
Notre Dame Journal of Formal Logic
Volume 59, Number 3, 2018

Coding and Definability in Computable Structures

Antonio Montalbán

Abstract These are the lecture notes from a 10-hour course that the author gave
at the University of Notre Dame in September 2010. The objective of the course
was to introduce some basic concepts in computable structure theory and develop
the background needed to understand the author’s research on back-and-forth
relations.

In computable structure theory, we study the computational aspects of mathemat-
ical structures. We are interested in questions such as the following: How difficult is
it to represent a certain structure? Which structures can be represented computably?
How difficult is it to recognize a given structure? How can information be coded
in the isomorphism type of a structure? How difficult is it to compute certain rela-
tions on a structure or to perform certain constructions on it? We are particularly
interested in answers that connect computational properties with algebraic or combi-
natorial properties of the structure.

Let K be a class of countable structures, such as, for example, the class of all
countable linear orderings. Let n be a natural number. The reader may start by
assuming n D 1, as this case is already interesting enough. In this article we will
explore the following two questions: Can we characterize all the relations on the
structures of K that can be defined within n Turing jumps? How much information
can be encoded into the .n � 1/th Turing jump of the structures in K? We will see
that not only are these two questions closely interrelated, they are also associated with
another structural property of the class K, namely, the number of n-back-and-forth
equivalence classes in K.

The purpose of the article is to introduce some basic concepts about computable
structures and to develop all the background necessary to present the main result
(Theorem 1.7) from Montalbán [11]. We will give lots of examples along the way,

Received June 12, 2015; accepted October 12, 2015
First published online May 1, 2018
2010 Mathematics Subject Classification: Primary 03D45; Secondary 03D60
Keywords: computable structure theory, back-and-forth relations
© 2018 by University of Notre Dame 10.1215/00294527-2017-0032

285

http://www.nd.edu/~ndjfl/
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
https://doi.org/10.1215/00294527-2017-0032

286 Antonio Montalbán

many of which deal with the class of linear orderings, as this is a class that has been
well studied by computability theorists and that presents an interesting behavior.

We will start by introducing the notions of Turing degree and degree spectrum of a
structure. Then, in the second section, we will look at the information that is encoded
on a structure and possible ways to decode it. Section 3 is about the relations that can
be defined in a structure within a certain number of jumps. In Section 4 we present
a standard technique to build copies of structures that we will use to prove some
fundamental theorems from previous sections. Then, in Section 5, we introduce the
notion of the jump of a structure. Finally, in the last section, we will show the main
theorem (Theorem 6.18) from [11], that for a class of structures K and for a number
n, either we can nicely characterize all the relations in the structures of K that are
defined within n jumps, or we can (weakly) code any set in the .n � 1/th jump of
some structure from K—but we cannot do both. This proof requires introducing the
useful notion of n-back-and-forth relations.

1 Degrees of Structures

Throughout this article we will use L to denote a countable language, that is, a set of
symbols for constants, functions, and relations. We will study countableL-structures
from a computable viewpoint.

Definition 1.1 L is a computable language if there is a computable procedure
that, given a symbol, tells what kind of symbol it is and also gives the arity of the
symbol, and whether the symbol is a relation or a function. For this to make sense,
every symbol in L has to have an associated Gödel number.

All the languages we will consider are computable.
We would like to have some notion of computational complexity for structures.

Since computability theory is developed on the natural numbers, we need to work
with structures whose elements can be enumerated by natural numbers. Given a
structure A, a presentation of A is nothing more than an isomorphic copy of A

whose domain is either ! or an initial segment of ! (the latter case only being pos-
sible when A is finite). Since we consider only countable structures, all structures
will have presentations, and whenever we are given a structure, we will assume we
are given a presentation for it.

When L is finite, the Turing degree of a presentation can be defined to be the
join of the Turing degrees of its relations and functions (which are subsets of !k for
relations of arity k and subsets of !kC1 for functions of arity k). When L is infinite,
the situation is slightly more delicate, and we need to take an infinite join, taking into
consideration the Gödel numbering of each symbol. Instead of doing this, we will
use a different, but equivalent, definition of degree of a presentation.

For each natural number i , we consider a constant element bi . Given a presenta-
tion B with domain B � !, for each i 2 B , we interpret bi as i . We enumerate all
the atomic formulas ¹�0; �1; : : : º of the language L[¹b0; b1; : : : º in some effective
way.

Definition 1.2 The degree of a presentation B is deg.D.B//, whereD.B/ is the
atomic diagram of B; that is,

D.B/ D ¹i 2 ! W B ˆ �iº � !;

Computable Structure Theory 287

and deg.X/ is the Turing degree of X . We say that Y � ! computes a copy of A, if
D.B/ �T Y for some presentation B of A.

Note that this definition is no different from our first notion of degree, since atomic
formulas determine nothing more and nothing less than the relations among elements
and the values of the functions.

This notion of degree of a presentation is clearly dependent on the particular pre-
sentation chosen for a certain structure, and two isomorphic presentations of the same
structures might have different degree. We would like to have a way of measuring the
complexity of an isomorphism type of a structure that is independent of the particular
presentation chosen.

Definition 1.3 (Jockusch and Soare [6]) GivenX � !, we say that an L-structure
A has Turing degree X if

.8Y � !/ Y computes a copy of A , Y �T X:

It is clear that if such an X exists, it determines the complexity of the structure A.
But there is no reason to assume that, for a structure A, such a set X exists. Let us
see a few examples.

Example 1.4 The structure A has a computable copy if and only if A has Turing
degree 0.

Example 1.5 Fix X � !. Let G be a graph that consists of disjoint cycles where
if n 2 X , then G has a cycle of length 2nC 3, and if n … X , then G has a cycle of
length 2nC 4, and there are no other cycles in G.

Claim 1 The graph G has Turing degree X .

Proof ((): Suppose that Y �T X . We need to show that Y computes a copy
of G. We build G step by step. Recall that G will have domain !; that is, each
vertex will be represented by a natural number. At the first step, if 0 2 X , we build
a cycle in G by using the first three natural numbers, and if 0 … X , we use the first
four natural numbers. At the .nC 1/st step, using Y as an oracle, we can determine
whether or not n 2 X . If n 2 X , then we use the next 2n C 3 numbers to make a
cycle. Otherwise, we use the next 2nC 4 numbers.

()): Suppose that Y computes a copy of G. We need to show that Y �T X . So
given n, using oracle Y , we want to determine if n 2 X . Again using Y as an oracle,
we can look through our copy of G element by element. As we search, we can see
which elements are part of a cycle, and we can easily determine the length of these
cycles once we find them. So we search through our graph until we find a cycle of
length 2nC 3 or 2nC 4, exactly one of which will appear by our construction of G.
If we find a cycle of length 2nC 3, then n 2 X . If we find a cycle of length 2nC 4,
then n … X . Therefore, Y �T X .

We have shown that for every set X , there is a graph with Turing degree X .

Example 1.6 The situation with linear orderings is quite different.

Theorem 1.7 (Richter [15]) Every linear ordering has two presentations, A and
B, such that

deg.A/ ^ deg.B/ D 0:

288 Antonio Montalbán

Corollary 1.8 Only if X �T 0 can we have a linear order L with Turing
degree X .
Proof Suppose that L has Turing degree X . Consider the presentations A and B

of L that satisfy the previous theorem. Then deg.A/ �T X and deg.B/ �T X . So
deg.A/ ^ deg.B/ �T X . Therefore, by the choice of A and B, X �T 0.

Since there are continuum many linear orderings, and only countably many of them
have computable copies, this corollary shows that most linear orderings do not have
Turing degree. This indicates that our definition for degrees of structures may not be
as good as we would like. The following definition works for all structures.
Definition 1.9 Given a structure A, we define the degree spectrum of A to be

Spec.A/ D
®
deg.B/ W B is a copy of A

¯
� D;

where D is the set of all Turing degrees.
Note that a nontrivial structure A has Turing degree X if and only if Spec.A/ D

¹deg.Y / W Y �T Xº, the cone above deg.X/. But degree spectra do not always need
to be shaped as a cone above a degree.

To introduce the next theorem, we must say what a trivial structure is. A structure
is trivial if there are finitely many elements such that any permutation of the domain
of the structure which leaves these elements fixed is an automorphism. For example,
a complete graph, where all elements are related, is trivial as any permutation of the
vertices is an automorphism.
Theorem 1.10 (Knight [8]) For every nontrivial structure A,

Spec.A/ D ¹x 2 D W x computes a copy of Aº:

Thus, Spec.A/ is upward closed in the Turing degrees.

