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TAME TOPOLOGY OVER DP-MINIMAL STRUCTURES

PIERRE SIMON AND ERIK WALSBERG

AsstracT. In this paper we develop tame topology over dp-minimalcitmes equipped
with definable uniformities satisfying certain assumpio®ur assumptions are enough
to ensure that definable sets are tame: there is a good ndtiimension on definable
sets, definable functions are almost everywhere continuend definable sets are finite
unions of graphs of definable continuous “multi-valued fioxs”. This generalizes known
statements about weakly o-minimal, C-minimal and P-miineories.

This paper is a contribution to the study of generalizatartvariations of o-minimality.
O-minimality is a model-theoretic notion tdme geometryOver an o-minimal structure
definable functions are piecewise continuous and there mllabghaved notion of dimen-
sion for definable sets. Conditions similar to o-minimaligve been investigated, such as
weak o-minimality and C-minimality, which imply analogeushough weaker—tameness
properties. More recently, it was observed in the ordersé tiaat a purely combinatorial
condition, dp-minimality, is enough to imply such propesti The theory of dp-minimal
ordered structures can be seen as a generalization of iy thfeveakly o-minimal struc-
tures, see [Goo10] and [Sim11]. The present paper contthisdine of work as our results
hold over dp-minimal expansions of divisible ordered aeljroups.

We use a framework which includes both dp-minimal exparssafrdivisible ordered
abelian groups and dp-minimal expansions of valued fields.watk with a dp-minimal
structureM equipped with a definable uniform structure. We assumeithdbes not have
any isolated points and that every infinite definable subE& das nonempty interior.
It follows from work of Simon [Sim11] that these assumptidndd for a dp-minimal
expansion of a divisible ordered abelian group. It follovesti the work of Johnsoh [Johi15]
that our assumptions hold for a non strongly minimal dp-maliexpansions of fields, in
particular for a dp-minimal expansion of a valued field. Owimresults are:

(1) Naive topological dimension, acl-dimension and dpkrat agree on definable
sets and are definable in families.

(2) A definable function is continuous outside of a set of $enalimension.

(3) Definable sets are finite unions of graphs of continuofisalele correspondences
U = M', U c MK an open set.

(4) The dimension of the frontier of a definable set is styif#ks then the dimension
of the set.

A correspondence is a continuous “multi-valued functidhis is made precise below. The
third bullet is as close as we can get to cell decompositiare fhat we do not say anything
about definable open sets. Cubides-Kovacsics, Darniadd_aanknegt[[CKDL15] re-
cently showed that (2)-(4) above hold for P-minimal expansiof fields. Dolich, Goodrick
and Lippel [DGL11] showed that P-minimal structures arengipimal so our work yields
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another proof of (2)-(4) for P-minimal structures. It folle from Propositiofi 413 below
that (4) above holds for expansions of ordered groups withklyeo-minimal theory, this
appears to be novel. Eleftheriou, Hasson and Keren havattgsbown [EHK15, Lemma
4.20] that (4) holds for non-valuational weakly o-minimapansions of ordered groups.
Propositio 4.8 generalizes this as non-valuational weakininimal expansions of or-
dered groups have weakly o-minimal theory by [MMSO00, Theofe7].

We would like to thank the referee for many helpful comments.

1. CONVENTIONS AND ASSUMPTIONS

ThroughoutT is a complete NIP theory in a multi-sorted langudgevith a distin-
guished home sort anM is an|L*|-saturated model of with home sortM. Throughout
“definable” without modification means¥-definable, possibly with parameters”. A de-
finable setA hasdp-rank greater tham if for 0 < i < nthere are formulag;(x,y) and
infinite setsB; € M such that for anyl, ...,b,) € Bg x ... x B, there is ara € A such
that:

ME¢i(ay)] «—[y=b] forall0<i<nyeB,.

The theoryT is dp-minimal with respect to the home sort M has dp-rank one. We
assume throughout thatl is dp-minimal. See Chapter 4 of [Sin115] for more about dp-
ranks.

We assume tha¥l is equipped with a definable uniform structure. We first reited
classical notion of a uniform structure on the BetWe letA € M? be the set ofX, y) such
thatx = y. GivenU, V ¢ M? we declare:

UoV:={(x,2) e M?>: (Ay e M)(x,y) € U, (y,2) € V).
A basisfor a uniform structure oM is a collection8 of subsets oMM? satisfying the
following:

(1) the intersection of the elements®fis equal toA;

(2) if U e Band Yy) € U then {,x) € U;

(3) forallU,V € Bthereis aV € B such thaWw c U NV,
(4) forallU € Bthereisa/ € BsuchthaV oV C U.

Theuniform structure on M generated byB is:
B:={UcCM?:(@VeB)VCU).

