4 5

2 2 2 2 4 4 5

3 3 3 4 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5

5. K1 D f2g

6. K2 D f3g

7. aT D 5

8. aF D 0.

Remark 4.7 The following is a Hasse diagram of MDDF4:6.

5

4

@@��
3 2

��@@
1

0

Definition 4.8 Consider the following logic SDF4:6. The logic SDF4:6 is axioma-
tized by adding to Routley and Meyer’s basic positive logic BC (cf. [10]) the follow-
ing axioms and rules:
a1. Œ.A! A/! B�! B

a2. Œ.A! .A! B/�$ .A! B/

a3. .B ! A/! .A! A/

a4. A! Œ.B ! A/! A�

a5. Œ.A! B/! A�! A

a6. ::A$ A
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a7. If A! B , then :B ! :A

a8. If A! B , then .A! :B/! :A.

Remark 4.9 We shall try here to axiomatize neither MDF4:6 nor other matrices to
be provided in the sequel.

Then the following is proved.

Proposition 4.10 Matrix MDF4:6 is an svsp-matrix.

Proof By checking that conditions (1)–(5) in Definition 4.1 are fulfilled by MDF4:6.

Proposition 4.11 The logic SDF4:6 is verified by MDF4:6.

Proof It is left to the reader.

Proposition 4.12 The logic SDF4:6 has the svsp.

Proof By Proposition 4.10, Proposition 4.11, and Theorem 4.5.

Now, notice that SDF4:6 does not include and neither is it included in R-Mingle
(in RM3, actually): (a3), (a4), and (a5) are not theorems of RM3 (on the logic RM,
see [10]; on RM3, an extension of RM, cf. [4] and Definition 5.4 below).

The section is ended with the following remark.

Remark 4.13 Note that a series of logics with the svsp not included in RM3 is,
in fact, provided in MDF4:6. One of these logics is used in [9] to define deep relevant
logics not included in RM.

5 NIPP-Matrices

In this section nlpp-matrices are generally characterized. Then it is proved that any
logic S verified by an nlpp-matrix has the nlpp. That is, in any theorem A of S with
no conjunctions as aps and no disjunctions as cps, every variable in A occurs at least
once as ap and at least once as cp.

Definition 5.1 Let M be a logical matrix in which aT 2 T , aF 2 F , and ai ;

ar are elements of K. And let us designate by K1 and K2 the subsets of K fai ;

arg, faT ; aF g, respectively. The sets K1 and K2 are disjoint, and the members in
K1 are possibly (but not necessarily) distinct from each other. Finally, the following
conditions are fulfilled:

1.
(a) f_.aT ; aT / D f!.aF ; aT / D f:.aF / D aT .
(b) f^.aF ; aF / D f!.aT ; aF / D f:.aT / D aF .

2. 8x8y 2 K1 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K1.
3. 8x 2 K1

(a) f_.aT ; x/ D f_.x; aT / D f!.x; aT / D f!.aF ; x/ D aT .
(b) f^.aF ; x/ D f^.x; aF / D f!.aT ; x/ D f!.x; aF / D aF .

It is said that M is a matrix for the no loose pieces property (nlpp-matrix, for short).

Nlpp-matrices generally look as in the following diagram (cf. Remark 4.2 and Re-
mark 4.3).
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! F i r T :

F T T T T

i F ir ir T ir

r F ir ir T ir

T F F F F

^ F i r T

F F F F

i F ir ir

r F ir ir

T

_ F i r T

F

i ir ir T

r ir ir T

T T T T

Lemma 5.2 (Cf. [1], §22.1.3) Let M be an nlpp-matrix and A be any wff with no
conjunctions as aps and no disjunctions as cps. Moreover, let p be a propositional
variable which appears only as a cp, or only as an ap, in A. Then there is an
assignment vm of elements of M to the variables of A such that

1. if B is a subformula of A in which p does not occur, then vm.B/ 2 K1;
2. if B is a subformula of A in which p does occur, then (a) if B is an ap of A,

then vm.B/ D aT , and (b) if B is a cp of A, then vm.B/ D aF .

