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On the Spectrum of Characters of Ultrafilters

Shimon Garti, Menachem Magidor, and Saharon Shelah

Abstract We show that the character spectrum Sp�.�/ (for a singular cardinal
� of countable cofinality) may include any prescribed set of regular cardinals
between � and 2�.

1 Introduction

The purpose of this paper is to analyze the spectrum of characters of uniform ultra-
filters. Recall that an ultrafilter U on � is called uniform if the size of every member
of U is �. We need some basic definitions for describing the contents of this paper.

Definition 1 (Characters of ultrafilters) Let � be an infinite cardinal, and let U be
an ultrafilter on �.

.@/ A base A for U is a subfamily of U such that for every B 2 U there is some
A 2 A with the property A �� B .

.Æ/ The character of U , denoted by Ch.U /, is the minimal cardinality of a base
for U .

.Ç/ Sp�.�/ is the set of all �’s so that � D Ch.U / for some uniform ultrafilter U

on �.
.È/ The ultrafilter number u� is the minimal value of Ch.U / for some uniform

ultrafilter on �.

It is known that u� > � for every infinite cardinal � (see, e.g., [4, Claim 1.2]). It
follows that if 2� D �C, then Ch.U / D �C for every uniform ultrafilter U . A natural
question is whether u� D �C is consistent with large values of 2�. A positive answer
is supplied in [3]. It is proved there that u� D �C is consistent with an arbitrarily
large value of 2�, for some singular cardinal �.

The proof requires a singular cardinal, limit of measurables. Let us try to describe
the philosophy of the proof. We begin with a supercompact cardinal �, making it
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singular via Prikry forcing or Magidor forcing. As mentioned above, an easy way to
produce a uniform ultrafilter with a small generating base is to invoke the continuum
hypothesis. But how can we enlarge 2� while keeping this special ultrafilter?

Well, we still employ the continuum hypothesis, but this time we apply it
to a sequence of measurable cardinals below �. We choose such a sequence,
h�i W i < cf.�/i, so that 2�i D �C

i for every i < cf.�/. We choose a normal
ultrafilter Ui on each �i , and by virtue of the continuum hypothesis on �i we have
a small base for Ui . Now we combine these bases in such a way that enables us to
elicit a base for an ultrafilter U on � of size �C.

The main point here is that the base of U is created from the small bases of
the Ui ’s; hence, there is no need to diminish 2�. The assumption 2� D �C can be
replaced by the continuum hypothesis on each �i . More precisely, we need 2�i D �C

i

for every i < cf.�/ D � and some kind of approachability of �C. It suffices that
tcf.

Q
i<� �i ; <J bd

�
/ D tcf.

Q
i<� �C

i ; <J bd
�

/ D �C. Under these assumptions, the
desired U can be created even if 2� is large.

Our problem now invades the realm of pcf theory. Is it possible to have a singular
cardinal �, limit of measurables, such that the continuum hypothesis holds on these
measurables, the true cofinalities of the members of the sequence (as well as their
successors) are �C, yet 2� is large? The answer is positive, as shown in [4].

The forcing machinery employed in [4] is taken from [3]. The main component
of this forcing is an iteration of a product-dominating real, and the last component
can be Prikry forcing or Magidor forcing. It follows that the cofinality of � can be
any regular � below it. The first and third authors [4] searched for �C as the value
of Ch.U /. But [3] provides us with the ability to force Ch.U / D � for every regular
cardinal � above �. This is done here, and it gives any single value as a possible
member in Sp�.�/. Our way to control the true cofinalities is simply by determining
the length of the iteration in the product-dominating real forcing.

Now we would like to add two distinct members �0 and �1 (or, more generally,
any prescribed set of regular cardinals) to Sp�.�/. The naïve approach is to designate
two distinct sequences of measurables below �. One sequence would catch �0, and
the other would try to catch �1. But here we are confronted with an obstacle.

If we just concatenate two iterations, each of the desired length (aiming to seize
both �0 and �1), we fail. The second iteration ruins the achievements of the first one.
Hence, we must find a different way to control distinct sequences of measurables and
their true cofinalities.