Elements of3 are callecentouragesand elements aB are callecbasic entouragesGiven
U € B8andx € M we declare

U[X]:={y: (xYy) € UL

We say thatJ[x] is aball with centerx. We put a topology oM by declaring that a subset
A C M is open if for everyx € Athere is aU € 8B such thatU[x] € A. Assumption
(1) above ensures that this topology is Haudiddrhe collectionfU[X] : U € 8B} forms a
neighborhood basis atfor eachx € M. Abusing terminology, we say th&is adefinable
uniform structure if there is a formulap(x, y, ) such that

B = {p(M?C) | Ce D}

for some definable sdd. We assume throughout thi# is equipped with a definable
uniform structure8. On eachM¥, we put the product uniform structure, generated by
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{U1 x -+~ x Uk : U; € B} or equivalently (because of axiom (1)), By¥ : U € 8}. Given
X=(X1,...,%) € MkandU e 8 we declare:

UDd = (a0 : (V)06 1) € U} € M¥.
We give the main examples of definable uniform structures.

(1) Suppose thdt is an M-definable ordered abelian group athds a definabld -
valued metric orM. We than takeB to be the collection of sets of the form

{(xy) e M2:d(x,y) <t} forteTl.

The typical case is whell = M andd(x,y) = [X—Y|.

(2) Suppose thdt is a definable linear order with minimal element and that a de-
finableT"-valued ultrametric oM. Then we can put a definable uniform structure
on M in the same way as above. The usual case is vihéna valued field.

(3) Suppose tha¥l expands a group. L& be a definable set and suppose fft:

Z € D} is a definable family of subsets &f which forms a neighborhood basis at
the identity for the topology oM under whichM is a topological group. Then
the sets
{(xy) e M?: xlyeUzs forzeD
form a definable uniform structure dw.
We assume tha¥l satisfies two topological conditions:

(1) M does not have any isolated points.
(2) (Inf): every infinite definable subset bf has nonempty interior.

The first assumption rules out the trivial discrete unifaymiThe second is known for
certain dp-minimal structures. 10 [Sim11h{) was proven for dp-minimal expansions
of divisible ordered abelian groups. This was generalineBroposition 3.6 of [JSW15]
where (nf) was proven under the assumption tivitadmits a definable group structure
under whichM is a topological group and such that for every entoufldgend integen
there is an entouragé such that ¥y € V[0])(dx € U[0])(n-y = x). It follows directly
from the work of Johnson that our assumptions hold for anyrmimimal expansion of a
field which is not strongly minimal:

Proposition 1.1. Let F be a dp-minimal expansion of a field which is not stromgjiyimal.
Then F admits a definable uniform structure without isolap@ints and every infinite
definable subset of F has nonempty interior with respectitouthiform structure.

Proof. Itis proven in Section 4 of [Joh15] th&tadmits a definable topology under which
F is a non-discrete topological field. It follows thatadmits a definable uniform structure
without isolated points. Lemma 5.2 of [Joh15] shows that iafipite definable subset of
F has nonempty interior with respect to this topology. |

We finally recall some general notions. Given s&t8 andC C A x Bwe let
Co={aceA:(a,b)eC} foranybeB.

We say that family of set§A; : i € 1} is directed if for everyi, j € | there is & € | such
that A U A; € A. Given a subseA of a topological space we let &} be the closure of
A and IntA) be the interior ofA. Thefrontier of Ais d(A) = cl(A) \ A. An accumulation
point of A is point p such that every neighborhood pftontains a point irA other thenp.
The setA is discrete if it has no accumulation points. The Aés locally closedif every
p € A has a neighborhood such thatu n Ais closed inU. A subset of a topological
space is locally closed if and only if it is the intersectidraclosed set and an open set.
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Lemma 1.2. A definable locally closed set is the intersection of a defmalosed set and
a definable open set.

Proof. Suppose thaA is locally closed. For everp € A there is aU € 8 such that
U[p] N Ais closed inJ[p]. Note that this is equivalent td[p] N A = U[p] N cl(A). LetV
be the union of alU[p] such thatp € AandU[p] n A = U[p] ncl(A). ThenV is open and
definable and one easily checks tat cl(A) = A. O

Throughout this paper C is a small set of parameters and A isdefihable subset of

2. DIMENSION

In this section we develop a theory of dimension for definablesets oM¥. We begin
by noting that [nf ) implies thatM eliminates3™:

Lemma 2.1. If D is definable andAy : x € D} is a definable family of subsets of M then
there is an n such that jA,| > n then A is infinite for all xe D.

Proof. A definable subset ofl is discrete if and only if it is finite. Therefore the set of
x € D such thatA, is finite is definable. The lemma follows by saturation. O

There are several natural notions of dimension on definatiisets ofM*. Thenaive
topological dimensionof a definable sed is the maximal for which there is a coordinate
projectionz : M* — M! such thatr(A) has non-empty interior. Thacl-dimension
dim(a/C), of a tuplea € M¥ over the bas€ is the minimall such that there is a subtuple
a ¢ aof lengthl such thata € acl(Ca’). The acl-dimension of is defined to be

dim(A) := maxdim(a/C) : ae A}.

We can replac€ with any base that defings so this notion of dimension does not depend
onC (if saya ¢ acl(C@) for @ a subtuple o'andC C C;, then we can findy =cy a
such thaly ¢ acl(C1@)). Itis easy to see that acl-dimension is subadditive. Ifatisfies
exchange, then by [Simil4, Proposition 3.2], acl-dimensioimcides with dp-rank. In
this section we prove Propositién 2.4 which states thatentmipological dimension, acl-
dimension and dp-rank coincide on definable sets.

