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Stable Forking and Imaginaries
Enrique Casanovas and Joris Potier

Abstract We prove that a theory T has stable forking if and only if 7°9 has
stable forking.

1 Introduction

We follow the standard conventions, where 7 is a complete theory of language L and
€ is its monster model. A formula ¢(x, y) (where x, y are disjoint tuples of vari-
ables) is stable if there are not (a; | i < w) and (b; | i < w) such that |= ¢(a;,b;)
ifandonly ifi < j.

It is said that T has stable forking if whenever a type p(x) € S(B) forks over some
subset A C B, there is some stable formula ¢(x, y) € L and some tuple b € B such
that ¢(x,b) € p(x) and ¢(x, b) forks over A. The stable forking conjecture is the
statement that every simple theory has stable forking.

A complete @-type over A is a maximally consistent set of ¢-formulas over A,
that is, of formulas of the form ¢(x, a) and —¢(x, a) with tuples a € A. The set of
all complete ¢-types over A is S,(A). We will also use generalized ¢-types (see [1,
Chapter 6]). The generalized p-type of a over A is the set of all formulas in tp(a/A)
which are equivalent to Boolean combinations of ¢-formulas over the monster model.
The main point is that nonforking is transitive for these types (if ¢ is stable) and over
models they coincide with ordinary ¢-types.

Remark 1.1

(1) If @(x,y) is a Boolean combination of stable formulas ¢; (x;, y;) (where
xi €x,y;i Cy,and x; N y; = 0), then ¢(x, y) is stable.

(2) If ¢(x, y) is stable, then ¢~ '(y,x) = ¢(x,y) (the same formula with the
role of x, y interchanged) is stable.
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(3) If p(x,a) = Y¥(x,b) and Y (x,z) is stable, then for some w(y) € tp(a),
o(x,y) A u(y) is stable.

(4) In order to check that T has stable forking, it is enough to consider complete
types over models (forking over arbitrary subsets).

(5) If (x,y) is stable and p(x) € S,(M), then p(x) is definable by a Boolean
combination of formulas ¢(m, y) for some tuples m € M. The canonical
base of p(x) is an imaginary e, the canonical parameter of (any) defini-
tion of p(x) over M. If A C M, then p(x) divides over A if and only if
e ¢ acl®d(A). For any model N 2 M, p(x) has a unique e-definable exten-
sion p’(x) € Sy(N).

(6) If p(x, y) is stable, then for any model M, ¢(x, a) forks over M if and only
if ¢(x, a) divides over M.

Proof For (1), (2), and (5), see [1, Chapters 6, 8] or [7, Chapter 1]. For (3) and
(4), see [4]. For (6), see [1, Corollary 8.4]. O

We will need the following lemma on algebraic quantification of a stable formula,
which seems to be folklore.

Remark 1.2 If the formula ¢(x,y) € L is stable and 6(v,x) F 37"x0(v, x),
then ¥ (v, y) = Ix (0 (v, x) A @(x, y)) is stable.

Proof Assume that = V(a;,b;) if and only it i < j. For eachi < w,
E 3Jx0(a;, x) and hence there are distinct cil, ...,c}" such that |= O(a,-,c{‘) for
allk =1,...,n. Wheneveri < j < w choose some k;; such that I < k;; < n and
E 6(a;, cf i )A (p(c;c i b;). By Ramsey’s theorem, for some infinite / C w there is
some k such that 1 < k <n and = Q(ai,cik) N @(Clk,bj) for all i, j € I such that
i < j.Thenfori,jel, (p(c{‘,b_/) if and only if i < j, which shows that ¢(x, y)
is unstable. O]

Not much progress has been made on the stable forking conjecture. B. Kim [3]
proved that simple one-based theories with elimination of hyperimaginaries have
stable forking. A. Peretz [6] proved that types of SU-rank 2 elements in w-categorical
supersimple theories have stable forking. D. Palacin and F. O. Wagner [5] showed
that supersimple CM-trivial w-categorical theories have stable forking. Finally, let
us mention that stable forking implies weak elimination of hyperimaginaries, which
means that every hyperimaginary is interbounded with a sequence of imaginaries
(see [4]).

