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6 TAME TOPOLOGY OVER DP-MINIMAL STRUCTURES

PIERRE SIMON AND ERIK WALSBERG

Abstract. In this paper we develop tame topology over dp-minimal structures equipped
with definable uniformities satisfying certain assumptions. Our assumptions are enough
to ensure that definable sets are tame: there is a good notion of dimension on definable
sets, definable functions are almost everywhere continuous, and definable sets are finite
unions of graphs of definable continuous “multi-valued functions”. This generalizes known
statements about weakly o-minimal, C-minimal and P-minimal theories.

This paper is a contribution to the study of generalizationsand variations of o-minimality.
O-minimality is a model-theoretic notion oftame geometry. Over an o-minimal structure
definable functions are piecewise continuous and there is a well-behaved notion of dimen-
sion for definable sets. Conditions similar to o-minimalityhave been investigated, such as
weak o-minimality and C-minimality, which imply analogous—though weaker—tameness
properties. More recently, it was observed in the ordered case that a purely combinatorial
condition, dp-minimality, is enough to imply such properties. The theory of dp-minimal
ordered structures can be seen as a generalization of the theory of weakly o-minimal struc-
tures, see [Goo10] and [Sim11]. The present paper continuesthis line of work as our results
hold over dp-minimal expansions of divisible ordered abelian groups.

We use a framework which includes both dp-minimal expansions of divisible ordered
abelian groups and dp-minimal expansions of valued fields. We work with a dp-minimal
structureM equipped with a definable uniform structure. We assume thatM does not have
any isolated points and that every infinite definable subset of M has nonempty interior.
It follows from work of Simon [Sim11] that these assumptionshold for a dp-minimal
expansion of a divisible ordered abelian group. It follows from the work of Johnson [Joh15]
that our assumptions hold for a non strongly minimal dp-minimal expansions of fields, in
particular for a dp-minimal expansion of a valued field. Our main results are:

(1) Naive topological dimension, acl-dimension and dp-rank all agree on definable
sets and are definable in families.

(2) A definable function is continuous outside of a set of smaller dimension.
(3) Definable sets are finite unions of graphs of continuous definable correspondences

U ⇒ Ml , U ⊆ Mk an open set.
(4) The dimension of the frontier of a definable set is strictly less then the dimension

of the set.

A correspondence is a continuous “multi-valued function”,this is made precise below. The
third bullet is as close as we can get to cell decomposition. Note that we do not say anything
about definable open sets. Cubides-Kovacsics, Darnière and Leenknegt [CKDL15] re-
cently showed that (2)-(4) above hold for P-minimal expansions of fields. Dolich, Goodrick
and Lippel [DGL11] showed that P-minimal structures are dp-minimal so our work yields
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2 PIERRE SIMON AND ERIK WALSBERG

another proof of (2)-(4) for P-minimal structures. It follows from Proposition 4.3 below
that (4) above holds for expansions of ordered groups with weakly o-minimal theory, this
appears to be novel. Eleftheriou, Hasson and Keren have recently shown [EHK15, Lemma
4.20] that (4) holds for non-valuational weakly o-minimal expansions of ordered groups.
Proposition 4.3 generalizes this as non-valuational weakly o-minimal expansions of or-
dered groups have weakly o-minimal theory by [MMS00, Theorem 6.7].

We would like to thank the referee for many helpful comments.

1. Conventions and Assumptions

ThroughoutT is a complete NIP theory in a multi-sorted languageL with a distin-
guished home sort andM is an|L+|-saturated model ofT with home sortM. Throughout
“definable” without modification means “M-definable, possibly with parameters”. A de-
finable setA hasdp-rank greater thann if for 0 ≤ i ≤ n there are formulasφi(x, y) and
infinite setsBi ⊆ M such that for any (b0, . . . , bn) ∈ B0 × . . . × Bn there is ana ∈ A such
that:

[M |= φi(a, y)] ←→ [y = bi ] for all 0 ≤ i ≤ n, y ∈ Bi.

The theoryT is dp-minimal with respect to the home sort ifM has dp-rank one. We
assume throughout thatM is dp-minimal. See Chapter 4 of [Sim15] for more about dp-
ranks.

We assume thatM is equipped with a definable uniform structure. We first recall the
classical notion of a uniform structure on the setM. We let∆ ⊆ M2 be the set of (x, y) such
thatx = y. GivenU,V ⊆ M2 we declare:

U ◦ V := {(x, z) ∈ M2 : (∃y ∈ M)(x, y) ∈ U, (y, z) ∈ V}.

A basis for a uniform structure onM is a collectionB of subsets ofM2 satisfying the
following:

(1) the intersection of the elements ofB is equal to∆;
(2) if U ∈ B and (x, y) ∈ U then (y, x) ∈ U;
(3) for all U,V ∈ B there is aW ∈ B such thatW ⊆ U ∩ V;
(4) for all U ∈ B there is aV ∈ B such thatV ◦ V ⊆ U.

Theuniform structure on M generated byB is:

B̃ := {U ⊆ M2 : (∃V ∈ B) V ⊆ U}.

Elements ofB̃ are calledentouragesand elements ofB are calledbasic entourages. Given
U ∈ B andx ∈ M we declare

U[x] := {y : (x, y) ∈ U}.