For this, we employ in this paper the extender-based Prikry forcing. We begin
with a strong cardinal � and a large set of measurables above it. The basic step
blows up 2� to any desired point and creates many distinct sequences of measur-
ables with different values of true cofinalities. For every measurable � above �

we can find a sequence of measurables below � so that tcf.
Q

i<� �i ; <J bd
�

/ D �

and tcf.
Q

i<� �C

i ; <J bd
�

/ D �C. It should be emphasized that we preserve the full
generalized continuum hypothesis (GCH) below �. Consequently, we must confine
ourselves to a singular � with countable cofinality, since 2� becomes large (due to
Silver’s theorem).

This basic step presents every successor of a measurable above � as an element
in Sp�.�/. The next step is to realize each regular cardinal � (above �) as a member
of Sp�.�/. For this end, we collapse each successor of the measurable cardinal �i
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to the regular cardinal �i while keeping the true cofinalities. At the end, every set of
regular cardinals in the interval .�; 2�� can be realized as a set of values for Sp�.�/.

Let us indicate that an almost full characterization of Sp�.�/ appears in [9] for the
case of � D @0. Such a characterization requires two orthogonal methods. The first
one is a method for inserting a member into Sp�.�/, and the second is a method for
eliminating the memberhood of a cardinal. In our context, we supply a general way
for inserting, but we (still) do not know how to eliminate.

At last, one has to admit the existence of some large cardinals in the ground model.
But inasmuch as @0 is a large cardinal, it seems that there is no philosophical reason
to deny the existence of other large cardinals.

Our notation is standard. We refer to [8] and [1] for pcf theory, [2] for general
background on cardinal invariants, and [5] for the subject of Prikry-type forcings.
Our notation is coherent, in general, with these monographs. In particular, we adopt
the Jerusalem notation in forcing; that is, p � q means that q is a stronger condition
than p.

The relation A �� B reads A is almost included in B . If A and B are sub-
sets of �, then A �� B means that jA n Bj < �. We use �; �; �; �; � for infinite
cardinals and ˛; ˇ; ; ı; "; � as well as i; j for ordinals. For a sequence of cardinals
N� D h�i W i < �i we denote

S
¹�j W j < iº by �<i . If N� is the sequence h�i W i < �i,

then N�C denotes the sequence of the successors; that is, h�C

i W i < �i. For a regular
cardinal �, J bd

� is the ideal of bounded subsets of �.

2 The Spectrum of Characters

Let us begin with the product-dominating real forcing Q N� . We start with a Laver-
indestructible supercompact cardinal �, assuming that the GCH holds above �. We
choose an increasing sequence of regular cardinals N� , which steps up fast enough.
The following is the basic component of the forcing notion.

Definition 2 (The N�-dominating forcing) Let � be a supercompact cardinal. Sup-
pose N� D h�˛ W ˛ < �i is an increasing sequence of regular cardinals so that
2j˛jC@0 < �˛ < � for every ˛ < �.

.@/ p 2 Q N� if and only if
(a) p D .�; f / D .�p; f p/,
(b) `g.�/ < �,
(c) � 2

Q
¹�� W � < `g.�/º,

(d) f 2
Q

¹�� W � < �º,
(e) � G f (i.e., �.�/ D f .�/ for every � < `g.�/).

.Æ/ p �Q N�
q if and only if (p; q 2 Q N� and)

(a) �p E �q ,
(b) f p."/ � f q."/, for every " < �.

We iterate this forcing, and then we compose Prikry forcing (or Magidor forcing) to
make � a singular cardinal of cofinality �. If we iterate the product-dominating real
forcing along some ordinal ı � �CC such that jıj D jıj�, then 2� becomes jıj and
tcf.

Q
i<� �i ; <J bd

�
/ D tcf.

Q
i<� �C

i ; <J bd
�

/ D cf.ı/. The following theorem (from
[3]) summarizes the pertinent properties.

