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Stable Forking and Imaginaries

Enrique Casanovas and Joris Potier

Abstract We prove that a theory T has stable forking if and only if T eq has
stable forking.

1 Introduction

We follow the standard conventions, where T is a complete theory of languageL and
C is its monster model. A formula '.x; y/ (where x, y are disjoint tuples of vari-
ables) is stable if there are not .ai j i < !/ and .bi j i < !/ such that ˆ '.ai ; bj /

if and only if i < j .
It is said that T has stable forking if whenever a type p.x/ 2 S.B/ forks over some

subset A � B , there is some stable formula '.x; y/ 2 L and some tuple b 2 B such
that '.x; b/ 2 p.x/ and '.x; b/ forks over A. The stable forking conjecture is the
statement that every simple theory has stable forking.

A complete '-type over A is a maximally consistent set of '-formulas over A,
that is, of formulas of the form '.x; a/ and :'.x; a/ with tuples a 2 A. The set of
all complete '-types over A is S'.A/. We will also use generalized '-types (see [1,
Chapter 6]). The generalized '-type of a over A is the set of all formulas in tp.a=A/
which are equivalent to Boolean combinations of '-formulas over the monster model.
The main point is that nonforking is transitive for these types (if ' is stable) and over
models they coincide with ordinary '-types.

Remark 1.1

(1) If '.x; y/ is a Boolean combination of stable formulas 'i .xi ; yi / (where
xi � x, yi � y, and xi \ yj D ;), then '.x; y/ is stable.

(2) If '.x; y/ is stable, then '�1.y; x/ D '.x; y/ (the same formula with the
role of x, y interchanged) is stable.
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(3) If '.x; a/ �  .x; b/ and  .x; z/ is stable, then for some �.y/ 2 tp.a/,
'.x; y/ ^ �.y/ is stable.

(4) In order to check that T has stable forking, it is enough to consider complete
types over models (forking over arbitrary subsets).

(5) If '.x; y/ is stable and p.x/ 2 S'.M/, then p.x/ is definable by a Boolean
combination of formulas '.m; y/ for some tuples m 2 M . The canonical
base of p.x/ is an imaginary e, the canonical parameter of (any) defini-
tion of p.x/ over M . If A � M , then p.x/ divides over A if and only if
e … acleq.A/. For any model N � M , p.x/ has a unique e-definable exten-
sion p0.x/ 2 S'.N /.

(6) If '.x; y/ is stable, then for any model M , '.x; a/ forks over M if and only
if '.x; a/ divides over M .

Proof For (1), (2), and (5), see [1, Chapters 6, 8] or [7, Chapter 1]. For (3) and
(4), see [4]. For (6), see [1, Corollary 8.4].

We will need the following lemma on algebraic quantification of a stable formula,
which seems to be folklore.

Remark 1.2 If the formula '.x; y/ 2 L is stable and �.v; x/ ` 9Dnx�.v; x/,
then  .v; y/ D 9x.�.v; x/ ^ '.x; y// is stable.

Proof Assume that ˆ  .ai ; bj / if and only if i < j . For each i < !,
ˆ 9x�.ai ; x/ and hence there are distinct c1

i ; : : : ; c
n
i such that ˆ �.ai ; c

k
i / for

all k D 1; : : : ; n. Whenever i < j < ! choose some kij such that 1 � kij � n and
ˆ �.ai ; c

kij

i / ^ '.c
kij

i ; bj /. By Ramsey’s theorem, for some infinite I � ! there is
some k such that 1 � k � n and ˆ �.ai ; c

k
i / ^ '.ck

i ; bj / for all i; j 2 I such that
i < j . Then for i; j 2 I , ˆ '.ck

i ; bj / if and only if i < j , which shows that '.x; y/
is unstable.

Not much progress has been made on the stable forking conjecture. B. Kim [3]
proved that simple one-based theories with elimination of hyperimaginaries have
stable forking. A. Peretz [6] proved that types of SU-rank 2 elements in !-categorical
supersimple theories have stable forking. D. Palacín and F. O. Wagner [5] showed
that supersimple CM-trivial !-categorical theories have stable forking. Finally, let
us mention that stable forking implies weak elimination of hyperimaginaries, which
means that every hyperimaginary is interbounded with a sequence of imaginaries
(see [4]).

One says that T has stable (simple) dividing if dividing is witnessed by a stable
(simple) formula. If '.x; y/ is stable and p.x/ is a '-type over a model M , then p
does not divide over its canonical base, an imaginary e 2 dcleq.M/. Therefore, if
T has stable dividing, then for every type p.x/ 2 S.M/ there is a subset A � M

such that jAj � jT j and p does not divide over A. This means (see, e.g., [8, Propo-
sition 29.5]) that if T has stable dividing, then T is simple. More generally, A.
Chernikov has shown (see [2, Proposition 4.14]) that if T has simple dividing, then
T is simple. The next proposition shows that theories with stable forking are also
simple, which implies that stable forking and stable dividing coincide. Moreover, it
includes a stronger version of item (4) of Remark 1.1, with a similar proof.



