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The Logic of Conditional Negation

John Cantwell

Abstract It is argued that the “inner” negation ∼ familiar from 3-valued logic
can be interpreted as a form of “conditional” negation: ∼A is read ‘A is false
if it has a truth value’. It is argued that this reading squares well with a partic-
ular 3-valued interpretation of a conditional that in the literature has been seen
as a serious candidate for capturing the truth conditions of the natural language
indicative conditional (e.g.,“If Jim went to the party he had a good time”). It
is shown that the logic induced by the semantics shares many familiar proper-
ties with classical negation, but is orthogonal to both intuitionistic and classical
negation: it differs from both in validating the inference from A → ∼B to
∼(A → B).

1 Introduction

Conditional negation, sometimes referred to as “inner negation,” is a form of nega-
tion that arises in the context of a semantics that allows for truth value gaps. Its truth
conditions are given by

A ∼A
T F
F T
− −

That is, ∼A is true if and only if A is false, and false if and only if A is true, lacking
truth value when A lacks truth value.

There are two related but distinct reasons for calling it “conditional” negation,
both involving a particular gappy set of truth conditions for the indicative condi-
tional:

Received May 4, 2007; accepted January 24, 2008; printed June 6, 2008
2000 Mathematics Subject Classification: Primary, 03B50
Keywords: three-valued logic, inner negation, outer negation, conditionals
c© 2008 by University of Notre Dame 10.1215/00294527-2008-010

245

http://www.nd.edu/~ndjfl
http://www.nd.edu


246 John Cantwell

A → B T F −

T T F −

F − − −

− T F −

An important feature of these truth conditions for the indicative conditional is that
when a conditional has a false antecedent it lacks truth value. This is not a new idea
(it seems first to have been proposed by Quine [14] and the above truth conditions
are precisely those of Belnap [2]), but it has only gradually been recognized as a
serious contender for the semantics that best captures the natural language indicative
conditional ‘If A, B’ (e.g., [2], [4], [5], [7], [8], [12], [13]).

Combining the truth tables we find that A → ∼B becomes semantically equiv-
alent to ∼(A → B) (they have the same truth value in every assignment). This
seems to correspond well with natural language where the denial of a conditional
A → B does not have the strong logical implications that we find in classical logic
(where ∼(A → B) entails A ∧∼B) or intuitionistic logic (where ∼(A → B) entails
∼∼A ∧ ∼B). Consider, for instance, the following exchange:

Anne: If Oswald didn’t kill Kennedy, Jack Ruby did.
Bill: No! You’re wrong.

When Bill denies the conditional asserted by Anne, he neither asserts nor denies
that Oswald did the killing (he can continue, “If Oswald didn’t kill Kennedy, Castro
did”); his denial seemingly amounts to no more than the assertion that if Oswald
didn’t shoot Kennedy then neither did Jack Ruby. This kind of “conditional denial”
seems to be a basic move in the language game; conditional negation is the sentential
operator that corresponds to this form of conditional denial: “It is not the case that if
Oswald didn’t shoot Kennedy, Jack Ruby did.” So one reason for calling ∼ “condi-
tional” negation is that it seems to capture a particular way of negating conditionals.

In a gappy setting we no longer have the equivalence:
(E) A if and only if ‘A’ is true.

Instead ascriptions of truth become conditional ascriptions of truth (the “Non-
Bivalent”-Equivalence schema):

(NBE) A if and only if ‘A’ is true if it has a truth value.
To illustrate what is going on, one can introduce the operators T (A) (‘it is true that
A’), F(A) (‘it is false that A’), and TV(A) (‘it is true or false that A’) with the truth
conditions:

A T (A) F(A) TV(A)

T T F T
F F T T
− F F F

In a bivalent setting we have the semantical equivalence (corresponding to the E-
schema):

A ≡ T (A).

Here A ≡ B is defined: A ≡ B if and only if A and B have the same truth value
in every assignment of truth values (as we will be dealing with different classes of
assignments, below ≡ will be indexed with respect to that class).
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In our nonbivalent setting we instead have the semantical equivalence (corre-
sponding to the NBE-schema):

A ≡ TV(A) → T (A).

So a belief or an assumption that A is not to be equated with the belief or assumption
that A is true, but instead with the belief or assumption that A is true if it has a truth
value.

Classical negation is often associated with the following equivalence schema (I
will throughout use ¬ to denote “classical” negation):

(E¬) ¬A if and only if ‘A’ is false.
Conditional negation does justice to its name by instead validating the weakened
form:

(NBE∼) ∼A if and only if ‘A’ is false if it has a truth value.
That is, if we give classical negation the following truth conditions,

A ¬A
T F
F T
− F

we find that ‘It is false that A’ becomes semantically equivalent to ¬A:

¬A ≡ F(A).

While, for conditional negation, we find that ∼A amounts to a conditional ascription
of falsity to A (conditional, that is, upon A having a truth value):

∼A ≡ TV(A) → F(A).

In this paper I will investigate the basic logical properties of conditional negation
with a special emphasis on how it interacts with the semantically gappy conditional.

2 The Semantic Basis for Logic

A standard way of justifying classical logic is by holding (i) that every claim is either
true or false (the principle of bivalence), and (ii) an inference is valid if and only if
it preserves truth. Together these two principles yield the distinctive properties of
classical logic; for instance, they validate the inference from ¬¬A to A and make
A ∨ ¬A a logical truth.