Lemma 2.2. If the naive dimensioractdimension or dp-rank of A is equal to k, then A
has non-empty interior.

Proof. It is clear from the definition of naive dimension that if thaive dimension oA
equalsk thenA has non-empty interior. We show that if di&j(= k thenA has non-empty
interior. Our proof also shows that if dp-#( = k thenA has non-empty interior. We only
use four properties of acl-dimension which hold as well fprreink. We first collect these
properties. LeD, E ¢ MK be definable and let : M'* — M' be the projection onto the
firstl coordinates. Then:

(1) dim(D) = 0if and only if D is finite, and dimi1) = 1;

(2) dim(D U E) = maxdim(D), dim(E)};

(3) dim is subadditive:

dim(D) < dim[z(D)] + maxdim(Dy) : b € M},

See e.g.[[Sim15, Chapter 4] for proofs that these propentés for dp-rank. We prove
the proposition by applying induction ta If k = 1 then (1) and (2) above imply that
dim(A) = 1 if and only if Ais infinite, and(Inf) implies thatA is infinite if and only if A
has non-empty interior. This establishes the base case.
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Suppose thdt > 2 and that dim@l) = k. The inductive hypothesisimplies, for alk M,
that dim,) = k — 1 if and only if A, has non-empty interior iM%2. LetB ¢ M x M*1
be the set oflf,a) € A such thata ¢ Int(A;). Then dimB,) < k — 2 for everyb € M.
Subadditivity shows that dirB) < k — 1, so by (2) we have din(\ B) = k. It suffices
to show thatA \ B has interior inM¥. After replacingA with A\ B we suppose tha,
is an open subset dfi“* for all b € M. Letx : A — MK be the projection onto the
last k — 1)-coordinates. 1&~1(C) is finite for all ¢ e M¥~! then subadditivity would imply
dim(A) < k- 1. Therefore we fix @ € M*! such thatr(C) is infinite and letQ € M be
the set ofb such thatlp,c) € A. For allb € Q there is dJ € B such thatb} x U[c] ¢ A.
GivenU € B we letPy ¢ Q be the set ob such thatb} x U[c] € A. If U,V,W € 8 and
W c UnV thenPyUPy C Py. Thus{Py : U € 8B} is a directed definable family of subsets
of Q. It follows that for everyn there is dJ € 8B such thatPy| > n. As M eliminates1*
there is &J € B such thaPy is infinite. Fix such &J. As Py has non-empty interior there
isan operV C Py. ThenV x U c A. ThusA has non-empty interior. O

The next lemma gives a converse to Lenima 2.2.

Lemma 2.3. The following are equivalent:

(1) A hasdp-rankk;

(2) there are sequences of pairwise distinct singletq)ns(b{ Ji < w) forl < k such
thatlg x --- X l1 C A;

(3) there are mutually C-indiscernible sequences of paendistinct singletons
@ :i<w), | <k suchthatdx - x g CA;

(4) A has non-empty interior;

(5) dim(A) = k.

Proof. Lemmd2.2 shows that both (1) and (5) imply (4)Alhas non-empty interior then
there are definable opéby, ..., U1 € M such thatyg x ... x Uy_1 C A, it easily follows
that (4) implies (3). It is obvious that (3) implies (2) andsgdo see that (2) implies (5).
It remains to show that (2) implies (1). If there are sequsra=in (2), then we obtain
an inp-pattern of siz& by considering the formulaﬁ.(x;a}) =(x= a}). Therefore (2)
implies (1). O

Now we can prove:
Proposition 2.4. Theackdimension, naive dimension and dp-rank of A coincide.

In the following proof we apply the fact that coordinate gaijons do not increase
acl-dimension or dp-rank.

Proof. We prove the proposition by showing that the following araieglent for alln:

(1) the naive dimension dk is at leash;

(2) dim@A) > n;

(3) dp-rk@) = n.
If 7 : MK - M"is a coordinate projection such thatA) has non-empty interior then
Lemmal2.B implies dim(A) = dp-rkzx(A) = n, so dim@) > n and dp-rk@) > n. Thus
(1) implies both (2) and (3). Suppose that dih¢E n. There is a coordinate projection
7 : MK — M" such that dimg(A)) = n. Lemmal 2.2 implies that(A) has non-empty
interior so the naive dimension & is at leastn. Thus (2) implies (1). Suppose that
dp-rk(d) > n. By [Sim1Z4, Corollary 3.5], there is a coordinate projentio: M* — M"
such that dp-rk(A) = n. Lemmd2.2 implies that(A) has non-empty interior, so the naive
dimension ofA is at leash. Thus (3) implies (2). O
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The following corollary was proven in a more general setffdign14]. We include the
easy topological proof that works in this setting.

Corollary 2.5. Let{Dy : x € M'} be a definable family of subsets of MThen for any
d < k, the set of parametersexM' for whichdim(Dy) = d is definable.

Proof. The naive topological dimension is definable in familiesnfy) > d just if there
is a coordinate projection @, to someM® with non-empty interior. O

We say that a definablB C A is almost all of A if dim(A\ B) < dim(A). We say
that a property holdalmost everywhereon A if it holds on a definable subset 8fwhich
is almost all ofA. If Ais open andA \ B has empty interior imA then if follows from
LemmdZ.? thaB is almost all ofA.

