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Effective Packing Dimension and Traceability

Rod Downey and Keng Meng Ng

Abstract We study the Turing degrees which contain a real of effective packing
dimension one. Downey and Greenberg showed that a c.e. degree has effective
packing dimension one if and only if it is not c.e. traceable. In this paper, we
show that this characterization fails in general. We construct a real A ≤T ∅′′

which is hyperimmune-free and not c.e. traceable such that every real α ≤T A
has effective packing dimension 0. We construct a real B ≤T ∅′ which is not
c.e. traceable such that every real α ≤T B has effective packing dimension 0.

1 Introduction

The concern of this paper is with effective packing dimension. This concept can
be traced back to the work of Borel and Lebesgue who studied measure as a way
of specifying the size of sets. Carathéodory later generalized Lebesgue measure to
the n-dimensional Euclidean space, and this was taken further by Hausdorff [4] who
generalized the notion of s-dimensional measure to include noninteger values for s
in any metric space. In the Cantor space with the clopen topology, this can be viewed
as a scaling of the usual Lebesgue measure by a factor of s in the sense of

µs([σ ]) = 2−s|σ |,

where [σ ] is the clopen set generated by σ and 0 ≤ s ≤ 1. This gave rise to
the concept of classical Hausdorff dimension, which provided a way of classifying
different sets of measure zero based on the intuition that not all null sets are created
equal.

There appeared many other related classical notions of fractional dimensions such
as box-counting dimension and packing dimension. The study of effective notions
of randomness and their relationship with the Turing degrees was initiated by the
early work of de Leeuw, Moore, Shannon, and Shapiro [7]. The effective versions of
these various notions of fractional dimensions have been studied in connection with
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randomness. The best known examples of such effective notions are the effective
Hausdorff and effective packing dimensions.

Hausdorff measure talks about covering the set by open balls from the exterior,
while packing measure considers filling up a set from the interior. One can effectivize
these two notions by looking at covering with 60

1 open sets in the Cantor space
with s-measure. This work took a new direction when various authors Lutz [8; 10],
Staiger [15], Mayordomo [11], Athreya et al. [1], and Reimann [13] showed that
there were simple characterizations of effective Hausdorff and packing dimensions
using Kolmogorov complexity. Indeed, the effective Hausdorff dimension of a real
A can be written as

dimH (A) = lim inf
n→∞

K (A�n)

n
,

while its dual notion, the effective packing dimension is

dimp(A) = lim sup
n→∞

K (A�n)

n
.

We also refer the reader to Lutz [9] for a characterization in terms of martingales.
We mention here that there is a natural way to define the effective dimension of any
countable collection of reals by looking at the lim sup of the effective dimensions of
its members. In particular, one can talk about the effective dimension of a Turing
degree (or a lower cone with respect to Turing reducibility).

Effective packing dimension is a very natural notion of effective dimension to
study; indeed the reals of effective packing dimension 1 can be described as one
where “measure meets category.” In particular, this property is shared by both the
Martin-Löf random reals, as well as reals which were sufficiently generic (for in-
stance, 2-generic). Consequently, the class of reals having effective packing dimen-
sion one is both comeager and of measure 1.

Unlike effective Hausdorff dimension, the notion of effective packing dimension
is much more tractable. Fortnow, Hitchcock, Pavan, Vinodchandran, and Wang [3]
proved that the dimension extraction property was true for effective packing dimen-
sion with respect to weak truth table reducibility.

Theorem 1.1 (Fortnow et al [3]) For every ε > 0 and every A, if dimP (A) > 0,
then there is B ≡wtt A such that dimP (B) > 1 − ε.

Hence their result gives a 0-1 law on the effective packing dimension of wtt
degrees—this can be only 0 or 1. In contrast, Miller [12] recently solved a long-
standing question on “broken Hausdorff dimension,” where he constructed a 10

2
degree with effective Hausdorff dimension 1

2 , but does not compute any real of a
higher Hausdorff dimension.

It is still open if every degree of effective packing dimension one contains a real of
effective packing dimension one, and this seems to be a difficult problem. Our task
at hand is less ambitious; we are interested in answering a more general question:
which Turing degrees are of effective packing dimension 1? Downey and Greenberg
gave a classification in the case of c.e. degrees.