In opposition to this view a wide variety of linguistic phenomena have been
thought to give rise to truth value gaps and so to invalidate the principle of bivalence.
Claims about the future (‘There will be a sea battle tomorrow’), vagueness (‘That is
a heap’), nonreferring singular terms (‘The present king of France’), and presupposi-
tion failure (‘The accused has stopped beating his wife’) are typical examples found
in the literature.

A common response from the classicist camp has been that the price for these
semantic analyses is too high. By allowing truth value gaps we are forced to abandon
classical logic and the strictures of classical logic have an intuitive and theoretical
appeal that, it is held, overrides any semantical intuitions about truth value gaps.
Such a response, of course, makes sense only if one does not take classical logic
to be motivated by its semantic properties alone. For if the very fact that we lose
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classical logic is to be taken as an argument against abandoning bivalence, then the
appeal of classical logic cannot exclusively be derived from the appeal of bivalence.

I agree with those who hold that classical logic has an appeal of its own: it em-
bodies norms of reasoning that we actually endorse and use. But by itself this does
not provide an argument that every claim is either true or false. I do not think that one
can coherently deny an instance of A ∨¬A, and I think that the inference from ¬¬A
to A is valid, but this is an argument for bivalence only if one accepts the principle
that an inference is valid if and only if it preserves truth. It is possible to hold that
the classically valid inferences are valid and at the same time deny that every claim
is either true or false, if one questions the principle that an inference is valid if and
only if it preserves truth.

For instance, say (as is suggested above) that the conditional ‘If Jim took the
exam he passed’ is true only if Jim took the exam and passed, and lacks truth value
if he didn’t take the exam. In this case the inference from ‘If Jim took the exam he
passed’ to ‘Jim took the exam and passed’ preserves truth: if the premise is true then
the conclusion is true. But, of course, the inference is not valid—it is not correct—
one cannot properly infer that Jim took the exam from the premise that if he did, he
passed.

If we have good grounds for denying that every proposition is either true or false,
and if we have good grounds for holding that classical logic is valid, then we have
grounds for denying that valid inferences preserve truth. Instead, I suggest, we
should hold that valid inferences do not introduce falsity: the conclusion of a valid
inference is false only if one of the premises is false. Of course, in a bivalent setting
the principle that valid inferences do not introduce falsity is equivalent to the princi-
ple that a valid inference preserves truth, but in a nonbivalent setting these principles
do not coincide.

It will be shown below that if we interpret negation as outer negation or classical
negation, that is, if we interpret ‘¬A’ as ‘A is false’, the resulting logic induced by
the principle that valid inferences do not introduce falsity is classical logic, even
though the conditional → introduces truth value gaps. It is classical logic, not in
the sense that it is based on a bivalent semantics or in the sense that it preserves
truth, but in the sense that all and only classically valid inferences turn out to be
valid. Of course, if we think of “classical” logic as a package, representing not
only a particular collection of valid inferences or valid inference rules, but also as a
particular way of justifying these inferences and inference rules (every claim is true
or false, valid inferences preserve truth), then the result is not classical logic. But
if we keep apart the extension of the classical inference relation from the orthodox
way of justifying how this inference relation characterizes the valid inferences, there
should be no grounds for confusion.

Conditional negation, the topic of this paper, is not a “classical” negation. For
instance, it validates the inference from A → ∼B to ∼(A → B). What makes
it interesting is that there seems to be a form of negation in natural language that
works in this way. By this I do not mean to deny that there is a form of negation
in natural language that works as “classical” negation (which validates the inference
from ¬(A → B) to A ∧ ¬B), that is, a form of negation which amounts to the claim
that the negated sentence is false. The two can happily coexist.
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3 Motivating Nonbivalent Conditionals

Conditional negation differs semantically from classical negation only when the
negated sentence lacks truth value; thus some motivation should be given for the
claim that propositions can lack truth value to begin with. In the present setting it is
the conditional that introduces truth value gaps so this needs some motivation.

The primary motivation, as I see it, is that there is just no evidence that we as
speakers take a conditional to be true (or, for that matter, false) on the grounds that
its antecedent is false. The very fact that one believes that Jim didn’t take the exam
does not by itself provide grounds for holding that if he took the exam, he passed.
Indeed, if I am reasonably confident that Jim didn’t take the exam, but completely
certain that Jim was not smart enough to pass the exam, I can even deny that he
passed the exam if he took it. If the standard material analysis of the conditional is
correct, this is puzzling indeed.

Even if the material analysis is incorrect, it doesn’t immediately follow that a
conditional like ‘If Jim took the exam he passed’ lacks truth value if Jim didn’t
take the exam. There are several other analyses around that do not introduce truth
value gaps. For instance, one popular strategy is to hold that ‘If Jim took the exam
he passed is true’ if Jim passed in every possible world maximally similar to the
present world where Jim took the exam. Typically, the “similarity” involved in this
analysis is “epistemic” similarity (which sets the indicative conditional apart from
the counterfactual conditional ‘If Jim had taken the exam he would have passed’
where the similarities involved are “objective”).

There are numerous problems involved with these alternate analyses and I will
not rehearse them all here (see [8]). Instead I will focus on one problem: a number
of classically valid inferences turn out to be invalid on these analyses. For instance,
I think that the classically valid inference from ‘Either gardener or the butler did
it’ to ‘If the gardener didn’t do it, the butler did’ is indeed valid in the following
sense: upon making the supposition for the sake of the argument (upon assuming)
that either the gardener or the butler did it, one is committed to accepting that if the
gardener didn’t do it, the butler did. It is a valid inference, indeed a classically valid
inference, but it is not validated by accounts that analyze the conditional in terms of
“epistemic” similarities between possible worlds.