Lemma 2.6. Suppose that A is open. Suppose that B is definable and dense in A.
Then the interior of B is dense in A and B is almost all of A.

Proof. It suffices to show that the interior &is dense irA. We fix a definable opevi C A
and show thaB has non-empty interior iN. We only consider the casé= A, the general
case follows in the same way. It thusfisces to show thaB has nonempty interior. For
i <kletV, € M be non-empty open definable sets suchthat ... x Vi € A. For each

i < kwe fix some countably infinit¢ C V;. Applying saturation we takéV € 8 such
that, for each, the neighborhoodd/[a], a € |; are pairwise disjoint. Then for any choice
ofa=(a,...,a) € lyx...x Iy thereisay e BNW][a], i.e. thereis a¥,...,y) € B
such thaty; € W[a] holds for everyi. Fori < k let ¢i(x,y) be given byx € W[y;] where
x ranges oveM andy = (yi,..., Yx) ranges oveB. For every @,...,a) € I1 X ... x Ik
there is ay € B such that for each < k andb € I;, ¢i(b,y) holds if and only ifb = a.
Thus the formulagi(x, y) witness dp-rkB) = k. Lemmd2.B shows th& has non-empty
interior. O

The following corollary will prove useful:

Corollary 2.7. Suppose that A is open and let, A ., A, be definable sets which cover A.
There is an i< n such that Ahas non-empty interior in A. In fact, almost every pointin A
is in the interior of some A

Proof. We fix a definable opeN c U and show thaV contains a point in the interior of
someA;. There is an < nsuch that; is dense in some open subseMoés otherwise the
union of theA is nowhere dense. LemrhaR.6 implies that hidias non-empty interior
inV. O

3. CorrRESPONDENCES AND GENERIC CONTINUITY

In this section we prove Propositibn B.7 which shows thafmekle functionvi — M'
is continuous almost everywhere. We prove a stronger regitth, loosely speaking,
states that definable “multi-valued functions” are conbimsialmost everywhere. We first
introduce the notion of a “multi-valued function” that wellise.

3.1. Correspondences.A correspondencef : E =2 F consists of definable seis F
together with a definable subset Graf)hg¢f E x F such that:

O<|{yeF:(xYy) e Graphf)}| <o forall xeE.

Let f : E =3 F be a correspondence. Givere E we let f(x) be the set of € F such that
(x,y) € Graph(f). Note that saturation implies that there is a N such thatf(x)| < n for
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all x. Theimageof f is the coordinate projection of Gragh(ontoF. Given a definable
B C E we let f|g be the corresponden&= F whose graph is Graphf{ n [B x F]. We
say thatf is constantif f(x) = f(x') for all x, X' € E. If |f(X)| = mfor everyx € E, then
we say thatf is anm-correspondence Given correspondencés E =3 Fandg: F =3 G
we define the compositioho g : E = G to be the correspondence such that

Graph(f o g) = Graph(f) o Graphg).

GivenU € 8 we say that {(x), f(x)) € U if for everyy € f(x) there is &y’ € f(x’) such
that (y,y’) € U and for every’ € f(X) thereis ay € f(X) such thaty,y’) € U. We say that

f is continuousat x € E if for everyV € B there is dJ € B such that {(x), f(X)) € V
whenever X, X') € U. Note that a continuous 1-correspondence is a continuawcsiéun.

In the remainder of this paragraph we prove several simplenas about correspondences
which will be useful.

Lemma 3.1. Let U ¢ MK be open and definable and let:fU = M' be a continuous
m-correspondence. Every @ U has a neighborhood V such that there are definable
continuous functions. .., gm : V — M' such thatGraph(;) N Graph@;) = 0 when i# |
and

Graph(|y) = Graph@i) U ... U Graph@n).

Proof. Fix p € U. Let f(p) = {Q1,...,0m}. LetWy € B be such thatd, q;) ¢ Wp for
alli,j < msuch that # j and letW € 8B be such thaiwW o W € Wy. LetV be an
open neighborhood gb such that {(p), f(p’)) € Wforall p’ € V. Fix p € V and let
f(p') = {d, . ... oy} Foreach < mthere is aj < msuch thatg;, qj) € W. As the balls
WI[qi] are pairwise disjoint we see that for eaick m there is a uniqug < m such that
(ai, q'j) € W. We have shown that for evepy € V andq € f(p) there is a uniqug’ € f(p’)

such thatq,q) € W. Fori < mwe letg : V — M!' be the definable function such that
gi(p’) € W[qg] andgi(p’) € f(p’) for everyp’ € V. Continuity of theg;'s follows easily
from the continuity off. It is clear that the graphs of tlggare pairwise disjoint. O

Lemma 3.2. Let U ¢ MK be open and definable and let:fU = M' be a continuous
correspondence. Almost everyefJ has a neighborhood V such that there are definable
continuous functionsyg. .., gm : V — M' such thaiGraphg;) N Graphg;) = 0 when i# |
and

Graph(|y) = Graph@:) U ... U Graph@m).