We say thatU[x] is aball with centerx. We put a topology onM by declaring that a subset
A ⊆ M is open if for everyx ∈ A there is aU ∈ B such thatU[x] ⊆ A. Assumption
(1) above ensures that this topology is Hausdorff. The collection{U[x] : U ∈ B} forms a
neighborhood basis atx for eachx ∈ M. Abusing terminology, we say thatB is adefinable
uniform structure if there is a formulaϕ(x, y, z̄) such that

B = {ϕ(M2, c̄) | c̄ ∈ D}

for some definable setD. We assume throughout thatM is equipped with a definable
uniform structureB. On eachMk, we put the product uniform structure, generated by
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{U1 × · · · × Uk : Ui ∈ B} or equivalently (because of axiom (1)), by{Uk : U ∈ B}. Given
x = (x1, . . . , xk) ∈ Mk andU ∈ B we declare:

U[x] := {(y1, . . . , yk) : (∀i)(xi, yi) ∈ U} ⊆ Mk.

We give the main examples of definable uniform structures.

(1) Suppose thatΓ is anM-definable ordered abelian group andd is a definableΓ-
valued metric onM. We than takeB to be the collection of sets of the form

{(x, y) ∈ M2 : d(x, y) < t} for t ∈ Γ.

The typical case is whenΓ = M andd(x, y) = |x− y|.
(2) Suppose thatΓ is a definable linear order with minimal element and thatd is a de-

finableΓ-valued ultrametric onM. Then we can put a definable uniform structure
on M in the same way as above. The usual case is whenM is a valued field.

(3) Suppose thatM expands a group. LetD be a definable set and suppose that{Uz̄ :
z̄ ∈ D} is a definable family of subsets ofM which forms a neighborhood basis at
the identity for the topology onM under whichM is a topological group. Then
the sets

{(x, y) ∈ M2 : x−1y ∈ Uz̄} for z̄ ∈ D

form a definable uniform structure onM.

We assume thatM satisfies two topological conditions:

(1) M does not have any isolated points.
(2) (Inf ): every infinite definable subset ofM has nonempty interior.

The first assumption rules out the trivial discrete uniformity. The second is known for
certain dp-minimal structures. In [Sim11] (Inf ) was proven for dp-minimal expansions
of divisible ordered abelian groups. This was generalized in Proposition 3.6 of [JSW15]
where (Inf ) was proven under the assumption thatM admits a definable group structure
under whichM is a topological group and such that for every entourageU and integern
there is an entourageV such that (∀y ∈ V[0])(∃x ∈ U[0])(n · y = x). It follows directly
from the work of Johnson that our assumptions hold for any dp-minimal expansion of a
field which is not strongly minimal:

Proposition 1.1. Let F be a dp-minimal expansion of a field which is not stronglyminimal.
Then F admits a definable uniform structure without isolatedpoints and every infinite
definable subset of F has nonempty interior with respect to this uniform structure.

Proof. It is proven in Section 4 of [Joh15] thatF admits a definable topology under which
F is a non-discrete topological field. It follows thatF admits a definable uniform structure
without isolated points. Lemma 5.2 of [Joh15] shows that anyinfinite definable subset of
F has nonempty interior with respect to this topology. �

We finally recall some general notions. Given setsA, B andC ⊆ A× B we let

Cb = {a ∈ A : (a, b) ∈ C} for anyb ∈ B.

We say that family of sets{Ai : i ∈ I } is directed if for every i, j ∈ I there is ak ∈ I such
thatAi ∪ A j ⊆ Ak. Given a subsetA of a topological space we let cl(A) be the closure of
A and Int(A) be the interior ofA. Thefrontier of A is ∂(A) = cl(A) \ A. An accumulation
point of A is point p such that every neighborhood ofp contains a point inA other thenp.
The setA is discrete if it has no accumulation points. The setA is locally closedif every
p ∈ A has a neighborhoodU such thatU ∩ A is closed inU. A subset of a topological
space is locally closed if and only if it is the intersection of a closed set and an open set.
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Lemma 1.2. A definable locally closed set is the intersection of a definable closed set and
a definable open set.

Proof. Suppose thatA is locally closed. For everyp ∈ A there is aU ∈ B such that
U[p] ∩ A is closed inU[p]. Note that this is equivalent toU[p] ∩ A = U[p] ∩ cl(A). Let V
be the union of allU[p] such thatp ∈ A andU[p] ∩ A = U[p] ∩ cl(A). ThenV is open and
definable and one easily checks thatV ∩ cl(A) = A. �

Throughout this paper C is a small set of parameters and A is a C-definable subset of Mk.

2. Dimension

In this section we develop a theory of dimension for definablesubsets ofMk. We begin
by noting that (Inf ) implies thatM eliminates∃∞:

Lemma 2.1. If D is definable and{Ax : x ∈ D} is a definable family of subsets of M then
there is an n such that if|Ax| > n then Ax is infinite for all x∈ D.

Proof. A definable subset ofM is discrete if and only if it is finite. Therefore the set of
x ∈ D such thatAx is finite is definable. The lemma follows by saturation. �

There are several natural notions of dimension on definable subsets ofMk. Thenaive
topological dimensionof a definable setA is the maximall for which there is a coordinate
projectionπ : Mk → Ml such thatπ(A) has non-empty interior. Theacl-dimension,
dim(ā/C), of a tupleā ∈ Mk over the baseC is the minimall such that there is a subtuple
ā′ ⊆ ā of lengthl such that ¯a ∈ acl(Cā′). The acl-dimension ofA is defined to be

dim(A) := max{dim(ā/C) : ā ∈ A}.