2 Information Coded on a Structure

Knight’s theorem above implies that, given a nontrivial structure A, we have that, for
every set X � !, there is a copy of A that computes X . In short, every nontrivial
structure has a copy that, in a sense, encodes any information we want. However,
if we want to look at the information that is encoded in the isomorphism type of a
structure, we would like this information to be encoded in every copy of A.
Definition 2.1 A set D � ! is coded by a structure A if D is computably enu-
merable in the degree of every presentation of A.

A set D � ! is strongly coded by a structure A if D is computable in every
presentation of A.

Note thatD is strongly coded in A if and only ifD andD are coded in A (whereD
is the complement ofD). Also note that any computably enumerable set is coded by
any structure.
Example 2.2 Linear orders cannot strongly code anything except 0. This follows
from Richter’s theorem (Theorem 1.7) above.
Example 2.3 Consider our graph G from Example 1.5 above. Observe that G
strongly codes X . Let GY be a graph consisting of cycles where it has a cycle of
length n C 3 if and only if n 2 Y . Then Y is coded by GY . Note that our original
example was GX˚X .

Computable Structure Theory 289

Sometimes, information is not coded in such a direct way.

Example 2.4 Let X � !. For each n, construct a linear order

Ln '

´
Z if n … X;

Z C .nC 1/C Z if n 2 X;

where ZC.nC1/CZ means that we have an order consisting of a Z-chain, followed
by nC 1 elements, followed by another Z-chain. Let

LX D L0 C L1 C L2 C � � � :

It is clear that, in some way, the set X is encoded in LX . How difficult is it to
decode it this information from LX? Unfortunately, it is not that easy.

Claim 2 If Y computes a presentation of LX , then X is computably enumerable
in Y 00.

Proof We know that n 2 X if and only if we can find n C 1 elements in the
linear ordering with a few properties: these elements must form a chain with no
other elements between them, and this chain must be between two Z-chains. We can
express these conditions in the following formula about LX :

n 2 X , 9x0; : : : ; xn 2 LX

0BB@
x0 < x1 < � � � < xn &
8y.x0 � y � xn ! y D x0 _ � � � _ y D xn/ &
8y < x09z.y < z < x0/ &
8y > xn9z.xn < z < y/

1CCA :
Since LX is Y -computable, observe that the information inside the large parentheses
is a …Y

2 statement. So Y 00 computes it. The outside existential quantifier makes
membership in X a †Y3 statement. This is equivalent to saying that X is computably
enumerable in Y 00.

Example 2.4 motivates the following definition.

Definition 2.5 The set D is coded by the nth jump of a structure if D is com-
putably enumerable in the nth Turing jump of the degree of any presentation of A.

Example 2.6 So, in Example 2.4 above we get thatX is coded in the second jump
of LX . We will now show that the statement of the above claim is sharp.

Claim 3 The oracle Y can compute a presentation of LX , X is †Y3 .

Proof ()) This direction was done in the previous claim.
(() Suppose that X is †Y3 . Then there is a †03.Y /-formula 9x�.n; x/, where

�.n; x/ is …0
2.Y / and n 2 X $ 9x�.n; x/. Let �.n; x/ D 8y�.n; x; y/, where �

is †01.Y /. We want to make two standard assumptions on our formulas � and � .
(i) If 9x�.n; x/, then 9Šx�.n; x/.
(ii) If �.n; x; y/, then 8y0 < y�.n; x; y/.
For the first assumption, we need to change �.n; x/ for a formula that says that

hx0; y0i is a pair such that x0 is the first witness for �.n; x/ and y0 is the least element
below which we can find witnesses showing that �.n; x1/ does not hold for any

290 Antonio Montalbán

x

y

1

1

0

0

1

1

1

0

0

1

1

1

1

1

1

1

1

0

0

:
:
:

An

x0

y0

: : : : : : : : :

Figure 1 Figure of W � !2 when n 2 X .

x1 < x0. (See Figure 1 of W D � .) All we need to do is replace �.n; x/ by the
formula�
x D hx0; yi

�
/ ^ �.n; x0/ ^ .8x1 < x

0/.9y1 < y
0/:�.n; x1; y1/^

:
�
.8x1 < x

0/.9y1 < y
0
� 1/:�.n; x1; y1/

�
:

Note that this formula is …0
2.Y /. Once we assume that � satisfies the first

assumption, for the second assumption all we need to do is replace �.n; x; y/
by 8y0 � y�.n; x; y0/.

We proceed with the proof. Fix some n. We want to build Ln uniformly in n. Let
W D ¹.x; y/ j �.n; x; y/º. Let An D .!;�An

/ be a computable presentation of
! C .nC 1/C !�, where !� is the ordering of the negative integers.

Using An, we will define an ordering �W on W essentially by restricting the
product ordering .!;�/ � .!;�An

/ on !2 to W . We define �W as follows:

.x1; y1/ �W .x2; y2/ ,
�
.x1 < x2/ _ .x1 D x2 ^ y1 �An

y2/
�
:

This means that .x1; y1/ �W .x2; y2/ if and only if either the x1 column is to the left
of the x2 column or, if the points are in the same column, then the y1 entry appears
below the y2 entry in the An ordering.

If n … X , then every column of W is finite. So our final ordering will be an
infinite sequence of finite linear orders, and hence will look like !. If n 2 X , then
we will have exactly one column of 1’s, as in Figure 1. In this case, inside this
column, the ordering is isomorphic to An. Therefore, our final ordering would look
like ((finite order) C An C !).

The domain of this ordering isW , which is computably enumerable in Y , but not
necessarily computable in Y . If we consider a Y -computable one-to-one enumera-
tion of W , say, ¹w0; w1; : : :º, we can pull back the ordering �W to !. Let �V be an
ordering on ! such that i �V j if wi �W wj . So we have that V D .!;�V / is a

Computable Structure Theory 291

Y -computable linear ordering that is isomorphic to either ((finite order) CAn C !)
or ! depending on whether n 2 X or not.

Finally, let Ln D !� C V . Then, if n 2 X , we have that Ln D !� C .finite
order C! C .n C 1/ C !�/ C ! ' Z C .n C 1/ C Z, and if n … X , we have that
Ln D !� C ! ' Z, as desired. Since this Y -computable construction of Ln is
uniform in n, Y can compute a presentation of LX D L0 C L1 C � � � .

Definition 2.7 Given X �T 0
.n/, we say that a structure A has nth jump Turing

degree X if and only if 8Y .Y can compute a copy of A $ Y .n/ �T X/.

Example 2.8 Observe that for every X � !, in the example above we have that
LX˚ NX has second jump Turing degree X since X �T Y

00 $ X 2 †Y3 ^ NX 2 †Y3 .

Theorem 2.9 (Knight [7]) Every linear order has two copies A, B such that�
deg.A/

�0
^

�
deg.B/

�0
D 00:

Corollary 2.10 Only for X �T 00 can there exist linear orderings which have
first jump Turing degree X .

Proof Suppose that L is a linear ordering with first jump Turing degree X . There-
fore .8Y /, Y computes a copy of L $ Y 0 �T X . Let Y1 and Y2 be the degrees of
the two copies of L that satisfy Theorem 2.9. Thus, Y 0

1 ^ Y 0
2 D 00. Since Y 0

1 � X

and Y 0
2 � X , we have 00 � X . So X D 00.

Definition 2.11 (Jockusch and Soare [6]) Given a class of structures K and an
ordinal ˛, we say that K has Turing ordinal ˛ if for every X �T 0

˛ , there is a struc-
ture in K with ˛th jump Turing degree X , and for every ˇ < ˛, only for X �T 0

ˇ

can a structure in K have ˇth jump Turing degree X .

Example 2.12

(1) Graphs have Turing ordinal 0, as follows from Example 1.5.
(2) Linear orderings have Turing ordinal 2, as follows from Theorem 2.9 and

Example 2.6.
(3) Boolean algebras have Turing ordinal ! (see [6]).
(4) Equivalence structures have Turing ordinal 1 (see [11] for a proof).

2.1 Coding and enumeration reducibility In this section we will give a characteri-
zation of the sets coded in a structure. We will delay the proofs to Section 4 below.
Let us start by recalling the notion of enumeration reducibility.

Theorem 2.13 (Selman [16]) Let A;B � !. The following statements are equiv-
alent.

