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Relative Randomness and Cardinality

George Barmpalias

Abstract A set B ⊆ N is called low for Martin-Löf random if every Martin-
Löf random set is also Martin-Löf random relative to B. We show that a 10

2 set B
is low for Martin-Löf random if and only if the class of oracles which compress
less efficiently than B, namely, the class

CB
= {A | ∀n K B(n) ≤

+ K A(n)}

is countable (where K denotes the prefix-free complexity and ≤
+ denotes in-

equality modulo a constant). It follows that 10
2 is the largest arithmetical class

with this property and if CB is uncountable, it contains a perfect 50
1 set of reals.

The proof introduces a new method for constructing nontrivial reals below a 10
2

set which is not low for Martin-Löf random.

1 Introduction

One of the most popular approaches to the definition of an algorithmically random
sequence is the so-called measure-theoretic paradigm. According to this doctrine, a
random sequence should have certain stochastic properties. For example, it should
have about as many 0s as 1s. This approach can be traced at least back to von Mises’
work [25]. Church [6] built on these ideas and his main contribution to this area
was to make the connection with computability theory. Later Martin-Löf [17] gave
a definitive mathematical definition of a random sequence by specifying a canonical
countable family of null sets and calling a sequence random when it does not belong
to any member of this family. This family is the collection of effectively null sets,
that is, sets of the form ∩ jU j where (U j ) is a uniform sequence of 60

1 classes such
that µ(U j ) < 2− j−1. The idea behind this definition is that each member of the
canonical family represents a stochastic test which looks for special properties of
sequences. The sequences which have algorithmically special features will belong
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to a member of this family; hence, they will not be random, and vice versa. These
sequences are called Martin-Löf random.

Kolmogorov [11] proposed that a string (a finite sequence) is random if it does
not have a short description. That is, any program that generates it is more or less as
long as the sequence itself. Levin [15] and Chaitin [5] required that the underlying
machine which gives descriptions must be prefix-free; that is, it does not use two pro-
grams, one of which is an extension of the other, to describe different strings. They
also proposed that an infinite sequence A is random if its initial segments have maxi-
mal descriptive complexity (modulo a constant) with respect to prefix-free machines;
that is, n ≤

+ K (A � n) for every n ∈ N, where ≤
+ means that the inequality ≤ holds

for all n ∈ N provided that we add an integer constant on one side of it, and K (σ ) is
the prefix-free complexity of a string σ : the length of the shortest string τ in the do-
main of the universal1 prefix-free machine M such that M(τ ) = σ . In other words,
a sequence is random if its initial segments are incompressible. Let us call such
sequences Kolmogorov-Levin-Chaitin random.

The following result of Schnorr showed that these two approaches are equivalent,
thus demonstrating the robustness of this mathematical concept of randomness.

Theorem 1.1 (Schnorr, see Chaitin [5]) A sequence is Martin-Löf random if and
only if it is Kolmogorov-Levin-Chaitin random.

For an exposition of the basic concepts and results of algorithmic randomness we
refer to [7] and for the history of the subject we refer to [16; 26; 14]. The definitions
of algorithmic randomness mentioned above relativize to any oracle X ∈ 2ω in the
same way that Turing computations relativize, thus forming the base of a theory
of relative randomness. In particular, given an oracle X let us denote the class of
random sequences relative to X by MLRX (and MLR = MLR∅)2 and the prefix-free
complexity relative to X by K X . The obvious way to compare the strength of two
oracles A, B with respect to relative randomness (as opposed to, for example, relative
computation) is to say that A is weaker than B in the case that every sequence which
is derandomized by A is also derandomized by B. Here an oracle derandomizes a
sequence if the latter has some special properties relative to the oracle. Also, A is
weaker than B as to the ability to compress strings if modulo a constant every string
gets a shorter prefix-free description relative to B than it does relative to A. These
comparison relations between oracles were defined formally by Nies [19].

Definition 1.2 (Nies [19]) We say that A ≤L R B if every Martin-Löf random set
relative to B is also Martin-Löf random relative to A. We say that A ≤L K B if
K B(σ ) ≤

+ K A(σ ) for all σ ∈ 2<ω.

The relation ≤L R was studied in [2; 3; 23]. The reals B such that MLR ⊆ MLRB

(i.e., B ≤L R ∅) are sometimes called low for random.
The analogue of Schnorr’s theorem for relative randomness was recently given by

Kjos-Hanssen/Miller/Solomon.

