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Decidability of ∃∗∀∀-sentences in HF

D. Bellè and F. Parlamento

Abstract Let HF be the collection of the hereditarily finite well-founded sets
and let the primitive language of set theory be the first-order language which
contains binary symbols for equality and membership only. As announced in
a previous paper by the authors, “Truth in V for ∃∗∀∀-sentences is decidable,”
truth in HF for ∃∗∀∀-sentences of the primitive language is decidable. The paper
provides the proof of that claim.

1 Introduction

Let V be the cumulative set theoretic hierarchy generated from the empty set by
taking powers at successor stages and unions at limit stages and, following [2], let
the primitive language of set theory be the first-order language which contains binary
symbols for equality and membership only. As shown in [1], the satisfiability in V
of ∀∀-formulas of the primitive language is reducible to the problem of determining,
given a set G of graphs on {1, . . . , n, n + 1, n + 2} having a common restriction to
{1, . . . , n}, whether or not there is an extensional well-founded binary structure with
n distinguished elements, which, taken together with two other distinct elements of
the structure, generate graphs that (up to isomorphism, of course) all belong to G.
Binary structures fulfilling the last requirement will be called G-structures. A dif-
ficulty with the latter problem is that the existence of a well-founded extensional
G-structure does not necessarily entail the existence of a finite well-founded exten-
sional G-structure. As shown in [1], that difficulty can be overcome by relaxing the
requirement of extensionality into a requirement of quasi extensionality and proving
that there is a well-founded extensional G-structure if and only if there is a well-
founded quasi-extensional G-structure whose cardinality is primitively recursively
bounded with respect to n. Decidability follows since there are only finitely many
binary structures of bounded cardinality and for each one of them we can effectively
detect whether it is a well-founded quasi-extensional G-structure or not. Whenever
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a well-founded quasi-extensional G-structure, say M, is found, one knows that there
is a well-founded extensional G-structure, but there seems to be no way, based solely
on an inspection of M, to determine whether one can succeed also in the more de-
manding task of building a finite well-founded extensional G-structure.

In the present paper we overcome that problem by showing that if there is a finite
extensional G-structure, then there is a quasi-extensional G-structure which can be
modified so as to obtain a finite well-founded extensional G-structure, whose cardi-
nality is itself primitively recursively bounded with respect to n. Thus decidability
of the existence of a finite well-founded extensional G-structure can be achieved by
inspecting the finite set of all the finitely many binary structures whose cardinality is
bounded in that way, to determine whether it contains one which is a well-founded
extensional G-structure or not. The decidability of the satisfiability in HF of the ∀∀-
formulas of the primitive language follows since, by essentially the same argument
given in [1] concerning V, that problem can be reduced to the problem of establish-
ing for G as above, whether there is a finite well-founded extensional G-structure or
not.

2 Basic Definitions and Reduction

The following are the relevant definitions and properties from [1]. They all refer
to structures of the form M = (M, c1, . . . , cn, E), with M 6= ∅, where c1, . . . , cn
are pairwise distinct elements of M and E is a binary relation which is well-founded
on M .

Definition 2.1

1. a is discernible from b in M with respect to E , or E-discernible from b in
M , if there is c in M such that (c, a) ∈ E ≡ (c, b) /∈ E ; such a c is said to
be an E-differentiating element of a and b or an E-witness of the difference
between a and b.

2. E is extensional on a in M if a is E-discernible in M from all the elements
in M\{a}. M is extensional if E is extensional in M on all the elements of M .

3. For a ∈ M \ {c1, . . . , cn}, the type of a in M, denoted by τM(a), is the pair
(J, I ) where J = { j : (c j , a) ∈ E} and I = {i : (a, ci ) ∈ E}.

4. An n-type is a pair of the form (J, I ) such that J, I ⊆ {1, . . . , n}. An n-type
A is said to be realized in M if, for some a ∈ M \ {c1, . . . , cn}, τM(a) = A.

5. For |M | ≥ n + 2, G(M) is the set of all graphs on {1, . . . , n, n + 1, n + 2}
which are isomorphic to the restriction E |{c1, . . . , cn, a, b} of E under the
map which sends 1, . . . , n, n + 1, n + 2 into c1, . . . , cn, a, b, respectively,
for some a and b distinct elements of M \ {c1, . . . , cn}.