(1) There exists a Turing functional ˆ such that for every onto function
f W! ! B , ˆf is a an onto function from ! to A.

(2) For every onto function f W! ! B , there exists g �T f which is an onto
function from ! to A.

(3) For everyX � !, if B is computably enumerable inX , then A is computably
enumerable in X .

(4) There exists a computably enumerable set � � Pf .!/�! (where Pf .!/ is
the set of finite subsets of !) such that

A D
®
n 2 ! W

�
9D 2 Pf .!/

�
hD;ni 2 � ^D � B

¯
:

292 Antonio Montalbán

Definition 2.14 If A and B satisfy any of the conditions of the theorem above,
we say that A is enumeration reducible to B , and we write A �e B .

There is one other bit of notation that we need before our characterization of the sets
coded in a structure. Given Na 2 A<! , we let †1-tpA. Na/ � !, the †1-type of Na, be
the set of Gödel numbers of finitary †1-formulas �. Nx/ such that A ˆ �. Na/. Notice
that the set †1-tpA. Na/ is defined independently of the given presentation of A. It is
not hard to see that for every Na, †1-tpA. Na/ is coded in A. The next theorem says
that, essentially, these are the only sets that are coded in a structure A.

Theorem 2.15 (Ash and Knight [1]) A set X is coded in a structure A if and only
if for some Na 2 A<! ,

X �e †1-tpA. Na/:

The proof of this theorem is somewhat similar to the one of Theorem 4.2.

2.2 Weakly coding There is another way of coding information into a structure with-
out taking jumps. We first need to recall the notion of a left computably enumerable
set. For �; � 2 2<! , we let � �Q � if for D � \ � , we have that � is compatible
with _0 and � is compatible with _1. It is not hard to see that .2<! ;�Q/ is iso-
morphic to the ordering on the rationals. We can then extend this ordering to 2�!

in the obvious way, getting the lexicographic ordering when restricted to 2! . We say
that a D 2 2! is left computably enumerable if ¹� 2 2<! W � <Q Dº is computably
enumerable. These reals are also sometimes called left approximable or computably
enumerable reals.

Definition 2.16 We say that D is weakly coded in the nth jump of A if for every
B Š A, D is left computably enumerable in D.B/.n/.

We note that in some cases, weakly coding is all we can do.

Example 2.17 We will now define a class of structures K such that every structure
A of K is determined by a �Q-downward closed subset RA of 2<! , and such that
RA is coded in A (i.e., it is computably enumerable in every copy of A).

The language for these structures consists of two unary relations A and B , a func-
tion symbol f , and a constant symbol cq for each q 2 2<! . The set RA that we
mention above will be decoded from the set of cq’s which are in the range of f . Let
K be the class of structures on this language which satisfy the following properties.

(a) A and B partition the universe in two sets.
(b) Every element of B is named by some constant cq , and no element of A is.
(c) Different constants are assigned to different elements.
(d) The range of f is included in B .
(e) f is the identity on the elements of B .
(f) f is one-to-one on the elements of A.
(g) If q <Q r 2 2<! and .9x 2 A/f .x/ D cr , then .9y 2 A/f .y/ D cq .
It is not hard to see that each structure A of K is completely determined by the

set RA D ¹q 2 2<! W A ˆ .9x 2 A/f .x/ D cqº which is an initial segment
of .2<! ;�Q/, and could be any given initial segment of .2<! ;�Q/. Furthermore,
RA is coded by A. Therefore, for every D 2 2! , there is a structure A 2 K with
RA D ¹� 2 2<! W � <Q Dº, and hence A weakly codes D.

Computable Structure Theory 293

3 Relations on a Structure

Definition 3.1 A relation R on a structure A.R � Ak/ is relatively intrinsically
computably enumerable (r.i.c.e.) if for every copy .B;Q/ of .A; R/, Q is com-
putably enumerable in D.B/.
Example 3.2 Let L be a linear order, and let Succ.x; y/ � x < y ^ 8z:.x <

z < y/. Then :Succ.x; y/ is r.i.c.e. To see this, given two elements x; y, for
:Succ.x; y/ to hold, either y < x, which we can tell computably, or there is a z
such that x < z < y, which we can search computably.
Example 3.3 On a graph, the relation Conn.x; y/ � (x and y are joined by a
path) is r.i.c.e. To see this, just enumerate all the paths in the graph looking for a path
between x and y. This is a computably enumerable process.

Note that there is no first-order formula in the language of graphs that defines
connectedness.
The definition of a r.i.c.e. relation can be extended in an obvious way to the whole
arithmetic hierarchy.
Definition 3.4 A relation R on a structure A is relatively intrinsically †0n if for
every copy .B;Q/ of .A; R/, Q is many-one reducible to D.B/.n/.
Thus, these relations are exactly the ones that can be defined within n Turing jumps
of the structure, independently of the presentation of the structure. Our goal now is
to characterize the relatively intrinsically †0n-relations on a structure.
Definition 3.5 Given a set L of relation, function, and constant symbols, we
introduce the infinitary language over it. We have that L!1;! is the least set of
formulas such that

(i) all first-order L-formulas are in L!1;! ;
(ii) if ¹�0; �1; : : : º � L!1;! and altogether they use only finitely many free vari-

ables, then
V
i2! �i and

W
i2! �i 2 L!1;! ;

(iii) if � 2 L!1;! , then 8x�i 2 L!1;! and 9x�i 2 L!1;! .
The interpretation of an infinitary formula on anL-structure is defined in the obvious
way.

The hierarchy of L!1;!-formulas is defined as follows. The †in
0 - and …in

0 -
formulas are formulas without quantifiers and without infinite disjunctions or con-
junctions. The †in

n -formulas are the ones of the form
W
i2! 9 Nx�i . Nx/, where �i is

…in
m for somem < n, and the…in

n -formulas are the ones of the form
V
i2! 8 Nx�i . Nx/,

where �i is †in
m for some m < n. This definition can be extended throughout the

ordinals, but in this article we only consider the finite levels (see [1, Chapter 6]).
A formula � 2 L!1;! is computably infinitary if all its conjunctions and dis-

junctions are of computably enumerable sets of formulas. We then denote †c
n

for the computably infinitary †in
n -formulas, and …c

n for the computably infinitary
…in
n -formulas (see [1, Chapter 7]).
For this definition to make sense, that is, to be able to talk about computably

enumerable sets of formulas, we need to assign a Gödel number to each computably
infinitary formula. This is done from the bottom up. That is, we define the codes for
the†c

n- and…c
n-formulas by recursion on n. Once all the†c

n�1- and…c
n�1-formulas

have Gödel numbers, we can give codes to the†c
n- and…c

n-formulas using the index
for the computably enumerable sets of formulas being considered.

294 Antonio Montalbán

Example 3.6 On a graph .V;E/, Conn.x; y/ �
W
n2! 9x1; : : : ; xn.xEx1 ^

x1Ex2 ^ � � � ^ xnEy/. Note that this is a †c1-formula.

Example 3.7 “A group is torsion” (all elements have finite order) can be defined
by 8x

W
n2! x

n D 1. This one is a …c
2-sentence.

Observation 3.8 If �. Nx/ is a †c
n-formula, then ¹ Na 2 Aj Nxj W A ˆ �. Na/º, as a sub-

set of !, is†0n inD.A/. Furthermore, this is uniform in �. That is, if 'i . Nxi / denotes
the i th †c

n-formula in a standard enumeration, then ¹hi; Nai W i 2 !; i 2 Aj Nxi j;A ˆ

�i . Na/º is also †0n in D.A/.

The following theorem gives the first characterization of a set of relatively intrin-
sically †0n-relations. Notice how this theorem provides an equivalence between a
computational notion that is defined in terms of the presentations of a structure and
a syntactical notion that is completely independent of the presentations involved.

Theorem 3.9 (Ash, Knight, Manasse, Slaman; Chishholm) Given a relation R on
A, the following are equivalent:

(1) R is relatively intrinsically †0n;
(2) there are a †cn-formula �. Nx; Ny/ and parameters Nb 2 A such that

.8Na 2 Ak/ Na 2 R , A ˆ �. Na; Nb/:

We will prove this theorem at the end of Section 5. Now, we will see how, in
some cases, one can find a much better characterization of the relatively intrinsically
†0n-relations.

Example 3.10 The class of linear orderings gives us another nice example.

Lemma 3.11 In the class of linear orderings, every †c1-formula is equivalent to a
finitary …1-formula in the language .�;Succ/.

