A Syntactic Embedding of Predicate Logic into Second-Order Propositional Logic

Morten H. Sørensen and Paweł Urzyczyn

Abstract

We give a syntactic translation from first-order intuitionistic predicate logic into second-order intuitionistic propositional logic IPC2. The translation covers the full set of logical connectives $\wedge, \vee, \rightarrow, \perp, \forall$, and \exists, extending our previous work, which studied the significantly simpler case of the universalimplicational fragment of predicate logic. As corollaries of our approach, we obtain simple proofs of nondefinability of \exists from the propositional connectives and nondefinability of \forall from \exists in the second-order intuitionistic propositional logic. We also show that the \forall-free fragment of IPC2 is undecidable.

1 Introduction

The standard textbook example of a Pspace-complete problem is validity (or satisfiability) for "Quantified Boolean Formulas," that is, classical second-order propositional logic. This is in a visible contrast with the ordinary co-NP-complete propositional calculus. But the expressive power of classical propositional logic with or without propositional quantifiers is identical: every formula with quantifiers is equivalent to a propositional one. In other words, one can express exactly the same properties, although at a significantly different cost.

In the case of intuitionistic logic this difference becomes much more dramatic. Propositional intuitionistic logic is PsPACE-complete [15] and adding propositional quantifiers makes it strictly more expressive and undecidable. There are essentially two proofs of the latter fact. One is due to Gabbay and Sobolev [4; 5; 13] (semantical); the other was given by Löb [7] and is based on a translation from first-order logic. The translation applies to the universal-implicational fragment of first-order classical logic with equality. In fact, the restriction to \forall and \rightarrow is not essential and Löb's translation can be applied to first-order intuitionistic logic as well. That was briefly remarked in [7] and worked out by Arts and Dekkers [1].

[^0]Löb's original translation uses an intermediate language with terms representing second-order propositional formulas and with a special predicate I representing provability in second-order propositional logic, which is expressed by a specific set of axioms. A semantic argument (the axioms are satisfied in a certain extension of any first-order model) is used to ensure correctness of the translation. While this idea is certainly ingenious, the proofs in $[7 ; 1]$ are quite complicated and not very intuitive.

In [14;20] we gave a simpler, purely syntactic, translation from a subset of the universal-implicational first-order intuitionistic logic in order to obtain a direct undecidability proof of propositional second-order intuitionistic logic (IPC2). The purpose of this paper is to extend that translation to the full first-order intuitionistic logic (with \exists, \wedge, \vee, and \perp). Our approach differs from that of $[7 ; 1]$ also in that we use natural deduction rather than sequent calculus. We believe that using term assignment (in the spirit of the Curry-Howard isomorphism [14]) makes the argument more transparent and easier to grasp.

As a by-product of our main result we show (Corollary 4.8) that the \forall-free fragment of IPC2 is undecidable. This ties in with the recent interest in the second-order existential quantification $[2 ; 3 ; 9 ; 17 ; 18 ; 22]$. Moreover, we provide an analysis of normal forms and a systematic proof-search for IPC2; we think that Proposition 2.8 is of independent interest. As an example we give short syntactic proofs of the nondefinability of \exists from the propositional connectives and nondefinability of \forall from \exists (Corollaries 3.2 and 3.5).

2 Propositional Second-Order Logic

The language of intuitionistic second-order propositional logic is defined as in [14, Ch. 11]. Formulas are built from the constant \perp and an infinite supply of propositional variables (written p, q, \ldots) using the connectives \vee, \wedge, and \rightarrow, and the propositional quantifiers \exists and \forall. The rules of inference in Figure 1 include a term assignment, where we leave implicit some type information for simplicity. ${ }^{1}$ Later we will sometimes use types as superscripts, writing, for example, M^{τ} if the type of M is not clear from the context.

Thinking in terms of the Curry-Howard isomorphism, we identify a logical judgment $\Gamma \vdash \varphi$ with a type assignment $\Gamma \vdash M: \varphi$. In particular, we often ignore the difference between Γ as a type environment and Γ as a set of formulas. The reduction rules are standard beta-reductions and commuting conversions (permutations). The full list of reduction rules is given in the Appendix.

Normal forms Various strong normalization proofs for second-order systems can be found in the literature, for example, $[6 ; 8 ; 10 ; 16 ; 19]$. To our astonishment, none of these proofs applies exactly to our set of reductions, and only a recent paper saved us the extra work of proving the following.

Proposition 2.1 ([21]) Our system has the strong normalization property.
It follows that every provable formula is inhabited by a normal form. We can inductively classify all normal forms into three categories:
Introductions: $\quad \lambda x: \tau . N, \quad \Lambda p N, \quad\left\langle N_{1}, N_{2}\right\rangle, \quad \operatorname{in}_{i}(N), \quad[\tau, N] ;$
Proper eliminators: $\quad x, \quad P N, \quad P \tau, \quad P\{i\} ;$
Improper eliminators: $\varepsilon_{\varphi}(P)$, case P of $[x] N_{1}$ or $[y] N_{2}$, let P be $[p, x]$ in N,

Figure 1 Rules of IPC2
where P stands for a proper eliminator and N is an arbitrary normal form. It should be clear that every proper eliminator is obtained from a variable (called its head variable) by means of a sequence of applications and projections and thus its type must be a "final" part of the type of the head variable. In contrast, types of improper eliminators can be quite arbitrary.

Suffixes and targets In the simply typed lambda-calculus, every type τ can be written as $\tau=\sigma_{1} \rightarrow \cdots \rightarrow \sigma_{k} \rightarrow p$, where p is a type variable, often called the "target" of τ. Any application beginning with a variable of type τ must be of a "suffix" type $\sigma_{i} \rightarrow \cdots \rightarrow \sigma_{k} \rightarrow p$, for some i, or just of type p. Another simple observation is that an atomic type is inhabited in an environment Γ only if it is a target of one of the types in Γ.

In the presence of other connectives and quantifiers, this must be properly generalized. For every type τ, we define the set $S(\tau)$ of suffixes of τ as the least set such that

1. $\tau \in S(\tau)$;
2. if $\alpha \rightarrow \beta \in S(\tau)$, then $\beta \in S(\tau)$;
3. if $\alpha \wedge \beta \in S(\tau)$, then $\alpha, \beta \in S(\tau)$;
4. if $\forall p \alpha \in S(\tau)$, then $\alpha[p:=\beta] \in S(\tau)$, for all types β.

Clearly, we have the following lemma.
Lemma 2.2 If $\varphi \in S(\psi)$, then $S(\varphi) \subseteq S(\psi)$.
The next lemma states a direct characterization of suffixes.

Lemma 2.3

1. $S(\perp)=\{\perp\}$ and $S(p)=\{p\}$.
2. $S(\alpha \rightarrow \beta)=\{\alpha \rightarrow \beta\} \cup S(\beta)$.
3. $S(\alpha \wedge \beta)=\{\alpha \wedge \beta\} \cup S(\alpha) \cup S(\beta)$.
4. $S(\alpha \vee \beta)=\{\alpha \vee \beta\}$.
5. $S(\forall p \alpha)=\{\forall p \alpha\} \cup \bigcup\{S(\alpha[p:=\beta]) \mid \beta$ is a type $\}$.
6. $S(\exists p \alpha)=\{\exists p \alpha\}$.

Proof In each part, the inclusion from left to right is shown by induction with respect to the definition of S. The opposite direction follows from Lemma 2.2.

For every τ we also define the set $T(\tau)$ of targets of τ. Targets of a type are always atoms, that is, propositional variables or \perp. The symbol \mathbb{A} below stands for the (infinite) set of all atoms.

1. $T(\perp)=\{\perp\}$ and $T(p)=\{p\}$, for a type variable.
2. $T(\alpha \rightarrow \beta)=T(\beta)$.
3. $T(\alpha \diamond \beta)=T(\alpha) \cup T(\beta)$, for $\diamond \in\{\wedge, \vee\}$.
4. $T(\forall p \alpha)= \begin{cases}A, & \text { if } p \in T(\alpha) \text {; } \\ T(\alpha), & \text { otherwise. }\end{cases}$
5. $T(\exists p \alpha)= \begin{cases}\mathbb{A}, & \text { if } T(\alpha)=\mathbb{A} ; \\ T(\alpha)-\{p\}, & \text { otherwise. }\end{cases}$

Note that if $T(\tau) \neq \mathbb{A}$ then $T(\tau) \subseteq \operatorname{FV}(\tau) \cup\{\perp\}$; in particular, $T(\tau)$ is finite. The correctness of the above definition of $T(\tau)$ (invariance with respect to alphaconversion) follows from the next lemma, which, strictly speaking, should itself be part of the definition.