Proof Assume the hypothesis of Lemma 5.2 with p appearing only as a cp. Then
we set the following assignment under M: vm.p/ D aF and vm.q/ D ai for each
variable q distinct from p.

1. Induction on the length of B . The proof is trivial as K1 is closed under!,
^, _, and :. (By condition (2) in Definition 5.1).

2. Induction on the length of B . If B is a propositional variable, then B is p

and vm.B/ D aF . (Recall that p occurs only as a cp). Regarding complex
formulas, we prove the conditional case and leave the rest of the cases to the
reader.

B is of the form C ! D:
(a) B is an ap. Then C is a cp and D is an ap (cf. Definition 1.2):

(i) p occurs in C and D: by H.I, vm.C / D aF and vm.D/ D aT .
So vm.C ! D/ D aT by (1a).

(ii) p occurs in C but not in D: by H.I, vm.C / D aF . By
Lemma 5.2(1), vm.D/ 2 fai ; arg. So vm.C ! D/ D aT

by (3a).
(iii) p occurs in D but not in C : by Lemma 5.2(1), vm.C / 2 fai ; arg;

by H.I, vm.D/ D aT . Then vm.C ! D/ D aT by (3a).
(b) B is a cp. Then C is an ap and D is a cp (cf. Definition 1.2).
(c) p occurs in C and D: by H.I, vm.C / D aT and vm.D/ D aF . Then

vm.C ! D/ D aF by (1b).
(d) p occurs in C but not in D: by H.I, vm.C / D aT . By Lemma 5.2(1),

vm.D/ 2 fai ; arg. Then vm.C ! D/ D aF by (3b).
(e) p occurs in D but not in C : by Lemma 5.2(1), vm.C / 2 fai ; arg; by

H.I, vm.D/ D aF . Then vm.C ! D/ D aF by (3b).
The proof of the conditional case is now finished. The proof of the conjunction,
disjunction, and negation cases is similar (recall that conjunctions can only appear
as cps and disjunctions as aps). If, on the other hand, p occurs only as an ap, assign
p the value aT (the proof is similar).

Leaning on Lemma 5.2 we prove the following.

Theorem 5.3 Let M be an nlpp-matrix and S a logic verified by it. Then, if A is a
theorem of S with no conjunctions as aps and no disjunctions as cps, every variable
in A occurs at least once as ap and at least once as cp. That is, S has the nlpp.
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Proof Let A be a wff with no conjunctions as aps and no disjunctions as cps in
which p appears only as cp or only as an ap. And let M be an nlpp-matrix and S a
logic verified by it. As A is a cp of itself, there is, by Lemma 5.2, an assignment under
M vm to the variables of A such that vm.A/ D aF . That is, A is not a theorem of S.
Consequently, if A is a theorem of S with no conjunctions as aps and no disjunctions
as cps, each variable in A appears at least once as cp and at least once as ap. That is,
S has the nlpp.

Next, it shall be shown that RM has the nlpp and, on the other hand, that there are
logics not included in RM having also this property.

Definition 5.4 Consider the matrix MDF5:4 D .K; T ; F ; f!; f^; f_; f:/ where
1. K D f0; 1; 2g

2. T D f1; 2g

3. F D f0g

4. the functions f!; f^; f_; f: are defined as shown in the tables below:

! 0 1 2 :

0 2 2 2 2

1 0 1 2 1

2 0 0 2 0

^ 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

_ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

5. K1 D f1g

6. aT D 2

7. aF D 0.

We recall that MDF5:4 is the characteristic matrix for the logic RM3, an extension
of RM (cf. [4]). Then, similarly as in the case of the logic SDF4:6, we prove the
following.

Proposition 5.5 The logic RM3 (and so, the logic RM) has the nlpp.