Theorem 1.3 (Kjos-Hanssen/Miller/Solomon [9]) The relations ≤L R and ≤L K are
equal.

This result demonstrates that this relation is a natural and robust way to study relative
randomness. The following, then, is a basic question about relative randomness.
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Question 1.4 Given an oracle B ∈ 2ω, how many oracles can compress at most
as well as B?

According to the discussion above, this is equivalent to asking how many A ∈ 2ω are
there such that K B(σ ) ≤

+ K A(σ ) for all σ ∈ 2<ω, or even what is the cardinality
of the class

CB
= {A | MLRB

⊆ MLRA
}. (1.1)

We notice that CB is Borel; hence, it is either countable or it contains a perfect set.
Let us give a brief history of the attempts that have taken place in order to answer
this question. We recall that a set B is low for Martin-Löf random if MLR ⊆ MLRB ;
that is, every Martin-Löf random set is also Martin-Löf random relative to B. This
notion was introduced in [13], where a noncomputable c.e. set with this property
was constructed. In the list of open questions on randomness [1], Question 4.4 asked
about the cardinality of C∅ and whether this is a subclass of 10

2. Nies [19] gave a
positive answer (see [2] for a direct proof), thus determining the cardinality of CB for
B = ∅. On the other hand, in [2] it was shown that CB is uncountable for B = ∅′

and more generally for B in GL2, that is, such that (B ⊕ ∅′)′ <T B ′′. A notion
similar to lowness for Martin-Löf randomness, but weaker, was introduced in [22].
Recall the halting probability � of a universal prefix-free machine. A set B is low for
� if � is random relative to B. Miller [18] showed that CB is countable whenever
B is low for �. This result prompted him to conjecture that CB is countable exactly
when B is low for �, but this remains unknown. Notice that since every 2-random
is low for � (see [22]) the class CB is countable for almost all B (all but a set of
measure 0). As far as local degree structures are concerned, in [3] it was shown that
there is a superlow c.e. set B such that CB contains a perfect 50

1 class. Here we show
the following definitive result for the case when the oracle is 10

2.

Theorem 1.5 If B is 10
2 and not low for Martin-Löf random then CB contains a

perfect 50
1 class.

The proof of Theorem 1.5 makes use of a new method for constructing reals with
certain properties below a 10

2 set B which is not low for Martin-Löf random. This
can be viewed as a permitting technique, with some similarities but a lot of differ-
ences to the simple, promptly simple permitting (see [24]) and the permitting of 10

2
fixed point-free reals (see [12]).

Corollary 1.6 If B is 10
2, then B is low for Martin-Löf random if and only if CB

is countable. Furthermore, if CB is uncountable then it contains a perfect 50
1 set of

reals.

Proof One direction of the first claim follows from the result in [19] that if B is
low for Martin-Löf random then CB is a subclass of 10

2, hence countable. The other
direction and the second claim follows from Theorem 1.5. �

It is known from [22] that there are low for � reals B (even in 60
2 ) which are not

low for random. Then the above-mentioned result of Miller [18] shows that 10
2 is

the largest arithmetical class with the property of the above corollary.
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2 Preliminaries

In the following, we use c.e. sets of strings to generate subclasses of the Can-
tor space. For example, a binary string σ is often identified with the clopen set
[σ ] = {X | σ ⊂ X} and more generally, a set of strings M is often identified with
the open set

S(M) = {X ∈ 2ω
| ∃n(X � n ∈ M)}

of the Cantor space. Also, Boolean operations, inclusion and measure on sets of
strings refer to the sets of reals that they represent. Thus, if M, N ⊆ 2<ω, then
we define µ(M) := µ(S(M)) (where µ is the Lebesgue measure), M ⊆ N if and
only if S(M) ⊆ S(N ), M ∩ N := S(M) ∩ S(N ), M ∪ N := S(M) ∪ S(N ), and
M − N := S(M) − S(N ).