Theorem 1.2 (Downey and Greenberg [2]) A c.e. degree contains a real with pos-
itive effective packing dimension if and only if it is array noncomputable.
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Recall that the array computable degrees were the degrees a such that there is some
f ≤wtt ∅′ which dominates every a-computable function. A degree is array non-
computable if it is not array computable. Their result was related to a theorem of
Kummer [6], where he proved a gap phenomenon in the growth of C-complexity.
In particular, he showed that every c.e. array noncomputable degree contains a set
which has infinitely many segments of maximal C-complexity. On the other hand,
every c.e. array computable set has initial segments with C-complexity as close to
log n as we want. Downey and Greenberg’s classification reinforces the fact that
array (non-)computability was intimately related to Kolmogorov complexity.

One would naturally conjecture that the above characterization of Downey and
Greenberg holds in general. Unfortunately this tempting guess does not work out
because there are array computable random degrees (any random hyperimmune-free
degree is an example), so the array noncomputable degrees fail to give a characteriza-
tion. Recall that a set Z is of hyperimmune-free degree, if every function computable
from Z is dominated by a computable function. In fact, the array noncomputable de-
grees also fail to give a characterization within the 10

2 degrees because any superlow
random real is also array computable.

Greenberg and Downey observed that it was easy to generalize Kummer’s Gap
Theorem to a notion called c.e. traceability, which is akin to array computability.
Recall that a degree a is c.e. traceable if there is some computable, nondecreasing,
and unbounded function h such that for all f ≤T a there is a uniformly c.e. se-
quence {Tx } such that for all x , |Tx | ≤ h(x) and f (x) ∈ Tx . This has been studied
by Zambella [18], Terwijn and Zambella [17], and also Ishmukhametov [5] who
showed that in c.e. degrees, array computability coincided with c.e. traceability.
Greenberg and Downey observed that every c.e. traceable set has effective packing
dimension 0.

One might now hope that the weaker notion of being not c.e. traceable would give
a characterization. The degrees which were not c.e. traceable contain all random
degrees, and so the obvious counterexamples for array noncomputability are not rel-
evant. In this paper we show that this feeble conjecture fails. In Theorem 2.1 we first
construct a hyperimmune-free and 10

3 example.

Theorem 2.1 There is a 10
3 real A which is of hyperimmune-free degree and not

c.e. traceable such that every real α ≤T A has effective packing dimension 0.

Since the degrees containing no real of packing dimension 1 may be thought of as
having low algorithmic information content, one might hope to be able to relate this
concept with some known lowness class arising in algorithmic randomness. Theo-
rem 2.1 says that the low for Schnorr random reals fail to give a characterization even
among the hyperimmune-free degrees, because the low for Schnorr random reals are
all computably traceable, and is therefore too strong a notion. It is not clear if there is
any relationship between the degrees of positive effective packing dimension and the
degrees containing a low for Kurtz random (i.e., the hyperimmune-free and non-dnc
degrees).

In Theorem 3.1 we show that the property of being not c.e. traceable fails to give
a characterization among the sets computable from ∅′.

Theorem 3.1 There is a real A ≤T ∅′ which is not c.e. traceable such that every
real α ≤T A has effective packing dimension 0.
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Finally, we ask if there is a combinatorial characterization of the degrees in PD1. By
combinatorial we mean a definition which does not mention K -complexity, nor any
randomness notion.

We associate finite strings with code numbers for them. If σ is a finite string
of positive length then σ− denotes the predecessor of σ . We use |σ | to denote the
length of a finite string and # to denote the cardinality of a finite set. The rest of our
notations are generally standard and follow Soare [14].

2 A 10
3 and Hyperimmune-free Example

Theorem 2.1 There is a 10
3 real A which is of hyperimmune-free degree and not

c.e. traceable such that every real α ≤T A has effective packing dimension 0.

Proof By Theorem 1.1, we only need to ensure that dimP (α) ≤
1
2 for every

α ≤T A. We build the set A of HIF degree by an oracle construction and we define
a total function g = 0A satisfying the requirements

Pe : g(x) 6∈ V e
x for some x,

Ne : if 8A
e is total, then K (8A

e�x ) ≤ x/2 for almost all x .