Proof Given that MDF5:4 is characteristic for RM3, by checking that MDF5:4 is an
nlpp-matrix.

Next, a logic (actually, a series of them, cf. Remark 4.13) with the nlpp and not
included in RM3 is defined.

Definition 5.6 Consider the matrix MDF5:6 D .K; T ; F ; f!; f^; f_; f:/ where
K; T ; F; K1; aT ; aF ; f^; f_; f: are as in Definition 5.4 and f! is as shown in
the table below:
! 0 1 2

0 1 2 2

1 0 1 2

2 0 0 1

Definition 5.7 Consider the following logic SDF5:6. The logic SDF5:6 is axioma-
tized by adding to Routley and Meyer’s logic B (cf. [10]) the following axioms:
a1. Œ.A! A/! B�! B

a2. A! Œ.B ! B/! A�

a3. ŒŒ.B ! B/! A�! A�! .A! A/

a4. A! ŒŒŒ.B ! B/! A�! A�! A�
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a5. :.A! B/! .B ! A/

a6. .A! :A/! :A.

Similarly as in the case of RM3 above, the following proposition is proved.

Proposition 5.8 The logic SDF5:6 has the nlpp.

Proof By checking that MDF5:6 is an nlpp-matrix and that the logic SDF5:6 is veri-
fied by it.

Now we notice that SDF5:6 does not include and neither is it included in R-Mingle
(in RM3, actually): (a3) and (a4) are not theorems of RM3.

6 Strong Relevant Matrices

Strong relevant matrices (sr-matrices, for short) are labeled by contrast to weak rel-
evant matrices characterized in Section 3. Sr-matrices are svsp-matrices as well as
nlpp-matrices. So they are defined after Definition 4.1 and Definition 5.1.

Definition 6.1 Let M be a logical matrix in which aT 2 T , at 2 T , aF 2 F ,
af 2 F and ai , ar , al , as , ak , and am are elements of K. And let us designate by
K1, K2, K3, K4, and K5 the subsets of K fai ; arg, fal ; asg, fak ; amg, faT ; atg, and
faF ; af g, respectively. The sets K1, K2, K4, and K5 are disjoint as well as K3, K4,
and K5. On the other hand, the members belonging to each one of these subsets of
K are possibly (but not necessarily) distinct from each other. Finally, the following
conditions are fulfilled:

1.
(a) f^.aT ; aT / D f_.aT ; aT / D f!.aF ; aT / D f:.aF / D aT .
(b) f_.at ; at / D f!.af ; at / D f:.af / D at .
(c) f^.aF ; aF / D f_.aF ; aF / D f!.aT ; aF / D f:.aT / D aF .
(d) f^.af ; af / D f!.at ; af / D f:.at / D af .

2.
(a) 8x8y 2 K1 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K1.
(b) 8x8y 2 K2 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K2.
(c) 8x8y 2 K3 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K3.

3. 8x 2 K1

(a) f^.aT ; x/ & f^.x; aT / & f_.aT ; x/ & f_.x; aT / & f!.x;

aT / & f!.aF ; x/ 2 K1 [ faT g.
(b) f^.aF ; x/ & f^.x; aF / & f_.aF ; x/ & f_.x; aF / & f!.aT ;

x/ 2 K1 [ faF g.
4. 8x 2 K2

(a) f^.aT ; x/ & f^.x; aT / & f_.aT ; x/ & f_.x; aT / & f!.x;

aT / & f!.aF ; x/ 2 K2 [ faT g.
(b) f^.aF ; x/ & f^.x; aF / & f_.aF ; x/ & f_.x; aF / & f!.x;

aF / 2 K2 [ faF g.
5. 8x 2 K3

(a) f_.at ; x/ D f_.x; at / D f!.x; at / D f!.af ; x/ D at .
(b) f^.af ; x/ D f^.x; af / D f!.at ; x/ D f!.x; af / D af .