Before proving this lemma, we need to prove the following auxiliary result.

Lemma 3.12 For .a1; a2; : : : ; an/ and .b1; b2; : : : ; bn/ 2 !n, we declare that
.a1; : : : ; an/ � .b1; : : : ; bn/ if .8i � n/ ai � bi . Then, every A � !n has a finite
subset B � A such that

8x 2 A9y 2 B.y � x/:

This lemma says is that � is a well-quasi-ordering.

Proof Since � is clearly well founded, A has a subset B of minimal elements
satisfying 8x 2 A9y 2 B.y � x/. We need to prove that B is finite. Note that
all the elements of B are incomparable, so it will be enough to show that .!n;�/
has no infinite antichains. We claim that for every sequence ¹ Nxi W i 2 !º � !n,
9i; j.i � j / ^ . Nxi � Nxj /. The proof of this claim is done by induction on n. Split
each Nxi as Nyi

_mi , where Nyi 2 !n�1 and mi 2 !. There is a subsequence where the
mi ’s are nondecreasing. Along this subsequence, we know by induction that there
are i < j such that Nyi � Nyj . Since mi � mj for all i < j in that subsequence, we
get Nxi � Nxj . This completes our induction step.

We now prove Lemma 3.11.

Computable Structure Theory 295

Proof Let Nx D .x1; : : : ; xn/ and �. Nx/ D
W
i2! 9 Nyi i . Nx; Nyi /, where the Nyi ’s can

be of different lengths for different i ’s. We need to show that this is equivalent to a
finitary …1-formula. For each finite map f from the set of variables ¹ Nx; Nyiº to an
initial segment of!, let f . Nx; Nyi / be the formula that says that these variables appear
in the same order as their image through f . That is, f . Nx; Nyi / is a conjunction of
the formulasw < z forw; z 2 ¹ Nx; Nyiº with f .w/ < f .z/ and of the formulas w D z

for w; z 2 ¹ Nx; Nyiº with f .w/ D f .z/. It is not hard to see that each i is equivalent
to a finite disjunction of formulas of the form f . So, by pulling the disjunction out,
we can assume that all the i ’s are of this form.

Since there are only finitely many ways to order Nx, it is enough to show that
�. Nx/ ^ .x1 < x2 < � � � < xn/ is equivalent to a …1 .�;Succ/-formula. So, we can
assume that all the i ’s are consistent with .x1 < x2 < � � � < xn/. Then i looks
like

y1 < y2 < � � � < yli
0
< x1 < yli

0
C1 < � � � < yli

1
< x2 < yli

1
C1 < � � �

< x2 < � � � < x3 < � � � < xn:

Thus, if we let Dl .z; w/ denote 9.y1; : : : ; yl /.z < y1 < � � � < yl < w/, then

9 Ny i � Dli
0
.�1; x1/ ^ Dli

1
.x1; x2/ ^ � � � ^ Dlin.xn;1/:

Note that this formula is equivalent to a …1-formula over ¹�;Succº:

Dl .z; w/ �

^
k<l

.8y1; : : : ; yk/:
�
Succ.z; y1/^Succ.y1; y2/^� � �^Succ.yk ; w/

�
:

Let A D ¹.l i0; l
i
1; : : : ; l

i
n/ W i 2 !º � !nC1. Then by Lemma 4.11, there exists a

finite B � A such that 8Nl 2 A9 Nm 2 B. Nm � Nl/. It follows that

�. Nx/ ^ .x1 < x2 < � � � < xn/

�

_
Nm2B

Dm0
.�1; x1/ ^ Dm1

.x1; x2/ ^ � � � ^ Dmn
.xn;1/:

Observation 3.13 We can obtain the equivalent …1-formula computably in 00.

Corollary 3.14 Every computably infinitary†c
2-formula about linear orderings is

equivalent to a 00-computable disjunction of finitary †1-formulas over the language
.�;Succ/.

Proof From Lemma 3.11 above, we get that every …c
1-formula is equivalent to a

finitary †1-formula over the language .�;Succ/. Then, use that †c
2-formulas are

†c
1 over …c

1-formulas.

This corollary gives a nice characterization of the class of relatively intrinsically
†02-relations on a linear ordering. We are interested in finding for which other classes
of structures and for which other n’s do we have such a nice characterization of the
class of relatively intrinsically †0n-relations.

Definition 3.15 Given a class of structures K, a computable set of …c
n-formulas,

¹�1; �2; : : : º, is a complete set of …c
n-formulas for K if every †cnC1-formula is

uniformly equivalent to a 0.n/-computable disjunction of finitary †1-formulas over
L [¹�1; �2; : : : º.

296 Antonio Montalbán

Note that for the definition above, it is enough to ask that every …c
n-formula be

uniformly equivalent to a 0.n/-computable disjunction of finitary †1-formulas over
L [¹�1; �2; : : : º. So, a complete set of …c

n-formulas for K is a set of formulas that
capture the whole …c

n structural content of the structures in K.

Example 3.16 In the class of linear orderings, ¹Succº is a complete set of
…c
1-formulas. This is what we just proved.

Example 3.17 Let Sn.x; y/ � À.z1; z2; : : : ; zn/Œx < z1 < � � � < zn < y ^

Succ.z1; z2/ ^ � � � ^ Succ.zn�1; zn/�. This says that between x and y, there does
not exist an n-string of successor elements. Then, for instance, S2; .x; y/ says that the
open interval between x and y is dense, and S1.x; y/ is equivalent to Succ.x; y/.
Let limleft.x/ � 8z < x9y.z < y < x/ be the formula that says that x is a
limit from the left, and let limright.x/ � 8z > x9y.x < y < z/ be the formula
that says that x is a limit from the right. It is proved in [11] that the set®

limleft.�/;limright.�/;S1.�; �/;S2.�; �/;S3.�; �/; : : : ;

S1.�1; �/;S2.�1; �/; : : : ;S1.�;1/; : : :
¯

is complete for …c
2-formulas.

Example 3.18 The set of all …c
n-formulas is a complete set of …c

n-formulas.

The following lemma provides one of the motivations for our interest in complete
sets of …c

n-formulas.

Lemma 3.19 Let ¹�1; : : : ; �n; : : : º be a complete set of …c
n-formulas for a class

of structures K. Let A 2 K, and let R be a relatively intrinsically …n relation
on A. Then for all X �T 0

.n/, if X computes a copy B of .A; �A
0 ; �

A
1 ; : : : /, then

X �T R
B .

The following theorem provides further motivation.

Theorem 3.20 (Jump inversion theorem) Let X �T 00 compute a copy of
.A; A

0 ;
A
1 ; : : : /, where ¹ 0; 1; : : : º is a complete set of …c

1-formulas. Then
there exists Y such that

(1) Y 0 �T X ,
(2) Y computes a copy of A.

We will prove this theorem in the next section. This theorem is due independently
to Montalbán [10] and to Soskova and Soskov [18]. In [18], they never state this
theorem, and what they call the “jump inversion theorem” is a different result. But
this theorem follows from the proof of [18, Theorem 12].

Example 3.21 The following corollary was proved independently by Frolov as a
tool to obtain other results.

Corollary 3.22 (Frolov [4]) If 00 computes a linear ordering .L;�;Succ/, then
.L;�/ has a low copy.

Proof Here, use the jump inversion theorem, lettingX D 00 and using the fact that
¹Succº is …c

1-complete.

Computable Structure Theory 297

4 Building Copies of a Structure

Given some structure A, we would like to build a “generic copy” of A. Let P be
the set of finite tuples of distinct elements from A. We want to build sequences
p1 � p2 � � � � 2 P such that every element of A appears in some tuple in the
sequence. Here pi � piC1 means that pi is an initial segment of piC1. Let

G D

[
i2!

piA
! :

So, GW! ! A is one-to-one and onto. Then, we obtain a structure with domain
! by pulling back A. Call this structure B. So, if R is a relation on A, then
RB D G�1.RA/.

Recall that jBj D B D ¹b0; b1; : : : º is a set of constants naming the natural
numbers. Using this, we are able to obtain an enumeration via Gödel numbering of
atomic .L [B/-sentences, ¹�0; �1 : : : º.

Given p 2 P, we say that p ˆ �i .b0; : : : ; bk/ (where the constants that appear in
� are among the shown ones) if k < jpj, and A ˆ �.p.0/; : : : ; p.k// (where p.j /
is the j th element of p).