Lemma 2.4

$$
T(\alpha[p:=\sigma])= \begin{cases}(T(\alpha)-\{p\}) \cup T(\sigma), & \text { if } p \in T(\alpha) \neq \mathbb{A} ; \tag{*}\\ T(\alpha), & \text { otherwise. }\end{cases}
$$

In particular, if q is a target of $\alpha[p:=\sigma]$, then either p or q is a target of α.
Proof Induction with respect to α. The nonobvious cases are when α begins with a quantifier. Let $\alpha=\forall q \beta$, where we can assume $p \neq q \notin \operatorname{FV}(\sigma)$. From the induction hypothesis we know, in particular, that $T(\beta[p:=\sigma])=\mathbb{A}$ if and only if either $T(\beta)=\mathbb{A}$ or $T(\sigma)=\mathbb{A}$ (with $p \in T(\beta)$). In these cases we have \mathbb{A} at both sides of the equation (*).

The same happens when $q \in T(\beta)$, so we are left with two cases to consider. One is when $p, q \notin T(\beta) \neq \mathbb{A}$, and then we have $T(\beta)$ on both sides of $(*)$. The other case is when $T(\sigma) \neq \mathbb{A}$, and $p \in T(\beta)$, but $q \notin T(\beta)$; in particular, $T(\beta) \neq \mathbb{A}$. We know that $q \notin \mathrm{FV}(\sigma)$, and this implies $q \notin T(\sigma)$ (as otherwise $T(\sigma)=\mathbb{A}$). Therefore, $q \notin T(\beta[p:=\sigma])$, and, by definition, $T(\alpha[p:=\sigma])=T(\beta[p:=\sigma])$ and $T(\alpha)=T(\beta)$. Hence the equation $\left({ }^{*}\right)$ follows immediately from the induction hypothesis.

Now let $\alpha=\exists q \beta$. As in the previous case, we have \mathbb{A} on both sides of (*) when either $T(\beta)=\mathbb{A}$ or $T(\sigma)=\mathbb{A}$, with $p \in T(\beta)$. So assume that $T(\beta[p:=\sigma]), T(\beta) \neq \mathbb{A}$, whence $T(\alpha[p:=\sigma])=T(\beta[p:=\sigma])-\{q\}$ and $T(\alpha)=T(\beta)-\{q\}$ by definition. If $p \notin T(\beta)$, then $T(\beta[p:=\sigma])=T(\beta)$ and $\left({ }^{*}\right)$ follows easily. If $p \in T(\beta)$, then $T(\sigma) \neq \mathbb{A}$, and it remains to verify the equation

$$
((T(\beta)-\{p\}) \cup T(\sigma))-\{q\}=((T(\beta)-\{q\})-\{p\}) \cup T(\sigma),
$$

using the fact that $q \notin \mathrm{FV}(\sigma) \supseteq T(\sigma)$.

Lemma 2.5 If $\alpha \in S(\psi)$, then $T(\alpha) \subseteq T(\psi)$. In particular, $S(\psi) \cap \mathbb{A} \subseteq T(\psi)$.
Proof We say that ψ^{\prime} is an instance of ψ when $\psi^{\prime}=\psi[\vec{p}:=\vec{\beta}]$ for some variables $\vec{p} \notin T(\psi)$ and some types $\vec{\beta}$. Note that by Lemma 2.4 we then have $T\left(\psi^{\prime}\right)=T(\psi)$.

By induction with respect to ψ we prove that if $\alpha \in S\left(\psi^{\prime}\right)$ for some instance ψ^{\prime} of ψ then $T(\alpha) \subseteq T(\psi)$. Most cases are immediate; we consider the two quantifiers.

Let $\psi=\forall q \sigma$. First note that an instance ψ^{\prime} of ψ must be of the form $\psi^{\prime}=\forall q \sigma^{\prime}$, where σ^{\prime} is an instance of σ. This is because $\vec{p} \notin T(\psi)$ implies $\vec{p} \notin T(\sigma)$. Let $\alpha \in S\left(\psi^{\prime}\right)$. If $\alpha=\psi^{\prime}$, then $T(\alpha)=T(\psi)$ as already observed, so we can assume $\alpha \in S\left(\sigma^{\prime}[q:=\beta]\right)$. If $q \notin T(\sigma)$, then $\sigma^{\prime}[q:=\beta]$ is an instance of σ and by the induction hypothesis we have $T(\alpha) \subseteq T(\sigma)=T(\psi)$. But if $q \in T(\sigma)$, then $T(\psi)=\mathbb{A}$, so the conclusion is immediate.

If $\psi=\exists q \sigma$ and $\alpha \in S\left(\psi^{\prime}\right)$, then $\alpha=\psi^{\prime}$ and again we have $T(\alpha)=T(\psi)$.
If Γ is an environment, then $T(\Gamma)$ is the union of $T(\sigma)$ for all σ declared in Γ.
Lemma 2.6

1. If $\Gamma, x: \tau \vdash P: \sigma$, and P is a proper eliminator beginning with x, then $\sigma \in S(\tau)$.
2. If $\Gamma \vdash a$, where a is an atom, then either $a \in T(\Gamma)$, or $\perp \in T(\Gamma)$ and $\Gamma \vdash \perp$.

Proof (1) Easy induction with respect to P.
(2) Induction with respect to the size of a normal proof M of a. Since a is an atom, the term M cannot be an introduction, and if it is a proper eliminator then part (1) applies together with Lemma 2.5. By a similar argument, if $M=\varepsilon(P)$ then $\Gamma \vdash P: \perp$ and $\perp \in T(\Gamma)$. Now let $M=$ case $P^{\alpha \vee \beta}$ of $[x] N$ or $[y] R$. By the induction hypothesis for N (respectively, R) we have either a or \perp in $T(\Gamma) \cup T(\alpha)$ (respectively, $T(\Gamma) \cup T(\beta)$). But $T(\alpha), T(\beta) \subseteq T(\Gamma)$, by Lemma 2.5, because $\alpha \vee \beta \in S(\Gamma)$. Thus either a or \perp is in $T(\Gamma)$. If it is a, then we are done. If, however, $a \notin T(\Gamma)$, then the induction hypothesis yields $\Gamma, \alpha \vdash \perp$ as well as $\Gamma, \beta \vdash \perp$, whence $\Gamma \vdash \perp$. The case $M=$ let P be $[p, x]$ in N is treated similarly.

It follows from the above lemma that if $\perp \not \not T(\Gamma)$, then $\Gamma \nvdash \perp$; that is, Γ is consistent. Lemmas 2.5 and 2.6 together imply that if $\Gamma \vdash P: \sigma$, with proper P, then $T(\sigma) \subseteq T(\Gamma)$, that is, that proper eliminators do not produce new targets.

Lemma 2.7 If $q, \perp \notin T(\Gamma)$ and $\Gamma, \varphi \rightarrow q \vdash q$, then $\Gamma, \varphi \rightarrow q \vdash \varphi$.
Proof Consider the shortest normal proof of q. It must be an eliminator, and if it is proper, then by Lemma 2.6(1) it must be of the form $y M$, where y is the assumption of type $\varphi \rightarrow q$. Then of course M proves φ.

An improper eliminator beginning with ε is excluded by the consistency of $\Gamma, \varphi \rightarrow q$. If the proof is of the form case $P^{\alpha \vee \beta}$ of $[x] Q$ or $[y] R$ then we have $\Gamma, \varphi \rightarrow q, \alpha \vdash Q: q$ and $\Gamma, \varphi \rightarrow q, \beta \vdash R: q$. By Lemmas 2.5 and 2.6, types α and β do not introduce new targets, so we still have $q, \perp \notin T(\Gamma, \alpha)$ and $q, \perp \notin T(\Gamma, \beta)$, and we can apply the induction hypothesis to R and Q. Therefore, $\Gamma, \varphi \rightarrow q, \alpha \vdash \varphi$ and $\Gamma, \varphi \rightarrow q, \beta \vdash \varphi$. Since $\Gamma, \varphi \rightarrow q \vdash \alpha \vee \beta$, we conclude that $\Gamma, \varphi \rightarrow q \vdash \varphi$.

If the proof is of the form let $P^{\exists p \tau}$ be $[p, x]$ in N, then we apply the induction hypothesis to the proof $\Gamma, \varphi \rightarrow q, \tau \vdash N: q$. We obtain $\Gamma, \varphi \rightarrow q, \tau \vdash \varphi$ and thus also $\Gamma, \varphi \rightarrow q \vdash \varphi$, because $\Gamma, \varphi \rightarrow q \vdash \exists p \tau$.