Of course, one can deny that the inference from ‘Either gardener or the butler did
it’ to ‘If the gardener didn’t do it, the butler did’ is valid. In particular, say that I
believe that the gardener did it and that the butler is innocent. From ‘The gardener
did it’ I can validly infer ‘Either gardener or the butler did it’ but we do not want
to say that I am thereby committed to believing that if the gardener didn’t do it, the
butler did. Indeed, the inference in question is commonly invoked as an argument
against the material analysis of the indicative conditional.

I think the problem here is that people tend not to recognize the importance of the
difference between assuming or supposing for the sake of the argument that some-
thing is the case, and believing that something is the case (although see Levi [10]). I
believe that the gardener did it, and so I believe that either the gardener or the butler
did it. But upon supposing for the sake of the argument that the gardener didn’t do
it, I no longer accept that either the gardener or the butler did it as I no longer accept
that the gardener did it. The weatherman tells me that it will snow tomorrow, and I
believe him. But on the supposition that the weatherman is lying, I no longer accept
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that it will snow tomorrow. Suppositions can undermine beliefs, upon making a sup-
position for the sake of the argument one will reject (hypothetically reject) things that
one otherwise believes, and accept (hypothetically accept) things that one does not
otherwise believe. By contrast, assumptions do not “undermine” other assumptions.
If I first assume that the butler did it, and then assume that the butler didn’t do it, I am
committed to accepting a contradiction. Assumptions remain in force until they are
explicitly dropped, not by adding further assumptions that make earlier assumptions
implausible.

This distinction between supposing and believing that something is the case be-
comes particularly important in the context of conditionals. For, paradigmatically,
one accepts ‘If A, B’ if and only if one accepts B on the supposition that A. So upon
assuming both that the butler did it and that the butler didn’t do it I am committed
to accepting a contradiction and hence (via ex falso quodlibet) am committed to ac-
cepting that the gardener did it. So, upon assuming that the gardener did it, I am
committed to accepting that if the gardener didn’t do it, the butler did. This does not
entail that when I believe that the gardener did it, I am committed to accepting that if
the gardener didn’t do it, the butler did. If one keeps in mind the distinction between
supposing or assuming that something is the case and believing that something is the
case, the “paradoxes” of material implication cease to be paradoxical.

In holding that the “paradoxes” of material implication are not paradoxical in the
context of suppositional reasoning, one does not reinstate the semantical thesis ac-
cording to which a conditional is true if the antecedent is true. I began this section by
noting that a major problem with the material analysis is that people do not in gen-
eral take the falsity of the antecedent of a conditional as grounds for accepting the
conditional; indeed, there are countless examples where it seems perfectly coherent
to reject both a conditional and its antecedent. The point being that ultimately ascrip-
tions of truth conditions must answer to usage; if people who seemingly know all the
relevant facts, who are rational, and who are not linguistically confused are willing
to reject a conditional, what grounds do we have for holding that the conditional is
true?

Indeed the added structure we get from allowing conditionals to lack truth value
turns out to be suitable for characterizing the acceptability conditions for the in-
dicative conditional. One key to a full understanding of indicative conditionals is
to understand the conditions under which one accepts or rejects a conditional that
may lack truth value. For instance, why do I accept ‘If Oswald didn’t kill Kennedy
someone else did’ but reject ‘If Oswald didn’t kill Kennedy, my grandmother did’
even though I believe that the antecedents of both these conditionals are false?

The acceptance conditions for the indicative conditional, I have argued elsewhere
[8] (and others before me, e.g., [1], [9]), cannot exclusively be given by appealing
to the semantic value of the indicative conditional. The fact that conditionals can
lack truth value opens an explanatory gap between the semantics of the conditional
and its assertibility or acceptability conditions. This gap cannot be filled by semantic
means but must instead invoke epistemic considerations. One of the strong points
of the present gappy truth conditions for indicative conditionals is that, when com-
bined with an interpretation of probability that is suitable for gappy propositions ([3],
[6], [5]), we get the much discussed identity (sometimes called Adams Thesis after
Adams [1]):

Pr(A → B) = Pr(B|A),
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while avoiding the “triviality” results that behest standard bivalent accounts (e.g.,
Lewis [11]).

4 A Semantic Characterization

It is time to become more specific about the precise structure of the object language.
Let L∼ be a language containing a countable set of propositional atoms p, q, r, . . . ,
closed under the connectives ∼, ∧, ∨, and →, together with the contradictory sen-
tence ⊥. The language L¬ is like L∼ except that we replace ∼ by ¬.

Definition 4.1 A classical valuation is an assignment I of the truth values {T, F}
to the sentences of L satisfying

A ¬A
T F
F T

A → B T F
T T F
F T T

A ∧ B T F
T T F
F F F

A ∨ B T F
T T T
F T F

Definition 4.2 The classical consequence relation |HC is a relation from sets of
sentences to single sentences satisfying

0 |HC A if and only if for every classical valuation I , if I (B) = T for
all B ∈ 0, then I (A) = T.

Definition 4.3 An NBC-valuation (a Non-Bivalent Classical valuation) is an as-
signment I of the truth values {T, F, −} to the sentences of L satisfying

A ¬A
T F
F T
− F

A → B T F −

T T F −

F − − −

− T F −

A ∧ B T F −

T T F −

F F F F
− − F −

A ∨ B T F −

T T T T
F T F −

− T − −

Theorem 4.4 0 |HC A if and only if for every NBC-valuation I , if I (B) 6= F for
all B ∈ 0, then I (A) 6= F.