We can replaceC with any base that definesA, so this notion of dimension does not depend
on C (if say ā < acl(Cā′) for ā′ a subtuple of ¯a andC ⊆ C1, then we can find ¯a1 ≡Ca′ ā
such that ¯a1 < acl(C1ā′)). It is easy to see that acl-dimension is subadditive. If acl satisfies
exchange, then by [Sim14, Proposition 3.2], acl-dimensioncoincides with dp-rank. In
this section we prove Proposition 2.4 which states that naive topological dimension, acl-
dimension and dp-rank coincide on definable sets.

Lemma 2.2. If the naive dimension,acl-dimension or dp-rank of A is equal to k, then A
has non-empty interior.

Proof. It is clear from the definition of naive dimension that if the naive dimension ofA
equalsk thenA has non-empty interior. We show that if dim(A) = k thenA has non-empty
interior. Our proof also shows that if dp-rk(A) = k thenA has non-empty interior. We only
use four properties of acl-dimension which hold as well for dp-rank. We first collect these
properties. LetD,E ⊆ Ml+k be definable and letπ : Ml+k → Ml be the projection onto the
first l coordinates. Then:

(1) dim(D) = 0 if and only if D is finite, and dim(M) = 1;
(2) dim(D ∪ E) = max{dim(D), dim(E)};
(3) dim is subadditive:

dim(D) ≤ dim[π(D)] +max{dim(Db) : b ∈ Mk}.

See e.g. [Sim15, Chapter 4] for proofs that these propertieshold for dp-rank. We prove
the proposition by applying induction tok. If k = 1 then (1) and (2) above imply that
dim(A) = 1 if and only if A is infinite, and(Inf) implies thatA is infinite if and only if A
has non-empty interior. This establishes the base case.
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Suppose thatk ≥ 2 and that dim(A) = k. The inductive hypothesis implies, for allb ∈ M,
that dim(Ab) = k− 1 if and only if Ab has non-empty interior inMk−1. Let B ⊆ M × Mk−1

be the set of (b, ā) ∈ A such that ¯a < Int(Ab). Then dim(Bb) ≤ k − 2 for everyb ∈ M.
Subadditivity shows that dim(B) ≤ k − 1, so by (2) we have dim(A \ B) = k. It suffices
to show thatA \ B has interior inMk. After replacingA with A \ B we suppose thatAb

is an open subset ofMk−1 for all b ∈ M. Let π : A → Mk−1 be the projection onto the
last (k− 1)-coordinates. Ifπ−1(c̄) is finite for all c̄ ∈ Mk−1 then subadditivity would imply
dim(A) ≤ k− 1. Therefore we fix a ¯c ∈ Mk−1 such thatπ−1(c̄) is infinite and letQ ⊆ M be
the set ofb such that (b, c̄) ∈ A. For allb ∈ Q there is aU ∈ B such that{b} × U[c̄] ⊆ A.
GivenU ∈ B we letPU ⊆ Q be the set ofb such that{b} × U[c̄] ⊆ A. If U,V,W ∈ B and
W ⊆ U∩V thenPU∪PV ⊆ PW. Thus{PU : U ∈ B} is a directed definable family of subsets
of Q. It follows that for everyn there is aU ∈ B such that|PU | ≥ n. As M eliminates∃∞

there is aU ∈ B such thatPU is infinite. Fix such aU. As PU has non-empty interior there
is an openV ⊆ PU . ThenV × U ⊆ A. ThusA has non-empty interior. �

The next lemma gives a converse to Lemma 2.2.

Lemma 2.3. The following are equivalent:

(1) A has dp-rank k;
(2) there are sequences of pairwise distinct singletons Il = (al

i : i < ω) for l < k such
that I0 × · · · × Ik−1 ⊆ A;

(3) there are mutually C-indiscernible sequences of pairwise distinct singletons Il =

(al
i : i < ω), l < k, such that I0 × · · · × Ik−1 ⊆ A;

(4) A has non-empty interior;
(5) dim(A) = k.

Proof. Lemma 2.2 shows that both (1) and (5) imply (4). IfA has non-empty interior then
there are definable openU0, . . . ,Uk−1 ⊆ M such thatU0 × . . .×Uk−1 ⊆ A, it easily follows
that (4) implies (3). It is obvious that (3) implies (2) and easy to see that (2) implies (5).
It remains to show that (2) implies (1). If there are sequences as in (2), then we obtain
an inp-pattern of sizek by considering the formulasφl(x; al

i) := (x = al
i). Therefore (2)

implies (1). �

Now we can prove:

Proposition 2.4. Theacl-dimension, naive dimension and dp-rank of A coincide.

In the following proof we apply the fact that coordinate projections do not increase
acl-dimension or dp-rank.

Proof. We prove the proposition by showing that the following are equivalent for alln:

(1) the naive dimension ofA is at leastn;
(2) dim(A) ≥ n;
(3) dp-rk(A) ≥ n.