Definition 4.1 Given n 2 !, if L is a finite language, let kn be the number of
L [b0; : : : ; bn atomic formulas, using all symbols in L as relation symbols. If L
is an infinite language, then let kn be the number of such formulas which only use
the first n many relations. We will always assume that in our enumeration of atomic
formulas, the kn-formulas just mentioned appear first, and that this is true for every n.
Given p 2 P, we let D.p/ 2 2kjpj be such that for i < kjpj,

D.p/.i/ D

´
1 if p ˆ �i ;

0 otherwise.

Note that
D.B/ D

[
i2!

D.pi / 2 2! :

Now we have the machinery to prove the jump inversion theorem (Theorem 3.20)
and Theorems 2.15 and 3.9.

Proof of Theorem 3.20 We want to build G �T X such that .D.B//0 �T X .
Step 0: Let p0 D ;.
Step s C 1 D e: Suppose that we have already defined ps; we now define psC1.

We ask if 9q 2 P such that q � ps and

¹eºD.q/.e/ # :

(Here, we are using ¹eº for the eth partial computable function, and we use the
convention that if an oracle is a finite string of length s, then the computation does
not run for more than s steps.) If so, let qsC1 be the q found in the search. Otherwise,
let qsC1 D ps . In either case, let psC1 D qsC1

_a, where a is the first element in A
not in the range of qsC1. This latter part of the construction is to make G onto A.

We claim that the construction is computable in X and that .D.B//0 �T X . Note
that the statement

9q 2 P
�
.q � ps/ ^

�
¹eºD.q/.e/ #

��

298 Antonio Montalbán

holds if and only if

A ˆ

_
�22<!

¹eº� .e/#

9a1; : : : ; anDj� j�jps j 2 A
�
D

�
ps
_

ha1; : : : ; ani
�

D �
�
;

where D.p/ D � can be written as
V
i W�.i/D1 �i .p/ ^

V
i W�.i/D0 :�i .p/, which is a

quantifier-free finitary formula. So, the formula above is a †c1-formula with parame-
ters ps . Since X computes 00 and .A; �A

0 ; �
A
1 ; : : : /, X can compute the †c

1-formula
above, and hence X can run the construction above. Furthermore, .D.B//0 �T X ,
because e 2 .D.B//0 if and only if at stage s C 1 D e there existed such q.

We now prove the case n D 1 of Theorem 3.9.

Theorem 4.2 Given a relation R on A, the following are equivalent.
(1) The relation R is r.i.c.e.
(2) There are a †c

1-formula �. Nx; Ny/ and Nb 2 A such that

.8Na 2 Ak/ Na 2 R , A ˆ �. Na; Nb/:

Proof .2/) .1/: This is the easy direction. It follows from Observation 3.8.
.1/) .2/: We will build a copy B of A by building a sequence of ps 2 P as

above, and at step s C 1 D e we will try to diagonalize RB against W D.B/
e . One of

these attempts will have to fail, and we will use its failure to define � as wanted.
Step 0: Let p0 D ;.
Step s C 1 D e: We try to make RB ¤ W

D.B/
e . Ask if

.9q � ps/
�
9n < jqj

�
n 2 W D.q/

e ^ q.n/ … R:

If so, let qsC1 D q. Otherwise, let qsC1 D ps . In any case, let psC1 D qsC1
_a,

where a is the first element in A not in the range of qsC1.
We now have a sequence p1 � p2 � : : : , and we define G and B as above. Since

B is isomorphic to A, and R is relatively intrinsically computably enumerable, for
some e, RB D W

D.B/
e , where RB D G�1.R/. Let s D e � 1. We now observe that

for a 2 A,

a 2 R ” .9q � ps/
�
9n < jqj

�
n 2 W D.q/

e ^ q.n/ D a:

The direction from left to right follows from the fact that G�1.R/ D W
D.B/
e , so all

we need is n D G�1.a/ and q a sufficiently large initial segment of G. For the right-
to-left direction, we need to observe that if .9q � ps/.9n < jqj/ n 2 W

D.q/
e ^q.n/ D

a ^ a … R, then at stage s C 1 we would have acted and prevented RB D W
D.B/
e .

Now the right-hand side of the equation above can be written as the following
†c1-formula: _

�22<!

n2W �
e

9 Nc
�
D.ps

_
Nc/ D � ^ .ps

_c/.n/ D a
�
;

obtaining a †c
1-definition of R with parameters ps .

Computable Structure Theory 299

5 The Jump of a Structure

We start by defining the notion of the jump of a structure. Note that this definition is
independent of the presentation of the given structure.

Definition 5.1 If ¹�0; �1; : : :º is a complete set of …c
n-relations on A, we say

that .A; �A
0 ; �

A
1 ; : : :/ is an nth jump of A, written A.n/. When ¹�0; �1; : : :º is the

sequence of all…c
n-formulas, we say that .A; �A

0 ; �
A
1 ; : : :/ is the canonical nth jump

of A.

Other definitions of the jump of a structure in slightly different settings were given
independently by Baleva [2] and addition studied by Soskova and Soskov [18], and
also independently by Morozov [12] and Puzarenko [14], and then further studied by
Stukachev.

Observation 5.2 It is worth observing that an nth jump of a kth jump of a struc-
ture is an .nCk/th jump because a complete set of…c

k
-formulas over a complete set

of …c
n-formulas yields a complete set of …c

nCk
-formulas.

Observation 5.3 If X 2 Spec.A/, then X 0 2 Spec.A0/. If Y 2 Spec.A0/, and
Y �T 00, then there is X 2 Spec.A0/ such that X 0 �T Y by the jump inversion
theorem. Thus

Spec.A0/ \ D.�00/ D
®
x0

W x 2 Spec.A/
¯
;

where D.�00/ is the set of Turing degrees that compute 00.
If A0 is the canonical jump of A, then A0 strongly codes 00 (because there is a

computable sequence of …c
1-sentences i such that A ˆ i if and only if i … 00,

and hence A0 codes the complement of 00). Therefore, Spec.A0/ � D.�00/, and
hence Spec.A0/ D ¹X 0WX 2 Spec.A/º.

Example 5.4 If L is a linear order, then Lemma 3.11 and Example 3.17 show that
L0

D .L;Succ/

and
L00

D
�
L;limleft.�/;limright.�/;S1.�; �/;S2.�; �/; : : : ;

S1.�1; �/; : : : ;S1.�;1/; : : :
�
:

Example 5.5 Boolean algebras provide a very interesting example. The rela-
tions needed to get the first four jumps of a Boolean algebra were considered
by Knight and Stob [9], and a proof that they are actually complete sets of rela-
tions at the right level can be indirectly obtained from Harris and Montalbán [5].
For example, if B is a Boolean algebra, we have that B 0 D .B;atom/ and
B 00 D .B;atom;inf;atomless/. This was then extended in [5] to all n 2 N.

Theorem 5.6 (Harris and Montalbán [5]) For every n there is a finite complete set
of …c

n-relations for the class of Boolean algebras.

The relations used for the first four jumps of a Boolean algebra were used to prove
the following lemma.

Lemma 5.7 Let B be a Boolean algebra. For every X � !:
(1) X 0 computes a copy of B 0 if and only ifX computes a copy of B (see Downey

and Jockusch [3]);

300 Antonio Montalbán

(2) X 0 computes a copy of B 00 if and only if X computes a copy of B 0 (see
Thurber [19]);

(3) X 0 computes a copy of B.3/ if and only ifX computes a copy of B 00 (see [9]);
(4) X 0 computes a copy of B.4/ if and only if X computes a copy of B.3/

(see [9]).

Notice that these statements are stronger than the jump inversion theorem. The jump
inversion theorem would only give us that if X 0 computes a copy of B 0, then there is
a copy of B that is low over X .

Corollary 5.8 Every low4 Boolean algebra has a computable copy.

Proof If B is a low4 Boolean algebra, then we know that 0.4/ computes a copy of
B.4/. Working backward through the statements in the lemma, we conclude that ;.3/

computes a copy of B.3/, ;.2/ computes a copy of B.2/, ;0 computes a copy of B 0,
and finally ; computes a copy of B.

The following open question was already posed in [3].

Question 1 Does every lown Boolean algebra have a computable copy?

Let us now restate the jump inversion theorem using the jump notation.

Theorem 5.9 If X � ;.n/ computes A.n/, then there is a Y such that Y computes
a copy B of A, and Y .n/ �T X . Furthermore, an isomorphism between A and B

can be found computably in X .

