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Degrees of Relative Provability
Mingzhong Cai

Abstract There are many classical connections between the proof-theoretic
strength of systems of arithmetic and the provable totality of recursive functions.
In this paper we study the provability strength of the totality of recursive func-
tions by investigating the degree structure induced by the relative provability
order of recursive algorithms. We prove several results about this proof-theoretic
degree structure using recursion-theoretic techniques such as diagonalization and
the Recursion Theorem.

1 Introduction

It is well known that it is sometimes difficult to prove the totality of a recursive func-
tion, especially if it is fast-growing. For example, Goodstein’s Theorem, which is a
Hg—sentence in arithmetic, can be naturally interpreted as the totality of a recursive
function; and it is known (see Kirby and Paris [5]) that we cannot prove Goodstein’s
Theorem in Peano Arithmetic (PA). Another similar example is the Modified Ram-
sey Theorem of Paris and Harrington (see [ 0]).

Note that the totality of a partial recursive function (with a fixed algorithm) is a
I19-sentence in arithmetic, and conversely a T19-sentence in arithmetic can be natu-
rally interpreted as the totality of a partial recursive function. Therefore the study of
the totality of recursive functions can be viewed as the study of the T13-fragments of
theories.

There are a lot of classical results on this subject (see, e.g., Fairtlough and
Wainer [4] and Pohlers [ ! |]), and the aim of this paper is to provide some ideas from
a new viewpoint. We consider the degree structure of recursive algorithms ordered
by the relative provability strength of their totality over some base theory (which we
will discuss in the next section) and try to study some basic properties of this degree
structure.
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There has also been a long history of studying different notions of “subrecursive
reducibility,” for example, primitive recursive degrees (see Kleene [0] and Axt [!],
but restricted to recursive functions) and degrees of honest functions (see Kris-
tiansen [7], [¢] and Kristiansen, Schlage-Puchta, and Weiermann [Y]). The main
difference between these subrecursive degrees and our degree structure is that we
try to order algorithms instead of functions (see the discussion after Definition 3.1),
and it will be very interesting to know if our degree structure (with possibly different
base theories) has some natural correspondence with any of the known subrecursive
degrees.

One can think of our degree structure as Lindenbaum’s algebra on true I19-
formulae, and some basic operations we introduce (such as the join and the meet)
are the corresponding operations (conjunction and disjunction) in Lindenbaum’s al-
gebra. An interesting point here is that, for example, by representing these true Hg-
formulae as algorithms, we have more freedom controlling the join and meet, and
some small modification allows us to prove Proposition without much effort. In
addition, the theorems and proof techniques in this paper, for example, the incom-
parable pair theorem (Theorem 5.7), reveal some similarities between this proof-
theoretic degree structure and the Turing degrees. Therefore we expect that this
representation will allow us to utilize more complicated construction methods from
recursion theory (e.g., the injury arguments) to produce results on provability.

More interestingly, we are trying to study the proof-theoretic strength of recur-
sive functions by looking at their degree spectra in this degree structure (see Sec-
tion 7). Our original intuition was that the degree spectrum of a recursive function
may have a least element, which represents the “standard” or “most natural” algo-
rithm for computing the recursive function. However, it is quite surprising that this
attempt fails dramatically; that is, the only such degree spectrum is the whole set (see
Theorem 7.2).

There are two notions of proofs: one is the social version, which is written in nat-
ural language and can be used in communication among mathematicians; the other
is the formal version, which is defined as a sequence of formal sentences which sat-
isfy certain properties and which is usually not used in communication (see more
discussions in Buss [?]). In recursion theory, we have a similar phenomenon for
computations: there are social and formal versions, and we mainly use the social
version in communication and in the proofs we write. In fact, recursion theory has
taken great advantage of using the social or informal version of computations so that
we can write out much more complicated constructions such as injury arguments
and tree constructions, which are almost impossible to write out in formal Turing
machine language. In this paper, we will use social proofs when we argue for proofs
in formal systems, but we shall keep in mind that, when we argue formally over some
theory 7', the natural numbers we use may be nonstandard, and the argument has
to work with nonstandard numbers. If we do not specify that we are working in a
formal system, then we always assume that we are arguing in the standard model of
the natural numbers.