Indirect targets and splits A suffix of a formula is weak when it is of the form $\alpha \vee \beta$ or $\exists p \alpha$. A target of a weak suffix of σ is called an indirect target of σ. The set of all indirect targets of σ is denoted by $I(\sigma)$. It follows from Lemma 2.5 that $I(\sigma) \subseteq T(\sigma)$; that is, indirect targets are indeed targets. Of course, $I(\Gamma)$ stands for the union of all $I(\sigma)$ where $\sigma \in \Gamma$.

If $\Gamma \vdash \exists \vec{p}\left(\sigma_{1} \vee \cdots \vee \sigma_{n}\right)$, where \vec{p} are fresh variables, $\Gamma, \sigma_{i} \nvdash \perp$, and $T\left(\sigma_{i}\right) \subseteq I(\Gamma) \cup \vec{p}$, for each σ_{i}, then we say that the formula $\exists \vec{p}\left(\sigma_{1} \vee \cdots \vee \sigma_{n}\right)$ is a split of Γ. Formulas σ_{i} are called components of the split. For every consistent Γ there is a trivial split of the form $\exists p p$.

The Wajsberg/Ben-Yelles algorithm [14] for the simply typed lambda-calculus uses the fact that a normal inhabitant must either be an abstraction (an introduction) or an application (a proper eliminator). We have a weaker form of this property; namely, a type is inhabited by an introduction or a proper eliminator in every component of a certain split. More precisely, we have the following.

Proposition 2.8 Assume that $\Gamma \nvdash \perp$, and let $\Gamma \vdash \zeta$, where ζ is any formula. There exists a split $\exists \vec{p}\left(\sigma_{1} \vee \cdots \vee \sigma_{n}\right)$ of Γ such that, for every i, we have $\Gamma, \sigma_{i} \vdash N_{i}: \zeta$ with N_{i} being either an introduction or a proper eliminator.

Proof We proceed by induction with respect to the size of a normal inhabitant M of ζ. If M is an introduction or a proper eliminator, then the thesis holds with a trivial split. Since Γ is consistent, M is not of the form $\varepsilon(P)$.

Assume that $M=$ case P of $[x] Q$ or $[y] R$, where P is a proper eliminator of type $\alpha \vee \beta$. Then we have $\Gamma \vdash \alpha \vee \beta$ and $\Gamma, x: \alpha \vdash Q: \zeta$ and $\Gamma, y: \beta \vdash R: \zeta$.

If $\Gamma, \alpha \vdash \perp$ then we actually have $\Gamma \vdash \beta$; in particular, $\Gamma, \beta \nvdash \perp$. By the induction hypothesis, there is a split $\Gamma, \beta \vdash \exists \vec{p}\left(\rho_{1} \vee \cdots \vee \rho_{l}\right)$ such that $\Gamma, \beta \wedge \rho_{i} \vdash Q_{i}: \zeta$, for all i and no Q_{i} is improper. Then the formula $\exists \vec{p}\left(\left(\beta \wedge \rho_{1}\right) \vee \cdots \vee\left(\beta \wedge \rho_{l}\right)\right)$ is the required split of Γ (note that $T(\beta) \subseteq I(\Gamma)$, because P is proper, and its type is a weak suffix).

The case $\Gamma, \beta \vdash \perp$ is analogous, so let us suppose that neither $\Gamma, \alpha \vdash \perp$ nor $\Gamma, \beta \vdash \perp$. Then the induction hypothesis yields two splits $\Gamma, \alpha \vdash \exists \vec{r}\left(\tau_{1} \vee \cdots \vee \tau_{k}\right)$ and $\Gamma, \beta \vdash \exists \vec{q}\left(\rho_{1} \vee \cdots \vee \rho_{l}\right)$ such that $\Gamma, \alpha \wedge \tau_{i} \vdash \zeta$ and $\Gamma, \beta \wedge \rho_{j} \vdash \zeta$ hold by either introductions or proper eliminators. Then we can use the split $\exists \vec{r} \vec{q}\left(\left(\alpha \wedge \tau_{1}\right) \vee \cdots \vee\left(\alpha \wedge \tau_{k}\right) \vee\left(\beta \wedge \rho_{1}\right) \vee \cdots \vee\left(\beta \wedge \rho_{l}\right)\right)$.

Now let $M=$ let P be $[q, x]$ in N, where $\Gamma \vdash P: \exists q . \alpha$. From the induction hypothesis we have a split $\exists \vec{p}\left(\sigma_{1} \vee \cdots \vee \sigma_{n}\right)$ of Γ, α such that $\Gamma, \alpha \wedge \sigma_{i} \vdash P_{i}: \zeta$ with P_{i} proper eliminators or introductions. We obtain a new split of Γ of the form $\exists q \vec{p}\left(\left(\alpha \wedge \sigma_{1}\right) \vee \cdots \vee\left(\alpha \wedge \sigma_{n}\right)\right)$.

3 Intermezzo

Before defining our translation, we play a little intermezzo to demonstrate the use of Proposition 2.8. Corollaries 3.2 and 3.5 are not new, but the proofs we know are semantical [12; 22].

Lemma 3.1 If $\vdash \alpha \rightarrow \forall p(p \vee \neg p)$, and \forall does not occur in α, then $\vdash \alpha \leftrightarrow \perp$.

Proof Assume the contrary. Then $\alpha \nvdash \perp$, and $T(\alpha) \neq \mathbb{A}$, because α has no occurrence of \forall. From $\alpha \vdash \forall p(p \vee \neg p)$ it follows that $\alpha \vdash p \vee \neg p$ for p not free in α, in particular, for $p \notin T(\alpha)$. There is a split $\alpha \vdash \exists \vec{p}\left(\sigma_{1} \vee \cdots \vee \sigma_{n}\right)$ with $\alpha, \sigma_{i} \vdash P_{i}: p \vee \neg p$, where all P_{i} are either introductions or proper eliminators. However, since p is not a target of α (and thus also not a target of σ_{i}), proper eliminators are excluded, and we actually have either $\alpha, \sigma_{i} \vdash p$ or $\alpha, \sigma_{i} \vdash \neg p$ for each i. Since p is not free in the environment we conclude that either $\alpha, \sigma_{i} \vdash \forall p p$ or $\alpha, \sigma_{i} \vdash \forall p \neg p$; in other words, $\alpha, \sigma_{i} \vdash \perp$, for all i. Therefore, $\alpha \vdash \perp$.

Corollary 3.2 The universal quantifier is not definable from the other connectives in the intuitionistic second-order propositional logic: there is no formula α without \forall such that $\vdash \alpha \leftrightarrow \forall p(p \vee \neg p)$.

Proof Immediate from Lemma 3.1, as $\forall p(p \vee \neg p) \nvdash \perp$.
Remark 3.3 Let A stand for the so-called Pitt's quantifier [11; 12]. It follows immediately from Lemma 3.1 that $\mathrm{A} p(p \vee \neg p)$ is just \perp. Note that the result of [11] is often misunderstood. Pitt's construction shows that a model of second-order logic can be built over the propositional language. But the class of formulas satisfied in this specific model is a proper extension of IPC2. Therefore, Pitt's quantifier cannot be taken as a definition of \forall (even if we restrict attention to the fragment with open instantiation.)

Lemma 3.4 If $\Gamma \vdash \exists p \beta(p)$ and Γ contains no quantifiers, then $\Gamma \vdash \beta\left(\sigma_{1}\right) \vee$ $\cdots \vee \beta\left(\sigma_{n}\right)$, for some $\sigma_{1}, \ldots, \sigma_{n}$.

Proof Induction with respect to the length of a normal proof. The only interesting case is $\Gamma \vdash$ case $P^{\gamma \vee \delta}$ of $[x] Q$ or $[y] R: \exists p \beta(p)$ where we apply induction to Q and R obtaining $\Gamma, \gamma \vdash \beta\left(\sigma_{1}\right) \vee \cdots \vee \beta\left(\sigma_{n}\right)$ and $\Gamma, \delta \vdash \beta\left(\sigma_{n+1}\right) \vee \cdots \vee \beta\left(\sigma_{m}\right)$. Clearly, $\Gamma \vdash \beta\left(\sigma_{1}\right) \vee \cdots \vee \beta\left(\sigma_{m}\right)$. Other cases are left to the reader.

Corollary 3.5 The existential quantifier is not definable from the propositional connectives in the intuitionistic second-order propositional logic: there is no propositional formula α such that $\vdash \alpha \leftrightarrow \exists q((p \rightarrow(\neg q \vee q)) \rightarrow p)$.