6. For a set G of n + 2-graphs, if G(M) ⊆ G we say that M is a G-structure.

7. The graph in G(M), determined by the pair (a, b) of distinct elements of
M , can be recovered from τM(a), τM(b) with the addition of the pair
(n + 1, n + 2) or (n + 2, n + 1) if (a, b) ∈ E or (b, a) ∈ E , respectively.

Since E is assumed to be well-founded on M , the graphs in G(M) are acyclic. In
any case they all have a common restriction to {1, . . . , n}, which is isomorphic to
E |{c1, . . . , cn}. In the sequel we will omit reference to M whenever the latter is
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clear from the context. For example, we will write τ(a) instead of τM(a) when-
ever it is clear that a belongs to the domain of M. Furthermore, the graphs on
{1, . . . , n, n + 1, n + 2} are going to be called n + 2-graphs and whenever a set of
n + 2-graphs G is considered, it will be tacitly assumed that all the graphs in G have
the same restriction to {1, . . . , n}.

Any acyclic graph on {1, . . . , n, n+1, n+2}, with a given restriction to {1, . . . , n},
can be described as (A, B, ◦), where A and B are n-types (those of n + 1 and n + 2
in the given graph) and ◦ =→ if (n + 1, n + 2) belongs to the graph, ◦ =← if
(n + 2, n + 1) belongs to the graph, and ◦ =: if neither belongs to the graph.

Definition 2.2 Given a set G of n + 2-graphs, we say that an n-type A belongs
to G, or A is in G, if (A, B, ◦) or (B, A, ◦) belongs to G for some n-type B and
◦ ∈ {:,←,→}.

Throughout the sequel G is assumed to be a set of n + 2-graphs, and n-types are
simply called types.

Definition 2.3 For A and B types which belong to G and ◦ ∈ {→,←, :} we say
that

1. A is a predecessor type of B in G, if (A, B, ◦) ∈ G implies that ◦ is→ ;
2. A is tied with B in G if (A, B, ◦) ∈ G implies that ◦ is either→ or← ;
3. B is a differentiating type of A in G, if (B, A,→) ∈ G and either

(B, A, :) ∈ G or (B, A,←) ∈ G ;
4. B is a free differentiating type of A in G if B is a differentiating type of A in

G and A and B are not tied in G.

Definition 2.4

1. A differentiating cycle in G is a sequence of types B0, . . . , Bk−1 which belong
to G such that, for i < k − 1, Bi is a differentiating type for Bi+1, Bk−1
is a differentiating type for B0, and, for i, j < k, Bi is not a predecessor type
for B j .

2. A tied cycle in G is a differentiating cycle in G of the form (B0, B1) such that
B0 and B1 are tied in G.

3. A free cycle in G is a differentiating cycle in G of pairwise distinct types
B0, . . . , Bk−1 such that for i < k − 1 Bi is a free differentiating type of Bi+1
and Bk−1 is a free differentiating type of B0.

Note 2.5 There is a slight change here with respect to the notions used in [1] in
that there Bi+1 is required to be a differentiating type of Bi (and Bk−1 of B0). Such a
switch is inessential as far as the proof of Proposition 4.1 in [1] goes, but it somewhat
simplifies the notations to be used in the foregoing proof.

2.1 Reduction By adapting arguments given in [1] one easily obtains the follow-
ing reduction of our decision problem.

Proposition 2.6 The decision problem for truth in the collection HF of the hered-
itarily finite well-founded sets of ∃∗∀∀-sentences is reducible to the problem of de-
termining, for any set G of n + 2-graphs, whether or not there is a finite extensional
well-founded G-structure.

We will show that, contrary to what happens in the case of V, in the case of HF de-
cidability can be attained by placing a bound on the cardinality, hence on the number,
of the finite extensional well-founded G-structures that need to be tried.
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2.2 Basic structures A basic structure introduced in [1] is the binary structure
k−3 -curl with k > 1 whose domain, letting ci j denote the pair of natural numbers
(i, j), is

Ck3 = {ci j : 0 ≤ i < k, 0 ≤ j < 3} ∪ {(0, 3)}

and whose binary relation is

E−k3
= {(ci j , ci+1, j ′) : 0 ≤ i < k − 1, j ≤ j ′ < 3 | i = 0 ∨ j 6= 0 ∨ j ′ 6= 2}

∪ {(ck−1, j , c0 j ′) : j < j ′ < 3| j 6= 0 ∨ j ′ 6= 3}.