We let {V e
x }x∈N be the eth c.e. trace such that #V e

x < x for every e, x . We observe that
there are plenty of reals which are of hyperimmune-free degree, but not computably
traceable. For instance, any HIF random real will do, but random reals all have
effective packing dimension 1. On the other hand, the standard construction of a 10

3
real of HIF degree also makes it computably traceable, so one has to go out of the way
to construct such a real directly (see Terwijn’s thesis [16]). The basic idea there is to
work in a tree T where every node at level x has x branches or successors (one could
work in the Cantor space since T is a homeomorphic copy, but it will be notationally
more cumbersome). We have to define the total functional g = 0X externally by
letting 0σ (|σ |) = σ , which will be clearly total along every path X ∈ [T ]. We want
to defeat all possible traces for g, and since T has enough splits at each level we
could kill off enough branches at a certain level in order to diagonalize against the
eth trace. This is reminiscent of a “bushy tree” type construction used to construct
minimal dnc degrees. At the same time we will be able to obtain an upper bound for
the possible values of 8X

e (n) (to force HIF), just by reading it off the tree.
Suppose we now want to combine the above construction with the requirement

Ne. Note that Ne requires us not only to have to keep the initial segment complexity
of A small (which is easy), but rather we need to keep the complexity of 8A

e small.
This creates an additional difficulty, because in general there is no effective relation-
ship between the length of a segment σ , and the length of the use which produces
that segment (i.e., τ such that 8τ

e = σ ). In particular, we could have very long
segments τ such that 8τ_i

e are all different for different values of i such that |8τ_i
e |

is relatively short. Remember that we have to keep enough successors of τ left on
the tree for diagonalization, so we might have to end up issuing many descriptions
witnessing K (8τ_i

e ) ≤
1
2 |8τ_i

e | for many different i . The number of different i
could be too large relative to |8τ_i

e |. The obvious thing to try might be, for instance,
to choose a longer τ so that |8τ_i

e | is longer, and hence, cost less to describe, but
remember that generally at level |τ | we have to keep at least |τ | many successors of
τ left on the tree (since g is, and in fact has to be, defined externally). So generally
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looking for a longer τ doesn’t help, since this also corresponds to having even more
possibilities of |8τ_i

e | for which we have to issue descriptions.
Our solution to this is to gather a majority vote, or consensus. We start with a

tree T which has, at level x , a large number of successors, say x2L(x) many (for
some L(x) to be determined). We will define a computable subtree Te of T by
the following. We may assume that for every x and above every string σ on T we
can always force convergence, that is, find some η ⊃ σ on T such that 8

η
e (x) ↓

(otherwise, we can just take Te to be the full subtree above some node). First pick
a level x0 which will be the first level in Te for which we will put up splits. We
then pick a length L(x0) which is very large relative to x0 and search for strings
σ1 ⊃ 1x01, σ2 ⊃ 1x02, . . . such that 8

σi
e �L(x0)↓, for all i . Since there are x02L(x0)

many different σi , and only at most 2L(x0) many possibilities for 8
σi
e �L(x0), it follows

there is some τ such that 8
σi
e �L(x0)= τ for at least x0 many different σi . Leave

1x0 on Te, as well as the extensions σi which voted for the majority, and kill all
other incomparable nodes. We then move on to the next level x1. This ensures that
the tree Te still has enough splits at infinitely many levels (so that we can proceed
with diagonalization for other P requirements), but yet we are able to restrict the
possibilities for 8e.

Suppose σi1 , . . . , σix0
were the extensions of 1x0 which survived on Te. After

we pick x1 we will repeat the “majority vote” strategy separately above each σi j to
ensure we have enough splits left on Te at level x1 and kill off all other incompara-
ble nodes. We now have η1, η2, . . . , ηx0 ⊃ 8

σi0
e �L(x0) where η j was voted by the

majority of nodes extending σi j . To satisfy Ne we need to issue descriptions for all
possible segments for 8e. There is one segment of length L(x0), x0 many segments
of length L(x1), x0x1 many segments of length L(x2) and so on, for us to describe.
As long L is chosen such that x0 . . . xk2−L(xk )/2 is small, then we will be fine. The
exact details are supplied in the formal construction.