An oracle 60
1 class V is an oracle Turing machine which, given an oracle A

outputs a set of finite binary strings V A, representing an open subset of the space 2ω.
The oracle class V can be seen as a c.e. set of axioms 〈τ, σ 〉 (where τ, σ ∈ 2<ω) so
that

V A
= {σ | ∃τ(τ ⊂ A ∧ 〈τ, σ 〉 ∈ V )}

V ρ
= {σ | ∃τ(τ ⊆ ρ ∧ 〈τ, σ 〉 ∈ V )}

for A ∈ 2ω, ρ ∈ 2<ω. We denote the finite approximation of a parameter at stage s
of the universal enumeration of c.e. sets by the suffix [s]. An oracle Martin-Löf test
(Ue) is a uniform sequence of oracle 60

1 classes Ue such that µ(U X
e ) < 2−(e+1) and

U X
e ⊇ U X

e+1 for all X ∈ 2ω, e ∈ N. A real A is called B-random if for every oracle
Martin-Löf test (Ue) we have A /∈ ∩eU B

e . A universal oracle Martin-Löf test is an
oracle Martin-Löf test (Ue) such that for every A, B ∈ 2ω, A is B-random if and
only if A 6∈ ∩eU B

e .
In [10] (see [2] for a different proof) it was shown that MLRB

⊆ MLRA if and only
if for some member U of a universal oracle Martin-Löf test, there is a 60

1(B) class
V B with U A

⊆ V B and µ(V B) < 1. In the following we fix U to be the second
member of a universal oracle Martin-Löf test so that µ(U X ) ≤ 2−2 for all X ∈ 2ω.
We can choose U and the oracle test (Ui ) which is used below such that U τ , U τ

i are
clopen sets which are uniformly computable in i, τ (see [2]). By an L R reduction we
mean an oracle 60

1 class V such that µ(V X ) < 1 for all X ∈ 2ω, and X is reducible
to Y via this reduction if U X

⊆ V Y . The following lemma is implicit in [2].

Lemma 2.1 Let U be a member of an oracle Martin-Löf test, B ∈ 2ω and m ∈ N.
Then there exists n ∈ N such that for all s, t > n we have µ(U B�s

− U B�t ) < 2−m .

To show Lemma 2.1 we just have to notice that the negation of it would imply that
µ(U B) = ∞, which is absurd. For background on relative randomness via Martin-
Löf tests and even simple versions of some of the methods that are used in this paper
we refer to [2; 3]. In the following, trees are thought of as growing upward.

3 Proof of Theorem 1.5

Given a 10
2 set B which is not low for Martin-Löf random (and an effective ap-

proximation of it) we need to construct a perfect 50
1 class [T ] (where T is a tree

representing the class and [T ] the infinite paths through T ) such that X ∈ CB (i.e.,
X ≤L R B) for all X ∈ [T ]. We will do this via a single L R reduction; that is, we will
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construct an oracle 60
1 class V with µ(V Z ) < 1 for all Z ∈ 2ω such that U X

⊆ V B

for all X ∈ [T ].
A standard way to construct a 50

1 class, taken from [8], is the following. We will
define an effective sequence of 1–1 maps T [s] : 2<ω

→ 2<ω which preserve the
ordering and compatibility relations. These can be viewed as uniformly computable
perfect trees, and we can consider the set of infinite paths through them:

[T [s]] = {X | ∀n∃σ (|σ | = n ∧ Tσ [s] ⊇ X � n)}

which is a 50
1 class. We will also ensure that [T [s + 1]] ⊆ [T [s]] for each s ∈ N

and that Tσ = lims Tσ [s] exists for each σ ∈ 2<ω. This ensures that

[T ] = ∩s[T [s]]

is a perfect 50
1 class, where T is the limit map σ → Tσ . Essentially we construct

an effective monotone sequence of perfect computable trees T [s] converging to a
perfect tree T such that [T ] is a 50

1 class. In order to achieve U X
⊆ V B for all

X ∈ [T ] we have to make the tree T very thin, in some sense. Indeed, since T is
perfect there are continuum many paths through it and so ∪X∈[T ]U X is very likely to
have large measure, but we need to achieve µ(V B) < 1. This conflict is, in a way,
similar to the conflict that we meet when we wish to construct a perfect 50

1 class
which only contains paths with “low” information. For example, consider a direct
construction of a perfect 50

1 class which only contains generalized low paths (see
the methodology in [3], although this was originally proved indirectly in [4]) or even
one which only contains jump-traceable paths, which was constructed in [20]. More
related is the case of Theorem 1.5 for B = ∅′ which was proved in [2; 3].