Proof Write $\beta(p, q)$ for $(p \rightarrow(\neg q \vee q)) \rightarrow p$, and assume that $\vdash \alpha \leftrightarrow \exists q \beta(p, q)$. By Lemma 3.4, we have $\alpha \vdash \beta\left(p, \sigma_{1}\right) \vee \cdots \vee \beta\left(p, \sigma_{n}\right)$, for some $\sigma_{1}, \ldots, \sigma_{n}$. It follows that we also have $\exists q \beta(p, q) \vdash \beta\left(p, \sigma_{1}\right) \vee \cdots \vee \beta\left(p, \sigma_{n}\right)$, and even simpler, $\beta(p, q) \vdash \beta\left(p, \sigma_{1}\right) \vee \cdots \vee \beta\left(p, \sigma_{n}\right)$, where q does not occur in σ_{i}. Since no suffix of $\beta(p, q)$ is a disjunction, we easily observe that a normal proof of $\beta\left(p, \sigma_{1}\right) \vee \cdots \vee \beta\left(p, \sigma_{n}\right)$ must be an introduction. Thus one of the components is provable; that is, we have $\beta(p, q) \vdash \beta(p, \sigma)$, for some σ, not containing q. Therefore,

$$
(p \rightarrow(\neg q \vee q)) \rightarrow p, p \rightarrow(\neg \sigma \vee \sigma) \vdash p
$$

By induction with respect to the length of a normal proof, we show that this cannot happen. Of course, a normal proof of p cannot be an introduction. An improper eliminator using ε is excluded because \perp is not a suffix. A case eliminator requires a shorter proof of p (necessary to reach $\neg \sigma \vee \sigma$) and is excluded by induction. Consider the case of a proper eliminator. Then

$$
(p \rightarrow(\neg q \vee q)) \rightarrow p, p \rightarrow(\neg \sigma \vee \sigma), p \vdash \neg q \vee q,
$$

and, therefore, also $\neg \sigma \vee \sigma, p \vdash \neg q \vee q$.
The environment $\neg \sigma \vee \sigma, p$ is consistent (otherwise, $p \vdash \neg(\neg \sigma \vee \sigma)$, whence $p \vdash \perp$) so we can apply Proposition 2.8. Consider an appropriate split $\neg \sigma \vee \sigma, p \vdash \exists \vec{q}\left(\sigma_{1} \vee \cdots \vee \sigma_{n}\right)$. The proofs $\neg \sigma \vee \sigma, p, \sigma_{i} \vdash \neg q \vee q$ cannot be proper eliminators (q is not a target) so for each i we either have $\neg \sigma \vee \sigma, p, \sigma_{i} \vdash \neg q$ or $\neg \sigma \vee \sigma, p, \sigma_{i} \vdash q$. If the former case holds for all i, then we actually have $\neg \sigma \vee \sigma, p \vdash \neg q$. But the environment $\neg \sigma \vee \sigma, p, q$ is consistent, by an argument similar to the one above, so we must have $\neg \sigma \vee \sigma, p, \sigma_{i} \vdash q$ at least once. This, however, contradicts Lemma 2.6(2).

4 The Translation

Our source language is intuitionistic first-order logic over a signature consisting of a finite number of binary predicate symbols P, Q, \ldots. The restriction to binary predicates is not essential and our coding can easily be adopted to arbitrary arities.

The target language is IPC2 of Section 2. As in [14], we assume that all individual variables (written a, b, \ldots) can be used as propositional variables (type variables) in the target language. The plan is to systematically replace any atom $\mathrm{P}(a, b)$ in a given first-order formula φ by a certain type $\overline{\mathrm{P}(a, b)}$, to obtain a type $\bar{\varphi}$ such that $\vdash \varphi$ is equivalent to $\vdash \bar{\varphi}$. The difficulty is to ensure that $\bar{\varphi}$ is not provable in an "ad hoc" way. A most naïve attempt could be, for instance, to take $\overline{\mathrm{P}(a, b)}=a \rightarrow b \rightarrow p$, for some p. The obvious confusion of $\overline{\mathrm{P}(a, b)}$ being equivalent to $\overline{\mathrm{P}(b, a)}$ can be easily fixed, but here is a serious problem: the formula $\exists b \forall a \mathrm{P}(a, b)$ is provable, because the variable b can be instantiated by p. Our principal concern is to avoid such ad hoc instantiations.

The solution might be to relativize all quantifiers in $\bar{\varphi}$ using a condition \mathcal{U} such that $U(A)$ is inhabited only when A is an individual variable (i.e., U defines the universe of individuals). We cannot do exactly this, but we can ensure a slightly weaker property: a type A satisfying $U(A)$ must behave (to a sufficient level) as an individual variable (Lemma 4.3).

To define the translation we need some additional type variables:

1. Three variables: p, p_{1}, and p_{2}, for each binary relation symbol p;
2. And four more variables: \bullet, \circ, ∇, and \star.

For an arbitrary type A we write A^{\bullet} for $A \rightarrow \bullet$. If P is a binary relation symbol, and A, B are arbitrary types, then we define ${ }^{2}$

$$
\begin{gathered}
\mathrm{p}_{A B}=\left(A^{\bullet} \rightarrow \mathrm{p}_{1}\right) \rightarrow\left(B^{\bullet} \rightarrow \mathrm{p}_{2}\right) \rightarrow \mathrm{p} \\
\mathrm{p}(A, B)=\mathrm{p}_{A B} \vee \star .
\end{gathered}
$$

For every type A, let $\mathcal{U}(A)$ be the conjunction of all types of the form

$$
\left(A^{\bullet} \rightarrow \mathrm{p}_{i}\right) \rightarrow \circ \quad \text { and } \quad A^{\bullet} \rightarrow \nabla
$$

where $i=1,2$. As mentioned, the intended meaning of \mathcal{U} is to define the universe of individuals. First-order quantifiers are encoded as second-order quantifiers relativized to \mathcal{U}.

The idea of the above definition is to "hide" the type A inside $U(A)$ deep enough and to consider environments where $\mathcal{U}(a)$ is assumed for every individual variable a. Then an "ad hoc" proof of $U(A)$ can only be obtained for a type A which is "represented" (see below) by an individual variable.

For every first-order formula φ, we define a second-order propositional formula $\bar{\varphi}$ as follows:

1. $\overline{\mathrm{P}(a, b)}=\mathrm{p}(a, b)$; that is, $\overline{\mathrm{P}(a, b)}=\left(\left(a^{\bullet} \rightarrow \mathrm{p}_{1}\right) \rightarrow\left(b^{\bullet} \rightarrow \mathrm{p}_{2}\right) \rightarrow \mathrm{p}\right) \vee \star$;
2. $\bar{\perp}=\star$;
3. $\overline{\vartheta \diamond \psi}=\bar{\vartheta} \diamond \bar{\psi}$, where $\diamond \in\{\rightarrow, \wedge, \vee\}$;
4. $\overline{\forall a \psi}=\forall a(\mathcal{U}(a) \rightarrow \bar{\psi})$;
5. $\exists a \psi=\exists a(U(a) \wedge \bar{\psi})$.

An individual variable a represents a type A in an environment Γ if and only if the conditions

$$
\begin{gathered}
\Gamma, A^{\bullet} \vdash a^{\bullet}, \\
\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i} \vdash a^{\bullet} \rightarrow \mathrm{p}_{i},
\end{gathered}
$$

hold for every relation symbol P and every $i \in\{1,2\}$. Note that a variable represents itself.

Lemma 4.1 Let us fix two atoms of the form $\mathrm{p}_{i}, \mathrm{q}_{j}$. Assume that no individual variable nor any of the symbols $\bullet, \perp, \mathrm{p}_{i}, \mathrm{q}_{j}$ is in $T(\Gamma)$. If

$$
\begin{gathered}
\Gamma, A^{\bullet} \vdash a^{\bullet}, \\
\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i} \vdash b^{\bullet} \rightarrow \mathrm{q}_{j},
\end{gathered}
$$

then $a=b, \mathrm{p}=\mathrm{q}$, and $i=j$.
Proof From $\Gamma, A^{\bullet} \vdash a^{\bullet}$ we obtain $\Gamma, a^{\bullet} \rightarrow \mathrm{p}_{i} \vdash A^{\bullet} \rightarrow \mathrm{p}_{i}$. Therefore, $\Gamma, a^{\bullet} \rightarrow \mathrm{p}_{i} \vdash b^{\bullet} \rightarrow \mathrm{q}_{j}$ and thus $\Gamma, x: a^{\bullet} \rightarrow \mathrm{p}_{i}, y: b^{\bullet} \vdash N: \mathrm{q}_{j}$, for some normal form N. Since $q_{j}, \perp \notin T(\Gamma)$, we must have $q_{j}=\mathrm{p}_{i}$ because of Lemma 2.6(2). Similarly, $\mathrm{p}_{i} \notin T\left(\Gamma, b^{\bullet}\right)$, so by Lemma 2.7 we have $\Gamma, a^{\bullet} \rightarrow \mathrm{p}_{i}, b^{\bullet} \vdash a^{\bullet}$, that is, $\Gamma, a^{\bullet} \rightarrow \mathrm{p}_{i}, b \rightarrow \bullet, a \vdash \bullet$. Applying again Lemma 2.7, we conclude that $\Gamma, a^{\bullet} \rightarrow \mathrm{p}_{i}, b \rightarrow \bullet, a \vdash b$. The only individual variable in $T\left(\Gamma, a^{\bullet} \rightarrow \mathrm{p}_{i}, b \rightarrow \bullet, a\right)$ is a, so it must be the case that $a=b$.