Formal construction For each x ∈ N and rational 0 < δ < 1, we define `(x, δ)

to be the least number larger than 4 − 2 log δ
x x so that x x 2−

1
2 `(x,δ)+2 < δ holds.

This seemingly bizarre choice for ` will become clear later; it is simply a huge num-
ber that bounds everything we need. Define the computable sequence of functions
L1, L2, . . . inductively by

L1(x) = `(x, 2−x ), Ln+1(x) = `(x2L1(x)+···+Ln(x), 2−x ),

for all positive x ∈ N. It is a simple exercise to show that Ln(x) is increasing in
both variables. In this proof, a tree is defined to be a partial computable function
T : ω<ω

7→ ω<ω such that σ ⊂ τ ∧ T (τ ) ↓⇒ T (σ ) ↓⊂ T (τ ), and incomparable
strings map to incomparable strings. A tree T is said to be crowded if it satisfies the
following:

1. T (∅) ↓;
2. if T (σ ) ↓, then T (σ_i) ↓ for all i = 1, · · · , x2L1(x)+···+L |σ |+1(x), where

x = |T (σ )|;
3. if i 6= j , then T (σ_i)�1+|T (σ )| 6= T (σ_ j)�1+|T (σ )|;
4. if T (σ ) ↓ and T (τ ) ↓ and |σ | = |τ |, then |T (σ )| = |T (τ )|;
5. T is defined nowhere else, and is being built up from ∅ by applying rules (1)

to (4).
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Condition (5) compacts the tree in the sense that we eliminate the situation where
we have T (0) ↓ and T (2) ↓ but T (1) ↑. A crowded tree generalizes simultaneously,
to the nonbinary case, both the ideas of having a “perfect” tree as well as having
enough branches at infinitely many levels.

Generate the tree T by letting T (∅) = 1, and inductively if T (σ ) ↓ then let
T (σ_i) = T (σ )_i for i = 1, . . . , x2L1(x)+···+Lx (x) where x = |σ | + 1. T is
in some sense the identity tree, and is clearly crowded. We say that T is the full
crowded tree. Since Ran(T ) is computably homeomorphic to the Cantor space, we
will construct A as an infinite path through Ran(T ). If T is a tree, we let [T ] be
the set of all infinite strings X such that there are infinitely many τ ∈ Ran(T ) such
that τ ⊂ X . Equivalently, [T ] = {X : ∃Y∀nT (Y�n) ⊂ X}. If P and Q are trees,
then we say that P ⊆ Q if for every σ such that P(σ ) ↓, we have some η such that
P(σ ) = Q(η).

The functional 0 is defined as follows: 0σ (x) ↓= σ if σ is on T and |σ | = x .
Clearly 0X is total for any path X ∈ [T ]. During the construction, at each stage s +1
we will define a crowded subtree Ts+1 ⊂ Ts , and let A = ∪s Ts(∅). For each s and k
note that Ts(1k) is always convergent, and if Ts is crowded, then |Ts(σ )| = |Ts(1k)|
for every convergent |σ | = k. If P is a tree we say that σ is on P , or equivalently
σ ∈ P to mean that σ ⊆ P(η) for some η. If P is crowded, then Ran(P) is
computable as a set of nodes, so that the relation σ ∈ P is a computable relation
(given an index for P).

If P is a crowded tree and σ is on P , then we define P̃ as the crowded subtree
of P above σ by the following. Look for the minimal η such that P(η) ⊇ σ . Let
P̃(τ ) = P(η_τ) for all τ , and then we chop off the superfluous branches, that is,
restrict the domain of P̃ sufficiently so as to satisfy condition (2). It is clear that P̃
is crowded as well. This is where we use the idea that crowded trees are “perfect” in
some sense; at any point in the construction we can just extract P above any σ and
still end up with a crowded tree, and this makes no sense if, for instance, P contains
dead ends.