Let us denote concatenation of strings by ∗. We let T [0] be the identity map.
If we could control B (an assumption which roughly corresponds to the case
where B = ∅′), at stage s0 we would choose some σ ∈ 2<ω and enumerate
U Tσ∗i [s0] − U Tσ [s0] into V B (by enumerating certain strings into V B) for i = 0, 1
with big use cσ . If at some later stage s we have µ(U Tρ [s]

− U Tσ [s]) ≥ 2−2|σ |−2

for some ρ ⊃ σ with |ρ| < s we would redefine Tσ∗η[s + 1] = Tρ∗η[s] for all
η ∈ 2<ω, enumerate cσ into B (evicting U Tσ∗i [s0] −U Tσ [s0] from V B) and enumerate
U Tσ∗i [s+1]

− U Tσ [s+1] into V B for i = 0, 1 with new big use cσ , and so on. Since
µ(Uβ) < 2−2 there can be at most 22|σ | changes in the approximation of Tσ (given a
final approximation of Tσ− , where σ− denotes the predecessor of σ ) and eventually
Tσ will be defined such that µ(U Tρ − U Tσ ) < 2−2|σ |−2 for all ρ ⊃ σ .

These procedures can work simultaneously for all σ ∈ 2<ω with a typical finite
injury effect: when Tσ is redefined, Tρ is redefined for all ρ ⊇ σ and some number
cσ enters B in order to evict the intervals it contributed to V B under the previous
definition. This process makes the tree thinner and thinner, but eventually all nodes
reach a limit, thus defining a perfect tree T .

Figure 1 shows the full binary tree, and inside it one can see a thinner subtree,
which is T . The oracle 60

1 class U can be viewed as a computable assignment of
measure through the paths of the full binary tree. The first column next to the tree
of Figure 1 shows an upper bound on the measure assigned to the various segments
of the paths through T (the bound is uniform for each level of the tree). The second
column shows the number of segments (which is the same as the number of paths)
of each level of T . If

Cn = {Tσ | σ ∈ 2<ω
∧ |σ | ≤ n}
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· 21

· 22

· 23

· 2n

2−2

2−4

2−6

2−2n

Figure 1 Building a perfect tree which is thin in the sense that it is
assigned a bounded amount of measure with respect to the oracle
60

1 class U . The figure shows the thin tree as a substree of the full
binary tree.

and An = ∪τ∈Cn U τ , we have Cn ⊆ Cn+1, An ⊆ An+1, and V B
= ∪n An . By

induction µ(An) <
∑n

i=0 2i
· 2−(2i+2)

= 2−1 and so µ(V B) ≤ 2−1. For a de-
tailed presentation of this argument we refer to [2] (where it is presented as an oracle
argument) or [3] (where it is presented dynamically, as described here).

Now the difficulty is that instead of being able to control B, we merely have the
information that B is not low for random. In the argument above, V B consisted of
the union of Uβ for β ∈ T because we were able to evict irrelevant strings which
entered V B by the strategy of some Tσ at a time when Tτ , for some τ ⊆ σ had
not taken its final value. In the general case we will not be able to do this, so
V B

= (∪β∈T Uβ) ∪ Junk where Junk contains the reals which became irrelevant
and were not evicted from V B . We will refine the above ideas and use the fact that B
is not low for random (instead of explicitly enumerating into it) in order to achieve
µ(V B) < 1. Let (U j ) be a universal oracle Martin-Löf test and fix a 10

2 approxima-
tion (B[s]) to B.

For each σ ∈ 2<ω we often identify Tσ with the strategy to define the value of T
on σ . Strategy Tσ has a quota parameter pσ ∈ N. It will make use of Upσ and will
construct a 60

1 class Eσ which “attempts” to cover U B
pσ

. It will also enumerate an
oracle 60

1 class Vσ and its goals will be the following.

Goals of strategy Tσ

(i) Tσ [s] reaches a limit as s → ∞.
(ii) U Tσ∗i − U Tσ ⊆ V B

σ for i = 0, 1.
(iii) µ(V X

σ ) < µ(U X
pσ

) for all X ∈ 2ω.