6.
(a) 8x 2 K1 f!.x; aF / D aF

(b) 8x 2 K2 f!.aT ; x/ D aF
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(c) 8x 2 K18y 2 K2 f!.x; y/ 2 F .
It is said that M is a strong relevant matrix (sr-matrix, for short).

Sr-matrices generally look as in the following diagram (cf. Remark 4.2).

! F f i r l s k m t T :

F T ir T ir T ls T ls T T

f t t t t

i F ir ir F F F F T ir ir

r F ir ir F F F F T ir ir

l F ls ls ls T ls ls

s F ls ls ls T ls ls

k f km km t km

m f km km t km

t f f f f

T F F ir F ir F F F

^ F f i r l s k m t T

F F F ir F ir F ls F ls

f f f f

i F ir ir ir T ir

r F ir ir ir T ir

l F ls ls ls T ls

s F ls ls ls T ls

k f km km

m f km km

t

T T ir T ir T ls T ls T

_ F f i r l s k m t T

F F F ir F ir F ls F ls

f

i F ir ir ir T ir

r F ir ir ir T ir

l F ls ls ls T ls

s F ls ls ls T ls

k km km t

m km km t

t t t t

T T ir T ir T ls T ls T

Remark 6.2 T , F , f , i , r , l , s, k, m, t designate aT , aF , af , ai , ar , al , as ,
ak , am, and at , respectively. F designates an arbitrary element of F . Certain blocks
contain more than one element. It means, of course, that any one of them can appear
in sr-matrices. Empty blocks can contain any element of M.

Next the following is proved.
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Proposition 6.3 Let M be an sr-matrix. Then M is an svsp-matrix as well as an
nlpp-matrix.

Proof M is svsp-matrix: by conditions (1a), (1c), (2a), (2b), (3), (4), and (6) in
Definition 6.1. M is an nlpp-matrix by conditions (1b), (1d), (2c), and (5) in Defini-
tion 6.1.

And consequently, we have the following theorem.

Theorem 6.4 Let M be an sr-matrix and S be a logic verified by it. Then S has the
svsp and the nlpp.

Proof By Proposition 6.3, Theorem 4.5, and Theorem 5.3.

Matrices in Definition 6.1 can be simplified if we let T , F , and K1 or K2 play the
role of t , f , and K3, respectively. That is, if T D t , F D f , and K3 D K1 (or
K3 D K2). Then sr-matrices can defined as follows.

Definition 6.5 (sr-matrices—simplified definition) Let M be a logical matrix in
which aT 2 T , aF 2 F , and ai , ar , al , and as are elements of K. And let us
designate by K1, K2, and K3 the subsets of K fai ; arg, fal ; asg, and faT ; aF g,
respectively. The sets K1, K2, and K3 are disjoint, and the members in K1 as well
as those in K2 are possibly (but not necessarily) distinct from each other. Finally, the
following conditions are fulfilled:

1.
(a) f^.aT , aT / D f_.aT ; aT / D f!.aF ; aT / D f:.aF / D aT .
(b) f^.aF , aF / D f_.aF ; aF / D f!.aT ; aF / D f:.aT / D aF .

2.
(a) 8x8y 2 K1 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K1.
(b) 8x8y 2 K2 f^.x; y/ & f_.x; y/ & f!.x; y/ & f:.x/ 2 K2.

3. 8x 2 K1

(a) f_.aT ; x/ D f_.x; aT / D f!.x; aT / D f!.aF ; x/ D aT .
(b) f^.aF ; x/ D f^.x; aF / D f!.aT ; x/ D f!.x; aF / D aF .
(c) f^.aT ; x/ & f^.x; aT / 2 K1 [ faT g.
(d) f_.aF ; x/ & f_.x; aF / 2 K1 [ faF g.

4. 8x 2 K2

(a) f^.aT ; x/ & f^.x; aT / & f_.aT ; x/ & f_.x; aT / & f!.x;

aT / & f!.aF ; x/ 2 K2 [ faT g.
(b) f^.aF ; x/ & f^.x; aF / & f_.aF ; x/ & f_.x; aF / & f!.x;

aF / 2 K2 [ faF g.
5.