One says that T has stable (simple) dividing if dividing is witnessed by a stable
(simple) formula. If @(x, y) is stable and p(x) is a ¢-type over a model M, then p
does not divide over its canonical base, an imaginary e € dcl®¥(M). Therefore, if
T has stable dividing, then for every type p(x) € S(M) there is a subset A € M
such that |A| < |T'| and p does not divide over A. This means (see, e.g., [8, Propo-
sition 29.5]) that if T has stable dividing, then T is simple. More generally, A.
Chernikov has shown (see [2, Proposition 4.14]) that if T has simple dividing, then
T is simple. The next proposition shows that theories with stable forking are also
simple, which implies that stable forking and stable dividing coincide. Moreover, it
includes a stronger version of item (4) of Remark 1.1, with a similar proof.
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Proposition 1.3 If whenever a type p(x) € S(N) forks over an elementary sub-
model M C N there is an instance of a stable formula in p(x) witnessing forking
over M, then T is simple and has stable forking.

Proof = We show first that 7" is simple. Assume not. Then there is a dividing chain
(p(x,a;) | i < k) with k = |T|™. This means that {o(x,a;) | i < «} is consistent
and ¢(x, a;) divides over a; for all i < k. One can construct an elementary chain
of models (M; | i < k) such that a<; € M; and ¢(x, a;) divides over M; for all
i <k Let M = ;. M;, and let p(x) € S(M) contain {p(x,a;) | i < k}.
Then p(x) divides (and forks) over each M;. By the assumption, there is a family
(i (x,yi) | i < k) of stable formulas ¥; (x, y) € L and a corresponding sequence
of parameters m; € M such that ¥;(x,m;) € p(x) and ¥;(x, m;) forks over M;
for all i < k. By item (6) of Remark 1.1, every ¥; (x, m;) divides over M;. By the
choice of k we may assume that v; (x, y;) = ¥ (x, y) for all i. We have obtained a
stable formula with a dividing chain of uncountable length and hence with the tree
property. But it is well known that stable formulas do not have the tree property (see,
e.g., [1, Proposition 2.21]).

For the second part, assume that A € B and a } 4 B. Choose amodel M D A
such that M | , Ba and note thata J , B. Now choose a model N 2 M B such
that N | up @ and note thata } Y N . By the assumption, there is a stable formula
@(x,y) € L and some tuple n € N such that = ¢(a,n) and ¢(x, n) forks over M.
Let p(x) be the ¢-type of @ over N, and let ¢(x) be the generalized ¢-type of a over
B. Since p(x) forks over A but does not fork over B, ¢g(x) forks over A. Hence there
is some formula ¥ (x,z) € L and some tuple b € B such that ¢ (x,b) is in g(x)
and forks over A. By Remark 1.1(3), there is some formula p(z) € tp(d) such that
¥'(x,z) = ¥(x,z) A u(z) is stable. But = ¥/(a, b) and ' (x, b) forks over A. [

2 Main Result

In this section we will assume that 7" is a simple theory, but since stable forking
implies simplicity, in fact it is not necessary to add this assumption to the proposi-
tions below. In particular, the notions of forking and dividing coincide in 7.

Proposition 2.1 If T has stable forking, then T has stable forking over real
parameters.

Proof LetA C B C (€, lete € €% be an imaginary of sort E, and assume that
e [ , B. Choose an |A|* + w-saturated model M 2O B such that e € dcl®(M) and
arepresentative a of e = ag such thata \Le M . Note thata 4 B. By assumption,
there is some stable formula §(x, y) € L and some tuple b € B such that = §(a, b)
and 8(x, b) forks over A. Consider the type p(x) = tpg(a/M). It has a definition
dpx8(x, y) which is a Boolean combination of formulas of the form §(m, y) for some
tuples m € M. The definition is, therefore, an instance of a stable formula. Note that
p(x) does not fork over e and hence its canonical basis drp € M is in acl®l(e).
For some y(w,y) € L%, x(dF,y) defines p(x). Since dpx8(x,y) = x(dr,y),
by Remark 1.1(3) for some w(w) € tp(dr), the formula y(w,y) A u(y) is sta-
ble. Without loss of generality, we assume that y(w, y) is stable. Note that since

8(x.b) € p(x), E x(dF.D).
Claim 1 If g(w) = tp(dF), then g(w) U {y(w, b)} forks over A.
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Proof  Assume not. We will prove that §(x,b) does not divide over A, which
is a contradiction. Let (b; | i < w) be an A-indiscernible sequence of tuples
b; =4 b, and let us check that {§(x,b;) | i < w} is consistent. By the satura-
tion of M, we may assume that b; € M for all i < w. By our assumption in the
proof, g(w) U {x(w,b;) | i < w} is consistent and hence we can find some real-
ization d, € M of this set of formulas. Since dr = dJ, there is some sequence
(b} | i <w)in M suchthat dp(b] | i < w) =dp(b; |i <w). Then = x(dF,b))
for every i < w, which implies that §(x, b}) € p(x) and |= 8(a, b)) for all i < w.
Since {§(x, b]) | i < w} is consistent, {5(x,b;) | i < w} is consistent too. O