Stable Forking and Imaginaries 499

Proposition 1.3 If whenever a type p.x/ 2 S.N / forks over an elementary sub-
model M � N there is an instance of a stable formula in p.x/ witnessing forking
over M , then T is simple and has stable forking.

Proof We show first that T is simple. Assume not. Then there is a dividing chain
.'.x; ai / j i < �/ with � D jT jC. This means that ¹'.x; ai / j i < �º is consistent
and '.x; ai / divides over a<i for all i < �. One can construct an elementary chain
of models .Mi j i < �/ such that a<i 2 Mi and '.x; ai / divides over Mi for all
i < �. Let M D

S
i<� Mi , and let p.x/ 2 S.M/ contain ¹'.x; ai / j i < �º.

Then p.x/ divides (and forks) over each Mi . By the assumption, there is a family
. i .x; yi / j i < �/ of stable formulas  i .x; y/ 2 L and a corresponding sequence
of parameters mi 2 M such that  i .x;mi / 2 p.x/ and  i .x;mi / forks over Mi

for all i < �. By item (6) of Remark 1.1, every  i .x;mi / divides over Mi . By the
choice of � we may assume that  i .x; yi / D  .x; y/ for all i . We have obtained a
stable formula with a dividing chain of uncountable length and hence with the tree
property. But it is well known that stable formulas do not have the tree property (see,
e.g., [1, Proposition 2.21]).

For the second part, assume that A � B and a 6 j^A
B . Choose a model M � A

such that M j^A
Ba and note that a 6 j^M

B . Now choose a model N � MB such
thatN j^MB

a, and note that a 6 j^M
N . By the assumption, there is a stable formula

'.x; y/ 2 L and some tuple n 2 N such that ˆ '.a; n/ and '.x; n/ forks over M .
Let p.x/ be the '-type of a over N , and let q.x/ be the generalized '-type of a over
B . Since p.x/ forks over A but does not fork over B , q.x/ forks over A. Hence there
is some formula  .x; z/ 2 L and some tuple b 2 B such that  .x; b/ is in q.x/
and forks over A. By Remark 1.1(3), there is some formula �.z/ 2 tp.b/ such that
 0.x; z/ D  .x; z/^�.z/ is stable. But ˆ  0.a; b/ and  0.x; b/ forks over A.

2 Main Result

In this section we will assume that T is a simple theory, but since stable forking
implies simplicity, in fact it is not necessary to add this assumption to the proposi-
tions below. In particular, the notions of forking and dividing coincide in T .

Proposition 2.1 If T has stable forking, then T eq has stable forking over real
parameters.

Proof Let A � B � C, let e 2 Ceq be an imaginary of sort E, and assume that
e 6 j^A

B . Choose an jAjC C!-saturated modelM � B such that e 2 dcleq.M/ and
a representative a of e D aE such that a j^e

M . Note that a 6 j^A
B . By assumption,

there is some stable formula ı.x; y/ 2 L and some tuple b 2 B such that ˆ ı.a; b/

and ı.x; b/ forks over A. Consider the type p.x/ D tpı.a=M/. It has a definition
dpxı.x; y/which is a Boolean combination of formulas of the form ı.m; y/ for some
tuplesm 2 M . The definition is, therefore, an instance of a stable formula. Note that
p.x/ does not fork over e and hence its canonical basis dF 2 M eq is in acleq.e/.
For some �.w; y/ 2 Leq, �.dF ; y/ defines p.x/. Since dpxı.x; y/ � �.dF ; y/,
by Remark 1.1(3) for some �.w/ 2 tp.dF /, the formula �.w; y/ ^ �.y/ is sta-
ble. Without loss of generality, we assume that �.w; y/ is stable. Note that since
ı.x; b/ 2 p.x/, ˆ �.dF ; b/.

Claim 1 If q.w/ D tp.dF /, then q.w/ [ ¹�.w; b/º forks over A.
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Proof Assume not. We will prove that ı.x; b/ does not divide over A, which
is a contradiction. Let .bi j i < !/ be an A-indiscernible sequence of tuples
bi �A b, and let us check that ¹ı.x; bi / j i < !º is consistent. By the satura-
tion of M , we may assume that bi 2 M for all i < !. By our assumption in the
proof, q.w/ [ ¹�.w; bi / j i < !º is consistent and hence we can find some real-
ization d 0

F 2 M eq of this set of formulas. Since dF � d 0
F , there is some sequence

.b0
i j i < !/ in M eq such that dF .b

0
i j i < !/ � d 0

F .bi j i < !/. Then ˆ �.dF ; b
0
i /

for every i < !, which implies that ı.x; b0
i / 2 p.x/ and ˆ ı.a; b0

i / for all i < !.
Since ¹ı.x; b0

i / j i < !º is consistent, ¹ı.x; bi / j i < !º is consistent too.