(a) 8x 2 K2 f!.aT ; x/ D aF

(b) 8x 2 K18y 2 K2 f!.x; y/ 2 F .

Then it is said that M is a simplified strong relevant matrix (simplified sr-matrix, for
short).

Simplified sr-matrices look as follows (cf. Remark 4.2, Remark 4.3).
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! F i r l s T :

F T T T ls T ls T T

i F ir ir F F F F T ir

r F ir ir F F F F T ir

l F ls ls ls T ls ls

s F ls ls ls T ls ls

T F F F F F F

^ F i r l s T

F F F F F ls F ls

i F ir ir T ir

r F ir ir T ir

l F ls ls ls T ls

s F ls ls ls T ls

T T ir T ir T ls T ls T

_ F i r l s T

F F F ir F ir F ls F ls

i F ir ir ir T

r F ir ir ir T

l F ls ls ls T ls

s F ls ls ls T ls

T T T T ls T ls T

Actually, the following is proved.

Proposition 6.6 Let M be a simplified sr-matrix. Then M is an sr-matrix.

Proof M is an svsp-matrix: by conditions (1)–(5) in Definition 6.5. M is an nlpp-
matrix: by conditions (1), (2a), (3a), and (3b) in Definition 6.5.

Remark 6.7 It is clear that K1 in Definition 6.5 plays the role K3 does in Def-
inition 6.1. But Definition 6.5 could of course be rewritten to let K2 play the role
of K3.

Next we shall provide some examples, first, a nonsimplified matrix.

Definition 6.8 Consider the matrix MDF6:8 D .K; T ; F ; f!; f^; f_; f:/ where
1. K D f0; 1; 2; 3; 4; 5; 6g

2. T D f2; 3; 4; 5; 6g

3. F D f0; 1g

4. the functions f!; f^; f_; f: are defined as shown in the tables below:

! 0 1 2 3 4 5 6 :

0 6 6 6 6 6 6 6 6

1 0 5 5 5 5 5 6 5

2 0 1 2 3 4 5 6 2

3 0 1 1 3 4 5 6 3

4 0 1 1 1 4 5 6 4

5 0 1 1 1 0 5 6 1

6 0 0 0 0 0 0 6 0

^ 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1

2 0 1 2 2 2 2 2

3 0 1 2 3 3 3 3

4 0 1 2 3 4 4 4

5 0 1 2 3 4 5 5

6 0 1 2 3 4 5 6
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_ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 1 2 3 4 5 6

2 2 2 2 3 4 5 6

3 3 3 3 3 4 5 6

4 4 4 4 4 4 5 6

5 5 5 5 5 5 5 6

6 6 6 6 6 6 6 6

5. K1 D f4g

6. K2 D f3g

7. K3 D f2g

8. aT D 6

9. at D 5

10. aF D 0

11. af D 1.

Remark 6.9 The following is a Hasse diagram of MDF6:8.

6

5

4

3

2

1

0

Definition 6.10 Consider the following logic SDF6:8.
Axioms

a1. .A ^ B/! A / .A ^ B/! B

a2. Œ.A! B/ ^ .A! C /�! ŒA! .B ^ C /�

a3. A! .A _ B/ / B ! .A _ B/

a4. Œ.A! C / ^ .B ! C /�! Œ.A _ B/! C �

a5. ŒA ^ .B _ C /�! Œ.A ^ B/ _ .A ^ C /�

a6. .A! B/ _ .B ! A/

a7. ŒA! .A! B/�$ .A! B/

a8. A$ ::A

a9. .A ^ :B/! :.A! B/

a10. .A! B/! Œ.:A! B/! B�

Rules

Modus ponens: If A and A! B , then B .
Adjunction: If A and B , then A ^ B .
Suffixing: If A! B , then .B ! C /! .A! C /.
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Assertion: If A, then .A! B/! B .
Contraposition: If A! B and :B , then :A.
Reductio: If A! B and A! :B , then :A.