This version of the theorem follows immediately from the proof of Theorem 3.20 and
Observation 5.2. We will now use it as a tool to prove the full version of Theorem 3.9.
Recall that in Section 4 we only proved the case n D 1.

Proof of Theorem 3.9 We already knew that (2)) (1). We will now prove (1))

(2). So, we have that R is relatively intrinsically †0nC1. We now claim that R is
r.i.c.e. over A.n/, where A.n/ is the canonical nth jump of A. To prove this claim,
suppose that Bn is a copy of A.n/, that Bn D B.n/, and that X computes D.B.n//.
By the jump inversion, there is a Y such that Y .n/ �T X and Y computes a copy
C of B, and X computes an isomorphism between C and B. Since R is relatively
intrinsically†0nC1, the relationRC is†0nC1 in Y and hence also computably enumer-
able inX , so thatRB is also computably enumerable inX (because the isomorphism
is computable in X). Therefore, R is r.i.c.e. in A.n�1/ as claimed.

The just-proved claim implies that R is definable in A.n/ by a †c
1-formula. Since

A.n/ comes equipped with a complete set of…c
n-relations on A, R is definable in A

by a †c
nC1-formula.

6 Connecting the Notions

Given a class of structures K and n 2 !, we ask the following questions: Does there
exist a “natural” complete set of …c

n-relations for K? Is there, for every D � !, a
structure A 2 K that encodes D in its nth jump?

Of course, to answer the first question we would need to give a precise meaning
to the idea of a “natural” complete set of …c

n-formulas. For this we will use the fact
that all natural concepts in computability are relativizable. That is, if a natural set of
formulas is complete …c

n, it should also be complete …c
n relative to any oracle. Note

Computable Structure Theory 301

that this is the case with our natural examples, like ¹Succº, but it is not the case with
the sequence of all …c

n-formulas.
For this we will look at the boldface version of this notion.

Definition 6.1 A set of …in
n -formulas ¹�0; �1; : : :º is a complete set of …in

n -
formulas if every…in

n -formula is equivalent to a†in
1 -formula over L[¹�0; �1; : : :º.

We postpone the proof of the following dichotomy theorem pending further machin-
ery that will be developed in the next section.

Theorem 6.2 Fix a class of structures K and n 2 !. Either
(1) there is a countable complete set of …in

n -formulas for K, and
(2) no set D is coded in the .n � 1/th jump of any structure A 2 K unless

D �1 0
.n/,

or
(1) there is no countable complete set of …in

n -formulas, and
(2) every set D is weakly coded in the .n � 1/th jump of some structure A 2 K,

all relative to some oracle.

6.1 Back-and-forth relations The main tool used to prove Theorem 6.2 will be the
back-and-forth relations.

Definition 6.3 Fix a class of structures K. We define a relation �n for each n on
pairs .A; Na/, where A 2 K and Na 2 A<! . Given A;B 2 K, Na 2 A<! , Nb 2 B<! ,
with j Naj D j Nbj. The relation �0 is defined by .A; Na/ �0 .B; Nb/ if for any atomic
formula � (with index � kjaj, where kn is defined in Definition 4.1) we have

A ˆ �. Na/ , B ˆ �. Nb/;

or, equivalently, if D. Na/ D D. Nb/.
Supposing �n to be defined, we define
.A; Na/ �nC1 .B; Nb/ ” 8 Nd 2 B<!9 Nc 2 A<!.A; Na; Nc/ �n .B; Nb; Nd/:

To help understand this definition, we present a few examples.

Example 6.4

� If A and B are linear orders, Na D ha1; : : : ; aki 2 Ak , and Nb D hb1; : : : ; bki 2

Bk , then .A; Na/ �0 .B; Nb/ if and only if ai < aj , bi < bj for i; j � k.
Furthermore, .A; Na/ �1 .B; Nb/ if and only if jŒai ; aiC1�j � jŒbi ; biC1�j for
each i � k, thinking of a0 as �1 and akC1 as 1.

� If A D .Z; </ and B D .Q; </, then taking a0 and b0 to be one-element
sequences in A and B, respectively, we have .A; a0/ �1 .B; b0/, but
.A; a0/ Œ2 .B; b0/. To see why the latter inequality is strict, note that by
selecting a1 D a0 C 1 as the Nd in the definition, there is no b1 2 Q so that
.Z; a0; a1/ �1 .Q; b0; b1/ because we can find an element in Q between b0
and b1, but not an element in Z between a0 and a1.

For the next theorem, we use the notation …in
n -tpA. Na/ to mean the set of all

…in
n -formulas satisfied by Na (i.e., the …in

n -type of Na).

Theorem 6.5 The following are equivalent:
(1) .A; Na/ �n .B; Nb/,

302 Antonio Montalbán

(2) …in
n -tpA. Na/ � …in

n -tpB.
Nb/,

(3) given that a structure .C ; Nc/ that is isomorphic to either .A; Na/ or .B; Nb/,
deciding whether .C ; Nc/ Š .A; Na/ is †0

n-hard; that is, given a †0
n set

S � 2! , there is a continuous function f W 2! ! K � !jaj such that

f .X/ Š

´
.A; Na/ if X 2 S;

.B; Nb/ if X … S:

Observation 6.6 By item (2) of the previous theorem, we can easily prove that the
relation �n is both reflexive and transitive. Therefore, �n imposes an equivalence
relation �n on K.

Notation 6.7 We will use lowercase Greek letters ˛, ˇ, and so on for the equiv-
alence classes of �n. Furthermore, we say that a tuple .A; Na/ has n-type ˛, and we
write n-tp.A; Na/ D ˛, if .A; Na/ belongs to the equivalence class ˛. Of course, ˛ can
be seen as a complete …in

n -type, as all the tuples in ˛ have the same …in
n -type. We

use …in
n -tp.˛/ to denote this type.

Definition 6.8 We have that bfn.K/ D ¹.A; Na/ W A 2 K; Na 2 A<!º= �n denotes
the set of the n-back-and-forth equivalence classes.

Note that .bfn.K/;�n/ is a partial ordering. We will see that the size of bfn.K/ will
give us useful information about the structures in K. Since by definition �n is Borel,
the following theorem, due to Silver, reduces the possibilities to just two.

Theorem 6.9 (Silver [17]) Every Borel equivalence relation on 2! has either
countably many or 2@0 many equivalence classes.

Corollary 6.10 We have that jbfn.K/j is either countable or 2@0 .

Example 6.11 All these examples require proofs which we will not include here.
(1) If K is the class of Boolean algebras, then 8n 2 !, jbfn.K/j � @0.

(2) If K is the class of linear orderings, then jbfn.K/j D

´
@0 for n D 1; 2,
2@0 for n � 3.

(3) IfK is the class of equivalence structures, then jbfn.K/j D

´
@0 for n D 1,
2@0 for n � 2:

Notation 6.12 Since we have defined �n between pairs of the form .A; Na/, if ˛
is the n-type of .A; Na/, we denote j˛j to be the length of the tuple Na.

For ˛ 2 bfn.K/, given a …in
n -formula '. Nx/ with j Nxj D j˛j, we write ˛ ˆ ' if

' 2 …in
n -tp.˛/. For each ˛ 2 bfn.K/, we let

extn.˛/ � bfn�1.K/
be the set of all ı 2 bfn�1.K/ such that for all .A; Na/ with n-tp.A; Na/ D ˛, there
exists Nc such that .n � 1/-tp.A; Na; Nc/ �n�1 ı.

Observation 6.13 Straight from the definition of extn.˛/, we have that
� extn.˛/ is closed downward under �n�1;
� ˛ �n .B; Nb/ , .8 Nd 2 B<!/ .n � 1/-tp.B; Nb; Nd/ 2 extn.˛/; and
� ˛ �n ˇ , extn.˛/ � extn.ˇ/.

We now begin building the machinery needed for the proof of Theorem 6.18.

Computable Structure Theory 303

Lemma 6.14 If bfn�1.K/ is countable, then for each ˛ 2 bfn.K/ there exists a
…in
n -formula '˛. Nx/ such that for every B 2 K, and Nb 2 B j˛j,

˛ �n .B; Nb/ , B ˆ '˛. Nb/ , '˛ 2 …in
n -tpB.