Proof The proof is quite trivial, just think of − as representing ‘true’ and we have
the standard truth conditions for the connectives. �

That is, a nonbivalent valuation characterizes the classical consequence relation if
one takes the defining feature of a classical inference to be that it does not introduce
falsity: in a valid inference the conclusion is false only if one of the premises is false.
Indeed, in the bivalent case the property of not introducing falsity is coextensional
with the property of preserving truth:

0 |HC A if and only if for every classical valuation I , if I (B) 6= F for
all B ∈ 0, then I (A) 6= F.

Definition 4.5 A CN-valuation is an assignment I of the truth values {T, F, −} to
the sentences of L∼ satisfying

A ∼A
T F
F T
− −

A → B T F −

T T F −

F − − −

− T F −

A ∧ B T F −

T T F −

F F F F
− − F −

A ∨ B T F −

T T T T
F T F −

− T − −

Definition 4.6 The consequence relation |HCN of conditional negation is a relation
from sets of sentences to single sentences satisfying
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0 |HCN A if and only if for every CN-valuation I , if I (B) 6= F for all
B ∈ 0, then I (A) 6= F.

Again the defining feature of the consequence relation is taken to be that it does not
introduce falsity.

4.1 Discussion Define the following notion of logical equivalence:

A ⇔CN B if and only if A |HCN B and B |HCN A.

Note that (this is trivial) semantic equivalence entails logical equivalence: if
A ≡CN B, then A ⇔CN B. The converse, however, need not hold. For in-
stance, we have ∼A ∨ B ⇔CN A → B but it is not, in general, the case that
∼A ∨ B ≡CN A → B (take the case when A is false). At the level of acceptance
and rejection ∼A ∨ B is quite distinct from A → B which explains why they are
not semantically equivalent, but at the level of suppositional reasoning which seeks
only to avoid introducing falsity, these differences are washed out.

Indeed, we find that there are a number of connectives that are logically equivalent
(in the sense that they are interderivable in the logic of suppositional reasoning)
without being semantically equivalent. Compare, for instance, the following two
connectives (which we temporarily add to L¬):

A 	A
T F
F −

− F

A ⊕ B T F −

T − F −

F F F F
− − F −

Note that in spite of their differences in truth tables, we have 	A ⇔NBC ¬A and
A ⊕ B ⇔NBC A ∧ B.

The consequence relation seemingly treats “lacks truth value” as “true” (for in-
stance, in a valid inference it can happen that we go from premises that lack truth
value to a conclusion that lacks truth value), thus should we not view “lacks truth
value” as another “kind” of truth? No. It can be reasonable to reject a claim that one
believes lacks truth value, as in ‘If Oswald didn’t kill Kennedy my grandmother did’,
just as it can be reasonable to accept a claim that one believes lacks truth value, as in
‘If Oswald didn’t kill Kennedy someone else did’. The key here being that although
I believe that ‘If Oswald didn’t kill Kennedy my grandmother did’ lacks truth value,
I also believe that if I am wrong and the conditional has a truth value (which it does
only if Oswald didn’t kill Kennedy) then the conditional is false. By comparison it
is not reasonable to reject a claim that one believes is true, just as it is not reasonable
to accept a claim that one believes is false.

So the connective ⊕ would give an incorrect rendition of the English ‘and’: when
someone asserts ‘A and B’ we take that claim to be correct if both A and B are true,
given that one accepts A and B one is committed to accepting ‘A and B’ and we are
willing to say that the speaker (who uttered the conjunction) was right. This speaks
against treating ‘A and B’ as lacking truth value (and so speaks against interpreting
‘and’ as ⊕) when both A and B are true. Similarly, if one believes that A is false,
then it is not reasonable to deny ‘It is not the case that A’ and so ‘It is not the case
that A’ is true when A is false, thus 	 is not a correct semantic rendition of ‘It is not
the case that. . . ’.
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An important point here is that truth conditions must answer not only to the logic
of suppositional reasoning, but also to language use. The appeal to logical intuitions
when settling semantic issues must be tempered by the realization that the logic
of suppositional reasoning does not necessarily coincide with the logic of belief or
acceptance (this becomes particularly important when dealing with conditionals).

Note also that while we have 	A ⇔NBC ¬A we do not have ¬	 A ⇔NBC ¬¬A;
thus 	A and ¬A are not substitutable in the logic of suppositional reasoning. Indeed,
we get a similar phenomenon in L∼. We have p → q ⇔CN ∼p ∨ q, but we do not
have ∼(p → q) ⇔CN ∼(∼p ∨ q). For ∼(p → q) is semantically equivalent to
p → ∼q whereas ∼(∼p ∨ q) is semantically equivalent to p ∧ ∼q.

On the other hand, we have the following theorem.

Theorem 4.7 If A ⇔CN B and ∼A ⇔CN ∼B, then A ≡CN B.

Proof Assume (i) A ⇔CN B and (ii) ∼A ⇔CN ∼B. Assume that A is true in some
CN-valuation I , then ∼A is false in I and so, by (ii), ∼B is false in I and B is true
in I . Assume instead that A is false in I , then, by (i), B is false in I . Similarly, if B
is true in I , then A is true in I and if B is false in I , then A is false in I . Thus A and
B have the same truth value in every CN-valuation. �

That is, if A and B are logically equivalent and ∼A and ∼B are also logically equiv-
alent, then A and B are semantically equivalent (and so fully substitutable).