2 Base Theory

Let ¢; (x) be a total recursive function with a fixed algorithm indexed by i. By the ro-
tality of ¢; we mean the sentence stating that ¢; is total, that is, Vx3s¢; s(x) |. (Here
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we can use Kleene’s T'-predicate, which is primitive recursive, to express ¢; s(x) |;
i.e., the computation with an index e and an input x converges within s steps.) For
convenience we use tot(¢) to denote this sentence.

In reverse mathematics, we choose a weak base theory (RCAg) which is power-
ful enough to develop the basics of mathematics: pairs, strings, formulae, sentences,
proofs, and so on; then we can discuss the relative provability of sentences and theo-
ries over it.

Similarly, here we also want to fix a base theory 7. However we are not specific
about which theory T we use here: it just needs to be strong enough in a sense which
we will explain, and in particular, it could be very strong and does not have to be in a
fixed language. All of our discussions and all the theorems will work for any possible
theory satisfying the requirements we list below.

First, we require 7' to be axiomatizable, that is, to have a recursive list of axioms.
This is to say, given a proof (coded as some number s), we can effectively tell whether
it is a valid proof in T. In the theorems we are going to prove, we will construct
recursive functions by diagonalization, for example, diagonalize against all possible
functions whose totality is provable in the theory T'; therefore it is crucial that we can
recursively decide whether a proof is a proof in 7. It is convenient here to assume
that the coding of the recursive list of T-axioms is a provably total function in T
(e.g., we do not need to run a Goodstein sequence computation to decide whether a
sentence is an axiom in 7'), but this is not crucial, since we can modify the definition
of a proof and require each axiom to have an affiliated computation which confirms
that it is an axiom.

We require that 7" be consistent with true arithmetic (TA) in the following sense:
In T one has a fixed interpretation of arithmetic; that is, one can define the domain
of natural numbers, zero, and the successor operation, together with plus, times, and
the order of natural numbers. Then each sentence v in arithmetic has a translation
Ty 7 in the language of 7', and we require that if 7 = "7, then TA I . So if we
can prove in 7' that some partial recursive function ¢, is total (i.e., T F "tot(pe)™),
then it is total. (For convenience, we will omit " in the notation and simply write
T F tot(ee).)

In addition, like RCA, with the interpretation of arithmetic as above, T is pow-
erful enough to develop the basic notions of pairs, strings, sentences, and proofs;
therefore we can write out formal sentences such as 7' - ¢ for some sentence ¢ in
the language of 7'. It can also express the notion of Turing machines and the com-
putation sequence of Turing machines. In particular, we can talk about ¢, the eth
partial recursive function.

Finally, we want to impose a convention on our partial recursive functions. We
automatically convert them into partial recursive functions satisfying the convention.
We need IX; to show that we can do such a conversion, and the new function is
“equivalent” to the old one as far as we are concerned. We will discuss the details in
the next section.

Therefore IX; is a good candidate for our base theory 7, and any stronger theory
will also work. Note that some of the theorems we will prove may not require the
convention we impose, and so they may work in even weaker base theories. It might
also be interesting to discuss our degree structure when the base theory is weaker
than I¥ , but this is beyond the scope of this paper. Similarly, we only consider
total functions/algorithms in this paper, and it might be quite interesting to consider



482 Mingzhong Cai

degrees of partial functions, in particular these functions which are consistently total
but are not actually total.

3 Basics

We start with the definition of the order.

Definition 3.1 Given total functions ¢; and ¢;, we say that ¢; is provably re-
ducible to ¢; if T + tot(¢;) I tot(p;). We denote this by ¢; <, ¢;.

It is easy to see that <, is reflexive and transitive, so it naturally induces a degree
structure: ¢; and ¢; are provably equivalent (p; =, ¢;) if they are provably re-
ducible to each other. Given ¢;, we use [¢;] to denote the collection of ¢;’s that
are provably equivalent to ¢;, that is, the equivalence class of ¢;. We will call such
[¢i] a provability degree, and we use P to denote the class of all provability degrees,
ordered by the induced provability reducibility.