Lemma 4.2 Assume that no individual variable and no variable of the form p_{i} nor any of the symbols \bullet, \perp belongs to $T(\Gamma)$. If a type A is represented in Γ by variables a and b then $a=b$.

Proof Immediate from Lemma 4.1.
Note that if $\Gamma \subseteq \Gamma^{\prime}$ and both the environments satisfy the assumptions of Lemma 4.2, then the variable representing a type A in Γ and Γ^{\prime} is the same.

Lemma 4.3 Assume that Γ is an environment such that

1. individual variables, variables of the form p_{i}, types \perp, and \bullet do not belong to $T(\Gamma)$,
2. if $\circ \in T(\psi)$ or $\nabla \in T(\psi)$, for some $\psi \in \Gamma$, then $\psi=\mathcal{U}(a)$, where a is an individual variable.
Suppose that $\Gamma \vdash \mathcal{U}(A)$, for some type A. Then there is a unique individual variable a representing A in Γ. In addition, Γ must contain the assumption $\mathcal{U}(a)$.

Proof Since $\Gamma \vdash \mathcal{U}(A)$, we have $\Gamma \vdash A^{\bullet} \rightarrow \nabla$; that is, $\Gamma, A^{\bullet} \vdash \nabla$. By Proposition 2.8, there is a split $\exists \vec{p}\left(\sigma_{1} \vee \cdots \vee \sigma_{n}\right)$ of Γ, A^{\bullet} such that $\Gamma, A^{\bullet}, \sigma_{k} \vdash P_{k}: \nabla$ holds
for every k with some proper eliminator P_{k}. But all targets of σ_{k} are in $T\left(\Gamma, A^{\bullet}\right) \cup \vec{p}$ and, therefore, the only way in which ∇ can be a target in $\Gamma, A^{\bullet}, \sigma_{k}$ is because some $\mathcal{U}(a)$ is in Γ. Since P_{k} is proper, we must have $\Gamma, A^{\bullet}, \sigma_{k} \vdash a^{\bullet}$ (Lemma 2.6(1)).

On the other hand, it follows from $\Gamma \vdash \mathcal{U}(A)$ that $\Gamma \vdash\left(A^{\bullet} \rightarrow \mathrm{p}_{i}\right) \rightarrow 0$; that is, $\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i} \vdash \mathrm{o}$. Again, we have a split $\exists \vec{q}\left(\tau_{1} \vee \cdots \vee \tau_{n}\right)$ of $\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i}$ satisfying $\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i}, \tau_{\ell} \vdash P^{\ell}$: o with proper P^{ℓ}. The variable o may occur in Γ only as target of some $\mathcal{U}(b)$, and we get $\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i}, \tau_{\ell} \vdash b^{\bullet} \rightarrow \mathrm{q}_{j}$.

For any k and ℓ, the environment $\Gamma, \tau_{\ell}, \sigma_{k}$ satisfies the assumptions of Lemma 4.1. This is because, by the definition of split, all targets of τ_{ℓ} are indirect targets of $\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i}$, or are in \vec{p}. Since $\mathrm{p}_{i} \notin T(\Gamma) \cup \vec{p}$, we have that p_{i} is not a target of τ_{ℓ}. For a similar reason, \bullet is not a target in $\Gamma, \tau_{\ell}, \sigma_{k}$.

From Lemma 4.1 we have that $\mathrm{p}_{i}=\mathrm{q}_{j}$ and $a=b$ (in particular, one a is good for every k), and we actually get $\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i}, \tau_{\ell} \vdash a^{\bullet} \rightarrow \mathrm{p}_{i}$, for all $\ell=1, \ldots, n$. Since τ_{ℓ} are components of a split, we conclude that $\Gamma, A^{\bullet} \rightarrow \mathrm{p}_{i} \vdash a^{\bullet} \rightarrow \mathrm{p}_{i}$, and, similarly, $\Gamma, A^{\bullet} \vdash a^{\bullet}$. It follows that a represents A. Uniqueness is a consequence of Lemma 4.2.

We say that an environment Γ is simple when Γ consists of

1. formulas of the form $U(a)$, where a is an individual variable;
2. formulas of the form $\bar{\varphi}[\vec{a}:=\vec{A}]$ (written $\bar{\varphi}(\vec{A})$ for simplicity), where \vec{a} are individual variables and \vec{A} are arbitrary types called ad hoc types of Γ.
Note that the parsing of a type of the form $\bar{\varphi}(\vec{A})$ is unique in the following sense: if we have $\bar{\varphi}(\vec{A})=\bar{\psi}(\vec{B})$ and no free individual variable occurs twice in φ or ψ then \vec{B} is a permutation of \vec{A}, and φ is identical to ψ modulo a renaming of variables. Note also that, no matter what \vec{A} is, the targets of $\bar{\varphi}(\vec{A})$ are only \star, and variables of the form q, where Q is a relation symbol. Therefore, only \star, q, o, ∇ may be targets in a simple environment. It follows that simple environments satisfy the assumptions of Lemma 4.3.

Notice also that a suffix (type of a proper eliminator) in a simple environment is either of the form $\bar{\varphi}(\vec{A})$ or of the form $\mathcal{U}(B) \rightarrow \bar{\varphi}(\vec{A}, B)$ or is a suffix of some $\mathcal{U}(a)$. In particular, a variable of the form p cannot be a suffix.

An environment Γ^{\prime} is a variant of Γ when every formula in Γ^{\prime} is either a member of Γ or a conjunction of formulas in Γ.

Lemma 4.4 Let $\Delta=\Gamma \cup \Sigma$, where

1. Γ is a variant of a simple environment;
2. Σ consists exclusively of types of the form $q_{C D}$, where C and D are represented in Δ by individual variables.

Assume that $\Delta \vdash \mathrm{p}_{A B}$, where A and B are represented in Δ by individual variables. Then there is $p_{C D} \in \Sigma$ such that A and C are represented in Δ by the same individual variable, and similarly for B and D.

Proof We have $\Delta, A^{\bullet} \rightarrow \mathrm{p}_{1}, B^{\bullet} \rightarrow \mathrm{p}_{2} \vdash M: \mathrm{p}$, for some normal proof M, and we proceed by induction with respect to the size of M. The term M must be an eliminator, and we have the following cases.

Case $1 \quad M$ is a proper eliminator. Since p may occur as a suffix only in Σ, we have

$$
\begin{aligned}
& \Delta, A^{\bullet} \rightarrow \mathrm{p}_{1}, B^{\bullet} \rightarrow \mathrm{p}_{2} \vdash C^{\bullet} \rightarrow \mathrm{p}_{1} \\
& \Delta, A^{\bullet} \rightarrow \mathrm{p}_{1}, B^{\bullet} \rightarrow \mathrm{p}_{2} \vdash D^{\bullet} \rightarrow \mathrm{p}_{2}
\end{aligned}
$$

for some C and D with $\mathrm{p}_{C D} \in \Sigma$. Let a, c be the variables representing A, C in Δ. Then

$$
\Delta, A^{\bullet} \rightarrow \mathrm{p}_{1}, B^{\bullet} \rightarrow \mathrm{p}_{2} \vdash c^{\bullet} \rightarrow \mathrm{p}_{1} \quad \text { and } \quad \Delta, A^{\bullet}, B^{\bullet} \rightarrow \mathrm{p}_{2} \vdash a^{\bullet}
$$

and, therefore, $a=c$, by Lemma 4.1. A similar argument applies to B and D.
Case $2 M=$ case P of $[x] Q$ or $[y] N$, where $P: \tau \vee \sigma$. Then

$$
\Gamma, \sigma, \Sigma, A^{\bullet} \rightarrow \mathrm{p}_{1}, B^{\bullet} \rightarrow \mathrm{p}_{2} \vdash N: \mathrm{p} .
$$

Here N is a normal proof, shorter than M. Since \vee does not occur in $S(\Sigma)$, the proper eliminator P must begin with a variable declared in Γ. The type $\tau \vee \sigma$ is therefore a suffix of Γ (an instance of a formula), and we can assume that $\sigma=\bar{\psi}(\vec{A})$, for some ψ and \vec{A}. (It may happen that P is of type $q(A, B)=q_{A B} \vee \star$. In this case we assume $\tau=q_{A B}$ and $\sigma=\star=\bar{\perp}$.)