Theorem 3 (Product-dominating �-reals) Assume there is a supercompact cardi-
nal in the ground model. Then one can force the existence of a singular cardinal
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� > cf.�/ D �, a limit of measurables N� D h�i W i < �i, such that 2�i D �C

i

for every i < �; 2� � jıj, and the true cofinality of both products
Q

i<� �i =J bd
� andQ

i<� �C

i =J bd
� is cf.ı/ for some prescribed ı � �CC.

We employ the above theorem in order to prove that each regular � above � may be
a member of Sp�.�/.

Claim 4 (Forcing one member) Suppose there is a supercompact cardinal � in the
ground model, and � is a regular cardinal above �. Then one can force � 2 Sp�.�/,
upon making � a singular cardinal.

Proof Due to Theorem 3, we may assume that � > cf.�/ D � is the limit of a
sequence of measurable cardinals N� D h�i W i < �i, and the continuum hypothesis
holds for every �i (upon using the product-dominating real forcing). We choose a
normal ultrafilter Ui on �i for every i < � and choose a fixed uniform ultrafilter E

on �.
Let hAi;˛ W ˛ < �C

i i be a ��-decreasing sequence of sets, which serves as
a base for Ui for every i < �. Here we use the normality of Ui . We choose
any base of size �C to Ui and enumerate its members by hB˛ W ˛ < �Ci.
Now we replace each B˛ (apart from the first one, B0) by the diagonal inter-
section of all the previous sets. By Theorem 3 we can arrange 2� � � and
tcf.

Q
i<� �i ; <E / D tcf.

Q
i<� �C

i ; <E / D �. Let Nf D hf˛ W ˛ < �i be cofinal in
.
Q

i<� �i ; <E /, and let Ng D hgˇ W ˇ < �i be cofinal in .
Q

i<� �C

i ; <E /.
For each ˛ < �, ˇ < �, and Y 2 E we define the following set:

B˛;ˇ;Y D
®
� < � W 9i 2 Y; � 2 Œ�<i ; �i / ^ � 2 Ai;gˇ.i/ n f˛.i/

¯
:

We collect these sets into B D ¹B˛;ˇ;Y W ˛; ˇ < �; Y 2 Eº. The cardinality of B is
�, and it serves as a base for a uniform ultrafilter U on � (see the proof of [4, Main
theorem]); hence, Ch.U / � �. Let us show that equality holds.

Assume toward a contradiction that C is another base for U , and jC j D �0 < �.
Without loss of generality, C � B (as one can replace each member of C by an
element from B, since B is also a base for U ). So C is a collection of sets of the
form B˛;ˇ;Y .

Let ˇ� be an ordinal which is larger than every ˇ mentioned in any B˛;ˇ;Y 2 C

but smaller than �. The collection Ai;ˇ�
D ¹Ai; W  < gˇ�

.i/º is not a base of Ui

(for any i < �). Choose Xi � �i so that neither Xi nor �i nXi is generated by Ai;ˇ�

(i.e., for every A 2 Ai;ˇ�
we have jA n Xi j D jA \ Xi j D �i ).

Set X D
S

¹Xi W i < �º, and assume toward a contradiction that
.B˛;ˇ;Y �� X/ _ .B˛;ˇ;Y �� � n X/ for some B˛;ˇ;Y 2 C . Without loss of
generality, B˛;ˇ;Y �� X . (The opposite option is just the same.) We may assume
that B˛;ˇ;Y is

S
¹Ai;gˇ.i/ W i < �º (i.e., we assume that Y D � and f˛.i/ D 0 for

every i < �).
Let A0

i be Ai;gˇ.i/ n Xi for every i < �. The cardinality of A0
i is �i , as

Ai;gˇ.i/ 2 Ai;ˇ�
and gˇ .i/ < gˇ�

.i/ (without loss of generality, for every i < �).
It follows that j

S
¹A0

i W i < �ºj D �. Since
S

¹A0
i W i < �º � � n X we have

jB˛;ˇ;Y n X j D �, a contradiction.

The main forcing notion to be used in this paper is the extender-based Prikry forcing.
We follow the notation of [5], and we refer to the theorems proved there about the
extender-based Prikry forcing. Some preliminary definitions and facts are in order.