The construction At stage s = 0 we let T0 = T . At stage s = 3e > 0, we satisfy
Ne. Ask if it is the case that (∀x∀σ ∈ Ts−1)(∃τ ⊃ σ)(τ ∈ Ts−1 ∧ 8τ

e (x) ↓). If the
answer is no, find a counterexample σ on Ts−1, and let Ts be the crowded subtree
of Ts−1 above σ . If the answer is yes, we will define both Ts and a computable tree
Ps by the following. The idea is that [Ps] is a 50

1 class (with very few splits) and
containing all possibilities for 8A

e .
First let η 6= ∅ be the first string found such that 8

Ts−1(η)
e (0) ↓ and set

Ts(∅) = Ts−1(η). Next, assume that Ts(σ ) has been defined up until level k,
that is, for all relevant |σ | ≤ k. Let N := {σ : |σ | = k ∧ Ts(σ ) ↓}. Assume that
inductively we have the properties

(i) Ts is crowded so far;
(ii) for every σ ∈ N , Ts(σ ) has at least x2L1(x)+···+Lk+2(x) many successors on

Ts−1, where x = |Ts(1k)|;
(iii) for every σ ∈ N , Ps(σ

−) ↓ and 8
Ts (σ )
e ⊇ Ps(σ

−).
For each σ ∈ N , do the following. Since σ has at least x2L1(x)+···+Lk+2(x) many
successors on Ts−1, we label these successors by Ts(σ )_n1, Ts(σ )_n2, . . . . For
each i ≤ x2L1(x)+···+Lk+2(x) find the first string σi ⊃ Ts(σ )_ni on Ts−1 such
that 8

σi
e �Lk+2(x)↓⊃ Ps(σ

−). There must be some τ of length Lk+2(x) such that
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τ ⊃ Ps(σ
−) and we have at least x2L1(x)+···+Lk+1(x) many values of i such that

8
σi
e �Lk+2(x)= τ . Take the first x2L1(x)+···+Lk+1(x) many such i and arrange them

in increasing order (i1 < i2 < · · · ), and for each j ≤ x2L1(x)+···+Lk+1(x) we set
Ts(σ

_ j) = Ts−1(ν) where ν is some string such that Ts−1(ν) ⊃ σi j . Also set
Ps(σ ) = τ . Repeat for each σ ∈ N , and we may assume (by choosing a longer
ν) that |T (σ_ j)| is constant for all σ ∈ N and all j and that Ts(σ

_ j) has enough
successors on Ts−1.

Now assume we are at stage s = 3e + 1, and Ts−1 is crowded. We want to satisfy
Pe. Pick the least i ≤ 1+|Ts−1(∅)| such that Ts−1(i)�1+|Ts−1(∅)| 6∈ V e

1+|Ts−1(∅)|, and
let Ts be the crowded subtree of Ts−1 above Ts−1(i)�1+|Ts−1(∅)|.

Finally, assume we are at stage s = 3e + 2. We run the usual hyperimmune-free
strategy. Ask if (∀x∀σ ∈ Ts−1)(∃τ ⊃ σ)(τ ∈ Ts−1 ∧ 8τ

e (x) ↓). If the answer
is no, find a counterexample σ on Ts−1, and let Ts be the crowded subtree of Ts−1
above σ . If the answer is yes, we define Ts by the following. Set Ts(∅) = Ts−1(∅).
Suppose Ts(σ ) has been defined for all σ of length ≤ k and that Ts(σ ) has at least
x2L1(x)+···+L |σ |+1(x) many successors where x = |Ts(1|σ |)| on Ts−1. Label them
Ts(σ )_n0, Ts(σ )_n1, . . . . For each |σ | = k and i ≤ x2L1(x)+···+Lk+1(x), we set
Ts(σ

_i) to be Ts−1(η) for some η such that Ts−1(η) ⊃ Ts(σ )_ni and 8
Ts−1(η)
e (k) ↓.

Once again we may assume that |Ts(σ
_i)| are all equal for all combinations of σ

and i by choosing a longer η if necessary.