5 A Proof-Theoretical Characterization

Definition 5.1 An inferential relation ` is a relation from finite sets of sentences
to sentences satisfying the structural conditions,1

Reflexivity A ` A;
Monotonicity If 1 ` B, then 1 ∪ 1′

` B;
Cut If 1 ` A for each A ∈ 1′, and 1 ∪ 1′

` B, then 1 ` B.

Definition 5.2 An inferential relation ` is standard if it satisfies
Rules for ∧ A ∧ B ` A and A ∧ B ` B;

A, B ` A ∧ B;

Rules for ∨ A ` A ∨ B and A ` B ∨ A;
If 0, A ` C and 0, B ` C , then 0, A ∨ B ` C ;

Rules for → A, A → B ` B;
If 0, A ` B, then 0 ` A → B;

Rules for ⊥ p, ¬p ` ⊥, for any propositional letter p;
⊥ ` A, for any A;

LEM ` A ∨ ¬A.

Definition 5.3 A standard inferential relation ` embodies classical negation if it
satisfies

(¬ →) ¬(A → B) a` A ∧ ¬B;
(¬∨) ¬(A ∨ B) a` ¬A ∧ ¬B;
(¬∧) ¬(A ∧ B) a` ¬A ∨ ¬B;
(¬¬) ¬¬A a` A.
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Theorem 5.4 Let ` be the smallest standard inferential relation embodying classi-
cal negation:

0 ` A if and only if 0 |HC A.

Proof Assume that ` is the smallest standard inferential relation embodying clas-
sical negation. Clearly, all the inference rules of ` are classically valid; thus we
need to show that it captures all classically valid inference rules. Due to well-known
properties of classical logic we need only show the following:

1. If 0, A ` ⊥, then 0 ` ¬A;
2. A, ¬A ` ⊥.

(1) Assume that 0, A ` ⊥. By cut and the rule for ⊥, 0, A ` ¬A. By reflexivity and
monotonicity 0, ¬A ` ¬A. So 0, A ∨ ¬A ` ¬A. By LEM 0 ` A ∨ ¬A. Thus by
cut (and the rules for ∨) 0 ` ¬A.

(2) We derive A, ¬A ` ⊥ by induction over the length of A.

A = p. Follows directly from the rule for ⊥.
Assume that it has been shown that C, ¬C ` ⊥ and D, ¬D ` ⊥.

A = C ∨ D. We need to show C ∨ D, ¬(C ∨ D) ` ⊥, that is, by ¬∨ and the stan-
dard rules that C ∨ D, ¬C, ¬D ` ⊥. We know that C, ¬C, ¬D ` ⊥

and D, ¬C, ¬D ` ⊥, but then C ∨ D, ¬C, ¬D ` ⊥.
A = C ∧ D. We need to show C ∧ D, ¬(C ∧ D) ` ⊥, that is, by ¬∧ and the stan-

dard rules that C ∧ D, ¬C ∨ ¬D ` ⊥. We know that C, D, ¬C ` ⊥

and C, D, ¬D ` ⊥, but then C, D, ¬C ∨ ¬D ` ⊥.
A = C → D. We need to show C → D, ¬(C → D) ` ⊥, that is, by ¬ → and

the standard rules that C → D, C, ¬D ` ⊥. By modus ponens,
C → D, C, ¬D ` D, that is, C → D, C, ¬D ` D ∧ ¬D and so by
cut and the induction hypothesis C → D, C, ¬D ` ⊥.

A = ¬C . We need to show ¬C, ¬¬C ` ⊥. But by the rule ¬¬ this follows
from ¬C, C ` ⊥ which we have by the induction hypothesis. �

Definition 5.5 A standard inferential relation ` (on L∼) embodies conditional
negation if it satisfies

(∼→) ∼(A → B) a` A → ∼B;
(∼∨) ∼(A ∨ B) a` ∼A ∧ ∼B;
(∼∧) ∼(A ∧ B) a` ∼A ∨ ∼B;
(∼∼) ∼∼A a` A.

We want to show that when ` is the smallest standard inferential relation embodying
conditional negation

0 ` A if and only if 0 |HCN A.

The soundness part (that 0 ` A implies 0 |HCN A) is straightforward (one need only
show that each inference satisfies the principle that it does not introduce falsity) and
will not be proved in full. So, for instance, note that if I is a CN-valuation such that
I (B) = F, then I (A → B) 6= F only if I (A) = F, so A, A → B |HCN B. Or note
that if 0, A |HCN B, then 0 |HCN A → B. For if there is some CN-valuation I such
that I (A → B) = F but I (C) 6= F for each C ∈ 0 (so that 0 6|HCN A → B), then
I (B) = F and I (A) 6= F, and so 0, A 6|HCN B. Or note that for every valuation I ,
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I (∼(A → B)) = F if and only if I (A → B) = T if and only if I (A) 6= F and
I (B) = T if and only if I (A) 6= F and I (∼B) = F if and only if I (A → ∼B) = F;
hence A → ∼B ≡ ∼(A → B); thus the rule ∼→ is sound.

A set 0 is `-consistent if there is no finite subset 0′ of 0 such that 0′
` ⊥.

Lemma 5.6

1. If ` is a standard inference relation, then any `-consistent set can be ex-
tended to a maximal `-consistent set.

2. If 6 is a maximal `-consistent set and there is some finite subset 6′ of 6
such that 6′

` A, then A ∈ 6.
3. Either A ∈ 6 or ∼A ∈ 6.