For the foregoing proof we will use the following straightforward generalization of
that notion.

Definition 2.7 For 3 ≤ m, the k−m -curl is the binary structure whose domain is

Ckm = {ci j : 0 ≤ i < k, 0 ≤ j < m} ∪ {(0, m)}

and whose binary relation is

E−km
= {(ci j , ci+1, j ′) : 0 ≤ i < k − 1, j ≤ j ′ < m|i = 0 ∨ j 6= 0 ∨ j ′ 6= m − 1}

∪ {(ck−1, j , c0 j ′) : j < j ′ < m | j 6= 0 ∨ j ′ 6= m}.

2.3 Free-enoughness

Definition 2.8 Let M = (M, c1, . . . , cn, E) be a well-founded G-structure and <
be a well-ordering of M which extends E on M . We say that a cycle (B0, . . . , Bk−1)
(strictly) covers an element a of M if (strictly) above a, with respect to <, there are
elements of type Bi for each 0 ≤ i ≤ k − 1.

An element a of M is said to be free enough in M with respect to < and G (free
enough for short) if one, at least, of the following three conditions is satisfied.

Condition 1 In G there is a tied cycle (B0, B1), with B0 = τ(a), such that, letting
s = maxminM

< (B0, B1), a > s, (B0, B1) strictly covers s, and if B1 = (J1, I1) and
i ∈ I1, then a < ci .

Condition 2 In G there is a free cycle (B0, B1, . . . , Bk−1) with B0 = τ(a)
such that, letting s = maxminM

< (B0, . . . , Bk−1), a > s and B0, . . . , Bk−1 strictly
covers s.

Condition 3 In M there are elements a1, . . . , ah, b0 of types A1, . . . , Ah, B0, re-
spectively, such that

(a) a > a1 > a2 > · · · > ah > b0;
(b) if h > 0, then A1 is a free differentiating type of τ(a) in G; for 0 < i < h,

Ai+1 is a free differentiating type of Ai in G, and B0 is a free differentiating
type of Ah in G;

(c) if h = 0, then B0 is a free differentiating type of τ(a) in G;
(d) b0 satisfies Condition 1 or Condition 2 above.

Note 2.9 The requirement that B1 = (J1, I1) and i ∈ I1, then a < ci , in Condition
1 above, retained from [1], is not really needed for the subsequent proof.
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3 Proof of Decidability

Proposition 3.1 If G is a set of n + 2-graphs all having the same restriction to
{1, . . . , n} and there is a finite extensional well-founded G-structure, then there is
an extensional well-founded G-structure whose cardinality is primitively recursively
bounded with respect to n.

Proof Let M = (M, c1, . . . , cn, E) be a finite extensional well-founded G-structure
and let < be a total ordering of M which extends E . Let t be the number of types
which are realized in M. Trivially, t is exponentially bounded with respect to
n. By Proposition 4.1 in [1], the set N of elements of M which are not free
enough in M with respect to G is bounded by λ(t), where λ is a primitive re-
cursive function. For A a type realized in M, let minM

< (A) (maxM
< (A)) be the

minimum (maximum) with respect to < of the elements of M of type A. If
A1, . . . , At are the types realized in M, let s1 = minM

< (A1), . . . , st = minM
< (At )

and m1 = maxM
< (A1), . . . , mt = maxM

< (At ). Let N0 be obtained by adding to
N ∪ {c1, . . . , cn, s1, . . . , st , m1, . . . , mt } the maxima of the E-predecessors of the
ci s and of the si s. Notice that since M is finite all such maxima actually exist.
Finally, add a minimal differentiating set 1 in M, for the set N0, and let M0 be
the subset of M thus obtained. Obviously, |M0| is primitively recursively (pr. ric.)
bounded with respect to n. Let M0 be the restriction of M to its subdomain M0. If
M0 is extensional, our claim is proved. Otherwise, we proceed as follows. By the
construction, if two elements a and b of M0 are not E-discernible in M0, then at
least one among a and b belongs to 1, so that it is free-enough in M with respect to
G. Let maxminM