Eventually we set V B
= V−1 ∪ (∪σ∈2<ω V B

σ ), where V−1 = lims U T∅[s] which is a
60

1 class (as T∅ is approximated monotonically) and µ(V−1) < 2−2. Note that the
third clause implies that µ(V B

σ ) < 2−pσ which, by appropriate choice of the quotas
pσ , will be used to show that µ(V B) < 1. When all Tσ strategies are put together
the finite injury effect will cause some pσ to change finitely many times.
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3.1 Strategy Tσ in isolation In this section we restrict our attention to Tρ for
ρ ⊇ σ . We define a strategy which approximates Tσ , satisfying the goals outlined
above, without any assumptions about the approximation of Tρ , ρ ⊃ σ other than
monotonicity and the preservation of ordering and compatibility relations in T [s]
restricted to arguments ⊇ σ . In particular, we do not assume the convergence of Tρ

for any ρ ⊆ σ . Order the strings as usual, first by length and then lexicographically.
We assume that pσ is a given constant. We will construct an auxiliary oracle 60

1
class Fσ such that Fτ

σ ⊆ U τ
pσ

and µ(Fτ
σ ) = µ(V τ

σ ) for all τ ∈ 2<ω. In this way,
every bit of measure in Vσ will be tied up with a bit of equal measure in Upσ . For
each s we let ησ [s] be the least η ⊂ B[s] such that µ(Uη

pσ −Fη
σ [s]) > 0 (equivalently,

µ(Uη
pσ ) − µ(V η

σ ) > 0). Also let Cσ [s] = Uησ [s]
pσ − U (ησ [s])−

pσ .
The main idea is that we wish to define Tσ in a way such that U Tρ − U Tσ is very

small for all ρ ⊃ σ . As discussed above, this is possible but we also wish to ensure
that Zi = U Tσ∗i − U Tσ ⊆ V B

σ for i = 0, 1 while keeping µ(V B
σ ) small. We demand

U Tρ − U Tσ be very small (an amount corresponding to the measure of some interval
Cσ [s] which seems to be in the universal class Upσ with use ησ [s]) and enumerate
Zi into V B

σ [s] with the same use ησ [s]. If our demand was too strong and we need
to redefine Tσ , the amount enumerated into V B

σ [s] is useless and we wish to remove
it. So we put Cσ [s] into Eσ , thus threatening to cover U B

pσ
. Either B will change

so that the useless amount is removed from V B
σ , or Eσ will cover a part of U B

pσ
.

Eventually we can argue that either V B does not contain much useless measure, or
Eσ covers a universal class relative to B. In the latter case µ(Eσ ) = 1 since B is not
low for random and this will imply that for the path β carved by the redefinitions of
Tσ , Uβ has too much measure, which is a contradiction as µ(Uβ) < 2−2. The big
picture can be described as follows. The fact that B is not low for random means that
any 60

1 cover Eσ of the universal class relative to B must have measure 1. While
we try to find a final value for Tσ , we enumerate a cover Eσ in such a way that
each time we move Tσ , some measure is added in Eσ and an analogous amount of
measure is added in U Tσ (for the new value of Tσ , which extends the previous one).
The construction operates in such a way that if Tσ moves indefinitely, Eσ covers the
universal class relative to B. This leads to a contradiction as the measure of it must
be 1, and roughly the same amount of measure (say, a half of the previous amount)
must occur in U Tσ . We now give the formal details of strategy Tσ . In the following
module and the construction, when a parameter is not explicitly redefined it retains
its previous value.

Tσ routine at stage s + 1
1. If for some ρ ⊃ σ of length s +1 we have µ(U Tρ [s]

−U Tσ [s]) ≥ µ(Cσ [s])/2,
pick the least such and define Tσ∗τ [s + 1] = Tρ∗τ [s] for all τ ∈ 2<ω.
Also enumerate Cσ [s] into Eσ , enumerate Uησ [s]

pσ into Fησ [s]
σ and also some

dummy clopen set into V ησ [s]
σ in order to make µ(Fησ [s]

σ ) = µ(V ησ [s]
σ ).

2. Otherwise, enumerate Mi = (U Tσ∗i [s] − U Tσ [s]) − V ησ [s]
σ [s] into V ησ [s]

σ for
i = 0, 1, and enumerate a clopen subset of Cσ [s] − Fησ [s]

σ [s] of measure
µ(M0 ∪ M1) into Fησ [s]

σ .