On the Spectrum of Characters of Ultrafilters 375

Let � be a �-strong cardinal (i.e., there is an elementary embedding | W V ! M ,
� D crit.|/, V� � M , and |.�/ > �). For every ˛ < � we define an ultrafilter U˛

on � as
A 2 U˛ , ˛ 2 |.A/:

The idea is to generate many Prikry sequences in �, whence U˛ is related to the
˛th sequence for every ˛ < �. Consequently, 2� � � in the extension model.
Moreover, for every regular cardinal ˛ < � the sequences for all the ˇ’s below ˛

would be cofinal in the appropriate product. (Hence, the pertinent requirement on
the cofinalities is fulfilled.)

We begin by preparing a nice system of ultrafilters and embeddings in order to
define the forcing with them. This system is denoted by E and is called an extender.
For every ˛ < � we have the following commutative diagram:

V

{˛

��

| // M

V�=U˛ Š N˛

k˛

OO

We use the above fixed elementary embedding | and the canonical embedding
{˛ of V into V�=U˛ . As each U˛ is �-complete, V�=U˛ is well founded, so one
can collapse it onto a transitive model N˛ (and we do not distinguish V�=U˛ from
N˛). The mapping k˛ is defined by k˛.Œf �/ D |.f /.˛/ (for every equivalence class
Œf � 2 V�=U˛). It is routine to check that the diagram is commutative.

Let us define a partial order on the ordinals of �. We say that ˇ �E ˛ if and only
if (ˇ � ˛ and) there exists a function f W � ! � so that |.f /.˛/ D ˇ. Intuitively, it
means that ˇ belongs to the range of k˛ . Note that �E is transitive (by composition
of the pertinent functions). It is well known that �E is �CC-directed.

For each pair of ordinals .ˇ; ˛/ such that ˇ �E ˛ we choose a projection
�˛ˇ W � ! � which satisfies |.�˛ˇ /.˛/ D ˇ. Note that Uˇ �RK U˛ (as demon-
strated by �˛ˇ ); that is, B 2 Uˇ , ��1

˛ˇ
.B/ 2 U˛ . The collection of ultrafilters and

projections is our extender E, and it enables us to define our forcing notion P.
For adding many Prikry sequences we have at each condition p 2 P a set of

ordinals g D gp , which is called the support of p and denoted by supp.p/. For each
˛ 2 g we assign a Prikry sequence, and g contains a �E -maximal element for which
we hold a U -tree. Recall that for an ultrafilter U on � we call T � Œ��<! a U -tree if
� 2 T ) SucT .�/ D ¹˛ < � W �_.˛/ 2 T º 2 U .

The last concept that we need is the idea of a permitted ordinal. For every
˛ 2 Œ�; �/ and � < �, let �ı be the ordinal �˛�.�/. The sequence h�0; : : : ; �n�1i is
ı-increasing if �ı

0 < � � � < �ı
n�1. An ordinal � < � is permitted for h�0; : : : ; �n�1i if

�ı > max¹�ı
j W j < nº.

Definition 5 (The extender-based Prikry forcing) Let � be a strong cardinal, and
let � D cf.�/ > �C. We define the forcing notion P as follows: a condition p 2 P is
the set ¹h; p i W  2 gn¹max.g/ºº[¹hmax.g/; pmax.g/; T iº such that the following
hold.
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1. g � �, jgj � �, and max.g/ is a maximal element with respect to �E ,
denoted by mc.p/.

2. p is a finite ı-increasing sequence of ordinals below �, for every  2 g.
3. T is a Umc.p/-tree whose trunk is pmc, and its members are finite ı-increasing

sequences such that pmc �T �0 �T �1 ) SucT .�1/ � SucT .�0/.
4. �mc.p/ .max.pmc// is not permitted for p whenever  2 g.
5. j¹ 2 g W � is not permitted for p ºj � �ı for every � 2 SucT .pmc/.
6. �mc.p/0 projects pmc onto p0.

Let us add the definition of the order (as well as the pure order).

Definition 6 (The forcing order and the pure order) Assume p; q 2 P. We say
that p � q if and only if the following hold.