Verification The construction produces a sequence of trees T0 ⊇ T1 ⊇ . . . , where
the sequence of indices for the trees is computable in ∅′′. Hence A is 10

3 and
A ∈ [Ts] for every s. We verify that for every s, Ts is crowded and every infi-
nite path through Ts (in particular, A) has the desired properties. Assume that Ts−1
is crowded, and let s = 3e > 0. If the answer to the 52-question is no, then Ts is
clearly crowded and there is some x such that for every X ∈ [Ts], we have 8X

e (x) ↑.
Suppose, on the other hand, that the answer given was yes. Observe that the induc-
tive definition of Ts done level by level is well-defined, and maintains the property of
being crowded at each finite level. Observe also that Ps is a tree with the following
properties:

1. dom(Ps) = dom(Ts);
2. for every σ , |Ps(σ )| = L |σ |+2(|Ts(σ )|);
3. for every infinite path X ∈ [Ts], we have 8X

e total and is an infinite path
through [Ps].

We claim that every infinite path through [Ps] has effective packing dimension at
most 1

2 , because Ps is extremely sparse. This is similar to the proof that every 50
1

class of measure 0 contains no random path. To see this, we enumerate a Kraft-
Chaitin set, where we enumerate axioms 〈η, 1

2 |η|〉 for every string η ⊃ Ps(∅) on Ps .
We let hk := |Ts(1k)|, and Sk := {σ ∈ dom(Ts) | |σ | = k}. We can show easily that
#S0 = 1 and #Sk ≤ (hk−12L1(hk−1)+···+Lk (hk−1))k for any k > 0. It follows then that
the total cost of all these requests is bounded above (very generously) by∑

η∈dom(Ps )

∑
x≥|Ps (η)|

2−
1
2 x

· # of successors of Ps(η)

≤

∑
η∈dom(Ps )

2−
1
2 |Ps (η)|+2

· # of successors of Ps(η).
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Since Ts is crowded, so every level looks the same; hence, we can express the above
sum as ∑

k

#Sk · 2−
1
2 Lk+2(hk )+2

· hk2L1(hk )+···+Lk+1(hk )

≤

∑
k

2−
1
2 Lk+2(hk )+2

· (hk2L1(hk )+···+Lk+1(hk ))k+1

≤

∑
k

2−hk < 1.

It is easy to work out these inequalities by using hk as the input and chasing through
the definitions of L and `. We can now conclude that every infinite path through [Ps]

has effective packing dimension at most 1
2 .

Next, we let s = 3e + 1. In the construction we will be able to find the required i ,
since #V e

1+|Ts−1(∅)| ≤ |Ts−1(∅)|. We have

0X (1 + |Ts−1(∅)|) = Ts−1(i)�1+|Ts−1(∅)| 6∈ V e
|Ts−1(∅)|+1

for every infinite path X through [Ts].
Finally, consider s = 3e +2. If the answer to the 52-question is no, then again Ts

is clearly crowded and for every X ∈ [Ts], 8X
e is not total. If the answer given was

yes, then it is clear that Ts is also crowded, and that furthermore for every infinite
path X through [Ts], we must have that for every x , 8X

e (x) must converge with use
at most |Ts(1x+1)|. One can then proceed to generate a computable bound for all
possible 8X

e .
Since A ∈ [Ts] for every s, it follows that A has all the properties we require. �

3 A 10
2 Example

In this section we provide an effective version of the proof of Theorem 2.1. By doing
so we prove the following theorem.

Theorem 3.1 There is a 10
2 set A which is not c.e. traceable such that every real

α ≤T A has effective packing dimension 0.

Proof We work in a variation of the Cantor space which is finitely branching. We
build a path g in this space by finite extension where g = ∪eσe. Again we only
need to ensure that dimP (α) ≤

1
2 for every α ≤T g. We ensure that the following

requirements are met:

Pe : g(x) 6∈ V e
x for some x;

Ne : if αe = 8
g
e is total, then K (αe�x ) ≤ x/2 for almost all x .

Then the set A can be taken to be, say, the graph of g. Again we let {V e
x }x be the

eth c.e. trace, with identity bound. We maintain a sequence of computable trees
T0 ⊃ T1 ⊃ . . . and build g as a path through ∩eTe. At every stage s we use ∅′ as an
oracle to search through the tree Te, and when we discover that the tree is not total
we change our mind on Te. This will resemble a finite injury with oracle ∅′, and is
similar to the way in which Sacks’s construction of a minimal degree below ∅′ is a
∅′-effective version of Spector’s construction. It is helpful (though not necessary)
for the reader to be familiar with the proof of Theorem 2.1.