The logic SDF6:8 is one of the logics verified by MDF6:8. It is not included in RMO
(cf. [7] about this logic; also Definition 6.12 and Proposition 6.14 below): a6 is not
a theorem of RMO.

However, we have the following proposition.

Proposition 6.11 The logic SDF6:8 has the svsp and the nlpp.

Proof By checking that MDF6:8 is an sr-matrix and that SDF6:8 is verified by it.

Next, some simplified matrices. First, the matrix (here in a different notation) for the
logic RMO defined in [7].

Definition 6.12 Consider the matrix MDF6:12 D .K, T , F , f!, f^, f_, f:/

where

1. K D f0; 1; 2; 3; 4; 5; 6; 7g

2. T D f1; 2; 3; 4; 5; 6; 7g

3. F D f0g

4. the functions f!, f^, f_, f: are defined as shown in the tables below:

! 0 1 2 3 4 5 6 7 :

0 7 7 7 7 7 7 7 7 7

1 0 6 0 3 0 0 6 7 6

2 0 0 5 3 0 5 0 7 5

3 0 0 0 3 0 0 0 7 4

4 0 1 2 3 4 5 6 7 3

5 0 0 2 3 0 5 0 7 2

6 0 1 0 3 0 0 6 7 1

7 0 0 0 0 0 0 0 7 0

^ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 4 1 4 4 1 1

2 0 4 2 2 4 2 4 2

3 0 1 2 3 4 5 6 3

4 0 4 4 4 4 4 4 4

5 0 4 2 5 4 5 4 5

6 0 1 4 6 4 4 6 6

7 0 1 2 3 4 5 6 7

_ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 1 3 3 1 3 1 7

2 2 3 2 3 2 5 3 7

3 3 3 3 3 3 3 3 7

4 4 1 2 3 4 5 6 7

5 5 3 5 3 5 5 3 7

6 6 6 3 3 6 3 6 7

7 7 7 7 7 7 7 7 7
Moreover,

5. K1 D f2; 5g

6. K2 D f1; 6g

7. aT D f7g

8. aF D f0g.
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Remark 6.13 The following is a Hasse diagram of MDF6:12.

7

3
Q
Q

�
�

6

1

5

2
��QQ

0

4

As in the case of SDF6:8, we have the following.

Proposition 6.14 The logic RMO has the svsp and nlpp.

Proof By checking that MDF6:12 is an sr-matrix (use Definition 6.5) and that RMO
is verified by it (cf. [7]).

Finally, still a couple of examples. The first is Anderson and Belnap’s tables in [1],
§22.1.3.

Definition 6.15 Consider the matrix MDF6.15 D .K, T , F , f!, f^, f_, f:/

where
1. K D f�0;�1;�2;�3;C0;C1;C2:C 3g

2. T D fC0;C1;C2:C 3g

3. F D f�0;�1;�2;�3g

4. the functions f!, f^, f_, f: are defined as in [1], pp. 252–53.
Moreover,

5. K1 D f�1;C1g

6. K2 D f�2;C2g

7. aT D fC3g

8. aF D f�3g.

Matrix MDF6:15 verifies R. And, as in the preceding examples, an analogue of Propo-
sition 6.11 (or Proposition 6.14) for R (E) is immediate.

Finally, a simple sr-matrix featuring a series of logics not included in RM3.

Definition 6.16 Consider the matrix MDF6:16 D .K; T ; F ; f!; f^; f_; f:/

where
1. K D f0; 1; 2; 3g

2. T D f1; 2; 3g

3. F D f0g

4. the functions f!; f^; f_; f: are defined as shown in the tables below:

! 0 1 2 3 :

0 1 1 3 3 3

1 0 1 2 3 1

2 0 0 2 3 2

3 0 0 0 1 0

^ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

3 0 1 2 3

_ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 3
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5. K1 D f2g

6. K2 D f1g

7. aT D 3

8. aF D 0.