If π : Mk → Mn is a coordinate projection such thatπ(A) has non-empty interior then
Lemma 2.3 implies dimπ(A) = dp-rkπ(A) = n, so dim(A) ≥ n and dp-rk(A) ≥ n. Thus
(1) implies both (2) and (3). Suppose that dim(A) ≥ n. There is a coordinate projection
π : Mk → Mn such that dim(π(A)) = n. Lemma 2.2 implies thatπ(A) has non-empty
interior so the naive dimension ofA is at leastn. Thus (2) implies (1). Suppose that
dp-rk(A) ≥ n. By [Sim14, Corollary 3.5], there is a coordinate projection π : Mk → Mn

such that dp-rkπ(A) = n. Lemma 2.2 implies thatπ(A) has non-empty interior, so the naive
dimension ofA is at leastn. Thus (3) implies (2). �
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The following corollary was proven in a more general setting[Sim14]. We include the
easy topological proof that works in this setting.

Corollary 2.5. Let {Dx : x ∈ Ml} be a definable family of subsets of Mk. Then for any
d ≤ k, the set of parameters x∈ Ml for whichdim(Dx) = d is definable.

Proof. The naive topological dimension is definable in families: dim(Dx) ≥ d just if there
is a coordinate projection ofDx to someMd with non-empty interior. �

We say that a definableB ⊆ A is almost all of A if dim(A \ B) < dim(A). We say
that a property holdsalmost everywhereon A if it holds on a definable subset ofA which
is almost all ofA. If A is open andA \ B has empty interior inA then if follows from
Lemma 2.2 thatB is almost all ofA.

Lemma 2.6. Suppose that A is open. Suppose that B⊆ A is definable and dense in A.
Then the interior of B is dense in A and B is almost all of A.

Proof. It suffices to show that the interior ofB is dense inA. We fix a definable openV ⊆ A
and show thatB has non-empty interior inV. We only consider the caseV = A, the general
case follows in the same way. It thus suffices to show thatB has nonempty interior. For
i ≤ k let Vi ⊆ M be non-empty open definable sets such thatV1 × . . . × Vk ⊆ A. For each
i ≤ k we fix some countably infiniteI i ⊆ Vi . Applying saturation we takeW ∈ B such
that, for eachi, the neighborhoodsW[a], a ∈ I i are pairwise disjoint. Then for any choice
of ā = (a1, . . . , ak) ∈ I1 × . . . × Ik, there is a ¯y ∈ B∩W[ā], i.e. there is a (y1, . . . , yk) ∈ B
such thatyi ∈ W[ai ] holds for everyi. For i ≤ k let φi(x, ȳ) be given byx ∈ W[yi ] where
x ranges overM andȳ = (y1, . . . , yk) ranges overB. For every (a1, . . . , ak) ∈ I1 × . . . × Ik

there is a ¯y ∈ B such that for eachi ≤ k andb ∈ I i , φi(b, ȳ) holds if and only ifb = ai .
Thus the formulasφi(x, ȳ) witness dp-rk(B) = k. Lemma 2.3 shows thatB has non-empty
interior. �

The following corollary will prove useful:

Corollary 2.7. Suppose that A is open and let A1, . . . ,An be definable sets which cover A.
There is an i≤ n such that Ai has non-empty interior in A. In fact, almost every point in A
is in the interior of some Ai .

Proof. We fix a definable openV ⊆ U and show thatV contains a point in the interior of
someAi . There is ani ≤ n such thatAi is dense in some open subset ofV as otherwise the
union of theAi is nowhere dense. Lemma 2.6 implies that thisAi has non-empty interior
in V. �

3. Correspondences and Generic Continuity

In this section we prove Proposition 3.7 which shows that a definable functionMk → Ml

is continuous almost everywhere. We prove a stronger resultwhich, loosely speaking,
states that definable “multi-valued functions” are continuous almost everywhere. We first
introduce the notion of a “multi-valued function” that we will use.

3.1. Correspondences.A correspondencef : E ⇒ F consists of definable setsE, F
together with a definable subset Graph(f ) of E × F such that:

0 < |{y ∈ F : (x, y) ∈ Graph(f )}| < ∞ for all x ∈ E.

Let f : E⇒ F be a correspondence. Givenx ∈ E we let f (x) be the set ofy ∈ F such that
(x, y) ∈ Graph(f ). Note that saturation implies that there is an ∈ N such that| f (x)| ≤ n for
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all x. The imageof f is the coordinate projection of Graph(f ) ontoF. Given a definable
B ⊆ E we let f |B be the correspondenceB⇒ F whose graph is Graph(f ) ∩ [B× F]. We
say thatf is constant if f (x) = f (x′) for all x, x′ ∈ E. If | f (x)| = m for everyx ∈ E, then
we say thatf is anm-correspondence. Given correspondencesf : E⇒ F andg : F ⇒ G
we define the compositionf ◦ g : E⇒ G to be the correspondence such that

Graph(f ◦ g) = Graph(f ) ◦Graph(g).

GivenU ∈ B we say that (f (x), f (x′)) ∈ U if for every y ∈ f (x) there is ay′ ∈ f (x′) such
that (y, y′) ∈ U and for everyy′ ∈ f (x′) there is ay ∈ f (x) such that (y, y′) ∈ U. We say that
f is continuousat x ∈ E if for every V ∈ B there is aU ∈ B such that (f (x), f (x′)) ∈ V
whenever (x, x′) ∈ U. Note that a continuous 1-correspondence is a continuous function.
In the remainder of this paragraph we prove several simple lemmas about correspondences
which will be useful.

Lemma 3.1. Let U ⊆ Mk be open and definable and let f: U ⇒ Ml be a continuous
m-correspondence. Every p∈ U has a neighborhood V such that there are definable
continuous functions g1, . . . , gm : V → Ml such thatGraph(gi)∩Graph(g j) = ∅ when i, j
and

Graph(f |V) = Graph(g1) ∪ . . . ∪Graph(gm).