Effective Packing Dimension and Traceability 287

We retain most of the notations and parameters of the previous 10
3 construction.

As in Sacks’s proof, we have to allow our crowded trees to be “partial,” in the sense
that they may now contain dead ends. To wit, we now declare that a tree is crowded,
if

1. If T (σ ) ↓, then either T (σ_i) ↓ for all i = 1, . . . , x2L1(x)+···+L |σ |+1(x),
where x = |T (σ )| or else T (σ_i) ↑ for every i ;

2. If i 6= j then T (σ_i)�1+|T (σ )| 6= T (σ_ j)�1+|T (σ )| whenever they converge;
3. T is defined nowhere else, and is built up using the above rules.

The difference now is that we allow T (σ ) ↓ but has no successors. We also have to
allow T (σ ) and T (η) to be of different lengths when |σ | = |η|, because we might not
be able to find convergent strings densely; as we will see, this will have no serious
impact on the calculations. If T (σ ) ↓ but T (σ_i) ↑ for every i , then we say that
T (σ ) has no successors.

If T is a crowded tree and σ is on T , we let Full(T, σ ) be the crowded subtree
of T above σ as before. An index for Full(T, σ ) can be found effectively in σ and
an index for T . The second operation is the majority e-subtree above σ , denoted as
Maj(e, T, σ ). This is the tree Q defined by the following. We also define a partial
computable tree P together with Q.

First let γ 6= ∅ be the first string found such that T (γ ) ↓⊃ σ and 8
T (γ )
e (0) ↓. If

no such string is found then Q(∅) ↑; otherwise, set Q(∅) = T (γ ). Next, assume
that Q(η) has been defined and that inductively we have the properties

(i) Q is crowded so far,
(ii) Q(η) = T (γ ) for some |γ | > |η|,

(iii) P(η−) ↓ and P(η−) = 8
Q(η)
e �L

|η−|+2(|Q(η−)|).

We now compute Q(η_i) for an appropriate number of is. Let x = |Q(η)|.
First wait for T (γ _i) ↓ for every i ≤ x2L1(x)+···+L |γ |+1(x). For each i find the
first string γi ⊇ γ _i such that T (γi ) ↓ and 8

T (γi )
e �L |η|+2(x)↓. Necessarily we

must have 8
T (γi )
e �L |η|+2(x)⊃ P(η−). There must be some τ of length L |η|+2(x)

such that τ ⊃ P(η−) and we have at least x2L1(x)+···+L |η|+1(x) many values of i
such that 8

T (γi )
e �L |η|+2(x)= τ . Take the first x2L1(x)+···+L |η|+1(x) many such is and

define Q(η_i) = T (γi ) and P(η) = τ . Observe that the three properties still
hold for Q(η_i). This ends the definition of Q. Note that we may assume that
|Q(η)| 6= |Q(η′)| whenever |η| = |η′

| and η 6= η′ (by searching further along T ).
An index for Q is obtained effectively from e, T and σ . In fact, the following

holds.

Lemma 3.2 If T is crowded and σ is on T , then
(i) Q is crowded,

(ii) every α = 8X
e for X ∈ [Q] has dimP (α) ≤

1
2 ,

(iii) if Q(∅) ↑ then there is no X ⊃ σ such that X ∈ [T ] and 8X
e is total,

(iv) if Q(η) ↓= T (γ ) but has no successors on Q, then either
(a) it has no successors on T , or else
(b) there is some k such that T (γ _k) ↓, and for every X ⊃ T (γ _k),

X ∈ [T ], we have 8X
e is not defined somewhere below L |η|+2(|Q(η)|).

Proof The others are straightforward, so we only prove (ii). Observe that P is
closed under initial segments, and in this case satisfies similar properties as before:
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1. for every η, P(η) ↓⇔ Q(η) ↓ and has successors,
2. for every η, |P(η)| = L |η|+2(|Q(η)|),
3. for every infinite path X ∈ [Q], we have 8X

e total and is an infinite path
through [P].

Since P is a partial computable tree, hence the set of strings τ on P is a c.e. set. We
then enumerate a KC-set {〈τ, 1

2 |τ |〉 : τ ⊃ P(∅) is on P}. We need to show that
the total size of these requests is bounded. Just as in Theorem 2.1, the size of these
requests is bounded above by∑

η∈dom(P)

2−
1
2 |P(η)|+2

· # of successors of P(η) ≤

∑
η∈dom(P)

2−|Q(η)|.