Nb/:

Proof Suppose that for each ı 2 bfn�1.K/ we already have a…in
n�1-formula 'ı as

wanted. Then we have that

˛ �n .B; Nb/ , .8 Nd 2 B<!/.n � 1/-tp.B; Nb; Nd/ 2 extn.˛/
, :.9 Nd 2 B<!/.n � 1/-tp.B; Nb; Nd/ … extn.˛/
, :.9 Nd 2 B<!/

_
ı2bfn�1.K/I
ı…extn.˛/

ı �n�1 .B; Nb; Nd/

, B ˆ :

_
ı2bfn�1.K/
ı…extn.˛/

.9 Ny/'ı. Nb; Ny/;

where the third equivalence uses that extn.˛/ is closed downward. Note that the
formula in the last line is …in

n�1 and that the infinitary disjunction is countable
because bfn�1.K/ is countable. Therefore, '˛. Nx/ D

V
ı2bfn�1.K/
ı…extn.˛/

.8 Ny/:'ı. Nx; Ny/

is as wanted.

Lemma 6.15 If jbfn.K/j � @0, then there exists a countable complete set of
…in
n -formulas.

Proof We will show that ¹'˛ W ˛ 2 bfn.K/º is …in
n -complete. Let be any

…in
n -formula. We claim that

 . Nx/ ,

_
˛2bfn.K/

j˛jDj Nxj

˛ˆ

'˛:

.)/ Assume that A ˆ . Na/, and let ˛ be the n-type of .A; Na/. Then ˛ ˆ and
A ˆ '˛. Na/. Therefore, .A; Na/ satisfies the right-hand side.
.(/ Suppose that .A; Na/ satisfies the right-hand side. Then, for some ˛ from the

infinitary disjunction, A ˆ '˛. Na/. Therefore, ˛ �n .A; Na/ and ˛ ˆ . Since is
…in
n , A ˆ . Na/, too.
This proves the claim and the lemma.

Notation 6.16 We let …in
n -impl.'˛/ denote the set of all …in

n -formulas implied
by '˛ in the class K.

Observation 6.17 Let ˛ 2 bfn.K/. Then from Lemma 6.14 above, we get that
…in
n -tp.˛/ D …in

n -impl.'˛/ because both are equal to
T
ˇ�n˛

…in
n -tp.ˇ/.

The following theorem provides the first big step toward proving Theorem 6.2, while
at the same time unifying the concepts discussed in this section with that of complete
sets of formulas.

Theorem 6.18 For a class of structuresK and n 2 !, we have that jbfn.K/j D @0

if and only if there exists a countable complete set of …in
n -formulas.

304 Antonio Montalbán

Proof The left-to-right implication was proved in Lemma 6.15. To prove the other
direction, suppose that ¹R1; R2; : : :º is a countable complete set of …in

n -formulas.
We will prove, by induction on k � n, that jbfk.K/j D @0. So, suppose that
jbfk�1.K/j D @0. We claim that for each ˛ 2 bfk.K/ there exists a finitary
†1-formula ˛ over L [¹R1; : : :º such that …in

n -tp.˛/ D …in
n -impl. ˛/. Then,

since there are only @0 many such †1 finitary formulas, the claim implies that
bfk.K/ is countable, and the theorem follows. Let us now prove the claim. Since
jbfk�1.K/j D @0, we know that for each ˛ 2 bfk.K/, there exists a…in

k
-formula '˛

such that …in
k

-tp.˛/ D …in
k

-impl.'˛/. Since ¹R1; R2; : : :º is a countable complete
set of …in

n -formulas 'a, it is equivalent to a †in
1 -formula over L [¹R1; : : :º. So,

'˛ �
W
i2! i , where each i is finitary†1 over L[¹R1; : : :º. Take .A; Na/ of type

˛, and, since A ˆ '˛. Na/, take i such that A ˆ i . Na/. Now,

…in
k -tp.˛/ D …in

k -impl.'˛/ � …in
k -impl. i / � …in

k -tpA. Na/ D …in
k -tp.˛/:

Therefore, …in
k

-tp.˛/ D …in
k

-impl. i /, and the claim is proved.

Lemma 6.19 If jbfn.K/j D @0, then there exists an oracle X such that if D is
encoded by the .n � 1/th jump of some structure in K, then D �T X .

Proof The reason is that there are countably many †c
n-types of tuples from struc-

tures in K, and every set D coded by some structure in K has to be enumeration
reducible to one of these. All we need to do is let X bound the jumps of these
countably many †c

n-types.

Observe that the previous results provide a proof for the first part of Theorem 6.2.
The following discussion will focus on the case where jbfn.K/j is uncountable.

Definition 6.20 The bf-ordinal of K is the least such that jbf .K/j > @0, if
such a exists, and 1 otherwise.

If K is a class of countable structures, as all the ones we are considering, one can
show that K has bf-ordinal 1 if and only if K contains only countably many iso-
morphism types, and otherwise the bf-ordinal of K is at most !1. Also, it is not
hard to prove that if K has bf-ordinal !1, then K has @1 many isomorphism types.
This is the case, for instance, when K is the class of all countable well-orders. If K
is first-order axiomatizable, it is unknown whether K can have size @1, in the case
when @1 ¤ 2@0 . That this is not possible is the well-known Vaught conjecture. It is
also not known in the case where K is a Borel class of countable structures.

Corollary 6.21 If the Turing ordinal of K exists and is n, then the bf-ordinal of K
is � n.

Theorem 6.22 If jbfn.K/j D 2@0 , then, relative to some oracle X , everyD 2 2!

can be weakly coded in the .n � 1/th jump of some A 2 K.

Proof Suppose that there are countably many .n � 1/-back-and-forth types. Oth-
erwise, replace the existing n by the least n such that there are continuum many
n-back-and-forth types, and note that if the theorem is true for the new value of n, it
is true for allm � n. For some k 2 !, we have that ¹˛ 2 bfn.K/ W j˛j D kº has size
continuum. We will assume that k D 0 to simplify the notation needed in the proof;
the general case is essentially the same.

Computable Structure Theory 305

Since bfn�1.K/ is countable, we know there is a complete set of…in
n�1-formulas.

Extend the language to OL by adding all these formulas. If OL is not computable,
relativize the rest of the proof to the Turing degree of OL and of all the degrees
of the formulas we just added. Thus, all the †in

n -L-formulas are equivalent to
†in
1 - OL-formulas, and the †c

n-L-types of the tuples in K are determined by their
finitary †1- OL-types.

Now we define tA 2 2! to be the characteristic function of the finitary †1- OL

theory of A. More formally, enumerate all the finitary †1- OL-sentences in a list
. 0; 1; : : :/. For every structure A, let tA 2 2! be such that tA.i/ D 1 if A ˆ i
and tA.i/ D 0 otherwise. Observe that the set ¹i W tA.i/ D 1º can be coded by the
.n�1/th jump of A (because the .n�1/th jump of any presentation of A can compute
the relations in OL and then enumerate †1- OL-tpA). Let R D ¹tA W A 2 Kº � 2! .
Note that †in

n -tpA is determined by tA, and hence tA D tB if and only if A �n B.
Thus, since j¹˛ 2 bfn.K/ W j˛j D 0ºj D 2@0 , R has size continuum. Note that
R � 2! is a †1

1-class because R is the image of K under t , K is Borel, and t is
arithmetic. Since R is uncountable and †1

1, Suslin’s theorem (see Moschovakis [13,
Corollary 2C.3]) says that R has a perfect closed subset ŒT �, determined by some
perfect tree T � 2<! (where ŒT � is the set of paths through T). In what follows, we
relativize our construction to T , so we assume that T is computable. Thinking of T
as an order-preserving map 2! ! 2! , forX 2 2! we let T .X/ be the path through T
obtained as the image of X under this map. For each X , T .X/ gives us a †1- OL-type
that is consistent with K and of Turing degree X (modulo all the relativization we
have already done). There is some A 2 K with †1- OL-type tA D T .X/, and hence
T .X/ can be enumerated by the .n � 1/th jump of any presentation of A. One can
show that ¹� 2 2<! W � �Q Xº is enumeration reducible to T .X/. If follows that X
is weakly coded by the .n � 1/th jump of A. We chose X arbitrarily, so any set can
be weakly coded into the .n � 1/th jump of some structure A of K.