Remark 6.17 The following is a Hasse diagram of MDF6:15.

3

2

1

0

Definition 6.18 Consider the following logic SDF6:16. The logic SDF6:16 is ax-
iomatized by adding to Routley and Meyer’s basic positive logic BC (cf. [10]) the
following axioms and rules.
Axioms

a1. Œ.A! A/! B�! B

a2. ŒA! .A! B/�! .A! B/

a3. ŒŒ.B ! B/! A�! A�! .A! A/

a4. A! ŒŒŒ.B ! B/! A�! A�! A�

a5. Œ.A! B/ ^ .B ! C /�! .A! C /

a6. .A! B/ _ .B ! A/

a7. A$ ::A

a8. .A! :A/! :A

Rules

Contraposition: If A! B and :B , then :A.
Reductio: If A! B and A! :B , then :A:

The following is proved.

Proposition 6.19 The logic SDF6:16 has the svsp and the nlpp.

Proof As in the precedent examples, by checking that MDF6:16 is an sr-matrix (use
Definition 6.5) verifying SDF6:16.

Now, notice that (a3) and (a4) are not provable in RM (they are not provable in RM3).

7 A Note on Relevance and the VSP

Throughout the paper, we have provided a number of logics not included in RM
with the vsp, the nlpp, or both properties: our main aim has been to show that there
are (maybe interesting) strong logics with these properties far off the spectrum of
standard relevant logics. But, on the other hand, some of these logics show that
Anderson and Belnap were right when insisting that the vsp is a necessary but by no
means sufficient condition of relevance (for a logic to be a relevant logic). Take, for
instance, SDF6:16. This logic has the svsp and the nlpp, but one of its axioms is

.A! B/ _ .B ! A/

which does not seem to be acceptable from an intuitive point of view.
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In this sense, two interesting alternatives to the vsp have been proposed: the rele-
vant equivalence property and the depth relevance property.

The relevant equivalence property (rep) is proposed in a preliminary study by
Humberstone and Meyer in [6]. It reads as follows.

(rep) A logic “S will be said to have the relevant equivalence property if any two
formulas which are equivalent in S are constructed from exactly the same proposi-
tional variables.” ([6], p. 165).

The results in [6] are almost exclusively confined to positive logics, but one of
them is worth remarking: there are logics with the rep which lack the vsp, to wit, the
f!;:g-fragment of RM.

The depth relevance property (drp), on the other hand, is proposed by Brady in [5]
(see also [3] §11.1). It reads as follows.

(drp) A logic has the drp if in all theorems of S of the form A ! B , A and B

share a variable at the same depth (“the depth of an occurrence of a subformula in a
formula A is the degree of nesting “!” s that is required to “reach” the occurrence
of the subformula starting with the formula A” ([5], p. 64).

The drp is a strong condition. No logic in which any of the following is provable
has the drp:

.p ! q/! Œ.q ! r/! .p ! r/�

.q ! r/! Œ.p ! q/! .p ! r/�

Œ.p ! p/! q�! q

Œp ^ .p ! q/�! q

Œ.p ! q/ ^ :q�! :p

Œ.p ! q/ ^ .p ! :q/�! :p

.p ! :p/! :p

And there are other well-known wffs producing the same effect. Therefore, standard
relevant logics such as T , E, and R are not deep relevant logics. But, on the other
hand, in [9] it is shown that depth relevance and loose pieces are compatible: there
are deep relevant logics not included in RM. Consequently, each of the properties has
its own drawbacks. Actually, the three are compatible with contraintuitive theses.
The vsp, with axioms as (a6) in Definition 6.18 above; the rep, with paradoxes of
relevance; and, finally, the drp, in addition to being rather strict, is compatible with
loose pieces in wff.
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