Since we assumed that |Q(η)| 6= |Q(η′)| whenever η, η′ are of the same length, we
can reduce the sum to∑

k

∑
{2−|Q(η)|

: |η| = k, η ∈ dom(Q)} ≤

∑
k

2−k+1 < ∞.

This shows that every infinite path through [P] has effective packing dimension at
most 1

2 and shows that (ii) holds. �

Construction of g We build g by finite extension. At each stage s, Te[s] denotes
the tree which we use to satisfy requirement Ne. Let T be the full crowded tree in
Theorem 2.1. By convention T−1 = T . At stage s = 0 we initialize Te for every e
and let σ0 = 〈〉. At s > 0 we assume that inductively we have the following:

(1) T ⊃ T0[s] ⊃ . . . , and are all crowded,
(2) η0 ≥ η1 ≥ . . . such that σs−1 = T0(η0)[s] = T1(η1)[s] = . . . .

We find the least e ≥ 0 such that Te is defined and σs−1 has no successors on Te. If e
exists, then Te must have been obtained from Te−1 by taking the e-majority subtree
operation. We claim that ∅′ can compute some ρ ⊃ ηe−1 such that Te−1(ρ) ↓, and
for every X ⊃ Te−1(ρ) and X ∈ [Te−1], 8X

e is not total.
First go through each k and ask if there is some string ρk ⊇ ηe−1

_k such that
Te−1(ρk) ↓, and 8

Te−1(ρk )
e �L |ηe |+2(|σs−1|)↓. If the answer is no for some k, then take

ρ = ηe−1
_k. If ρk is found for every k, then by Lemma 3.2(iv), there will be some

k such that {Z : Z ⊃ Te−1(ρk)} ∩ [Te−1] = ∅. By compactness, we can search for
it using ∅′. Let ρ = ρk . In any case once ρ is found we let σs = Te−1(ρ). We keep
T0, . . . , Te−1 and set Te to be Full(Te−1, σs). Initialize all Te+1, Te+2, . . . . Adjust
η0, . . . , ηe accordingly.

Suppose, on the other hand, e does not exist. Let e0 be the largest such that Te0 ↓.
Hence Te0(ηe0) has at least 1 + |σs−1| many successors on Te0 ; since Te0(ηe0

_i) are
all different at the |σs−1|th bit, we pick some i so that Te0(ηe0

_i)(|σs−1|) 6∈ V e0
|σs−1|

.
Let ρ = Te0(ηe0

_i). Ask if Maj(e0 + 1, Te0 , ρ)(∅) ↓. If the answer is yes, let
Te0+1 be Maj(e0 + 1, Te0 , ρ) and σs = Te0+1(∅). Otherwise, the answer is no; we
let Te0+1 = Full(Te0 , ρ) and let σs = ρ. Define η0, . . . , ηe0+1 appropriately.

Verification Clearly for every s, σs+1 ) σs . Let g = ∪σs and hence g ≤T ∅′. It
is also easy to see that for each e, Te is initialized finitely often and receives a final
definition; let T̃e denote this. It is clear that g ∈ [T̃e] for every e. Now fix an e. We
claim that Pe is satisfied. There is a least stage s where Te+1 receives a definition;
at that stage we ensure that g(|σs−1|) 6∈ V e

|σs−1|
. Now we verify that Ne is satisfied.
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Suppose that 8
g
e is total. Let s be the stage where Te is defined as T̃e. Suppose at s

we found that e is the least such that Te is defined and σs−1 has no successors on Te.
However, σs is defined such that any infinite extension X ⊃ σs , where X ∈ [T̃e−1]

has the property that 8X
e is not total. Since 8

g
e is total, hence at s the second scenario

in the construction applies, where e0+1 = e and ρ is on T̃e−1. By Lemma 3.2(iii), we
must have Maj(e, T̃e−1, ρ)(∅) ↓. Hence T̃e = Maj(e, T̃e−1, ρ). By Lemma 3.2(ii),
we have dimP (8

g
e ) ≤

1
2 . �
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