It is very important to note here that, strictly speaking, this order is defined on
recursive algorithms instead of recursive functions. As we will discuss in Section 7,
each function f has many representations @;; each is the same function as f, but
these representations might have different provability degree. In this paper, we will
use Greek letters ¢, yr, 0 for (possibly partial) recursive functions with fixed algo-
rithms, and use f, g, i for recursive functions as functions. So when we write ¢, it is
assumed that it corresponds to a fixed algorithm ¢; or that we are constructing such
a ¢ and we refer to the algorithm we are defining.

We use 0 to denote the constant zero function computed in the easiest way, that is,
output 0 regardless of input, so [0] is the bottom degree in P. It is also the collection
of all functions whose totality is provable in 7.

To simplify some arguments, we will impose the following convention, which is
commonly used in recursion theory: for a recursive function ¢, if ¢ (x) converges in s
steps, then all ¢(y) for y < x converge in less than s steps. More precisely, given
any recursive function ¢, we first convert ¢ to another function ¢: for each x, we wait
for all ¢(y) for y < x to converge before we start computing ¢(x), then output the
value ¢(x) as ¢(x). We need to show that [¢] = [¢] (and so we can always assume
that every function satisfies this convention). One direction ¢ <, ¢ is trivial. For
the other direction ¢ <, ¢, we assume that ¢ is not total. Then we can find the least
x where ¢(x) does not converge (using IX ), and so get a contradiction with the
construction of ¢ and the fact that ¢(x) converges. One important fact based on our
convention is that if ¢ converges at infinitely many inputs, then ¢ is total.

Next we show that in &’ one can define a join and a meet operator, and in fact
is a distributive lattice.

Definition 3.2 Given two recursive functions ¢ and ¥, the join of ¢ and ¥, de-
noted as ¢ H v, is defined as the following recursive function: for each input n, we
compute ¢(n) and v (n) simultaneously, and output (¢ B v)(n) = 0 only if both
converge. The meet of ¢ and v, denoted as ¢ X ¥, is defined in a very similar way,
except that we output (¢ X ¥)(n) = 0 if either ¢(n) or ¥ (n) converges.

Note that by these two definitions we really mean that we find two recursive
functions kg and kg (which are provably total by the s-m-n theorem) such that

i Boj = Org,) and @i K @j = Qrg i, j)-
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Also note that in the above definitions, one can change the output value quite
arbitrarily: for (¢ H v)(n), we can also use either ¢(n) or ¥ (n) as the output value,
since we need to wait for both to converge; for (¢ X 1) (n), we may use the value of
@(n) or ¥ (n), whichever converges first.

Recall that in a partial order, [¢]V [{/] denotes the join of two degrees and [p] A Y]
denotes the meet. One can easily show the following.

Proposition 3.3 [ ByY] =[e] Vv I[¥], and [ R ¥] = [p] A [¥].

Proof  For the first claim, first note that [p] < [¢ B ] and [¢] < [p B ] follows
directly from the definition. Given [6], which is above both [¢] and [v/], [0] is also
above [¢ H ] since we can prove the totality of ¢ HH ¢ from the totality of both ¢
and v, which we can get from the totality of 6.

For the second claim, it is easy to see that ¢ being total guarantees that ¢ X v is
total, and similarly ¥ being total also proves that ¢ X v is total. Now given some 6
whose degree is below both [¢] and [/], we want to show that <, ¢ X . Note
that the totality of ¢ X 1 shows that either ¢ is total or ¥ is total by our convention.
Then since we have proofs that ¢ <, ¢ and 8 <, ¥, we know that § has to be total
in either case. O

Thus P is a lattice with these two operations, and distributivity easily follows from
the distributivity of “and” and “or” in Definition

Here is a lemma which will be used later but which is convenient to make explicit
now.

Lemma3.4 IfT ¢ =, then [¢p] = [V]

By ¢ = ¢ we mean that, for each n, if ¢(n) converges, then 1/ (n) has to converge
to the same value, and vice versa. (Therefore they are the same as partial functions.)
The proof is almost obvious.