1. supp.p/ � supp.q/.
2.  2 supp.p/ ) p E q .
3. qmc.p/ 2 T p .
4. If  2 supp.p/ and i 2 dom.qmc.p// is the largest ordinal such that qmc.p/.i/

is not permitted for p , then q n p D � 00
mc.p/

..qmc.p/ n pmc.p// �
`g.qmc n .i C 1///.

5. �mc.q/ mc.p/ projects T
q
qmc into T

p
pmc .

6. For every  2 supp.p/ and � 2 SucT q .qmc/, if � is permitted for q , then
�mc.q/ D �mc.p/ .�mc.q/ mc.p/.�//.

We say that p �� q if and only if p � q and p D q for every  2 supp.p/.

Now we can prove the following theorem.

Theorem 7 (Controlling true cofinalities) Suppose there is a strong cardinal �

and h�i W i � i.�/i is an increasing sequence of measurables above � in the ground
model. Then there is a forcing notion P so that the following hold in the forcing
extension VP.

(a) No cardinal is collapsed by P.
(b) � > cf.�/ D @0.
(c) � < � ) 2� D �C.
(d) 2� � �C

i.�/
.

(e) For every i < i.�/ and every measurable �i > �, there exists a sequence
of measurables h�i;n W n < !i so that tcf.

Q
n2! �i;n; <J bd

!
/ D �i and

tcf.
Q

n2! �C

i;n; <J bd
!

/ D �C

i .

Proof Let P be the extender-based Prikry forcing with respect to � and �i.�/. The
forcing notion P satisfies the �CC-c.c.; hence, cardinals above �C are preserved. It
also satisfies the Prikry property, so by the completeness of the pure order �� we
conclude that every cardinal below �, as well as � itself, is preserved. It is also
known that �C is not collapsed, so (a) holds.

Each Prikry sequence shows that cf.�/ D @0 in the generic extension; hence, (b)
holds. By the Prikry property (and the completeness of ��), no bounded subsets
of � are added, so if one begins with GCH in the ground model, then (c) holds in
VP. We shall prove, herein, that the generic object adds a scale of �i.�/-many Prikry
sequences; hence, we get (d).

Let G � P be a generic set, and let ˛ < �i.�/. Set G˛ D
S

¹p˛ W p 2 Gº. Given
two ordinals ˛ < ˇ we shall prove that G˛.n/ < Gˇ .n/ for almost every n 2 !.
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Choose a condition q 2 G so that ˛; ˇ 2 supp.q/. Let  be mc.q/, and set

A D
®
� < � W �˛.�/ < �ˇ .�/

¯
:

Since ˛ < ˇ we know that A 2 U . Note that q˛ � G˛ and qˇ � Gˇ ,
and, without loss of generality, n0 D lg.q˛/ D lg.qˇ /. We shall prove that
n0 � n ) G˛.n/ < Gˇ .n/.

First we intersect T
q
qmc at every level with A . Using property .4/ of the order �P

we know that if q � r , then r˛ n q˛ D � 00
˛.r n q / and rˇ n qˇ D � 00

ˇ
.r n q /.

Inasmuch as r 2 T
q
qmc we have

� 2 r
n q

) �˛.�/ < �ˇ .�/;

which amounts to G˛.n/ < Gˇ .n/ whenever n � n0. It follows that at least
�C

i.�/
-many distinct Prikry sequences are added, so 2� � �@0 � �C

i.�/
.

For proving (e), fix any measurable �i , suppose that it corresponds to the ordinal
ˇ < �C

i.�/
, and let h�n W n 2 !i be the associated Prikry sequence through Uˇ .

Assume t
Q

is a name for a sequence in
Q

n2! �n. We have to show that there exists
some ordinal ˛ < ˇ and a condition q 2 P so that q forces t <J !

bd
hG˛.n/ W n 2 !i.

As each Prikry sequence (in the diagonal Prikry forcing used above) adds a dominat-
ing family (see [5, Section 1.3]) we are done.

So far we know that each �C

i enters the spectrum of characters. The last forcing
that we shall employ is the Lévy collapse from [6]. Suppose � > � D cf.�/, and
suppose � is a regular cardinal which satisfies �<� D �. We define the forcing
notion Levy.�; �/. A condition in Levy.�; �/ is a partial function f W � ! � such
that j dom f j < �. The order is inclusion.