Proof. Let m be such thatf (p)| < mfor all p € U. For each < mlet Aj € U be the set
of p such thatf(p)| = i. By Corollary[ZT almost every element bfis contained in the
interior of someA;. An application Lemma3l1 shows that the conclusion of tihena
holds for any element of the interior of somg O

The next lemma is a straightforward generalization of a fiamfact about graphs of
continuous functions. We leave the proof to the reader.

Lemma 3.3. Let f : A=3 M' be a continuous correspondence. Ti@maph() is a closed
subset of A< M'. If Ais open therGraph(f) is a locally closed subset of vk M.

The following lemma is well-known for continuous functionsemmal3.1 reduces
Lemmd 3.4 to the case of a continuous functfoWe again leave the details to the reader.

Lemma 3.4. Suppose that Ais open andlet A = M be a continuous m-correspondence.
Letr: Ax M — A be the coordinate projection. Then everg Graph(f) has a neighbor-
hood VC Graph(f) such thatr(V) is open and the restriction afto V is ahomeomorphism
onto its image.
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3.2. Generic Continuity. In this section we prove Proposition B.7 which states that a
definable correspondend# = M' is continuous almost everywhere. We first prove two
lemmas which we use in the proof of Proposifion 3.7 and inrsdwther places.

Lemma 3.5. LetC = {Cy : x € M'} be a directed definable family of subsets df M

e

xeM!

has non-empty interior then there is an elemeng @fith non-empty interior.

Proof. Suppose that the union &f has non-empty interior. We show that there ik-a
dimensional element af. For 1 < i < k let Ux be open definable subsets idf such
that
Urx...xUkc | JCx
xeM!

Foreach ki < kletl; € U; be a countable set. Lét= 17 x ... x lx. AsC is directed, for
every finiteJ C | there is ay € M' such that) c C,. Saturation gives § € M' such that
| € Cy. LemmdZ.B implies that thiS, has non-empty interior ivI. O

(Inf) implies that there are no infinite definable discrete sishs¥. A straightforward
inductive argument extends this to ally:

Lemma 3.6. There is no infinite definable discrete subset &f M

Proof. We apply induction t&k. The base case follows froninf). We fixk > 2 and
suppose towards a contradiction tiatc MK is definable, infinite and discrete. For all
x € Dthereis dJ € B8 suchthat)[x] N D = {x}. Applying saturation fix & € 8 such that
U[X] n D = {x} holds for infinitely manyx € D. After replacingD with the set of suclx if
necessary we suppose that,if € D andx # ythen ,y) ¢ U. Letr; : MK — M¥1 be the
projection onto the firsk — 1 coordinates and let; : MK — M be the projection onto the
last coordinate. We first suppose tha(D) is finite. This implies that there iséhe 71(D)
such thatql(d)m Dis infinite. Thenrrz[;ql(d)n D] is infinite and discrete. This contradicts
the base case so we may assumesth@D) is infinite. Applying the inductive assumption
we fix an accumulation point of 71(D). LetU’ € 8 be suchthat)’oU’ C U. We declare
W = U’[w] x M andD’ = D n'W. Note thatD’ is infinite. If x,y € D’ then r1(X), w) € U’
and (y),w) € U’ so @@1(X),m(y)) € U. If x,y € D’ and @2(X), 72(y)) € U then as
(r1(X), m1(y)) € U we would also havex y) € U, which impliesx = y. Thusifx,y € D’
andx # y then @2(X), 72(y)) ¢ U. This implies thatro(D’) is discrete and therefore finite.
As D’ is infinite there is a@ € m(D’) such thatrgl(d) ND’ is infinite. Thenzrl[ngl(d) ND']

is infinite and discrete. This contradicts the inductivauiagstion. O

Proposition 3.7. Let V ¢ MX be a definable open set. Every correspondencsg W' is
continuous on an open dense subset of V, and thus is conimlimost everywhere on V.

Proof. As M' is equipped with the product topology itfiees to show that every corre-
spondencd : V = M is continuous on an open dense set. By Lerhmh 2.6fliices to
show that the set of points of continuity 6f: V = M is dense. It is therefore enough
to fix an openV’ € V and show thaf is continuous on some point M. To simplify
notation we assum¢’ = V, this does not result in any loss of generality.

We first treat the cade= 1. We suppose towards a contradiction th& discontinuous
at every pointinV. Letn be such thaff(p)| < nfor all p € V. For everyi < nwe letA
be the set op € V such thatf(p)| = i. Applying Corollary[2.¥ fixi < nsuch thatA; has
non-empty interior irV. After replacingV with a smaller definable open set if necessary
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we suppose thaf C A;. Let B C 8 x V be the set of\(\/ p) such that for alW’ € 8 there

