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Grigorieff Forcing on Uncountable Cardinals
Does Not Add a Generic of Minimal Degree

Brooke M. Andersen and Marcia J. Groszek

Abstract Grigorieff showed that forcing to add a subset of ω using partial func-
tions with suitably chosen domains can add a generic real of minimal degree. We
show that forcing with partial functions to add a subset of an uncountable κ with-
out adding a real never adds a generic of minimal degree. This is in contrast to
forcing using branching conditions, as shown by Brown and Groszek.

1 Introduction

Two classic ways of adding a generic real to a model of ZFC are Cohen forcing,
whose conditions are partial functions from ω to 2 with finite domain, and Silver
forcing, whose conditions are partial functions from ω to 2 with coinfinite domain.
A Cohen real is not of minimal real degree over the ground model, while a Silver
real is.

Grigorieff [2] generalized these two notions of forcing as follows: Given any ideal
on ω, the forcing conditions of the associated generalized Cohen, or Silver, forcing
are partial functions from ω to 2 whose domains are in the ideal, or not in the dual
filter, respectively. Grigorieff found necessary and sufficient conditions on the ideal
to guarantee the generalized Cohen generic is of minimal degree. (Generalized Silver
forcing reduces to generalized Cohen forcing if the ideal is maximal, and otherwise
factors so that the second factor is a generalized Cohen forcing in the intermediate
model.)

Groszek [3] extended Grigorieff’s ideas to tree forcings, generalizations of Laver
and Miller forcings defined by requiring branching sets to be in some filter or, al-
ternatively, not to be in the dual ideal. Groszek obtained conditions on the filter
sufficient to guarantee the generic real is of minimal degree. Much later, Brown and
Groszek [1] generalized these ideas to uncountable cardinals, obtaining analogous
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conditions on a filter on κ sufficient to guarantee that a tree forcing adds a generic
subset of κ of minimal degree.

One can attempt to do the same for Grigorieff’s original forcing generalized to
uncountable κ: Consider a forcing whose conditions are partial functions from κ
to 2 whose domains are in some ideal on κ , or whose domains are not in the dual
filter. Do Grigorieff’s results generalize in a straightforward way, so that analogous
conditions on the ideal are necessary and sufficient to guarantee the generic is of
minimal degree? If not, what conditions on the ideal will suffice?

The answer, as we show here, is that no conditions will suffice. This is in stark
contrast to the situation with tree forcings. Specifically, a consequence of our main
theorem, Theorem 3.3, is the following.

Theorem 1.1 Let I be any κ-complete ideal on an uncountable cardinal κ , and F
the dual filter. Define forcing partial orders by

P = {p : X → 2 | X ∈ I}

P′
= {p : X → 2 | X 6∈ F )},

where in both cases p is stronger than q if p extends q as a partial function,

p ≤ q ⇐⇒ p ⊇ q.

Then each of P and P′ adds a generic function from κ to 2 that is not of minimal
degree over the ground model.

It follows from the proof that the generic is not even of minimal κ-degree, where
a κ-degree is a degree containing a subset of κ . This does not answer the question
of whether there is some other set in the generic extension of minimal degree, or of
minimal κ-degree.

Dorais has made the following observation: From the set f we will show to be of
intermediate degree, one can construct the tree of binary < κ-sequences that differ
from the generic κ-sequence g at only finitely many places. Provided κ is of un-
countable cofinality, any branch through this tree constructs g. Since g 6∈ M[ f ], it
follows that κ is not weakly compact in the intermediate model M[ f ]. This holds
even if, for example, the measurability of κ is indestructible by κ-closed forcing, so
that (in the case of P above) κ is measurable in both M and M[G].

In Section 2 we discuss what it means to be of minimal degree over some model
M of ZFC. The reader familiar with these concepts can skip this section. In Section 3
we state and prove our main theorem.

2 Inner Models and Minimal Degrees

Definition 2.1 An inner model of ZFC is a class M that contains all the ordinals
and satisfies all the axioms of ZFC.

In the context of a model V of ZFC a class M is generally taken to be definable in
V with parameters. We may broaden that definition to include an externally defined
submodel M of V , provided that V still satisfies the axioms of ZFC (specifically
the replacement and separation schemes) when a predicate for M is added to the
language. For instance, if V is a generic extension of M , it is not obvious that M is
definable in V , but M is still a class in this broader sense.
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Definition 2.2 Let M be an inner model of ZFC and X a set of ordinals. Then
M[X ] is the smallest inner model N of ZF with M ⊆ N and X ∈ N .

Proposition 2.4 below gives a precise characterization of M[X ] and shows that M[X ]

satisfies the axiom of choice. For the skeptical, it also shows the existence of M[X ].