Proof (1) Assume that 0 is a `-consistent set. Let 60 = 0. Let 6i+1 = 6i ∪ {Ai }

if 6i ∪ {Ai } is a consistent set; otherwise 6i+1 = 6i . Let 6∗ =
⋃

6i . Clearly,
every 6i is a `-consistent set.

Assume that 6∗ is not a `-consistent set. Then there is some finite set 6′
⊆ 6

such that 6′
` ⊥. As 6′ is finite there is some 6i such that 6′

⊆ 6i . Due to
monotonicity 6i ` ⊥ which gives us a contradiction; hence 6∗ is a `-consistent set.

Assume that there is some Ai 6∈ 6∗ such that 6∗ ∪{Ai } is a `-consistent set. Due
to monotonicity 6i ∪ {Ai } is a `-consistent set, but then Ai ∈ 6i+1 and so Ai ∈ 6∗,
contrary to assumption. So, if Ai 6∈ 6∗, then 6∗ ∪ {Ai } is not a `-consistent set. So,
due to monotonicity, any strict superset of 6∗ is not a `-consistent set. Hence 6∗ is
a maximal `-consistent set.

(2) Assume that 6′ is a finite subset of 6 such that 6′
` A. Assume for reductio

that 6 ∪ {A} is `-inconsistent set. Then there is a finite subset 6′′ of 6 such that
6′′, A ` ⊥. Due to monotonicity and cut 6′

∪6′′
` ⊥, but then 6 is a `-inconsistent

set, contrary to assumption. 6 ∪ {A} is a `-consistent set. As 6 is a maximal `-
consistent set, A ∈ 6.

(3) Assume that A 6∈ 6 and ∼A 6∈ 6. Thus both 6 ∪ {A} and 6 ∪ {∼A} are `-
inconsistent sets. Thus there are finite subsets 6′ and 6′′ of 6 such that 6′, A ` ⊥

and 6′′, ∼A ` ⊥. But then 6′
∪ 6′′, A ∨ ∼A ` ⊥. Thus, from 6′

∪ 6′′
` A ∨ ∼A

and cut, 6′
∪ 6′′

` ⊥, contradicting the assumption that 6 is a consistent set. �

Let 6 be a maximal `-consistent set. Define

I6(A) = T if A ∈ 6 and ∼A 6∈ 6,
I6(A) = F if ∼A ∈ 6 and A 6∈ 6,
I6(A) = − if A ∈ 6 and ∼A ∈ 6.

Lemma 5.7 If ` is a standard inference relation embodying conditional negation,
then I6 is a CN-valuation.

Proof

(∼) Show: I6(∼A) = T if and only if I6(A) = F. By construction I6(∼A) = T
if and only if ∼A ∈ 6 and ∼∼A 6∈ 6 if and only if (by (∼∼)) ∼A ∈ 6 and A 6∈ 6
if and only if (by construction) I6(A) = F. Show: I6(∼A) = F if and only if
I6(A) = T. By construction I6(∼A) = F if and only if ∼∼A ∈ 6 and ∼A 6∈ 6
if and only if (by (∼∼)) A ∈ 6 and ∼A 6∈ 6 if and only if (by construction)
I6(A) = T.
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(∧) Show: I6(A ∧ B) = T if and only if I6(A) = I6(B) = T. By construction
I6(A ∧ B) = T if and only if A ∧ B ∈ 6 and ∼(A ∧ B) 6∈ 6 if and only if
(by the standard rules and (∼∧)) A, B ∈ 6 and ∼A ∨ ∼B 6∈ 6 if and only if
(by the standard rules) A, B ∈ 6 and ∼A, ∼B 6∈ 6 if and only if (by construction)
I6(A) = I6(B) = T. Show: I6(A∧B) = F if and only if I6(A) = F or I6(B) = F.
By construction I6(A ∧ B) = F if and only if A ∧ B 6∈ 6 and ∼(A ∧ B) ∈ 6 if and
only if (by the standard rules and (∼∧)) either A 6∈ 6 or B 6∈ 6 and ∼A ∨ ∼B ∈ 6
if and only if (by negation completeness and the standard rules) either A 6∈ 6 and
∼A ∈ 6 or B 6∈ 6 and ∼B ∈ 6 if and only if (by construction) either I6(A) = F
or I6(B) = F. The case for disjunction is similar.

(→) Show: I6(A → B) = T if and only if I6(A) 6= F and I6(B) = T. By
construction I6(A → B) = T if and only if A → B ∈ 6 and ∼(A → B) 6∈ 6 if
and only if (by (∼ →)) A → B ∈ 6 and A → ∼B 6∈ 6. Assume that A → B ∈ 6
and A → ∼B 6∈ 6. By the standard rules, ∼B 6∈ 6 and as then B ∈ 6, I6(B) = T.
Assume for reductio that A 6∈ 6. Then A → ⊥ ∈ 6 and so, by the standard rules,
A → ∼B ∈ 6, contrary to assumption. Thus A ∈ 6 and so I6(A) 6= F. Assume
instead that I6(A) 6= F and I6(B) = T. Then A, B ∈ 6 and ∼B 6∈ 6. By the stan-
dard rules A → B ∈ 6. Assume, for reductio, that A → ∼B ∈ 6. By the standard
rules ∼B ∈ 6 contradicting our previous assumption. So A → ∼B 6∈ 6. An analo-
gous proof shows: I6(A → B) = F if and only if I6(A) 6= F and I6(B) = F. �

Lemma 5.8 If ` is a standard inference relation embodying conditional negation
then

` A ∨ (A →⊥).