4 Jump Operator

As in the Turing degrees, we can also define a natural jump operator in the provability
degrees.

Definition 4.1 Given a recursive function ¢, the jump of ¢, denoted as ¢*, is
defined inductively as follows: at each stage s, we check whether s is (the Godel
number of ) a proof witnessing T + tot(¢) F tot(g.) for some recursive function ¢,.
If so, we let p*(s) = @e(s) + 1; if not, we let ¢*(s) = 0. Then we proceed to the
next stage s + 1.

By the s-m-n theorem, this definition also corresponds to a recursive function k.
such that @, ;y = ¢;. Before we show that this is a good definition of a jump
operator, we will need the following Padding Lemma (and that it is provable in T').

Lemma 4.2 (Padding Lemma) Suppose that s is (a code of) a proof which wit-
nesses X = r; then there exists an infinite recursive list S, $1, .. .,8n, ... Of proofs
witnessing the same result. Moreover, s; as a function of i is provably total in T .

The proof is almost obvious since we can add arbitrary redundancy into proofs. This
lemma works for proofs in the same way as the Padding Lemma in recursion theory
does for algorithms.
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Proposition 4.3 We have T + tot(p*) F “if T + tot(p) F tot(e), then @,
is total,” and in fact for every ¥, [¥] > [¢*] if and only if T + tot(yy) F “if
T + tot(p) - tot(pe), then @, is total.”

Proof We argue in 7' + tot(p™) for the first claim. If we have a proof s witnessing
T + tot(¢) F tot(g.), then by the padding lemma we have infinitely many proofs
50,51, - . . witnessing the same result. Therefore in the construction of ¢* at each of
these stages s; we make ¢*(s;) = @e(s;) + 1. Then it is easy to see that the totality

of ¢* guarantees the totality of ¢, (by our convention).
If T + tot(y) proves the assertion that every T 4 tot(¢)-provably total function is
total, then it is easy to see that T +tot(y) proves the totality of ¢*, and so [¥/] > [¢*].
O

This proposition directly shows that [¢] < [¢*] since T + tot(¢) - tot(¢). It is direct
from the diagonalization that [p*] £ [¢], therefore [¢] < [¢*], that is, [¢*] is strictly
above [¢].

Corollary 4.4 There are no maximal degrees in P.
More importantly, the jump operator preserves <.
Proposition 4.5  If ¢ <, v, then ¢* <, y*.

Proof  We prove this by contradiction (in 7 + tot(y¥*)). Assume that ¢* is not
total; then there exists a least s where ¢*(s) diverges (by IX ), so s is a proof
witnessing T + tot(p) F tot(ge), and @, (s) diverges. Since we have a proof wit-
nessing 7' + tot(y) F tot(p), from s we can find an s’ which is a proof witnessing
T + tot(y) b tot(ge). Then by the padding lemma we can find an s” which proves
the same result as s” and s” > s. The totality of ¥* shows that . (s”) converges,
which contradicts the divergence of @, (s). O

This proposition shows that the jump operator is well defined on the degrees, and we
can write [¢]* for [¢*] since it is independent of the choice of the function ¢ in [¢].

5 Incomparable Degrees

Before we prove our next theorem, we want to mention a technique for constructing
recursive functions using the Recursion Theorem. Briefly, we can assume that we
know the index of the function we are constructing prior to our construction. This
may sound very strange to readers who are not familiar with recursion theory, and so
we shall explain it in detail. The Recursion Theorem is stated below, and a proof can
be found in Rogers [ | 2] or any other standard textbook in classical recursion theory.

Theorem 5.1 (Recursion Theorem) For every recursive function f, there is an
index e such that 9o = @ f(e).

We will use the Recursion Theorem in the following way. We first give an explicit
construction of a partial recursive function with a parameter i; then by the s-m-n
theorem, there is a recursive function / such that ¢y is the function constructed
from parameter i ; we apply the Recursion Theorem to 4 and get an index e such that
@e = @p(e) and let this function be /. That is, when we describe the construction of
¥ we can assume that we already know its index e.