Levy.�; �/ is �C-c.c. (provided that �<� D �) and �-complete; hence, cardinals
below � or above � are preserved. The completeness of Levy.�; �/ also gives the
preservation of true cofinalities, as demonstrated in the following.

Claim 8 (Preservation of tcf by the Lévy collapse) Suppose P is a �C-c.c. forcing
notion, � D cf.�/ < �, � < � < �, and � D cf.�/, �<� D � in VP. Let R be
Levy.�; �/. Assume further that N� is an increasing sequence of regular cardinals
which tends to �, and assume VP ˆ tcf.

Q
N�; <J / D � for some ideal J on �. Then

VP�R ˆ tcf.
Q

N�; <J / D �.
Moreover, denote Ri D Levy.�i ; �C

i / for every i < i.�/, let R DQ
¹Ri W i < i.�/º with Easton support, and assume VP ˆ tcf.

Q
N�i ; <J / D �C

i for
every i < i.�/. Then VP�R ˆ tcf.

Q
N�i ; <J / D �i .

Proof By the regularity of � we know that R is �-complete. It follows that forcing
with R does not add bounded subsets of � to the universe. In particular, no new
function in .

Q
N�i ; <J / is added, as � < �.

Since VP ˆ tcf.
Q

N�i ; <J / D � and � becomes � in VP�R we have VP�R ˆ

tcf.
Q

N�i ; <J / D �. The same holds for the product R D
Q

¹Ri W i < i.�/º with
Easton support.

Recall that, in Theorem 4, � D cf.�/ may be uncountable. In the main theorem
below we insert many cardinals into Sp�.�/, but the cofinality of � must be count-
able.
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Theorem 9 (Main theorem) Suppose � is supercompact, and suppose h�i W

i < i.�/i is a sequence of measurable cardinals above �. Let h�i W i < i.�/i be
an increasing sequence of regular cardinals above � such that �i � �i for every
i < i.�/. Then one can force ¹�i W i < i.�/º � Sp�.�/.

Proof First observe that �C

i 2 Sp�.�/ after forcing with the extender-based Prikry
forcing P of Theorem 7. Indeed, for each �C

i we have (in the forcing extension) a
sequence N�i so that tcf.

Q
n2! �n; <Jbd

!
/ D �i and tcf.

Q
n2! �C

n ; <Jbd
!

/ D �C

i . It
follows from Claim 4 that �C

i is realized as a member of Sp�.�/.
In order to incorporate the �i ’s we collapse the �i ’s. Without loss of generality,

�i � �i for every i < i.�/. (One has to choose for every i < i.�/ a measurable
cardinal � > �i and rename the sequence of measurables.) For every i < i.�/ let
Ri be Levy.�i ; �C

i /. Let R be the product
Q

¹Ri W i < i.�/º with Easton support.
We claim that the following holds in VP�R for every i < i.�/:

9N�i ; tcf
�Y

N�i

�
� tcf

�Y
N�C

i

�
D �i :

This assertion follows from Claim 8. By working in VP�R, Claim 4 now gives
�i 2 Sp�.�/ for every i < i.�/, and so we are done.

The extender-based Prikry forcing can be used for violating the singular cardinals
hypothesis on @! . One has to interlace Lévy collapses in the forcing conditions, as
shown in [5]. Moreover, the pcf structure (manifested in Theorem 7) remains similar;
in particular, the Prikry sequences form a scale (see [7]). However, the combinatorial
argument of Claim 4 involves the normality of the ultrafilters, so we may ask the
following.
Question Is it forceable that Sp�.@!/ � ¹�i W i < i.�/º for every increasing
sequence of regular cardinals h�i W i < i.�/i above @!?
We conclude with another problem. As mentioned in the Introduction, the above
methods provide a tool for possessing a cardinal in Sp�.�/. We are also interested in
the other side of the coin.
Question Assume � > cf.�/. Is it possible that Sp�.�/ is not a convex set?
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