Proof The proof proceeds by induction over the length of A. Begin by noting that
due to the rules governing ∼, any sentence containing a conditional negation is prov-
ably equivalent to a sentence where conditional negation operates only on the propo-
sitional atoms (e.g., ∼((∼p → q)∨∼r) is provably equivalent to (∼p → ∼q)∧r ).
Thus it is enough that we can show the claim for all sentences where conditional
negation operates only on the propositional atoms.

For the induction base, show that the claim holds when A is a propositional atom,
that is, that ` p ∨ (p → ⊥). By LEM ` p ∨ ∼p. As p ` p ∨ (p → ⊥), it is
enough to show that ∼p ` p ∨ (p → ⊥). But ∼p, p ` ⊥; thus ∼p ` p → ⊥ and
so ∼p ` p ∨ (p → ⊥).

Next we show that the claim of the theorem holds when A is a negated atom, that
is, that ` ∼p∨(∼p → ⊥). By LEM ` ∼p∨∼∼p. As ∼p ` ∼p∨(∼p → ⊥), it is
enough to show that ∼∼p ` ∼p ∨ (∼p → ⊥). But ∼∼p, ∼p ` ⊥ (due to the rule
for ⊥ and the rule ∼∼); thus ∼∼p ` ∼p → ⊥ and so ∼∼p ` ∼p ∨ (∼p → ⊥).

Assume that it has been shown that ` A ∨ (A → ⊥) and ` B ∨ (B → ⊥). Show
that ` (A∨B)∨((A∨B) → ⊥). (In the following let D = (A∨B)∨((A∨B) → ⊥)).
We know that ` A ∨ (A → ⊥) and that A ` D. So we need to show that
A → ⊥ ` D. We know that A → ⊥ ` B ∨ (B → ⊥) and we know that
A → ⊥, B ` D. Thus all we need to show is that A → ⊥, B → ⊥ ` D.
As A → ⊥, B → ⊥, A ` ⊥ and A → ⊥, B → ⊥, B ` ⊥, it follows that
A → ⊥, B → ⊥, (A ∨ B) ` ⊥; that is, A → ⊥, B → ⊥ ` (A ∨ B) → ⊥; that is,
A → ⊥, B → ⊥ ` (A ∨ B) ∨ ((A ∨ B) → ⊥), and we are done.
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Show that ` (A∧B)∨((A∧B) → ⊥). (In the following let D = (A∧B)∨((A∧B)
→ ⊥)). We know that ` A ∨ A → ⊥ and that A → ⊥ ` D (A → ⊥, A ∧ B ` ⊥ so
A → ⊥ ` (A∧ B) → ⊥). So we need to show that A ` D. We know that A, B ` D
so (as we know that ` B ∨ B → ⊥), all we need to show is that A, B → ⊥ ` D.
But as B → ⊥, A ∧ B ` ⊥ so B → ⊥ ` (A ∧ B) → ⊥, and so A, B → ⊥ ` D
and we are done.

Show that ` (A → B) ∨ ((A → B) → ⊥). (In the following let D = (A → B)
∨ ((A → B) → ⊥)). We know that ` B ∨ B → ⊥ and that B ` D (B, A ` B so
B ` A → B). So we need to show that B → ⊥ ` D. First note that A → ⊥ ` D,
for A → ⊥, A ` ⊥ and so A → ⊥, A ` B and so A → ⊥ ` A → B, but then
�A ` D. So, as A → ⊥ ∨ A → ⊥ all we need to show is that B → ⊥, A ` D.
We know that A, B → ⊥, A → B ` B and so A, B → ⊥, A → B ` ⊥. Thus
A, B → ⊥ ` (A → B) → ⊥. But then A, B → ⊥ ` D and we are done. �

Theorem 5.9 If ` is a standard inference relation embodying conditional negation
and 0 |HCN B, then 0 ` B.

Proof Assume that A1, . . . , An 6` B. Let C = (A1 ∧ · · · ∧ An) → B. It follows
that 6` C .

Assume for reductio that {C → ⊥} is not a `-consistent set, that is, that
C → ⊥ ` ⊥. From Lemma 5.8 we know that ` C ∨ (C → ⊥). As C → ⊥ ` ⊥ it
follows that C → ⊥ ` C , and as C ` C , it follows that ` C , contrary to assumption.
Thus {C → ⊥} is a `-consistent set and can, by Lemma 5.6, be extended to a maxi-
mal `-consistent set 6. Note that C → ⊥ ∈ 6 and so ∼C ∈ 6. As C → ⊥ ∈ 6
and as 6 is consistent, C 6∈ 6. Thus, by Lemma 5.7, there is a CN-valuation I ,
namely, I6 , such that I6(C) = F. So 6|HCN C . But then A1, . . . , An 6|HCN B, and
we are done. �

5.1 Discussion The inference rules for classical logic and the logic of conditional
negation have been presented so as to maximize ease of comparison. The rule that
sets them apart is the rule for how negation governs implication →. Note that the
inference from ¬(A → B) to A ∧ ¬B is classically valid but the corresponding
inference from ∼(A → B) to A∧∼B is not valid in the logic of conditional negation.
Note also that the inference from A → ∼B to ∼(A → B) is valid in the logic of
conditional negation, but the corresponding inference for ¬ is not classically valid.
Thus the logic of conditional negation is “orthogonal” to classical logic: it is neither
weaker nor stronger.

Note that in the logic of conditional negation it is not in general the case that A
and ∼A are mutually inconsistent. For instance, from the pair p → q and ∼(p → q)
one cannot derive the contradictory sentence ⊥, only ∼p. For ∼(p → q) is logi-
cally equivalent to p → ∼q which does not logically contradict p → q . Thus the
pair p → q and ∼(p → q) expresses a conditional contradiction: a contradiction
conditional upon p being true.