is ag € W[p] such that §(p), f(g)) ¢ W. For everyp € V there is aW € 8 such that
(W, p) € B. As the family{By : W € 8} is directed we apply Lemnia3.5 and fix\ie B
such thaBy has non-empty interior iN. After replacingV with a smaller definable open
set if necessary we suppose tiat By. For everyp € V there argy € V arbitrarily close
to p such that ¢(p), f(q)) ¢ W. Fix U € 8 such that) o U ¢ W. LetD C V x M' be
the set of p,y) such thaty = (y1,...,y) andf(p) = {y1,...,V¥i}. Letn : D — V be the
coordinate projection. AB is infinite an application of Lemmia 3.6 gives an accumulation
point (p,y) € D. ThusU[(p,Y)] n D is infinite, sor(U[(p, ¥)] N D) is also infinite and thus
has non-empty interior iv. LetV’ be a definable open subseta{fJ[(p,y)] N D). Note
that if x € V' then (f(X), f(p)) € U. Fixg € V’. For allr € V' we have §(q), f(p)) € U
and (f(r), f(p)) € U so therefore{(q), f(r)) € W. This is a contradiction as there are
arbitrarily close toq satisfying ((q), f(r)) ¢ W. Thusf must be a continuous at some
pointinV.

We now apply induction t& > 2. We again suppose towards a contradiction thist
discontinuous at every point M. For everyp € V there is aV € 8 such that there exist
g € V arbitrarily close top satisfying ((p), f(q)) ¢ W. Arguing as in the cask = 1
we may suppose th&/ € B is such that for allp € V there areg € V arbitrarily close
to p satisfying f(p), f(q)) ¢ W. After replacingV with a smaller definable open set if
necessary we suppose that Vy x V; for definable opeVy € M andV; ¢ MK-1, Given
y € V1 we let f; : Vo =3 M be the correspondence given Byt) = f(t,y). Then for
all y € V; the correspondencf is continuous away from finitely many points @. It
follows by subadditivity that the set of,{) € Vo x Vi such thatfy is discontinuous at
has dimension at mo&t— 1 and is therefore nowhere dense. After repladiggandV;
with smaller definable open sets if necessary we supposdithat, = M is continuous
forally € V;. LetU € B8 be such thal o U ¢ W. ForO € B let Bo C V be the set of
(t,y) such that ift" € O[t], then (fy(t), f{(t')) € U. For every (,y) € V thereis arO € 8
such that{,y) € Bo. The family{Bo : O € 8} is directed so applying Lemnfia 8.5 we
fix an O € B such thatBp has non-empty interior iy x Vi. After replacingVy andV;
with smaller open sets if necessary we supposeMthatV; € Bo andVg x Vo € O. Thus
if y € Vi andt,t’ € Vg then (f(t,y), f(t',y)) € U. Fixt € Vo and letf' : V; =3 M be
given by f'(y) = f(t,y). Applying the inductive hypothesis we fixzae V; at which f! is
continuous. After replaciny; with a smaller open set if necessary we may suppose that
(fY(y), f'(2) € U holds for ally € V. Suppose thats(y) € Vo x Vi. Then

(fLy). f(t2)eU and ((LY), f(sy)) eU.

As U o U ¢ W we conclude that:

(f(t,2, f(sy)) e W forall(sy) € Vo x Vi.

This gives a contradiction as there asgj arbitrarily close tof, z) such that (t, 2), f(s,y)) ¢
W. O

Definable closure will not in general agree with algebraa@sate, so it should not in
general be the case that the graph of a continuous correspoad a finite union of graphs
of definable functions. Corollafy 3.8 allows us to make upthis in some circumstances.
Corollary[3.8 is a direct consequence of Lenima 3.2 and PitqpoS8.7.

Corollary 3.8. Let U ¢ MX be open and definable and let: U = M' be a correspon-
dence. Almost every @U has a neighborhood V such that there are continuous defnabl
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functions @, ..., gm: V — M' such thatGraphg;) n Graphg;) = @ when i# j and
Graph(fly) = Graph@i) U ... U Graph@n).

4. A DECOMPOSITION

We now show that every definable set is a finite union of graphsmwespondences. A
more complicated argument can be used to show that evenabédiset is a finite disjoint
union of graphs of correspondences. We do not prove thiseaselaker result gfices for
our purposes. As before we latc M be someC-definable subset.

Proposition 4.1. There are C-definable sets A.., A, € A which cover A such that
each A s, up to permutation of coordinates, the graph of a C-defi@aontinuous m-
correspondence fU; = M9 where 4 c MY is a C-definable open set afik d < k.

If d = 0 then we identify the graph of : M® — MX with a finite subset oMK, If
d = k then we identify the graph of : U = M® with U. In this way we regard any open
definable subset d¥1* and any finite subset dfl as the graph of a correspondence.

Proof. By saturation it stfices to prove the following: for arg € A there is a&C-definable
setAg which is, up to a permutation of coordinates, the graph©faefinable continuous
m-correspondenctl = M*¢ for someC-definable operd ¢ M9, and satisfies €
Ao C A Fixa = (a,....a) € A. Letd = dim(aC). By definition of dimension, up
to a permutation of variables, we haw (1, ...,a) € aclCay,...,aq). It follows that
there is aC-definable seB ¢ M® and aC-definable correspondende: B = M9 such
thata € Graph(f). After intersecting GrapH( with A and replacingd with a smaller
C-definable set if necessary we may assume that Gfagh(A. LemmaZ.B shows that
dim(B\Int(B)) < dsoas4,...,aq) € Banddiméy,...,a4|C) =dwe have d,...,aq) €
Int(B). Let N be such thaftf (x)] < N for all x € B. For each 1<i < N let E; C Int(B) be
the set ofx such thatf(x)| = i. Corollary{Z.T shows that

dim[Int(B) \ (INt(E1) U ... U Int(Ex))] < d

SO @, ...,aq) € Int(Ey) for some 1< m < N. Fix such am. LetU C Int(Ey) be the set
of points that have a neighborhood on whitls continuous. Propositidn 3.7 shows that
U is almost all of IntE,) so @y, ...,a4) € U. The restriction off to U is a continuous
m-correspondence. We takg = Graph(f|y). O