Proof. Fix p ∈ U. Let f (p) = {q1, . . . , qm}. Let W0 ∈ B be such that (qi, q j) < W0 for
all i, j ≤ m such thati , j and letW ∈ B be such thatW ◦ W ⊆ W0. Let V be an
open neighborhood ofp such that (f (p), f (p′)) ∈ W for all p′ ∈ V. Fix p′ ∈ V and let
f (p′) = {q′1, . . . , q

′
m}. For eachi ≤ m there is aj ≤ m such that (qi, q′j) ∈ W. As the balls

W[qi] are pairwise disjoint we see that for eachi ≤ m there is a uniquej ≤ m such that
(qi, q′j) ∈W. We have shown that for everyp′ ∈ V andq ∈ f (p) there is a uniqueq′ ∈ f (p′)

such that (q, q′) ∈ W. For i ≤ m we letgi : V → Ml be the definable function such that
gi(p′) ∈ W[qi] andgi(p′) ∈ f (p′) for everyp′ ∈ V. Continuity of thegi ’s follows easily
from the continuity off . It is clear that the graphs of thegi are pairwise disjoint. �

Lemma 3.2. Let U ⊆ Mk be open and definable and let f: U ⇒ Ml be a continuous
correspondence. Almost every p∈ U has a neighborhood V such that there are definable
continuous functions g1, . . . , gm : V → Ml such thatGraph(gi)∩Graph(g j) = ∅ when i, j
and

Graph(f |V) = Graph(g1) ∪ . . . ∪Graph(gm).

Proof. Let m be such that| f (p)| ≤ m for all p ∈ U. For eachi ≤ m let Ai ⊆ U be the set
of p such that| f (p)| = i. By Corollary 2.7 almost every element ofU is contained in the
interior of someAi . An application Lemma 3.1 shows that the conclusion of the lemma
holds for any element of the interior of someAi . �

The next lemma is a straightforward generalization of a familiar fact about graphs of
continuous functions. We leave the proof to the reader.

Lemma 3.3. Let f : A⇒ Ml be a continuous correspondence. ThenGraph(f ) is a closed
subset of A× Ml . If A is open thenGraph(f ) is a locally closed subset of Mk × Ml .

The following lemma is well-known for continuous functions. Lemma 3.1 reduces
Lemma 3.4 to the case of a continuous functionf . We again leave the details to the reader.

Lemma 3.4. Suppose that A is open and let f: A⇒ M be a continuous m-correspondence.
Letπ : A×M → A be the coordinate projection. Then every p∈ Graph(f ) has a neighbor-
hood V⊆ Graph(f ) such thatπ(V) is open and the restriction ofπ to V is a homeomorphism
onto its image.
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3.2. Generic Continuity. In this section we prove Proposition 3.7 which states that a
definable correspondenceMk ⇒ Ml is continuous almost everywhere. We first prove two
lemmas which we use in the proof of Proposition 3.7 and in several other places.

Lemma 3.5. LetC = {Cx : x ∈ Ml} be a directed definable family of subsets of Mk. If⋃

x∈Ml

Cx

has non-empty interior then there is an element ofC with non-empty interior.

Proof. Suppose that the union ofC has non-empty interior. We show that there is ak-
dimensional element ofC. For 1 ≤ i ≤ k let Uk be open definable subsets ofM such
that

U1 × . . . × Uk ⊆
⋃

x∈Ml

Cx.

For each 1≤ i ≤ k let I i ⊆ Ui be a countable set. LetI = I1 × . . . × Ik. AsC is directed, for
every finiteJ ⊆ I there is ay ∈ Ml such thatJ ⊆ Cy. Saturation gives ay ∈ Ml such that
I ⊆ Cy. Lemma 2.3 implies that thisCy has non-empty interior inMk. �

(Inf ) implies that there are no infinite definable discrete subsets of M. A straightforward
inductive argument extends this to anyMk:

Lemma 3.6. There is no infinite definable discrete subset of Mk.

Proof. We apply induction tok. The base case follows from (Inf ). We fix k > 2 and
suppose towards a contradiction thatD ⊆ Mk is definable, infinite and discrete. For all
x ∈ D there is aU ∈ B such thatU[x]∩D = {x}. Applying saturation fix aU ∈ B such that
U[x] ∩ D = {x} holds for infinitely manyx ∈ D. After replacingD with the set of suchx if
necessary we suppose that ifx, y ∈ D andx , y then (x, y) < U. Letπ1 : Mk → Mk−1 be the
projection onto the firstk − 1 coordinates and letπ2 : Mk → M be the projection onto the
last coordinate. We first suppose thatπ1(D) is finite. This implies that there is ad ∈ π1(D)
such thatπ−1

1 (d)∩D is infinite. Thenπ2[π−1
1 (d)∩D] is infinite and discrete. This contradicts

the base case so we may assume thatπ1(D) is infinite. Applying the inductive assumption
we fix an accumulation pointw of π1(D). LetU′ ∈ B be such thatU′ ◦U′ ⊆ U. We declare
W = U′[w] ×M andD′ = D∩W. Note thatD′ is infinite. If x, y ∈ D′ then (π1(x),w) ∈ U′

and (π1(y),w) ∈ U′ so (π1(x), π1(y)) ∈ U. If x, y ∈ D′ and (π2(x), π2(y)) ∈ U then as
(π1(x), π1(y)) ∈ U we would also have (x, y) ∈ U, which impliesx = y. Thus if x, y ∈ D′

andx , y then (π2(x), π2(y)) < U. This implies thatπ2(D′) is discrete and therefore finite.
As D′ is infinite there is ad ∈ π2(D′) such thatπ−1

2 (d)∩D′ is infinite. Thenπ1[π−1
2 (d)∩D′]

is infinite and discrete. This contradicts the inductive assumption. �

Proposition 3.7. Let V ⊆ Mk be a definable open set. Every correspondence V⇒ Ml is
continuous on an open dense subset of V, and thus is continuous almost everywhere on V.