6 Expressiveness

The languages L∼ and L¬ are equally expressive assuming that the propositional
atoms are bivalent. This follows from the two properties of the following theorem.
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Theorem 6.1

1. For any L∼-sentence A there is a semantically equivalent (with respect to
CN-valuations) L∼-sentence B where ∼ operates only on the propositional
atoms.

2. For any L¬-sentence A there is a semantically equivalent (with respect to
NBC-valuations) sentence L¬-sentence B where ¬ operates only on the
propositional atoms.

Proof (1) As the pairs (∼(A → B), A → ∼B), (∼(A ∧ B), ∼A ∨ ∼B),
(∼(A ∨ B), ∼A ∧ ∼B), and (∼∼A, A) are all semantically equivalent (with re-
spect to CN-valuations), we can see that any sentence A can be transformed into a
semantically equivalent sentence B where ∼ governs the propositional atoms only.

(2) Define recursively the following three functions from sentences of L¬ to sen-
tences of L¬.

1. F(p) = ¬p; T (p) = p; LT V (p) = ⊥.

2. F(A ∧ B) = F(A) ∨ F(B); T (A ∧ B) = T (A) ∧ T (B);
LT V (A ∧ B) = (LT V (A) ∧ (LT V (B) ∨ T (B)))

∨((LT V (A) ∨ T (A)) ∧ LT V (B)).

3. F(A ∨ B) = F(A) ∧ F(B); T (A ∨ B) = T (A) ∨ T (B);
LT V (A ∨ B) = (LT V (A) ∧ (F(B) ∨ LT V (B)))

∨((F(A) ∨ LT V (A)) ∧ LT V (B).

4. F(A → B) = (T (A) ∨ LT V (A)) ∧ F(B);
T (A → B) = (T (A) ∨ LT V (A)) ∧ T (B);

LT V (A → B) = F(A) ∨ LT V (B).

5. F(¬A) = T (A) ∨ LT V (A); T (¬A) = F(A); LT V (¬A) = ⊥.
An inspection of the clauses shows that

(i) F(A) is true if and only if A is false, and F(A) is false if and only if A is not
false,

(ii) T (A) is true if and only if A is true, and T (A) is false if and only if A is not
true,

(iii) LT V (A) is true if and only if A lacks truth value, and LT V (A) is false if and
only if A does not lack truth value.

Note also that for any sentence A every occurence of ¬ in F(A), T (A) and LT V (A)
operates only on a propositional atom. Note finally that A is semantically equivalent
(with respect to the class of NBC-valuations) to (T (A)∨F(A)) → T (A). Thus every
sentence A is semantically equivalent (with respect to the class of NBC-valuations)
to a sentence where ¬ only operates on the propositional atoms. �

As ∼ and ¬ are semantically equivalent when operating on the propositional atoms
any sentence of L∼ can be expressed by a sentence of L¬ and vice versa. Thus
a language containing one kind of negation can express the other kind of negation
(classical negation can by a recursive procedure be defined in terms of conditional
negation, and vice versa).

There is a direct way of expressing a form of negation that behaves precisely like
classical negation in the logic of suppositional reasoning. Define

�A =def A →⊥ .
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This gives us the following truth table:
A �A
T F
F −

− F

Note that �A differs from ¬A in that when A is false �A lacks truth value, while
¬A is true. However, the distinctive inference rules of classical negation (1–3 below)
are derivable for �.

Theorem 6.2 If ` is a standard inference relation embodying conditional negation,
then

1. if 0, A ` ⊥, then 0 ` �A,
2. A, �A ` B,
3. ` A ∨ �A,
4. �A ` ∼A.

Proof (1) If 0, A ` ⊥, then 0 ` A → ⊥; that is, 0 ` �A. (2) As �A = A →⊥

it follows that A, �A `⊥ and so A, �A ` B. (3) This is just Lemma 5.8. (4) We
have ` A ∨ ∼A. As �A, ∼A ` ∼A we only need to show that �A, A ` ∼A, that
is, that A → ⊥, A ` ∼A. But A →⊥, A ` ⊥, so A → ⊥, A ` ∼A. �

Clearly, � behaves like ¬ in the logic of suppositional reasoning (and is, in addition,
logically stronger than ∼).

7 Conclusion

The logic of conditional negation is orthogonal to both intuitionistic and classical
logic: the latter logics validate inferences that the logic of conditional negation does
not, and the logic of conditional negation validates inferences that are neither intu-
itionistically nor classically valid. Still, the logic of conditional negation presented
here has a “classical feel” (validating all the standard rules for →, ∧, and ∨, as well
as LEM and the rule of double-negation and the de Morgan equivalences) and its
distinctive rule of inference carries an obvious linguistic plausibility.

For all this it should be noted that many classically valid derived inference rules
are not valid in the logic of conditional negation. For instance, we don’t have unre-
stricted contraposition (consider the case where A is true and B lacks truth value):

A → B |HCN ∼B → ∼A.

Nor do we have the unrestricted disjunctive syllogism (consider the case where A is
false and B lacks truth value):

A ∨ B, ∼B |HCN A.

Of course, restricted versions of these inference rules still remain valid (in the above
cases, introduce the restriction that B does not contain a conditional).

Note

1. The following conventions are used: A ` B is shorthand for {A} ` B, and 0, A ` B is
shorthand for 0 ∪ {A} ` B.
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