< (B0, . . . , Bk−1) denote the maximum with respect to < of the set
{minM

< (B0), . . . , minM
< (Bk−1)}. Given s ∈ {s1, . . . , st }, if there is a differentiating

cycle γ in G such that s = maxminM
< γ and γ strictly covers s in M0, let α1, . . . , αu

and β1, . . . , βv be the tied and free cycles, respectively, of G, whose maxminM
< is s

and which strictly cover s. Furthermore, let the initial type of all such cycles be τ(s).
From the fact that they strictly cover the same element s, it easily follows that their
concatenation α1 . . . αuβ1 . . . βv is a differentiating cycle, namely, that if the types B
and B ′ belong to some of the cycles α1, . . . , βv , then B is not a predecessor type of
B ′. Let (A0, . . . , Ak−1) be α1, . . . , αu, β1, . . . , βv and m = 1+ 2 · p, where p is the
number of pairs of E-indiscernible elements of M0. Let M0{s/k−m (A0, . . . , Ak−1)}
be the result of replacing s in M0 by the k−m -curl and extending the binary relation E
into the binary relation Es in the following way. If ci j is an element of the k−m -curl
which replaces s and Ai = (Ji , Ii ), then the set of Es-predecessors (Es-successors)
among c1, . . . , cn of ci j is {c j : j ∈ Ji } ({c j : j ∈ Ii }). In other words, the same type
Ai is assigned to all the elements of the form ci j . The Es-predecessors of c00 and
c0m are the E-predecessors of s, and the Es-successors of c01 are the E-successors
of s. Furthermore, all the connections between elements forced by the tiedness
relation between types are added in agreement with the total ordering <s , which is
obtained from < by replacing s with all the elements in Ckm in their lexicographical
ordering. Finally, if v > 0 then the pairs in the set {(ck−1,0, c2p,m−1) : 0 < p < u}
are added to Es . As in the proof of Lemma 3.1 of [1], one verifies that Es is con-
tained in <s so that it is well-founded. Furthermore, if a and b are indiscernible in
M0{s/k−m (A0, . . . , Ak−1)} then at least one among a and b is free-enough in M. For
two distinct elements of the k−m -curl are easily seen to be Es-discernible, so that if a
and b is a pair of Es-indiscernible elements, then one, at least, among a and b, say a,



60 Bellè and Parlamento

belongs to M0 \ {s}. If also b ∈ M0 \ {s}, then a and b were already E-indiscernible
in M0, so that one at least among a and b is free enough. On the other hand, if
b ∈ Ckm , then either b = c00 or b = c0m , as we are going to show. If v > 0, then
a is Es-discernible from all the elements in the k−m -curl different from c00. In fact
for any such element, say c, of type Ai+1 (A0), in the k−m -curl, there are elements of
type Ai (Ak−1) which are Es-related to c and others which are not Es-related to c.
Furthermore, no element in the k−m -curl has c01 as its unique Es-predecessor in the
k−m -curl. On the other hand, if Ai is tied with τ(a) and s < a, then all of the elements
of type Ai in the k−m -curl are Es-related to a; otherwise, none of them is Es-related
to a, with the only possible exception of c01. That ensures, as it is easy to verify, that
in the k−m -curl there is an Es-witness of the difference between a and c. If v = 0,
then the same argument applies except for c = c0m , since all the elements of type
Ak−1 in the k−m -curl are E-related to c0m . Since the Es-predecessors of a in M0 \ {s}
are the same as the E-predecessors of a in M0 \ {s}, and the Es-predecessors of c00
and of c0m in M0 \ {s} are the same as the E-predecessors of s in M0 \ {s}, it is clear
that if a and c00 or a and c0m are Es-indiscernible then a and s are E-indiscernible.
That entails that in any case a is free enough, since s, being the minimum of the
elements of its own type, cannot be free-enough.

The operation which leads from M0 to M0{s/k−m (A0, . . . , Ak−1)} can be iterated,
after a renaming of the elements which have been added, until all the maxminM

< of
some free or tied cycle in G, which strictly covers its maxminM

< , are replaced. Let
M′0 = (M ′0, E ′) be the well-founded structure and <′ be the total ordering which
extends E ′, which are obtained in that way. Since each k−m -curl has cardinality
pr. ric. bounded with respect to t , and at most t of them are added in the transition
from M0 to M′0, |M ′0| is also pr. ric. bounded with respect to t , hence with respect to
n. Furthermore, if a and b in M ′0 are E ′-indiscernible, then either a or b belongs to
M0 and is free enough in M.