Proof. As Ml is equipped with the product topology it suffices to show that every corre-
spondencef : V ⇒ M is continuous on an open dense set. By Lemma 2.6 it suffices to
show that the set of points of continuity off : V ⇒ M is dense. It is therefore enough
to fix an openV′ ⊆ V and show thatf is continuous on some point inV′. To simplify
notation we assumeV′ = V, this does not result in any loss of generality.

We first treat the casek = 1. We suppose towards a contradiction thatf is discontinuous
at every point inV. Let n be such that| f (p)| ≤ n for all p ∈ V. For everyi ≤ n we letAi

be the set ofp ∈ V such that| f (p)| = i. Applying Corollary 2.7 fixi ≤ n such thatAi has
non-empty interior inV. After replacingV with a smaller definable open set if necessary
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we suppose thatV ⊆ Ai . Let B ⊆ B × V be the set of (W, p) such that for allW′ ∈ B there
is a q ∈ W′[p] such that (f (p), f (q)) < W. For everyp ∈ V there is aW ∈ B such that
(W, p) ∈ B. As the family{BW : W ∈ B} is directed we apply Lemma 3.5 and fix aW ∈ B
such thatBW has non-empty interior inV. After replacingV with a smaller definable open
set if necessary we suppose thatV ⊆ BW. For everyp ∈ V there areq ∈ V arbitrarily close
to p such that (f (p), f (q)) < W. Fix U ∈ B such thatU ◦ U ⊆ W. Let D ⊆ V × Mi be
the set of (p, ȳ) such that ¯y = (y1, . . . , yi) and f (p) = {y1, . . . , yi}. Let π : D → V be the
coordinate projection. AsD is infinite an application of Lemma 3.6 gives an accumulation
point (p, ȳ) ∈ D. ThusU[(p, ȳ)] ∩ D is infinite, soπ(U[(p, ȳ)] ∩ D) is also infinite and thus
has non-empty interior inV. Let V′ be a definable open subset ofπ(U[(p, ȳ)] ∩ D). Note
that if x ∈ V′ then (f (x), f (p)) ∈ U. Fix q ∈ V′. For all r ∈ V′ we have (f (q), f (p)) ∈ U
and (f (r), f (p)) ∈ U so therefore (f (q), f (r)) ∈ W. This is a contradiction as there arer
arbitrarily close toq satisfying (f (q), f (r)) < W. Thus f must be a continuous at some
point inV.

We now apply induction tok > 2. We again suppose towards a contradiction thatf is
discontinuous at every point inV. For everyp ∈ V there is aW ∈ B such that there exist
q ∈ V arbitrarily close top satisfying (f (p), f (q)) < W. Arguing as in the casek = 1
we may suppose thatW ∈ B is such that for allp ∈ V there areq ∈ V arbitrarily close
to p satisfying (f (p), f (q)) < W. After replacingV with a smaller definable open set if
necessary we suppose thatV = V0 × V1 for definable openV0 ⊆ M andV1 ⊆ Mk−1. Given
ȳ ∈ V1 we let fȳ : V0 ⇒ M be the correspondence given byfȳ(t) = f (t, ȳ). Then for
all ȳ ∈ V1 the correspondencefȳ is continuous away from finitely many points ofV0. It
follows by subadditivity that the set of (t, ȳ) ∈ V0 × V1 such thatfȳ is discontinuous att
has dimension at mostk − 1 and is therefore nowhere dense. After replacingV0 andV1

with smaller definable open sets if necessary we suppose thatfȳ : V0 ⇒ M is continuous
for all ȳ ∈ V1. Let U ∈ B be such thatU ◦ U ⊆ W. For O ∈ B let BO ⊆ V be the set of
(t, ȳ) such that ift′ ∈ O[t], then (fȳ(t), fȳ(t′)) ∈ U. For every (t, ȳ) ∈ V there is anO ∈ B
such that (t, ȳ) ∈ BO. The family {BO : O ∈ B} is directed so applying Lemma 3.5 we
fix an O ∈ B such thatBO has non-empty interior inV0 × V1. After replacingV0 andV1

with smaller open sets if necessary we suppose thatV0 × V1 ⊆ BO andV0 × V0 ⊆ O. Thus
if ȳ ∈ V1 and t, t′ ∈ V0 then (f (t, ȳ), f (t′, ȳ)) ∈ U. Fix t ∈ V0 and let f t : V1 ⇒ M be
given by f t(ȳ) = f (t, ȳ). Applying the inductive hypothesis we fix a ¯z ∈ V1 at which f t is
continuous. After replacingV1 with a smaller open set if necessary we may suppose that
( f t(ȳ), f t(z̄)) ∈ U holds for allȳ ∈ V1. Suppose that (s, ȳ) ∈ V0 × V1. Then

( f (t, ȳ), f (t, z̄)) ∈ U and (f (t, ȳ), f (s, ȳ)) ∈ U.