With Claim 1 we can now choose some �.w/ 2 q.w/ such that �.w; b/ ^ �.w/

forks over A. Note that �0.w; y/ D �.w; y/^�.w/ is stable. Since �0.w; b/ divides
over A, this can be witnessed by an A-indiscernible sequence .bi j i < !/ with
bi �A b and some k < ! for which ¹�0.w; bi / j i < !º is k-inconsistent. Since
dF 2 acleq.e/, there is some formula �.v;w/ 2 Leq and some n < ! such that
ˆ �.e; dF / and �.v;w/ ` 9Dnw�.v;w/. Let '.v; y/ D 9w.�.v;w/ ^ �0.w; y//.
By Remark 1.2, '.v; y/ is stable. Since ˆ '.e; b/, it only remains to check that
'.v; b/ forks over A. This is done in the next claim.

Claim 2 We have that '.v; b/ divides over A with respect to l D n.k � 1/ C 1,
witnessed by .bi j i < !/.

Proof Otherwise, ¹'.v; bi / j i < !º is consistent and it is realized by some
e0 2 Ceq. For each i < l , choose some d i

F such that ˆ �.e0; d i
F / ^ �0.d i

F ; bi /.
The number of d i

F ’s is at most n, and therefore, by choice of l , the mapping i 7! d i
F

has some fiber of cardinality at least k. This shows that ¹�0.w; bi / j i < !º is
k-consistent, which is a contradiction with the choice of k.

Proposition 2.2 If T eq has stable forking over real parameters, then T eq has sta-
ble forking.

Proof By item (4) of Remark 1.1, it is enough to consider types over models.
Assume that e 6 j^A

M eq, where M � C is a model, M eq D dcleq.M/ is the cor-
responding imaginary model, A � M eq, and e 2 Ceq. Choose a set A0 of repre-
sentatives of the elements of A such that A0 j^A

Me. Then e 6 j^A0
M , and, by the

assumption, there is some stable formula ı.v; y/ 2 Leq and some tuple a 2 A0M

such that ˆ ı.e; a/ and ı.v; a/ forks over A0. Let p.v/ D tpı.e=M/, and let c be
its canonical base. Since e j^M

A0, the unique global ı-type p.v/ � p.v/ which
is definable over c extends tpı.e=A

0M/. Since c is the canonical base of p and p
forks over A0, c … acleq.A0/. It follows that c … acleq.A/. Hence p.v/ forks over A.
Let '.v; b/ be a finite conjunction of formulas of p.v/ which forks over A. Since
'.v; b/ is a conjunction of ı-formulas, it is an instance of a stable formula. Moreover,
ˆ '.e; b/.

Corollary 2.3 T has stable forking if and only if T eq has stable forking.

Proof One direction follows from Propositions 2.1 and 2.2. The rest is clear since
Leq-formulas with real free variables are equivalent to L-formulas.
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3 An Example and Some Open Problems

We describe a theory T . Its language contains two binary relation symbols E, F ,
both of which are being interpreted as equivalence relations on the universe with
some specific cross-cutting. The equivalence relation E has infinitely many classes,
all infinite. On the other hand, F has exactly one class of size n for every n � 1, say,
consisting of the elements an

1 ; : : : ; a
n
n. For each k � 1, the elements ak

k
; akC1

k
; : : :

build an E-class. With these specifications, the set ¹an
k

j 1 � k � n < !º is the
universe of a model M of T . Note that dcl.;/ D M . The formula E.x; y/ has
the nonfinite cover property, and F.x; y/ is stable. But 9y.E.x; y/ ^ F.y; z// is
unstable, as witnessed by the sequences .ai

i j i � 1/ and .aj
1 j j � 1/. This answers

a question of M. C. Laskowski: Lemma 1.2 cannot be generalized to the case where
�.v; x/ is a nonfinite cover property formula. On the other hand, it shows that the
proof of Proposition 2.1 cannot be carried out by trying to prove that the formula
9x.�E .x/ D v ^ ı.x; y// is stable (where �E is the mapping sending each tuple
to its E-equivalence class). Since T is interpretable in Presburger arithmetic, it is
dp-minimal. But T has the strict order property; hence it is not simple. This can
be checked by observing that the E-class of a11 is infinite and has a definable linear
ordering. It would be interesting to find a similar example in a simple theory.

A. Chernikov has raised the question of whether Corollary 2.3 can be generalized
to dependent forking. (See [2] for the relevant definitions.)

Let us finally mention a connected question asked by Ziegler. Assume that all
1-types in T have stable forking. Does it follow that T has stable forking? A positive
answer would be very helpful.
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