We are going to show that through the addition of less than t new elements M′0 can
be modified into a well-founded G-structure which has fewer pairs of indiscernible
elements than M′0. It will then suffice to repeat such transformation a pr. ric. bounded
(with respect to n) number of times in order to obtain an extensional well-founded
G-structure of bounded cardinality.

Assume a ∈ M0 is free enough and is E ′-indiscernible from b in M′0. We have al-
ready noted that b is not an internal point of any of the k−m -curls that have been added
to obtain M′0; thus we have only to take care of the case in which b ∈ M0∪{c00, c0m}

where c00, c0m denote the first and last point (with respect to <′) of some of the added
k−m -curls.

Case 1 a is free-enough by Condition 2. Let s = maxminM
< (B0, . . . , Bl−1)

where (B0, . . . , Bl−1) is the free cycle of G which witnesses the free-enoughness
of a. At a certain stage in the construction, which leads from M0 to M′0, s is
replaced by a k−m (A0, . . . , Ak−1)-curl, for appropriate m and sequence of types
A0 . . . , Ak−1, which contains the subsequence β = Bi0 , . . . , Bl−1, B0, . . . , Bi0−1,
where Bi0 = τ(s). Assume τ(a) = Ai with Ai in β. If i = 0, we add to E ′ the pair
(ck−1,1, a); if i = 1, we add to E ′ (c02, a); finally, if 1 < i = j + 1, we add to E ′

(c j1, a). Since the type of ck−1,1 (c02 or c j1) is a free differentiating type of τ(a), the
resulting structure is still a G-structure, and furthermore, since no element has ck−1,1
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(c02 or c j1), with 0 < j , as its unique E ′-predecessor in the k−m (A0, . . . , Ak−1)-curl,
it is extensional on a.

Case 2 a is free-enough by Condition 3. Let a1, . . . , ah, b0 ∈ M be such that
b0 < ah < · · · < a1 < a; τ(a1) is a free differentiating type of τ(a); τ(ai+1) is a
free differentiating type of τ(ai ); τ(b0) is a free differentiating type of τ(ah) and b0
is free enough by Condition 1 or by Condition 2. Say b0 is free enough by Condition
2 and let (B0, . . . , Bl−1) be the free cycle in G which witnesses the free-enoughness
of b0 and s = maxminM

< (B0, . . . , Bl−1). As in the previous case, in building M′0,
s is replaced by a k−m (A0, . . . , Ak−1)-curl, for appropriate m and sequence of types
A0, . . . , Ak−1, which contains the subsequence β = Bi0 , . . . , Bl−1, B0, . . . , Bi0−1,
where Bi0 = τ(s). Let τ(b0) = Ai , where Ai belongs to the subsequence β. If
0 < h, then we add h new elements a′1, . . . , a′h to the structure. Then we add the
pairs needed to give the types τ(a1), . . . , τ (ah) to a′1, . . . , a′h , respectively, as well
as the pairs in the following sets:

{(a′1, c) : c 6= a, (a1, c) ∈ E ′} ∪ {(a′1, a) : (a1, a) /∈ E ′},

{(a′i+1, c) : c 6= ai , (ai+1, c) ∈ E ′} ∪ {(a′i+1, ai ) : (ai+1, ai ) /∈ E ′},

{(ai+1, a′i ) : (ai+1, ai ) /∈ E ′} ∪ {(a′i+1, a′i ) : (ai+1, ai ) ∈ E ′},

for 1 ≤ i < h. Furthermore, if i 6= 0 we add to E ′ the pairs (ci1, ah), (ci2, a′h),
whereas if i = 0 we add the pairs (c02, ah) and (c03, a′h). Since, clearly, the types
τ(a), τ (a1), . . . , τ (ah), τ (b0) can be assumed to be distinct, the number of added
elements is less than τ . As is easy to check, either a1 or a′1 witnesses the difference
between a and any other element in the structure and either ai+1 or a′i+1 witnesses the
difference between both ai and a′i and any other element. Furthermore, for i 6= 0,
since no element except ah (a′h) has ci1 (ci2) as its unique E ′-predecessor in the
k−m (A0, . . . , Ak−1)-curl, the structure so obtained is extensional on ah and a′h , a con-
clusion that holds, for a similar reason, also in the case i = 0. Thus that structure
is extensional on {a, a1, a′1, . . . ah, a′h}. In particular, a and b are discernible and no
new pair of indiscernible elements is introduced. The ordering <′ of M is extended
by letting a′i be the immediate <′ successor of ai .