As U ◦U ⊆W we conclude that:

( f (t, z̄), f (s, ȳ)) ∈W for all (s, ȳ) ∈ V0 × V1.

This gives a contradiction as there are (s, ȳ) arbitrarily close to (t, z̄) such that (f (t, z̄), f (s, ȳ)) <
W. �

Definable closure will not in general agree with algebraic closure, so it should not in
general be the case that the graph of a continuous correspondence is a finite union of graphs
of definable functions. Corollary 3.8 allows us to make up forthis in some circumstances.
Corollary 3.8 is a direct consequence of Lemma 3.2 and Proposition 3.7.

Corollary 3.8. Let U ⊆ Mk be open and definable and let f: U ⇒ Ml be a correspon-
dence. Almost every p∈ U has a neighborhood V such that there are continuous definable
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functions g1, . . . , gm : V → Ml such thatGraph(gi) ∩Graph(g j) = ∅ when i, j and

Graph(f |V) = Graph(g1) ∪ . . . ∪Graph(gm).

4. A Decomposition

We now show that every definable set is a finite union of graphs of correspondences. A
more complicated argument can be used to show that every definable set is a finite disjoint
union of graphs of correspondences. We do not prove this as the weaker result suffices for
our purposes. As before we letA ⊆ Mk be someC-definable subset.

Proposition 4.1. There are C-definable sets A1, . . . ,An ⊆ A which cover A such that
each Ai is, up to permutation of coordinates, the graph of a C-definable continuous m-
correspondence f: Ui ⇒ Mk−d, where Ui ⊆ Md is a C-definable open set and0 ≤ d ≤ k.

If d = 0 then we identify the graph off : M0 → Mk with a finite subset ofMk. If
d = k then we identify the graph off : U ⇒ M0 with U. In this way we regard any open
definable subset ofMk and any finite subset ofMk as the graph of a correspondence.

Proof. By saturation it suffices to prove the following: for any ¯a ∈ A there is aC-definable
setA0 which is, up to a permutation of coordinates, the graph of aC-definable continuous
m-correspondenceU ⇒ Mk−d for someC-definable openU ⊆ Md, and satisfies ¯a ∈
A0 ⊆ A. Fix ā = (a1, . . . , ak) ∈ A. Let d = dim(ā|C). By definition of dimension, up
to a permutation of variables, we have (ad+1, . . . , ak) ∈ acl(Ca1, . . . , ad). It follows that
there is aC-definable setB ⊆ Md and aC-definable correspondencef : B⇒ Mk−d such
that ā ∈ Graph(f ). After intersecting Graph(f ) with A and replacingB with a smaller
C-definable set if necessary we may assume that Graph(f ) ⊆ A. Lemma 2.3 shows that
dim(B\ Int(B)) < d so as (a1, . . . , ad) ∈ B and dim(a1, . . . , ad|C) = d we have (a1, . . . , ad) ∈
Int(B). Let N be such that| f (x)| ≤ N for all x ∈ B. For each 1≤ i ≤ N let Ei ⊆ Int(B) be
the set ofx such that| f (x)| = i. Corollary 2.7 shows that

dim[Int(B) \ (Int(E1) ∪ . . . ∪ Int(EN))] < d

so (a1, . . . , ad) ∈ Int(Em) for some 16 m 6 N. Fix such anm. Let U ⊆ Int(Em) be the set
of points that have a neighborhood on whichf is continuous. Proposition 3.7 shows that
U is almost all of Int(Em) so (a1, . . . , ad) ∈ U. The restriction off to U is a continuous
m-correspondence. We takeA0 = Graph(f |U). �

From Proposition 4.1 and Lemma 3.3 we immediately have:

Corollary 4.2. Every definable subset of Mk is a finite union of locally closed sets. Every
definable subset of Mk is a boolean combination of definable open sets.

We now show that dimension of the frontier ofA is strictly less then the dimension ofA.

Proposition 4.3. dim∂(A) < dimA.

Proof. If A = A1 ∪ . . . ∪ An then∂(A) ⊆ ∂(A1) ∪ . . . ∪ ∂(An). Therefore ifA1, . . .An ⊆ A
are definable sets which coverAi and dim(Ai) < dim∂(Ai) holds for everyi then dim(A) <
dim∂(A). Applying Corollary 4.2 we may assume thatA is locally closed. We let dim∂(A) =
l. Let π : Mk → Ml be the projection onto the firstl coordinates. After permuting coor-
dinates if necessary we assume thatπ[∂(A)] is l-dimensional. By Lemma 2.3 there are
sequencesJm = (am

i : i < ω) for 1 ≤ m≤ l such that

J1 × . . . × Jl ⊆ π[∂(A)].
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Given r̄ = (r1, . . . , r l) ∈ ωl we letar̄ = (a1
r1
, . . . , al

r l
). Applying saturation we letW0 ∈ B be

such that
W0[am

i ] ∩W0[am
j ] = ∅ for any 16 m6 l and distincti, j < ω.