Thus the environment $\Gamma, x: \sigma$ is simple and we can apply the induction hypothesis to N. It follows that $\mathrm{p}_{C D} \in \Sigma$, where A and C (and also B and D) are represented by the same variable in Δ, σ. From the uniqueness we conclude that these types are represented by the same variable in Δ.
Case $3 \quad M=$ let P be $[a, x]$ in N. The head variable of the proper eliminator P must be declared in Γ, because an existential formula is a suffix of its type. Thus P is of type $\exists a \bar{\varphi}(a, \vec{A})$, where a is an individual variable, and we have

$$
\Gamma, \bar{\varphi}(a, \vec{A}), \Sigma, A^{\bullet} \rightarrow \mathrm{p}_{1}, B^{\bullet} \rightarrow \mathrm{p}_{2} \vdash N: \mathrm{p},
$$

where N is shorter than M. Again we apply induction.
Case $4 M=\varepsilon(P)$ is excluded, because \perp is not a target in the environment $\Gamma, \Sigma, A^{\bullet} \rightarrow \mathrm{p}_{1}, B^{\bullet} \rightarrow \mathrm{p}_{2}$.

For a first-order environment Σ, we define

$$
\bar{\Sigma}=\{\bar{\varphi} \mid \varphi \in \Sigma\} \cup\{U(a) \mid a \in \operatorname{FV}(\Sigma)\} .
$$

Clearly, $\bar{\Sigma}$ is a simple environment.
Suppose that Γ is a simple environment such that $\Gamma \vdash \mathcal{U}(A)$, for every ad hoc type A of Γ. By Lemma 4.3, the ad hoc types are represented in Γ by individual variables (and these variables occur free in Γ). Thus, we can define the first-order environment

$$
|\Gamma|=\{\varphi(\vec{a}) \mid \bar{\varphi}(\vec{A}) \in \Gamma, \text { for some } \vec{A}, \text { and variables } \vec{a} \text { represent } \vec{A} \text { in } \Gamma\} .
$$

Of course, $|\bar{\Sigma}|=\Sigma$ for first-order Σ. Note also that all free variables of $|\Gamma|$ occur free in Γ.

Let Γ^{\prime} be a variant of a simple environment Γ such that $\Gamma \vdash \mathcal{U (A)}$ for every ad hoc type A of Γ. We say that a union of the form $\Delta=\Gamma^{\prime} \cup \Sigma$ is a good environment (and we write $\Delta \approx \Gamma \oplus \Sigma$), when every type in Σ is of the form $q_{A B}$, with

1. $\Delta \vdash \mathcal{U}(A)$ and $\Delta \vdash \mathcal{U}(B)$;
2. $|\Gamma| \vdash Q(a, b)$, for a, b representing A, B in Δ.

Targets of a good environment are only of the form \star, q, \circ, ∇, quite like in a simple environment.

Lemma 4.5 If $\Delta \approx \Gamma \oplus \Sigma$ is a good environment, and $\Delta \vdash P: \sigma$, for a proper eliminator P, then either $\sigma \in \Delta$ or one of the following cases holds:

1. $\sigma=\bar{\varphi}(\vec{A})$ and $\Delta \vdash \mathcal{U}(A)$, for each $A \in \vec{A}$;
2. $\sigma=U(B) \rightarrow \bar{\varphi}(\vec{A}, B)$, where $\Delta \vdash \mathcal{U}(A)$, for each $A \in \vec{A}$, and $P=P^{\prime} B$, for some P^{\prime};
3. $\sigma=\sigma_{1} \wedge \sigma_{2}$, where $\sigma_{1}, \sigma_{2} \in \Gamma$;
4. $\sigma \in S(U(a))$, for some individual variable a;
5. $\sigma \in S\left(\mathrm{p}_{A B}\right)$, for some $\mathrm{p}_{A B} \in \Sigma$.

Proof Induction with respect to the length of P.
Here is our main lemma.
Lemma 4.6 If $\Delta \approx \Gamma \oplus \Sigma$ is good and $\Delta \vdash \bar{\varphi}(\vec{A})$, with $\Delta \vdash \mathcal{U}(A)$ for each $A \in \vec{A}$, then $|\Gamma| \vdash \varphi(\vec{a})$, in first-order logic, where \vec{a} represent \vec{A} in Δ.

Proof We prove a slightly more general statement, consisting of three claims (where M is assumed normal, the variables \vec{a} represent \vec{A}, and $\Delta \vdash U(A)$ for all A in \vec{A}):
(a) If $\Delta \vdash M: \bar{\varphi}(\vec{A})$, then $|\Gamma| \vdash \varphi(\vec{a})$.
(b) If $\Delta \vdash M: \mathcal{U}(a) \rightarrow \bar{\varphi}(a, \vec{A})$, where a is not free in Δ, then $|\Gamma| \vdash \forall a \varphi(a, \vec{a})$.
(c) If $\Delta \vdash M: \mathcal{U}(A) \wedge \bar{\varphi}(A, \vec{A})$, then $|\Gamma| \vdash \varphi(a, \vec{a})$, where a represents A.

We proceed by induction with respect to M by inspecting the various forms M may have. In each case we consider the relevant claims among (a)-(c).

Case $1 M$ is an abstraction. The relevant subcases are (a) and (b). If M in part (a) is an abstraction of type $\bar{\varphi}(\vec{A})$, then $\bar{\varphi}(\vec{A})=\bar{\psi}(\vec{A}) \rightarrow \vec{\vartheta}(\vec{A})$ and we have $M=\lambda x: \bar{\psi}(\vec{A}) . N$, where N is such that $\Delta, x: \bar{\psi}(\vec{A}) \vdash N: \bar{\vartheta}(\vec{A})$. The environment $\Delta, x: \bar{\psi}(\vec{A})$ is good, because $\Gamma \vdash \mathcal{U}(A)$ holds for each $A \in \vec{A}$. From the induction hypothesis we obtain $|\Gamma|, x: \psi(\vec{a}) \vdash \vartheta(\vec{a})$, whence also $|\Gamma| \vdash \psi(\vec{a}) \rightarrow \vartheta(\vec{a})$.

If M in (b) is an abstraction $\lambda x: \mathcal{U}(a) . N$ of type $\mathcal{U}(a) \rightarrow \bar{\varphi}(a, \vec{A})$, then $\Gamma, x: \mathcal{U}(a) \vdash N: \bar{\varphi}(a, \vec{A})$. We apply the induction hypothesis and obtain $|\Gamma| \vdash \varphi(a, \vec{a})$. Since a is not free in Δ, it is also not free in $|\Gamma|$, and we conclude with $|\Gamma| \vdash \forall a \varphi(a, \vec{a})$.

Case $2 M$ is a polymorphic abstraction. Then we are in part (a) and M is of the form $\Lambda a N$ and has type $\bar{\varphi}(\vec{A})=\forall a(U(a) \rightarrow \bar{\psi}(a, \vec{A}))$. Apply part (b) of the induction hypothesis to N.
Case 3 If $M=[A, N]$, then only part (a) is relevant, with $\bar{\varphi}(\vec{A})=\exists a(U(a)$ $\wedge \bar{\psi}(a, \vec{A}))$ and we have $\Gamma \vdash N: \mathcal{U}(A) \wedge \bar{\psi}(A, \vec{A})$. We apply part (c) of the induction hypothesis to N.
Case $4 M$ is a pair of the form $\left\langle N_{1}, N_{2}\right\rangle$. We consider parts (a) and (c). In part (a) we have $N_{1}: \bar{\varphi}(\vec{A})$ and $N_{2}: \bar{\psi}(\vec{A})$, and applying induction to N_{1} and N_{2} we get $|\Gamma| \vdash \varphi(\vec{a})$ and $|\Gamma| \vdash \psi(\vec{a})$. It follows that $|\Gamma| \vdash \varphi(\vec{a}) \wedge \psi(\vec{a})$. In part (c) the pair $\left\langle N_{1}, N_{2}\right\rangle$ is of type $U(A) \wedge \bar{\varphi}(A, \vec{A})$. We apply induction to N_{2} and obtain $|\Gamma| \vdash \varphi(a, \vec{a})$.