There are two points to make. First, our base theory T is powerful enough to
prove the Recursion Theorem, and by the proof of the Recursion Theorem, T" actually
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proves ¢, = @p() for one index e assuming that /(e) converges. Although in this
paper we only need /’s that are provably total in 7', this argument actually works for
any total & regardless of its provability degree. By Lemma 3.4, [¢.] = [¢pn(e)], and
so we can identify ¢, with ¢p) = ¥ in our argument.

Second, in the Recursion Theorem it is possible that the ¢, we get is partial, and
so we need to make sure that, in the construction of ¢;), regardless of the parameter
i we use in the construction, ¢y(;) is always total. Then by applying the Recursion
Theorem, we always get a total function .

Here is the theorem we want to prove. It directly implies that there are incompa-
rable degrees in &.

Theorem 5.2 For every [p] # [0, there is a [V] < [p]* which is incomparable
with [¢], that is, [¢] £ [¥] and [y] £ [¢].

Proof  Our construction of ¥ is divided into even and odd stages. At even stages
we try to satisfy [{] £ [¢]. This is handled in the same way as the construction of
the jump: at stage 2s we check whether s is a proof witnessing T + tot(¢) F tot(g.)
for some ¢,; if so we compute @, (s) and let ¥ (s) = @.(s) + 1; if not we simply let
¥ (s) = 0.

At odd stages we try to satisfy [p] £ [¥]; that is, we cannot prove the totality of
¢ from the totality of . At stage 2s 4 1, we check whether s is a proof witnessing
T + tot(y) - tot(p) (by the Recursion Theorem). If not, do nothing; if so, we termi-
nate the whole construction and let i be the constant zero function afterward, that
is, we output ¥ (¢#) = O for all # > 5. (In this case we say that we apply annihilation
to y.)

First of all, it is easy to check that, no matter which ¢; we use, or whether anni-
hilation happens or not, ;) is always total. So the Recursion Theorem gives us a
total .

Next we need to show that [¢] £ [V]. If [p] < [¥], then we can pick the least
proof s witnessing 7" + tot(y) I tot(¢). We can then show that the annihilation
happens in the construction and ' is then eventually constant 0, and in fact we can
prove its totality in 7. We write down the first such proof so and verify that it is
the proof we want; then for each s < 59 we check that s is not a proof witnessing
T + tot(y) - tot(e), so annihilation does not happen before stage 259 + 1; also for
each s < 5o we write down the complete computation sequence of ¢, (s) at even
stages such that s is a proof witnessing 7 + tot(¢) - tot(g,,). Our base theory T
is consistent with true arithmetic, and ¢ is total; therefore if we can prove that ¢,
is total, then ¢, (s) does converge and we can write out the complete computation
sequence to prove that it converges (without proving the totality of ¢, ).

So combining the sentences we write down, we can show that at stage 2s¢ + 1
the annihilation happens, that is, we get a proof witnessing 7' I tot(vr). Together
with the proof s¢ witnessing 7' + tot(y) - tot(¢), we would get T I tot(¢), which
contradicts the assumption that [¢] # [0].

Therefore annihilation never happens and [¢] £ [¢]. By the diagonalization at
even stages we have also satisfied [Y/] £ [¢]. So [{] is incomparable with [¢].

Finally, we check that [{/] < [¢]*. Arguingin T +tot(¢*), if annihilation happens,
then  is total. If not, then v is the same function as ¢* by the construction at even
stages. Since ¢* is total, v is also total in this case. O
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It is interesting to note here that this ¥, as a function, is the same as the jump ¢*
but is strictly weaker in the degrees (as an algorithm). This shows that [¢*] is not
the lowest degree which contains an algorithm that computes the function ¢*. Later
in Theorem 7.2 we will show that this phenomenon actually holds for every nonzero
degree.

6 Minimal Pair
As in the Turing degrees, we can also find minimal pairs in the provability degrees.
Theorem 6.1 There are two nonzero degrees [¢] and [Vr] such that [p] A[¥] = [0].

Proof = We construct ¢ and v simultaneously by induction. Suppose that at stage s
we have already defined ¢ and ¥ up to x; and yj, respectively.