Verification of Tσ routine We verify that the Tσ routine satisfies its goals
of strategy Tσ as mentioned above. By induction on the stages it follows that
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µ(V τ
σ [s]) = µ(Fτ

σ [s]) for all s and the second clause of the Tσ routine is well
defined. Indeed, supposing this for stages ≤ s, since µ(V τ

σ [s]) = µ(Fτ
σ [s]), if the

second clause was applied at s+1 we must have µ(M0∪M1) < µ(Cσ [s]−Fησ [s]
σ [s])

because otherwise the first clause would apply. On the other hand, if µ(Fτ
σ [s]) in-

creases at s + 1, it is clear that µ(V τ
σ [s]) will increase by the same amount, and the

induction step is complete. It is also clear from the Tσ routine that Fτ
σ [s] ⊆ U τ

pσ
for

all s ∈ N and τ ∈ 2<ω. Hence µ(V X
σ ) ≤ µ(U X

pσ
) for all X ∈ 2ω.

Second, we show that Tσ will reach a final value. Suppose for a contradiction that
lims Tσ [s] = X , where X is an infinite string. Then Cσ [s] does not reach a limit, as
in that case µ(U X ) = ∞ by the first step of the Tσ routine (each time Tσ [s] changes,
µ(U Tσ ) increases by µ(Cσ [s])). We claim that U B

pσ
⊆ Eσ . Indeed, if this was not

the case consider the least τ ⊂ B such that U τ
pσ

6⊆ Eσ . We must have U τ
pσ

−Fτ
σ 6= ∅

because the only place in the Tσ routine where all of U τ
pσ

is enumerated into Fτ
σ is

the first clause, but in that case U τ
pσ

is enumerated in Eσ . When B � |τ | settles,
the value of ησ [s] would settle on τ and so Cσ [s] would reach a limit, and this is
impossible by the discussion above. Hence U B

pσ
⊆ Eσ and since MLR 6⊆ MLRB

(by [10]) we have µ(Eσ ) = 1. But by the Tσ routine, every time µ(Eσ ) increases
by some amount r ∈ Q, U Tσ increases by at least r/2. So µ(U Tσ ) ≥ 1/2 which
contradicts the choice of U .

Next we show that ησ [s] reaches a limit. If this did not happen, by the fact that
B[s] converges to B we have that U τ

pσ
= Fτ

σ for all τ ⊂ B. Since Upσ is universal

there are infinitely many τ ⊂ B such that U τ
pσ

−U τ−

pσ
6= ∅. Again by the convergence

of B[s] to B we have that for each such τ there is some stage s such that ησ [s] = τ .
So

∀n ∃s [ησ [s] ⊂ B ∧ |ησ [s]| > n]. (3.1)

Choose a stage s0 such that Tσ [s] = Tσ [s0] for all s ≥ s0, and choose m ∈ N, τ0 ⊃ σ

such that µ(U Tτ0 [s0] − U Tσ [s0]) > 2−m . Now by Lemma 2.1 choose some n ∈ N

such that µ(U τ
− U τ−

) < 2−m for all τ ⊂ B of length > n. By (3.1) there is some
s > max{s0, |τ0|} such that ησ [s] ⊂ B, |ησ [s]| > n and since µ(Cσ [s]) < 2−m and
|τ0| < s the value of Tσ would change at s > s0 by clause (2) of the Tσ routine, a
contradiction.

Finally we show that for the final values of Tσ , Tσ∗i we have U Tσ∗i − U Tσ ⊆ V B
σ

(the values Tσ∗i , i = 0, 1 may be infinite limits as the Tσ routine does not assume
that Tσ∗i [s] converges after finitely many stages). Let t0 be the least stage such that
ησ [t] = ησ [t0] for all t ≥ t0. Then Cσ [t] = Cσ [t0] for all t ≥ t0 and U Tσ∗i −U Tσ will
keep on being enumerated into V ησ [t0]

σ by clause 2 of the Tσ routine. But ησ [t0] ⊂ B,
so U Tσ∗i − U Tσ ⊆ V B

σ .