The cases in which h = 0 or b0 is free enough by Condition 1 are similar.

Case 3 a is free enough by Condition 1 but not by Condition 2 or Condition 3,
so that Case 1 and Case 2 above do not apply. Let s = maxminM

< (B0, B1), where
B0 = τ(a) and (B0, B1) is the tied cycle which witnesses the free-enoughness of a.
Since (M, E) is extensional, in M there is an element, say d, which E-witness the
difference between a and b. Since a and b are E ′-indiscernible in M′0, d /∈ M0, so
that d is free-enough. Let γ be the cycle which witnesses the free-enoughness of d
and s′ = maxminM

< (γ ). s′ is one of the elements which in the transition from M0 to
M′0 is replaced, say by a k−m′(A′0, . . . , A′k′−1)-curl for appropriate m′ and sequence
of types A′0, . . . , A′k′−1 which contains a subsequence γ ′ corresponding to γ . Let
τ(d) = A′i with A′i in γ ′.

Case 3.1 b <′ a. If (d, b) ∈ E and (d, a) /∈ E , ci1, if i 6= 0, or ci2, if i = 0, is not
E ′-related to a, since τ(ci1) = τ(d), if i 6= 0, or τ(c02) = τ(d), if i = 0, and τ(d)
is not tied with τ(a). Therefore, ci1, if i 6= 0, or c02, if i = 0, is not E ′-related to b
either. Thus it suffices to add the pair (ci1, b) to E ′, if i 6= 0, or (c02, b), if i = 0, to
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obtain a G-structure in which ci1 or c02 witnesses the difference between a and b. If,
on the other hand, (d, a) ∈ E and (d, b) /∈ E , we distinguish two subcases.

Case 3.1.1 τ(d) is a free differentiating type of τ(a). An argument similar to the
previous one shows that it suffices to add the pair (ci1, a), if i 6= 0, or (c02, b), if
i = 0, to E ′.

Case 3.1.2 τ(d) is tied with τ(a). We show that it suffices to add d to M ′ and
extend E ′ by adding all the pairs in E ∩ (M ′0 ∪ {d})

2 which contain d , as well as
those which such an enrichment forces to be present by the tiedness relation between
types. Let E ′′ be the relation thus obtained. Obviously, the resulting structure is
a G-structure and d E ′′-witnesses the difference between a and b. It remains to
be shown that no pair of E ′′-indiscernible elements is added, namely, that E ′′ is
extensional on d in M ′ ∪ {d}. From the assumption that τ(d) is tied with τ(a) it
follows that all the elements of type τ(d) = A′i in the k−m′(A′0, . . . , A′k′−1)-curl are
E ′-related to a, so that, by the E ′-indiscernibility of a and b, they are E ′-related to
b as well. But that can happen only if τ(d) is tied with τ(b). Since (d, b) /∈ E ,
it follows that (b, d) ∈ E ′′. Let s′′ = maxmin(τ (d), τ (a)). (τ (d), τ (a)) strictly
covers s′′. For obviously s′′ ≤ a. Furthermore, s′′ 6= a. Otherwise, a would
be the minimum of the elements of its own type and then the maximum of its E-
predecessors, which is in the structure from the very beginning, would witness the
difference between a and b, against the assumption. Furthermore, the maximum
of the elements of type τ(d), which is also in the structure from the beginning, is
greater than a, since, otherwise, it would witness the difference between a and b.
Therefore, in the transition from M0 to M′0, s′′ is one of the elements which are
replaced. Say s′′ is replaced by a k−m′′(A

′′

0, . . . , A
′′

k′′−1)-curl for appropriate m′′ and
types A

′′

0, . . . , A
′′

k′′−1, among which there are τ(d) and τ(a). Assume by way of
contradiction that d ′ is E ′′-indiscernible from d . All the elements of type τ(a) in
the k−m′′(A

′′

0, . . . , A
′′

k′′−1)-curl, which replaces s′′, by the tiedness of τ(a) and τ(d),
are E ′′-related to d; hence they are also E ′′-related to d ′. But that can happen only
if τ(a) is tied with τ(d ′). As a consequence either d ′ is E ′-related to a or a is E ′-
related to d ′. In the former case d ′ would witness the difference between b and a,
against their E ′-indiscernibility. In the latter case, a would witness the difference
between d ′ and d, against the assumption that d ′ and d are E ′′-indiscernible.