Case $5 \quad M=i \mathrm{n}_{i}(N)$. This can only happen in part (a), but we have three subcases. The first subcase is when M is of type $\bar{\varphi}(\vec{A}) \vee \bar{\psi}(\vec{A})$, and it follows easily from the induction hypothesis. The second subcase is when $\Delta \vdash N: \mathrm{p}_{A B}$ and $M=\mathrm{in}_{1}(N)$ has type $p(A, B)=\mathrm{p}_{A B} \vee \star$. It follows from Lemma 4.4 that there is an assumption $\mathrm{p}_{C D}$ in Σ such that the variables a, b representing A, B in Δ also represent C, D. Therefore, $|\Gamma| \vdash \mathrm{P}(a, b)$. The third subcase is when $\Delta \vdash N: \star$. Since $\star=\bar{\perp}$, the induction hypothesis, part (a), applied to N, implies that $|\Gamma|$ is inconsistent. In particular, $|\Gamma| \vdash \mathrm{P}(a, b)$.

Now we assume that M is a proper eliminator.
Case 6 If M is a variable then the relevant parts are (a) and (c) and the claim is obvious.

Case 7 The case of M being an application is only possible in part (a) and it splits into two subcases. First we assume that $M=P N$, where $\Delta \vdash P: \bar{\psi}(\vec{B}) \rightarrow \bar{\varphi}(\vec{A})$. Then $\Delta \vdash \mathcal{U}(B)$ for $B \in \vec{B}$, by Lemma 4.5, and we can apply the induction hypothesis to both P and N. The other subcase is when $M=P B W$, where B is a type. Assume for simplicity that $B \in \vec{A}$, say $\vec{A}=(B, \vec{C})$. Then $\Delta \vdash P: \forall b(\mathcal{U}(b) \rightarrow \bar{\varphi}(b, \vec{C}))$ and $\Delta \vdash W: \mathcal{U}(B)$. The induction hypothesis (b) applies to $P a$, for a fresh a, whence $|\Gamma| \vdash \forall a \varphi(a, \vec{c})$ and thus also $|\Gamma| \vdash \varphi(b, \vec{c})$, for b representing B.

Case 8 The case of polymorphic application $M=P B$, where B is a type, is only possible in part (b) and follows immediately from the induction hypothesis (a).

Case 9 If M is a projection, say $M=P\{2\}$, then by Lemma 4.5 we have $\Delta \vdash P: \sigma \wedge \bar{\varphi}(\vec{A})$, for some σ, and either $\bar{\varphi}(\vec{A})$ is in Γ or the induction hypothesis is applicable to P by Lemma 4.5.

There is no other possibility for M to be a proper eliminator, so we now assume that M is improper.

Case 10 If $M=$ case P of $[x] Q$ or $[y] R$, then (regardless if we are in part (a), (b), or (c)) we have two possibilities. One is that $\Delta \vdash P: \bar{\psi}(\vec{B}) \vee \bar{\vartheta}(\vec{B})$. Then by Lemma 4.5 we can apply induction to P, Q, and R. For instance, in part (a) we then have $|\Gamma| \vdash \psi(\vec{b}) \vee \vartheta(\vec{b})$ and $|\Gamma|, \psi(\vec{b}) \vdash \varphi(\vec{a})$ and $|\Gamma|, \vartheta(\vec{b}) \vdash \varphi(\vec{a})$, for appropriate \vec{b}, and therefore also $|\Gamma| \vdash \varphi(\vec{a})$. The argument in parts (b) and (c) is similar. The other possibility is that $\Delta \vdash P: \mathrm{p}_{A B} \vee \star$; that is, P is of type $\mathrm{p}(A, B)$. By part (a) of the induction hypothesis, applied to P, we have $|\Gamma| \vdash \mathrm{P}(a, b)$ for appropriate a, b, whence $\Delta, \mathrm{p}_{A B}$ is good. Thus we can also apply (the appropriate part of) the induction hypothesis to Q, obtaining the desired conclusion.

Case 11 Finally, let $M=$ let P be $[b, x]$ in N and let us consider part (a). Then M is of type $\bar{\varphi}(\vec{A})$ and $\Delta \vdash P: \exists b(U(b) \wedge \bar{\psi}(b, \vec{B}))$. We also have $\Delta, x: \mathcal{U}(b) \wedge \bar{\psi}(b, \vec{B}) \vdash N: \bar{\varphi}(\vec{A})$. We apply induction to P and N and obtain that $|\Gamma| \vdash \exists b \psi(b, \vec{b})$ and $|\Gamma|, \psi(b, \vec{b}) \vdash \varphi(\vec{a})$. That is, we have $|\Gamma| \vdash \varphi(\vec{a})$. The reasoning in parts (b) and (c) is similar.

The final remark is that $M \neq \varepsilon(P)$, as $\perp \notin T(\Delta)$.
Theorem 4.7 The translation is sound and complete in the following sense: For any first-order Σ and φ, we have $\Sigma \vdash \varphi$ if and only if $\bar{\Sigma} \vdash \bar{\varphi}$.

Proof The "only if" part goes by a routine induction. (First show that $\bar{\perp} \vdash \bar{\varphi}$, for all φ.) The "if" part is immediate from Lemma 4.6.

Corollary 4.8 The \forall-free fragment of intuitionistic second-order propositional logic is undecidable.

Proof We begin with the \forall-free fragment of classical first-order logic, which is of course undecidable. Via Kolmogorov's translation it reduces to the \forall-free fragment of intuitionistic first-order logic. It remains to observe that our translation does not introduce new universal quantifiers.

5 Conclusion and Future Work

We have given a purely syntactic translation of first-order intuitionistic logic to second-order intuitionistic propositional logic, thus reproving syntactically the result of $[7 ; 1]$. It follows that second-order intuitionistic propositional logic is undecidable and that the same holds for its \forall-free fragment. Note also that for the "only if" part of Theorem 4.7 we only need to instantiate bound variables by variables. That is, undecidability remains true under a strictly predicative regime.

At present, the translation applies to function-free signatures, and the extension to functions remains future work. Another unsettled issue is the exact delineation of the border between decidable and undecidable fragments of \forall-free IPC2. From [18] we know that the \exists, \wedge, \neg-fragment is decidable. Decidability with $\forall, \exists, \wedge, \neg$ was also recently announced [17]. The proof of Corollary 4.8 uses $\exists, \rightarrow, \vee$, and \wedge; it remains open whether all these four connectives are indeed necessary.

The syntactic proof was made possible by an analysis of normal forms in the extended version of system \mathbf{F}, involving all the logical connectives and quantifiers. This classification appears to be useful on its own, as demonstrated by the simple proofs of nondefinability of \exists from the propositional connectives, and the nondefinability of \forall from \exists.

Appendix: Reductions in IPC2

Beta-reductions:

1. $(\lambda \times M) N \Rightarrow M[x:=N] ;$
2. $(\Lambda p M) \tau \Rightarrow M[p:=\tau]$;
3. $\left\langle M_{1}, M_{2}\right\rangle\{i\} \Rightarrow M_{i}$;
4. case in $i_{i}(M) \circ f\left[x_{1}\right] P_{1}$ or $\left[x_{2}\right] P_{2} \Rightarrow P_{i}\left[x_{i}:=M\right]$;
5. let $[\tau, M]$ be $[p, x]$ in $N \Rightarrow N[p:=\tau][x:=M]$.

Commuting conversions for ε :

1. $\varepsilon_{\psi}\left(\varepsilon_{\perp}(M)\right) \Rightarrow \varepsilon_{\psi}(M)$;
2. $\varepsilon_{\varphi \rightarrow \psi}(M) N \Rightarrow \varepsilon_{\psi}(M)$;
3. $\varepsilon_{\forall p . \sigma}(M) \tau \Rightarrow \varepsilon_{\sigma[p:=\tau]}(M)$;
4. $\varepsilon_{\varphi_{1} \wedge \varphi_{2}}(M)\{i\} \Rightarrow \varepsilon_{\varphi_{i}}(M)$;
5. case $\varepsilon_{\sigma \vee \tau}(M) \circ f[u] R^{\rho}$ or $[v] S^{\rho} \Rightarrow \varepsilon_{\rho}(M)$;
6. let $\varepsilon_{\exists p . \sigma}(M)$ be $[p, x]$ in $N^{\rho} \Rightarrow \varepsilon_{\rho}(M)$;

Commuting conversions for case:

1. $\varepsilon_{\varphi}(\operatorname{case} M$ of $[x] P$ or $[y] Q) \Rightarrow$ case M of $[x] \varepsilon_{\varphi}(P)$ or $[y] \varepsilon_{\varphi}(Q)$;
2. (case M of $[x] P$ or $[y] Q) N \Rightarrow$ case M of $[x] P N$ or $[y] Q N$;
3. (case M of $[x] P$ or $[y] Q) \tau \Rightarrow$ case M of $[x] P \tau$ or $[y] Q \tau$;
4. $($ case M of $[x] P$ or $[y] Q)\{i\} \Rightarrow$ case $M \circ f[x] P\{i\}$ or $[y] Q\{i\}$;
5. case (case M of $[x] P$ or $[y] Q$) of $[u] R$ or $[v] S \Rightarrow$ case M of $[x]($ case P of $[u] R$ or $[v] S)$
or $[y]$ (case Q of $[u] R$ or $[v] S)$;
6. Let (case M of $[x] P$ or $[y] Q$) be $[p, x]$ in $N \Rightarrow$ case M of $[x]($ let P be $[p, x]$ in $N)$
or $[y]($ let Q be $[p, x]$ in $N)$.
Commuting conversions for let:
7. $\varepsilon_{\varphi}($ let M be $[p, x]$ in $N) \Rightarrow$ let M be $[p, x]$ in $\varepsilon_{\varphi}(N)$;
8. (let M be $[p, x]$ in $N) P \Rightarrow$ let M be $[p, x]$ in $N P$;
9. (let M be $[p, x]$ in $N) \tau \Rightarrow$ let M be $[p, x]$ in $N \tau$;
10. (let M be $[p, x]$ in $N)\{i\} \Rightarrow$ let M be $[p, x]$ in $N\{i\}$;
11. case (let M be $[p, x]$ in N) of $[x] P$ or $[y] Q \Rightarrow$
let M be $[p, x]$ in case N of $[x] P$ or $[y] Q$;
12. let (let M be $[p, x]$ in N) be $[q, y]$ in $P \Rightarrow$
let M be $[p, x]$ in (let N be $[q, y]$ in P).

Notes

1. Strictly speaking, we should write, for example, $[\tau, M]_{\exists p \sigma}$ instead of $[\tau, M]$, etc.
2. This differs from the coding used in $[14, \mathrm{Ch} .11]$, where we had $\mathrm{p}(A, B)=\mathrm{p}_{A B} \rightarrow \star$. This coding was appropriate for the restricted class of formulas used there, but does not work in general. Consider, for instance, the unprovable entailment $z:(\mathrm{P}(a, b) \rightarrow$ $Q(c, d)) \rightarrow \mathrm{P}(a, b) \vdash \mathrm{P}(a, b)$. The translation of [14] yields the assertion $z:(\mathrm{p}(a, b) \rightarrow$ $\mathrm{q}(c, d)) \rightarrow \mathrm{p}(a, b) \vdash \mathrm{p}(a, b)$, inhabited by the term $\lambda x^{\mathrm{p}_{a b}} . z\left(\lambda u^{\mathrm{p}(a, b)} \lambda v^{q_{c d}} \cdot u x\right) x$.

References

[1] Arts, T., and W. Dekkers, "Embedding first order predicate logic in second order propositional logic," Technical Report 93-02, Katholieke Universiteit Nijmegen, 1993. 457, 458, 470
[2] Fujita, K., and A. Schubert, "Existential type systems with no types in terms," pp. 112-26 in Typed Lambda Calculi and Applications, edited by P.-L. Curien, vol. 5608 of Lecture Notes in Computer Science, Springer, Berlin, 2009. Zbl pre05576323. 458
[3] Fujita, K., "Galois embedding from polymorphic types into existential types," pp. 194-208 in Typed Lambda Calculi and Applications, edited by P. Urzyczyn, vol. 3461 of Lecture Notes in Computer Science, Springer, Berlin, 2005. Zbl 1114.03009. MR 2188768. 458
[4] Gabbay, D. M., "On 2nd order intuitionistic propositional calculus with full comprehension," Archiv für mathematische Logik und Grundlagenforschung, vol. 16 (1974), pp. 177-86. Zbl 0289.02016. MR 0360222. 457
[5] Gabbay, D. M., Semantical Investigations in Heyting's Intuitionistic Logic, vol. 148 of Synthese Library, D. Reidel Publishing Co., Dordrecht, 1981. Zbl 0453.03001. MR 613144. 457
[6] de Groote, P., "On the strong normalisation of intuitionistic natural deduction with permutation-conversions," Information and Computation, vol. 178 (2002), pp. 441-64. Zbl 1031.03071. MR 1946174. 458
[7] Löb, M. H., "Embedding first order predicate logic in fragments of intuitionistic logic," The Journal of Symbolic Logic, vol. 41 (1976), pp. 705-18. Zbl 0358.02012. MR 0441680. 457, 458, 470
[8] Matthes, R., "Non-strictly positive fixed points for classical natural deduction," Annals of Pure and Applied Logic, vol. 133 (2005), pp. 205-30. Zbl 1066.03057. MR 2126159. 458
[9] Nakazawa, K., M. Tatsuta, Y. Kameyama, and H. Nakano, "Undecidability of typechecking in domain-free typed lambda-calculi with existence," pp. 478-92 in Computer Science Logic. Proceedings of the 22nd International Workshop (CSL 2008, Bertinoro), edited by M. Kaminski and S. Martini, vol. 5213 of Lecture Notes in Computer Science, Springer, Berlin, 2008. Zbl 1156.03316. 458
[10] Nakazawa, K., and M. Tatsuta, "Strong normalization of classical natural deduction with disjunctions," Annals of Pure and Applied Logic, vol. 153 (2008), pp. 21-37. Zbl 1141.03027. MR 2405205. 458
[11] Pitts, A. M., "On an interpretation of second-order quantification in first-order intuitionistic propositional logic," The Journal of Symbolic Logic, vol. 57 (1992), pp. 33-52. Zbl 0763.03009. MR 1150924. 463
[12] Połacik, T., "Pitts' quantifiers are not topological quantification," Notre Dame Journal of Formal Logic, vol. 39 (1998), pp. 531-44. Zbl 0966.03008. MR 1776225. 462, 463
[13] Sobolev, S. K., "On the intuitionistic propositional calculus with quantifiers," Matematicheskie Zametki, vol. 22, (1977), pp. 69-76. Zbl 0365.02013. MR 0457155. 457
[14] Sørensen, M. H., and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, vol. 149 of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 2006. Zbl 1183.03004. 458, 462, 464, 471
[15] Statman, R., "Intuitionistic propositional logic is polynomial-space complete," Theoretical Computer Science, vol. 9 (1979), pp. 67-72. Zbl 0411.03049. MR 535124. 457
[16] Tatsuta, M., "Second-order permutative conversions with Prawitz's strong validity," Progress in Informatics, vol. 2 (2005), pp. 41-56. 458
[17] Tatsuta, M., "Second-order system without implication nor disjunction," Bulletin of Symbolic Logic, vol. 15 (2009), pp. 262-3. 458, 470
[18] Tatsuta, M., K. Fujita, R. Hasegawa, and H. Nakano, "Inhabitation of existential types is decidable in negation-product fragment," Proceedings of Second International Workshop on Classical Logic and Computation (CLC2008, Reykjavik), 2008. 458, 470
[19] Tatsuta, M., "Simple saturated sets for disjunction and second-order existential quantification," pp. 366-80 in Typed Lambda Calculi and Applications, edited by S. Ronchi Della Rocca, vol. 4583 of Lecture Notes in Computer Science, Springer, Berlin, 2007. Zbl pre05527391. MR 2391793. 458
[20] Urzyczyn, P., "Inhabitation in typed lambda-calculi (a syntactic approach)," pp. 373-89 in Typed Lambda Calculi and Applications (Nancy, 1997), edited by P. de Groote and J. R. Hindley, vol. 1210 of Lecture Notes in Computer Science, Springer, Berlin, 1997. Zbl 1063.03527. MR 1480482. 458
[21] Wojdyga, A., "Short proofs of strong normalization," pp. 613-23 in Mathematical Foundations of Computer Science 2008, edited by E. Ochmański and J. Tyszkiewicz, vol. 5162 of Lecture Notes in Computer Science, Springer, Berlin, 2008. Zbl 1173.03303. MR 2539405. 458
[22] Zdanowski, K., "On second order intuitionistic propositional logic without a universal quantifier," The Journal of Symbolic Logic, vol. 74 (2009), pp. 157-67. Zbl 1163.03010. MR 2499424. 458, 462

Acknowledgments

Partly supported by the Polish Government Grant 3 T11C 002 27. The authors wish to thank Ken-etsu Fujita and Konrad Zdanowski for their comments.

Formalit
Byenden 32
4660 Store Heddinge
DENMARK
mhs@formalit.dk
Institute of Informatics
University of Warsaw
Banacha 2
02-097 Warszawa
POLAND
urzy@mimuw.edu.pl

[^0]: Received December 30, 2008; accepted March 2, 2010; printed September 21, 2010 2010 Mathematics Subject Classification: Primary, 03B20, 03F03
 Keywords: propositional quantification, IPC2
 (C) 2010 by University of Notre Dame 10.1215/00294527-2010-029