Definition 2.3 If M is an inner model of ZFC and X and Y are sets of ordinals,
we define

X ≤M Y ⇐⇒ X ∈ M[Y ] and
X ≡M Y ⇐⇒ X ≤M Y & Y ≤M X.

Then the degree of X over M is the collection of all sets Y such that Y ≡M X .

In particular, X is of minimal degree over M just in case

(∀Y ⊂ ORD) [Y ∈ M[X ] H⇒ (Y ∈ M ∨ X ∈ M[Y ])]

and X ⊂ κ is of minimal κ-degree over M just in case

(∀Y ⊂ κ) [Y ∈ M[X ] H⇒ (Y ∈ M ∨ X ∈ M[Y ])].

By extension, we may talk of the degree over M of any set naturally coded by a set
of ordinals (for example, a set of pairs of ordinals), or in fact of any subset of M .

Proposition 2.4 Let M be any inner model of ZFC and X any set of ordinals. Let

N =

⋃
Y⊂ ORD & Y∈M

L[X, Y ].

Then N = M[X ].

Proof Clearly M[X ] must contain every L[X, Y ] with Y ∈ M , so must contain
N . Therefore, it suffices to show that N is in fact a model of ZF. By a theorem of
Hajnal [4] (see Jech [5], pp. 97–99), it suffices to show that N is closed under the
Gödel operations and satisfies the universal cover property, namely, if Z is any set
and Z ⊆ N , then there is some W ∈ N with Z ⊆ W .

Because N is a directed union of models of the form L[X, Y ], which are closed
under Gödel operations, N itself is closed under Gödel operations. (Also, as each
L[X, Y ] satisfies the axiom of choice, so does N .) To show the universal cover
property, suppose Z ⊂ N , and consider the function f on Z mapping z to the least
ordinal α such that

(∃Y ⊆ α) [Y ∈ M & z ∈ L[X, Y ]].

Let β be a bound on the range of f . Because M satisfies the axiom of choice, there
is a set of ordinals Y ∈ M coding every subset of β in M :

(∀Y ∈ M) [Y ⊆ β H⇒ Y ∈ L[X, Y]].

Now, if z ∈ Z , then z ∈ L[X, Y ] for some Y ∈ M with Y ⊆ α ≤ β, from which
Y ∈ L[X, Y] and z ∈ L[X, Y]. Thus Z ⊂ L[X, Y], and because the ranks of
elements of Z are bounded, Lλ[X, Y], for any sufficiently large λ, is an element of
N containing Z . �

The theorem of Hajnal on which this proof depends applies to classes in our sense.
We must require that adding a parameter for N to the language preserves the truth of
the replacement and separation schemes in V . Given a countable, standard transitive
model of ZFC, one can produce by forcing a model V and an externally defined
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N ⊂ V that contains the ordinals of V , is closed under Gödel operations, and satisfies
the universal cover property relative to V , yet fails to be a model of ZF.

3 The Main Theorem

Definition 3.1 Let S be any collection of sets of ordinals. The forcing PS consists
of functions from elements of S to 2, ordered by inclusion:

PS = {p : X → {0, 1} | X ∈ S}

p ≤ q ⇐⇒ p ⊇ q.

Definition 3.2 Let K be any infinite set of ordinals. A forcing to add a subset of
K by partial functions is any forcing of the form PS where S ⊆ P (K ) and S has the
following properties:

1. X ∈ S & Y ⊆ X H⇒ Y ∈ S;
2. ∅ ∈ S & K 6∈ S;
3. X ∈ S & α ∈ K H⇒ X ∪ {α} ∈ S;
4. X ∈ S & Y ⊆ K & |Y | < |K | H⇒ X ∪ Y ∈ S.

Note that a forcing to add a subset of K by partial functions does in fact add a generic
characteristic function g : K → 2, defined by g =

⋃
G.

Theorem 3.3 Let M be a model of ZFC, and let K be an uncountable set in M.
No forcing in M to add a subset of K by partial functions adds a generic function g
of minimal degree over M.

In fact, if |K | = κ , there is a set f such that

M ⊂ M[ f ] ⊂ M[g]

and f is equivalent over M to a subset of κ .

Proof We exhibit a set of intermediate degree, that is, a set f such that M ⊂ M[ f ]

⊂ M[g]. As M is a model of choice, we can identify K with an uncountable cardinal
κ . In M , for each α < κ , define an equivalence relation on functions from α to 2 by

h ≡
∗ g ⇐⇒ |{β | h(β) 6= g(β)}| < ω.