Case 3.2 a < b. b cannot be one of the constants c1, . . . , cn since otherwise the
maximum of the predecessors of ci , which is in the structure, would witness that b is
different from a. Then essentially the same argument of Case 3.2 applies by letting
s′′ = maxmin(τ (d), τ (b)).

The process by which the E ′-indiscernibility between a and b, with a free-enough,
has been eliminated can be iterated, thanks to the large enough number, namely,
m = 1+2· p, of elements ci j having the same type, say Ai , which are present in each
k−m (A0, . . . , Ak−1)-curl introduced in the transition from M0 to M′0. For example,
having dealt with a as above, suppose (a′, b′) is another pair of E ′-indiscernible
elements and that a′ is free-enough by Condition 2. Furthermore, assume that
such a free-enoughness is witnessed by the same cycle β which witnesses the free-
enougness of a. If τ(a) = Ai ′ and τ(a′) 6= τ(a) we can proceed exactly as in Case 2
above. On the other hand, if τ(a′) = τ(a) = Ai then, if i 6= 0, instead of the pairs
(ci1, ah) and (ci2, a′h) we add pairs having ci3 and ci4 as their first components. If,
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on the other hand, i = 0, then, instead of the pairs (c02, ah) and (c03, a′h), we add
pairs having c04 and c05 as their first components.

Clearly, the number of times the process we have described must be repeated,
before no pair of indiscernible elements is left, is pr. ric. bounded with respect to n.
As a consequence the cardinality of the extensional G-structure thus obtained is also
pr. ric. bounded with respect to n. �

3.1 Completeness As shown in [1] from the proof of decidability of ∃∗∀∀-
sentences in V one can infer the completeness of ZF with respect to such sentences.
Due to the existence of ∃∃∀∀-sentences which are true in V but not in HF ([4]),
ZF−Inf, where Inf denotes the Infinity Axiom, which states the existence of the
set of the natural numbers, fails to be complete with respect to such 4-quantifier
sentences. Completeness with respect to ∃∗∀∀-sentences is restored if we add the
negation ¬Inf of the Infinity Axiom to ZF−Inf. In fact, given an ∃∗∀∀-sentence
∃x1 . . . ∃xn∀x∀yF , if it is true in HF, then there is a finite structure (actuallly a
hereditarily finite one) which ZF−Inf can detect to have the property required to
ensure the satisfiability of ∀∀F in HF, by hereditarly finite sets a1, . . . , an . Since
a1, . . . , an satisfy ∀x∀yF in HF if and only if they satisfy it in V, ZF−Inf can
conclude that ∃x1 . . . ∃xn∀x∀yF . On the other hand, if ZF−Inf verifies that there is
no finite structure, among the finitely many that need to be inspected, that has the
property required to ensure the satisfiability of ∀∀F in HF, then it can conclude that
if ∃x1 . . . xn∀x∀yF then some of the x1, . . . , xn is not hereditarily finite. Therefore,
the transitive closure of {x1, . . . , xn} contains a set which is not equinumerous to any
natural number. By a well-known argument going back to [5] (see [3], Ch. III), the
existence of such a set entails Inf in ZF−Inf. Therefore, in ZF−Inf+¬Inf we obtain
a contradiction, so that ZF−Inf + ¬Inf derives ¬∃x1 . . . ∃xn∀x∀yF . Thus ZF and
ZF−Inf + ¬Inf are both complete with respect to ∃∗∀∀-sentences. [2] conjectures
that ZF is complete with respect to all 4-quantifier sentences. In light of the above
results, it seems of interest to consider that conjecture also in the case of the theory
ZF−Inf + ¬Inf.
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