References

[1] Ash, C. J., and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy,
vol. 144 of Studies in Logic and the Foundations of Mathematics, North-Holland, Ams-
terdam, 2000. Zbl 0960.03001. MR 1767842. 292, 293

[2] Baleva, V., “The jump operation for structure degrees,” Archive for Mathematical
Logic, vol. 45 (2006), pp. 249–65. Zbl 1089.03034. MR 2209558. DOI 10.1007/
s00153-004-0245-z. 299

[3] Downey, R., and C. G. Jockusch, “Every low Boolean algebra is isomorphic to a recur-
sive one,” Proceedings of the American Mathematical Society, vol. 122 (1994), pp.
871–80. Zbl 0820.03019. MR 1203984. DOI 10.2307/2160766. 299, 300

[4] Frolov, A. N., “�02-copies of linear orderings,” Algebra Logic, vol. 45 (2006), pp. 201–9.
Zbl 1115.03047. MR 2289093. DOI 10.1007/s10469-006-0017-4. 296

[5] Harris, K., and A. Montalbán, “On the n-back-and-forth types of Boolean algebras,”
Transactions of the American Mathematical Society, vol. 364 (2012), pp. 827–66.
Zbl 1248.03067. MR 2846355. 299

[6] Jockusch, C. G., Jr., and R. I. Soare, “Boolean algebras, Stone spaces, and the iterated
Turing jump,” Journal of Symbolic Logic, vol. 59 (1994), pp. 1121–38. Zbl 0819.03034.
MR 1312300. DOI 10.2307/2275695. 287, 291

http://www.emis.de/cgi-bin/MATH-item?0960.03001
http://www.ams.org/mathscinet-getitem?mr=1767842
http://www.emis.de/cgi-bin/MATH-item?1089.03034
http://www.ams.org/mathscinet-getitem?mr=2209558
https://doi.org/10.1007/s00153-004-0245-z
https://doi.org/10.1007/s00153-004-0245-z
http://www.emis.de/cgi-bin/MATH-item?0820.03019
http://www.ams.org/mathscinet-getitem?mr=1203984
https://doi.org/10.2307/2160766
http://www.emis.de/cgi-bin/MATH-item?1115.03047
http://www.ams.org/mathscinet-getitem?mr=2289093
https://doi.org/10.1007/s10469-006-0017-4
http://www.emis.de/cgi-bin/MATH-item?1248.03067
http://www.ams.org/mathscinet-getitem?mr=2846355
http://www.emis.de/cgi-bin/MATH-item?0819.03034
http://www.ams.org/mathscinet-getitem?mr=1312300
https://doi.org/10.2307/2275695

306 Antonio Montalbán

[7] Knight, J. F., “Degrees coded in jumps of orderings,” Journal of Symbolic Logic, vol. 51
(1986), pp. 1034–42. Zbl 0633.03038. MR 0865929. DOI 10.2307/2273915. 291

[8] Knight, J. F., “Degrees of models,” pp. 289–309 in Handbook of Recursive Mathematics,
Vol. 1, edited by Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, vol. 138
of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam,
1998. Zbl 0933.03043. MR 1673566. 288

[9] Knight, J. F., and M. Stob, “Computable Boolean algebras,” Journal of Symbolic Logic,
vol. 65 (2000), pp. 1605–23. Zbl 0974.03041. MR 1812171. DOI 10.2307/2695066.
299, 300

[10] Montalbán, A., “Notes on the jump of a structure,” pp. 372–78 in Mathematical Theory
and Computational Practice, edited by K. Ambos-Spiess, B. Löwe, and W. Merkle, vol.
5635 of Lecture Notes in Computer Science, Springer, Berlin, 2009. Zbl 1268.03043.
MR 2545911. DOI 10.1007/978-3-642-03073-4_38. 296

[11] Montalbán, A., “Counting the back-and-forth types,” Journal of Logic and Computation,
vol. 22 (2012), pp. 857–76. Zbl 1268.03044. MR 2956021. 285, 286, 291, 296

[12] Morozov, A. S., “On the relation of †-reducibility between admissible sets,” Siberian
Mathematical Journal, vol. 45 (2004) pp. 522–35. Zbl 1097.03039. MR 2078722. 299

[13] Moschovakis, Y. N., Descriptive Set Theory, vol. 100 of Studies in Logic and the Founda-
tions of Mathematics, North-Holland, Amsterdam, 1980. Zbl 0433.03025. MR 0561709.
305

[14] Puzarenko, V. G., “On a certain reducibility on admissible sets,” Siberian Mathematical
Journal, vol. 50 (2009), pp. 330–40. Zbl 1224.03022. MR 2531766. 299

[15] Richter, L. J., “Degrees of structures,” Journal of Symbolic Logic, vol. 46 (1981), pp.
723–31. Zbl 0512.03024. MR 0641486. DOI 10.2307/2273222. 287

[16] Selman, A. L., “Arithmetical reducibilities, I,” Zeitshrift für Mathematische Logik und
Grundlagen der Mathematik, vol. 17 (1971), pp. 335–50. Zbl 0229.02037. MR 0304150.
DOI 10.1002/malq.19710170139. 291

[17] Silver, J. H., “Counting the number of equivalence classes of Borel and coana-
lytic equivalence relations,” Annals of Mathematical Logic, vol. 18 (1980), pp. 1–28.
Zbl 0517.03018. MR 0568914. DOI 10.1016/0003-4843(80)90002-9. 302

[18] Soskova, A. A., and I. N. Soskov, “A jump inversion theorem for the degree spectra,”
Journal of Logic and Computation, vol. 19 (2009), pp. 199–215. Zbl 1165.03018.
MR 2475650. DOI 10.1093/logcom/exn024. 296, 299

[19] Thurber, J. J., “Every low2 Boolean algebra has a recursive copy,” Proceedings of
the American Mathematical Society, vol. 123 (1995), pp. 3859–66. Zbl 0840.03024.
MR 1283564. DOI 10.2307/2161917. 300

Acknowledgments

The author would like to thank Notre Dame students Jesse Johnson, Steve VanDen-
Driessche, Quinn Culver, and Victor Ocasio Gonzalez, who produced the lecture notes
for his course, which then became the backbone of this paper. The author would also
like to thank Peter Cholak and Julia Knight for organizing the course and for their help
with this publication.

Department of Mathematics
University of California, Berkeley
Berkeley, California
USA
antonio@math.berkeley.edu

http://www.emis.de/cgi-bin/MATH-item?0633.03038
http://www.ams.org/mathscinet-getitem?mr=0865929
https://doi.org/10.2307/2273915
http://www.emis.de/cgi-bin/MATH-item?0933.03043
http://www.ams.org/mathscinet-getitem?mr=1673566
http://www.emis.de/cgi-bin/MATH-item?0974.03041
http://www.ams.org/mathscinet-getitem?mr=1812171
https://doi.org/10.2307/2695066
http://www.emis.de/cgi-bin/MATH-item?1268.03043
http://www.ams.org/mathscinet-getitem?mr=2545911
https://doi.org/10.1007/978-3-642-03073-4_38
http://www.emis.de/cgi-bin/MATH-item?1268.03044
http://www.ams.org/mathscinet-getitem?mr=2956021
http://www.emis.de/cgi-bin/MATH-item?1097.03039
http://www.ams.org/mathscinet-getitem?mr=2078722
http://www.emis.de/cgi-bin/MATH-item?0433.03025
http://www.ams.org/mathscinet-getitem?mr=0561709
http://www.emis.de/cgi-bin/MATH-item?1224.03022
http://www.ams.org/mathscinet-getitem?mr=2531766
http://www.emis.de/cgi-bin/MATH-item?0512.03024
http://www.ams.org/mathscinet-getitem?mr=0641486
https://doi.org/10.2307/2273222
http://www.emis.de/cgi-bin/MATH-item?0229.02037
http://www.ams.org/mathscinet-getitem?mr=0304150
https://doi.org/10.1002/malq.19710170139
http://www.emis.de/cgi-bin/MATH-item?0517.03018
http://www.ams.org/mathscinet-getitem?mr=0568914
https://doi.org/10.1016/0003-4843(80)90002-9
http://www.emis.de/cgi-bin/MATH-item?1165.03018
http://www.ams.org/mathscinet-getitem?mr=2475650
https://doi.org/10.1093/logcom/exn024
http://www.emis.de/cgi-bin/MATH-item?0840.03024
http://www.ams.org/mathscinet-getitem?mr=1283564
https://doi.org/10.2307/2161917
mailto:antonio@math.berkeley.edu

	1 Degrees of Structures
	2 Information Coded on a Structure
	2.1 Coding and enumeration reducibility
	2.2 Weakly coding

	3 Relations on a Structure
	4 Building Copies of a Structure
	5 The Jump of a Structure
	6 Connecting the Notions
	6.1 Back-and-forth relations

	References
	Acknowledgments
	Author's addresses