Then choose a representative for each equivalence class, and for h : α → 2, let h∗

denote the chosen representative of the equivalence class of h.
By condition (4) of Definition 3.2, if g is the generic function from κ to 2 added

by forcing with PS , then for each α < κ , we have that g � α ∈ M . Define a function
f on κ by

f (α) = (g � α)∗.

Let ḟ be a term in the forcing language representing f . We will show that f 6∈ M
and g 6∈ M[ f ].

First, suppose that p ||− ḟ = k for some function k ∈ M . The properties of S
guarantee that κ − dom(p) is uncountable, hence there is some α < κ for which
α −dom(p) is infinite. Also, dom(p)∪α ∈ S. Therefore, we can extend p to q such
that α ⊂ dom(q) and q � α 6≡

∗ k(α). Thus

q ||− ḟ (α) = (g � α)∗ = (q � α)∗ 6= k(α),

contradicting our assumption on p. Hence f 6∈ M .
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Second, suppose that τ̇ f is some term in the forcing language for an element of
M[ f ] and that p ||− g = τ̇ f . Let β be any element of κ not in the domain of p, and
define a “bit-switching” automorphism of the forcing partial order, ϕ, by

dom(ϕ(q)) = dom(q)

ϕ(q)(γ ) =

{
q(γ ) γ 6= β;

1 − q(β) γ = β.

Note that ϕ(p) = p.
Let G be a PS-generic containing p, and G be the image of G under ϕ. Both G

and G are generics containing p, their respective generic functions g and g differ
at exactly one point (β), and therefore their respective interpretations of the term ḟ ,
namely, f and f , are equal. Hence

τ̇ f = τ̇ f .

However, since both generics contain p, we have

g = τ̇ f & g = τ̇ f .

As g 6= g, this is a contradiction; hence g 6∈ M[ f ]. �

The proof of Theorem 3.3 implicitly assumes that any element of M[ f ] can be named
by a term τ̇ f in the forcing language whose interpretation in M[G] depends only on
f . This follows from Proposition 2.4; the terms in question are terms τ̇ f such that,
for some Y ∈ M and some ordinal γ , it is forced that τ̇ f is the γth element in
the canonical well-ordering of L[ f, Y ] (or, literally, of L[X, Y ] where X is a set of
ordinals coding f in some predetermined fashion).

Our remaining remarks concern the desirability of the conditions in Definition 3.2
and the possibility of stating Theorem 3.3 in greater generality.

First, we consider the conditions in Definition 3.2. Condition (1) is innocuous: If
S does not satisfy (1), we define

T = {Y | (∃X ∈ S) (Y ⊆ X)}.

Then T does satisfy (1), and the forcings PS and PT are equivalent; PS is a dense
subset of PT . Given condition (1), conditions (2) and (3) are necessary to guarantee
that if G is generic over M for PS , and g =

⋃
G, then g is in fact a function from

all of K to 2, and
M[g] 6= M.

Condition (4) implies that if Y ⊂ K is of smaller cardinality than K , then g � Y is
in the ground model; that is, PS is essentially a forcing to add a subset of K , and
not a subset of something smaller. This is intended to rule out examples such as the
following: Suppose K = ω1 and I is some ideal on ω and

S = {X ⊂ ω1 | ω ∩ X ∈ I}.

Then PS is equivalent to a Grigorieff forcing on ω, which we know may add a generic
real of minimal degree.

In the statement of condition (4), |Y | < |K | can be replaced by “Y is count-
able” and the first part of the theorem still holds. The second holds as well provided
κω

= κ .
Condition (4) can be shown to be irrelevant in the following sense: If S satisfies

(1)–(3), g is a generic function on K added by PS , and g is of minimal degree, then
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for some Y ⊂ K , the restriction g � Y is a generic function added by PT , where T
is a collection of subsets of Y that satisfies (1)–(4) (with K replaced by Y ). Thus, by
the theorem, Y is in fact countable and g � Y is (essentially) a real added by forcing
with partial functions. By the minimality of g, we have that g is equivalent to g � Y ,
so g is essentially the result of adding a real by forcing with partial functions.

At the cost of adding undesirable complexity, Theorem 3.3 can be extended to
a wider class of forcings. For example, we can allow only partial functions with
certain properties, or we can add to a condition p a side condition determining which
elements of S can be the domain of an extension of p. The important features (again
identifying K with κ) are that g � α ∈ M for α < κ (so that f can be defined),
that for any condition p and sufficiently large α < κ , there are extensions q and
r of p whose domains contain α and such that q � α 6≡

∗ r � α (so that one can
prove f 6∈ M), and that the bit-flipping function defined in the proof is in fact an
automorphism of the forcing partial order (so that one can prove g 6∈ M[ f ]).
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