Let s = 2m be an even stage. We check whether m is a proof witnessing
T |- tot(¢,) for some ¢,. If so, we define ¢ and v as follows:

0(xs) = @e(xs) + 1,
v(y) =0, for y € [ys, ys + 1),

where ¢ is the number of steps needed to compute ¢, (xs). This is to say, we try
to compute @, (xs) and extend ¢ by letting ¥ (y) = 0 for y > y, until @ (x5)
converges. So if ¢ (xy) diverges, then ¢ is partial and ¥ is total (and eventually 0).
If @ (x5) converges at step ¢, then we have made ¥ (y) = 0 for y € [ys, ¥s + 1),
and we let p(x5) = @e(x5) + 1 for diagonalization. Then we go to stage s + 1 with
Xs+1 = Xs + land ys41 = ys + 1.

If m is not a proof witnessing 7 F tot(p.) for any e, then we simply let
©(xs) = ¥(ys) = 0 and go to stage s + 1 with x541 = x5 + 1 and ys41 = ys + 1.

At odd stages, we basically do the same thing, except that we switch the roles of ¢
and v, that is, we try to diagonalize with i and extend ¢ by 0 until the corresponding
computation converges.

Since T is consistent with true arithmetic, it is easy to see that ¢ and ¥ are both
total and both have nonzero degree by diagonalization. Then we prove in T that
¢ K ¥ is total. If we ever met a divergent ¢, (x5) or ¥, (y;) in the construction, then
we would make ¢ or ¥ eventually constant 0, and so ¢ X ¥ would still be total.
Otherwise both ¢ and ¥ are total, and ¢ X i is obviously total. In either case ¢ X
is total, so [¢] A [¥] = [0]. O

It is not difficult to show that in fact [¢] v [W] = [0]*: first it is easy to check that
they are both below [0]*; conversely tot(¢) and tot(y) together prove that every ¢,
whose totality is provable in 7T is total, and so by Proposition +.5 we know that they
also prove the totality of 0*. This shows that [0]* is the top of a “diamond.”

7 Degree Spectrum and Minimal Degrees

A given recursive function f has many representations @, ¢e,, . ..; that is, each
@e; = [ as functions, and they may have different provability degrees. So it is
natural to give the following definition.

Given a recursive function f, we define the degree spectrum of f, denoted as
(f), to be the collection of provability degrees that contain a function which is the
same as f as functions, that is, () = {[¢i] : f = ¢i}.
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It is not difficult to show that the degree spectrum is closed upward and closed
under meet.

Proposition 7.1

(1) If [¥] > [@), then there is a 0 such that 0 = ¢ as functions and [0] = [V].
(2) If ¢ = V¥ as functions then there is a 0 such that ¢ = v = 0 as functions
and [0] = [p B y].

Proof In the definition of the join and the meet, we noted that the output values for
¢ By or ¢ X ¢ can be quite arbitrary. For the first claim, we can change the output
value of (¢ H ¥)(n) to be ¢(n), and this gives a & we want. For the second claim,
we change the output value of (¢ X ¥)(n) to be either ¢(n) or ¥ (n), whichever
converges first, and this also gives a desired 6. O

For example, (0), the degree spectrum of the constant zero function (as a function),
is the collection of all degrees. In contrast, (0*), the degree spectrum of 0* (as a
function), does not contain the bottom degree [0]. One might naturally ask whether
(0*) has a minimum element, or whether there are other degree spectra which are
principal ones (i.e., contain a minimum element).

Interestingly, the answer is no by the following theorem; that is, the only principal
degree spectrum is (0).

Theorem 7.2 Given [¢] # [0], then there is a W such that W = @ as functions
and [{] < [¢].

Proof = We again divide the construction of ¥ into even and odd stages. At stage 2s
we let ¥ (s) = @(s), that is, follow the same algorithm and output the same value. At
stage 25 + 1 we check whether s is a proof witnessing 7' + tot(y) - tot(¢) (by the
Recursion Theorem). If not, we do nothing; if so, we let ¥ be a constant 0-function
afterward. (Similarly we call such a process the annihilation of r.)