From Proposition 4]1 and LemraB.3 we immediately have:

Corollary 4.2. Every definable subset of‘Nk a finite union of locally closed sets. Every
definable subset of Ms a boolean combination of definable open sets.

We now show that dimension of the frontierAfs strictly less then the dimension Af
Proposition 4.3. dimd(A) < dimA.

Proof. If A= ApU...UA;thend(A) C (A1) U...UId(Ay). Therefore ifAg,... Ay C A
are definable sets which cov&rand dim@;) < dimd(A;) holds for everyi then dim@) <
dimd(A). Applying Corollary4.2 we may assume this locally closed. We let dinfi(A) =

|. Letz : MX — M' be the projection onto the firicoordinates. After permuting coor-
dinates if necessary we assume thgi(A)] is I-dimensional. By LemmB 2.3 there are
sequencedn = (@" ;i < w) for 1 < m< | such that

Ji X ... x J Ca[a(A)].



TAME TOPOLOGY OVER DP-MINIMAL STRUCTURES 11

Givenr = (ry,...,n) € o' we letar = (af., .. ., a}, ). Applying saturation we lef\Vp € 8 be
such that

Wo[&"] N Wo[a]'] = 0 for any 1< m< | and distinct, j < w.
For everyr e «' we pick anx? in A such thato[x] intersectsd(A) N 7~ X(ar). As A s

locally closed, for eack? there is aV € B such thatV[xY] is disjoint froma(A). Applying
saturation pick an entouraifé, contained in\g such that

WD NA(A) = 0 forall T e w'.

Pick pointsxt as before withw; replacingW, and iterate. In the end we obtain a nested
sequence of entouragédi( : n < w) and pointgx? € A : (r,n) € w1} such thatWi[x1]
intersectsi(A) N 7~ Y(ar) andWh.1[X"] is disjoint from a(A) for all (n,1). We lety be a
formula such that

B ={y(M%Db) : be MY}

For eachn we letb, € M9 be such that

W(M?,by) = W,
Given variablex = (X, . .., Xx) we define formulas:

Im(X &") := Xm € Wo[a"] forl<m<li<ow.
and
$1:1(% bi, biaa) = [(A) N WX # 0] A [9(A) N Whia[X] = 0] for i < .

This yields an ict-pattern of depth+ 1 based o\. Thus dim@) > | + 1. O

Let B € A. The relative interior oB in A is the set ofp € B for which there is an open
U ¢ MK such thatp € U andU N A C B.

Corollary 4.4. Suppose that B A is definable andlim(B) = dim(A). Then the relative
interior of B in A is almost all of B.

Proof. Let | be the relative interior oB in A. ThenB\ | € d(A\ B). Therefore:
dim(B\ 1) < dimd(A\ B) < dim(A\ B) < dim(A) = dim(B).
Sol is almost all ofB. ]

Corollary 4.5. Let B,,..., By be definable subsets of A which cover A. Then almost every
element of A is contained in the relative interior gfiB A for some i< m.

Proof. After permuting theB; if necessary we may suppose that< m is such that
dim(B;) < dim(A) wheni < n and dim@;) = dim(A) wheni > n. ThenB, U ... U By,
is almost all ofA. Let; be the relative interior oB; in A for eachi < m. By Corollary{4.4
l; is almost all ofB; for everyi > n. It follows thatl, U ... U I, is almost all ofA. O

We are mainly interested in the following proposition in ttesse wherM admits a de-
finable group operation which is compatible with the defieabiiform structure. TheMk
is also a group and is hence topologically homogeneousidicéise we view the following
proposition as stating that almost every poinAirs “topologically non-singular”.

Proposition 4.6. Letdim(A) = d. Almost every g A has a neighborhood ¢ A for which
there is a coordinate projection: MX — MY such thatr(V) is open and the restriction of
mto V is a homeomorphism onto its image.
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Proof. Let Ay, ..., An C A be definable sets which covérsuch that eacl is, up to
permutation of coordinates, the graph of a definable coatisuy-correspondencé :
Ui 3 MK9 whereU; c MY is a definable open set andd < k. We suppose that < m
is such that dim;) < dim(A) wheni < nand dim@;) = dim(A) wheni > n. For each
n <i < mwe letl; be the relative interior o in A. As A, U ... U Ay is almost all ofA
Corollaryl4.% shows that almost every elemenfd$ an element of somig. It suffices to
fix i > nand show that the proposition holds for some |;. By Lemma 3.4 there is an
openU c MX and a coordinate projection: M — M¢ such thatp € U, n(U N A) is
open, and the restriction afto U N A; is a homeomorphism onto its image. After replacing
U with a smaller open set if necessary we may assumétine C A.. We letV = U N A,
Thenn(V) is open andr|y is a homeomorphism onto its image. O

Proposition 4.7. Let f : Mk — M!' be a definable function such thdt™(p)| < o for all
p € M'. Almost every E MK has a neighborhood V such that the restriction of f to V is
injective.