3.2 All strategies together The Tσ routines can work together with a finite injury
effect. We let pσ, j = 2|σ |+ j + 4 and nσ [s] is the number of times that Tσ has been
injured by stage s. Also, the routines will use Eσ, j , Fσ, j , Vσ, j , where j = nσ [s],
at stage s + 1 (i.e., they change parameters each time they are injured). So we also
need to redefine ησ [s] to be the least η ⊂ B[s] such that µ(Uη

pσ, j − Fη
σ, j [s]) > 0

(equivalently, µ(Uη
pσ, j ) − µ(V η

σ, j ) > 0) and also let Cσ [s] = Uησ [s]
pσ, j − U (ησ [s])−

pσ, j ,
where j = nσ [s]. Eventually we define Vσ = ∪s Vσ, js , where js = nσ [s] (so that
they are 60

1 ).
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General Tσ routine at stage s + 1 Let j = nσ [s].

1. If there is some τ ⊃ σ such that |τ | = s + 1 and µ(U Tτ [s]
− U Tσ [s]) ≥

µ(Cσ [s])/2, define Tσ∗ρ[s + 1] = Tτ∗ρ[s] for all ρ ∈ 2<ω. Also enumerate
Cσ [s] into Eσ, j , enumerate Uησ [s]

pσ, j into Fησ [s]
σ, j and also some dummy clopen

set into V ησ [s]
σ, j in order to make µ(Fησ [s]

σ, j ) = µ(V ησ [s]
σ, j ).

2. Otherwise, enumerate Mi = (U Tσ∗i [s] − U Tσ [s]) − V ησ [s]
σ, j [s] into V ησ [s]

σ, j for

i = 0, 1, and enumerate a clopen subset of Cσ [s] − Fησ [s]
σ, j [s] of measure

µ(M0 ∪ M1) into Fησ [s]
σ, j .

We say that Tσ requires attention at stage s + 1 if one of the following holds:

(i) There is some τ ⊃ σ of length s + 1 such that µ(U Tτ [s]
− U Tσ [s]) ≥

µ(Cσ [s])/2.
(ii) Tσ∗i has changed value for i = 0 or i = 1 since the last stage where Tσ

received attention.

Construction At stage s +1 let σ be the least string such that Tσ requires attention.
Run general routine Tσ and if clause 1 of the routine was applied (i.e., if it required
attention through clause (i)) for all τ ⊃ σ say that Tτ is injured.

Verification By inductively applying the verification of the Tσ routine of Subsec-
tion 3.1 we have that Tσ converges for all σ ∈ 2<ω. So T is a perfect tree, and [T ] is
a 50

1 class since [T ] = ∩s[T [s]] and [T [n + 1]] ⊆ [T [n]] for all n ∈ N. It remains
to show that µ(V B) < 1 and that Uβ

⊆ V B for all β ∈ [T ]. By inductively applying
the verification of the Tσ routine of Subsection 3.1 we have that µ(V ρ

σ, js ) ≤ µ(Uρ
pσ, js

)

for all s and σ, ρ ∈ 2<ω, where js = nσ [s]. If Jσ = {nσ [s] | s ∈ N}, then

µ(V ρ
σ ) ≤

∑
j∈Jσ

µ(Uρ
2|σ |+ j+4) ≤

∑
j∈Jσ

2−2|σ |− j−4
≤ 2−2|σ |−3.

Hence, µ(V ρ) ≤ 2−2
+

∑
σ∈2<ω 2−2|σ |−3

≤ 2−1. In particular, µ(V B) < 1.
Finally, by inductively applying the verification of the Tσ routine we get that
U Tσ∗i − U Tσ ⊂ V B

σ,nσ
for all σ ∈ 2<ω, i = 0, 1, where Tσ∗i = lims Tσ∗i [s],

Tσ = lims Tσ∗i [s], and nσ = lims nσ [s]. Clearly, we also have U T∅ ⊆ V−1. So
Uβ

⊆ V B for all β ∈ [T ], and this completes the proof. We wish to conclude with a
question.

Question 3.1 Can the 50
1 class [T ] of Theorem 1.5 be made such that it contains

no low for Martin-Löf random paths?

Notes

1. It is a well-known fact that there is a universal prefix-free machine M , that is, one that
describes strings in an optimal way with respect to any other prefix-free machine N and
up to a constant: for every finite string σ , if there is a string τ such that N (τ ) = σ then
there is some τ ′ with |τ ′

| ≤
+

|τ | such that M(τ ′) = σ .

2. The notation MLR is taken from [21].
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