By the same argument as in the proof of Theorem 5.2 we can show that [¢] £ [V]
and so ¢ = ¢ as functions. It is also easy to argue that [{y] < [¢]: if annihilation
happens, then ¥ is total; if not, then by the totality of ¢ and our construction at even
stages we also know that v is total. O

One might have some intuition that the provability degree of a recursive function
@ corresponds to the growth rate of the computing time function ¢ (i.e., a function
which outputs the number of steps in the computation) of ¢, or that the functions
which need more computing time have higher provability degree. However, the above
construction shows that such an intuition is not true: our new function i needs more
steps in the computation than ¢, but has strictly lower degree. It is true, in contrast,
that if 7' proves that ¢ dominates ¥, then [¢] > [¥/].

This theorem also gives strict conditions on minimal degrees (though we do not
know whether they exist). Recall that a nonzero degree is minimal if there is no
nonzero degree strictly below it.

Corollary 7.3 If[¢] is minimal, then for any 0 € [¢], 6 has a representation which
is provably total. In addition, all minimal degrees (if they exist) are below [0]*.

Proof  The first claim directly follows from the construction in Theorem 7.2: since
¥ has degree strictly below [¢], it must be the case that [{] = [0]. For the second
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claim, we follow the same construction and get a ¥ from ¢. By the same reason,
T | tot(y), and then we can prove tot(¢) from tot(0*) as follows.

Suppose that ¢ is not total (at s). Since ¥ is total, it must be the case that an-
nihilation happens at some stage before 2s. Therefore we have a proof witnessing
T + tot(y) F tot(¢), and combining it with T tot(y) we get a proof witness-

ing T F tot(¢). By Proposition 4.3, we know that ¢ is total (since we are arguing
in T + tot(0*)). This contradicts the assumption that ¢ is not total; therefore ¢ is
total. O

8 Open Questions

We end with some open questions. First, we want to know whether we can “control
the jump” as in various theorems in the Turing degrees. In particular we can ask
whether a jump inversion theorem holds in #, that is, whether every [¢] > [0]* is
the jump of a degree [Y/] < [¢]. We are also interested in characterizations of degrees
below [0]* (e.g., whether there is an analogous version of the Limit Lemma).

One can also ask questions about various notions from Turing degree theory,
for example, the cupping property, the join property, high/low hierarchy, diamond
bounding (see Theorem 6.1), and so on. Continuing the discussion of Section 7, we
want to know whether minimal degrees exist. It might also be interesting to con-
sider different embedding problems, such as partial orders or distributive lattices,
especially if we want to study the decidability or even the degree of the theory of .

In addition to these degree-theoretic properties, we are also interested in combi-
natorial properties, that is, the combinatorial aspects of the functions in each de-
gree, which might be useful in studying specific number-theoretic or combinatorial
examples, such as the function associated with Laver Tables (see Dehornoy [3]).
For example, one can define a function f to be diagonally nonprovable (DNP) if
f(s) # e, (s) for every s which is a proof witnessing 7' I tot(g,,) for some ¢,,,
and say that a degree is DNP if it contains a DNP function. (This is motivated by the
definition of DNR degrees in recursion theory.) It is easy to see that DNP degrees
are not zero, and one may ask whether there are nonzero non-DNP degrees.

Another important class of combinatorial properties is the class of domination
properties. A function f dominates g if f(x) > g(x) for cofinitely many x. For
example, say a degree is [0]-dominated (or hyperimmune-free, using classical ter-
minology from recursion theory) if every function in it is dominated by a function
in [0]. We can also ask whether there are nonzero [0]-dominated degrees. (Note
that Corollary shows that minimal degrees, if they exist, are [0]-dominated and
non-DNP.) In particular, the notions of domination properties may be more closely
related to some old research about the fast-growing hierarchy (see []) or the degree
theory about the honest functions (see [/]).

As we mentioned in the introduction, the attempt to find a least element in a
nontrivial degree spectrum always fails (see Theorem 7.7), so we can also try to find
natural variations of this degree structure where one can find least elements in degree
spectra.

Note

1. Note that ¢ and ¢ have the same provability degree, since their computations are almost
the same, and the only difference is the outputs.
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