Proof. Let A be the diagonai(x, x) : x € MK} in Mk x MX, LetD ¢ MK x MX be the set
of (x,y) € MK x MK such thatx # y and f(x) = f(y). For eachx € M there are at most
finitely manyy € MK such thatx,y) € D. Thus dimD) < k and so dind(D) < k. AsA
andD are disjoint this implies that dim(d) N A) < k. Let B be the set op € M¥ such that
(p, p) ¢ cl(D). ThenBis almost all ofMK. Fix p € B. There is an open neighborhodaf
psuchthatyY xV]NnD =0. If x,ye Vandx # ythenas X y) ¢ D we havef(x) # f(y).
Thusf is injective onV. O

5. ONE-VARIABLE FUNCTIONS
In this final section we prove two results about one-variédnhetions.

Proposition 5.1. Let f : M — M be a definable function. All but finitely manyepM
have an open neighborhood V on which one of the followingshold

(1) the restriction of f to V is constant;
(2) f(V) is open and the restriction of f to V is a homeomorphism ostonage.

Proof. It is enough to show that the set pfatisfying either (1) or (2) above is dense. Fix
a definable opeld ¢ M. We show that) contains a point at which either (1) or (2) holds.
We first suppose that the restriction bto U does not have finite fibers. Then there is a
p € U for which there are infinitely mang € U satisfyingf(q) = f(p). This implies that
there is a definable opanhc U such thatf(q) = f(p) for all g € V. Then (1) holds at any
pointin V. We now suppose thd{y has finite fibers. After applying Propositibn B.7 and
replacingU with a smaller definable open set if necessary we supposé thabntinuous
onU. After applying Propositioh 417 and replacikfwith a smaller definable open set
if necessary we assume thft is injective. Thenf(U) is infinite and thus contains a
definable open satV. By Propositio 3.7 there is a definable opah € W such that
(flu)~t is continuous onW’. Then (f|y)~X(W’) is infinite and thus contains a definable
open sel C U. The restriction off to thisV is a homeomorphism onto its image. O

Finally, we characterize when algebraic closuréadmits exchange.

Proposition 5.2. Exactly one of the following holds:
(1) there is a non-empty definable operdlM and a locally constant correspondence
U = M with infinite image.
(2) aclsatisfies exchange.



TAME TOPOLOGY OVER DP-MINIMAL STRUCTURES 13

Proof. Let 71,72 © M2 — M be the projections onto the first and second coordinates,
respectively. We first suppose that acl satisfies exchangislaow that (1) does not hold.
Suppose towards a contradiction tlitc M is definable and open and thit U = M
is a locally constant correspondence with infinite imagee fiéstriction ofr; to Graph()
has finite fibers hence:

dim Graph() = dim(U) = 1.
If (a,b) € Graph(f) then there is an open neighbourhddd U of a such that &', b) e
Graph(f) for all & € V. Therefore the restriction of, to Graphf) has infinite fibers, so
as acl admits exchange:

dim Graph() > 1 + dimxy[Graph(f)].

As f has infinite image dim,[Graph(f)] = 1 so dim Graphf) = 2, contradiction. We
now suppose that acl does not satisfy exchange. Then tharseisof parametets ¢ M
anda, b € M such that:

beaclKu{a})\aclK) and ag¢acl(KuU {b}).

This implies that there is K-definableD ¢ M x M such that,b) € D and for every
& € M and there are only finitely mary € M such that&',b’) € D. Asa ¢ acl(K U {b}),
ais an interior point ofx € M : (x,b) € D}. Let D’ be theK-definable set off,q) € D
such thatp is an interior pointofx € M : (x,q) € D}. If (p,q) € D’ thenp s an interior
point of{x € M : (x,q) € D’}. After replacingD with D’ if necessary we suppose thais
an interior point ofx € M : (x,q) € D} for all (p, q) € D. This implies thatr1(D) is open.
We declareV = m1(D) and letg : V =3 M be theK-definable correspondence such that
Graph() = D. If g € g(p) for somep € V thenpis in the interior offx e M : q € f(X)}.
Let N be such thalg(p)l < Nforall pe V. For 1< i < N let Ej be the set op € V such
thatlg(p)| = i. As

VA Int(E)) U... UInt(EN)]| < o0

we havea € Int(E,) for somen. We letU = Int(E,) and f be the restriction of to U. As
bisin the image off andb ¢ acl(K), f must have infinite image. We show thais locally
constant. Lep € U andf(p) = {01,...,0n}. It follows by definition ofV that for every
1 <i < nwe can choose a neighborhodf c U of p such thaty € f(p’) for anyp’ € Wi.
Let W be the intersection of the/. If p’ € W then{qy,...,dn} € f(p). Asp’ € E, we
have|f(p)| = nso{qs, ..., qn} = f(p). Thusf(p) is constant onV. m|
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