With Claim | we can now choose some pu(w) € ¢(w) such that y(w,b) A u(w)
forks over A. Note that y'(w, y) = y(w, y) A u(w) is stable. Since y'(w, b) divides
over A, this can be witnessed by an A-indiscernible sequence (b; | i < w) with
b; =4 b and some k < w for which {y’(w,b;) | i < w} is k-inconsistent. Since
dr € acl®(e), there is some formula (v, w) € L and some n < w such that
E O(e,dr) and 8(v, w) F I="wh(v, w). Let (v, y) = Jw(O(v,w) A x'(w, y)).
By Remark 1.2, ¢(v, y) is stable. Since = ¢(e, b), it only remains to check that
¢ (v, b) forks over A. This is done in the next claim.

Claim 2 We have that ¢ (v, b) divides over A with respecttol = n(k —1) + 1,
witnessed by (b; | i < w).

Proof Otherwise, {¢(v,b;) | i < w} is consistent and it is realized by some
e’ € €. For each i < I, choose some d%. such that = 6(e’,d%) A y'(dL. b;).
The number of d ; ’s is at most n, and therefore, by choice of /, the mapping i — d ;
has some fiber of cardinality at least k. This shows that {y'(w,b;) | i < w} is
k-consistent, which is a contradiction with the choice of k. ]

O

Proposition 2.2 If T®Y has stable forking over real parameters, then T has sta-
ble forking.

Proof By item (4) of Remark 1.1, it is enough to consider types over models.
Assume that e j/A M*4, where M C € is a model, M1 = dcl®I(M) is the cor-
responding imaginary model, A € M*®4, and e € €®. Choose a set A’ of repre-
sentatives of the elements of A such that A’ J/ 4 Me. Then e j/ o M, and, by the
assumption, there is some stable formula §(v, y) € L and some tuple a € A'M
such that = (e, a) and §(v, a) forks over A’. Let p(v) = tps(e/M), and let ¢ be
its canonical base. Since e | . A’, the unique global §-type p(v) 2 p(v) which
is definable over ¢ extends tps(e/A’M). Since c is the canonical base of p and p
forks over A’, ¢ ¢ acl®i(A’). It follows that ¢ ¢ acl®I(A4). Hence p(v) forks over A.
Let ¢(v, b) be a finite conjunction of formulas of p(v) which forks over A. Since
@(v, b) is a conjunction of §-formulas, it is an instance of a stable formula. Moreover,

E (e, D). O
Corollary 2.3 T has stable forking if and only if T®Y has stable forking.

Proof  One direction follows from Propositions 2.1 and 2.2. The rest is clear since
L*-formulas with real free variables are equivalent to L-formulas. O
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3 An Example and Some Open Problems

We describe a theory 7T'. Its language contains two binary relation symbols E, F,
both of which are being interpreted as equivalence relations on the universe with
some specific cross-cutting. The equivalence relation E has infinitely many classes,
all infinite. On the other hand, F has exactly one class of size n for every n > 1, say,
consisting of the elements af, ..., ay. For each k > 1, the elements a]]g, a’;‘H, -
build an E-class. With these specifications, the set {a) | 1 < k < n < w} is the
universe of a model M of T. Note that dcl(d) = M. The formula E(x, y) has
the nonfinite cover property, and F(x, y) is stable. But 3y(E(x,y) A F(y,z)) is
unstable, as witnessed by the sequences (af |i >1)and (aj | j > 1). This answers
a question of M. C. Laskowski: Lemma 1.2 cannot be generalized to the case where
6 (v, x) is a nonfinite cover property formula. On the other hand, it shows that the
proof of Proposition 2.1 cannot be carried out by trying to prove that the formula
Ax(7rg(x) = v A 8(x,y)) is stable (where mg is the mapping sending each tuple
to its E-equivalence class). Since T is interpretable in Presburger arithmetic, it is
dp-minimal. But 7" has the strict order property; hence it is not simple. This can
be checked by observing that the E-class of a;; is infinite and has a definable linear
ordering. It would be interesting to find a similar example in a simple theory.

A. Chernikov has raised the question of whether Corollary 2.3 can be generalized
to dependent forking. (See [2] for the relevant definitions.)

Let us finally mention a connected question asked by Ziegler. Assume that all
1-types in T have stable forking. Does it follow that 7" has stable forking? A positive
answer would be very helpful.
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