For every ¯r ∈ ωl we pick anx0
r̄ in A such thatW0[x0

r̄ ] intersects∂(A) ∩ π−1(ar̄). As A is
locally closed, for eachx0

r̄ there is aW ∈ B such thatW[x0
r̄ ] is disjoint from∂(A). Applying

saturation pick an entourageW1 contained inW0 such that

W1[x0
r̄ ] ∩ ∂(A) = ∅ for all r̄ ∈ ωl .

Pick pointsx1
r̄ as before withW1 replacingW0 and iterate. In the end we obtain a nested

sequence of entourages (Wn : n < ω) and points{xn
r̄ ∈ A : (r̄ , n) ∈ ωl+1} such thatWn[xn

r̄ ]
intersects∂(A) ∩ π−1(ar̄ ) andWn+1[xn

r̄ ] is disjoint from∂(A) for all (n, r̄). We letψ be a
formula such that

B = {ψ(M2, b̄) : b̄ ∈ Mq}.

For eachn we let b̄n ∈ Mq be such that

ψ(M2, b̄n) =Wn.

Given variables ¯x = (x1, . . . , xk) we define formulas:

φm(x̄, am
i ) := xm ∈W0[am

i ] for 1 6 m6 l, i < ω.

and
φl+1(x̄, b̄i, b̄i+1) := [∂(A) ∩Wi [ x̄] , ∅] ∧ [∂(A) ∩Wi+1[ x̄] = ∅] for i < ω.

This yields an ict-pattern of depthl + 1 based onA. Thus dim(A) ≥ l + 1. �

Let B ⊆ A. The relative interior ofB in A is the set ofp ∈ B for which there is an open
U ⊆ Mk such thatp ∈ U andU ∩ A ⊆ B.

Corollary 4.4. Suppose that B⊆ A is definable anddim(B) = dim(A). Then the relative
interior of B in A is almost all of B.

Proof. Let I be the relative interior ofB in A. ThenB \ I ⊆ ∂(A \ B). Therefore:

dim(B \ I ) 6 dim∂(A \ B) < dim(A \ B) ≤ dim(A) = dim(B).

So I is almost all ofB. �

Corollary 4.5. Let B1, . . . , Bm be definable subsets of A which cover A. Then almost every
element of A is contained in the relative interior of Bi in A for some i≤ m.

Proof. After permuting theBi if necessary we may suppose thatn < m is such that
dim(Bi) < dim(A) when i < n and dim(Bi) = dim(A) when i ≥ n. ThenBn ∪ . . . ∪ Bm

is almost all ofA. Let I i be the relative interior ofBi in A for eachi 6 m. By Corollary 4.4
I i is almost all ofBi for everyi ≥ n. It follows thatIn ∪ . . . ∪ Im is almost all ofA. �

We are mainly interested in the following proposition in thecase whenM admits a de-
finable group operation which is compatible with the definable uniform structure. ThenMk

is also a group and is hence topologically homogeneous. In this case we view the following
proposition as stating that almost every point inA is “topologically non-singular”.

Proposition 4.6. Letdim(A) = d. Almost every p∈ A has a neighborhood V⊆ A for which
there is a coordinate projectionπ : Mk → Md such thatπ(V) is open and the restriction of
π to V is a homeomorphism onto its image.
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Proof. Let A1, . . . ,Am ⊆ A be definable sets which coverA such that eachAi is, up to
permutation of coordinates, the graph of a definable continuousm0-correspondencef :
Ui ⇒ Mk−d, whereUi ⊆ Md is a definable open set and 0≤ d ≤ k. We suppose thatn ≤ m
is such that dim(Ai) < dim(A) when i < n and dim(Ai) = dim(A) when i ≥ n. For each
n ≤ i ≤ m we let I i be the relative interior ofAi in A. As An ∪ . . . ∪ Am is almost all ofA
Corollary 4.5 shows that almost every element ofA is an element of someI i . It suffices to
fix i ≥ n and show that the proposition holds for somep ∈ I i . By Lemma 3.4 there is an
openU ⊆ Mk and a coordinate projectionπ : Mk → Md such thatp ∈ U, π(U ∩ Ai) is
open, and the restriction ofπ to U∩Ai is a homeomorphism onto its image. After replacing
U with a smaller open set if necessary we may assume thatU ∩A ⊆ Ai . We letV = U ∩A.
Thenπ(V) is open andπ|V is a homeomorphism onto its image. �

Proposition 4.7. Let f : Mk → Ml be a definable function such that| f −1(p)| < ∞ for all
p ∈ Ml . Almost every p∈ Mk has a neighborhood V such that the restriction of f to V is
injective.

Proof. Let ∆ be the diagonal{(x, x) : x ∈ Mk} in Mk × Mk. Let D ⊆ Mk × Mk be the set
of (x, y) ∈ Mk × Mk such thatx , y and f (x) = f (y). For eachx ∈ Mk there are at most
finitely manyy ∈ Mk such that (x, y) ∈ D. Thus dim(D) 6 k and so dim∂(D) < k. As ∆
andD are disjoint this implies that dim(cl(D)∩∆) < k. Let B be the set ofp ∈ Mk such that
(p, p) < cl(D). ThenB is almost all ofMk. Fix p ∈ B. There is an open neighborhoodV of
p such that [V × V] ∩ D = ∅. If x, y ∈ V andx , y then as (x, y) < D we havef (x) , f (y).
Thus f is injective onV. �

5. One-variable Functions

In this final section we prove two results about one-variablefunctions.

Proposition 5.1. Let f : M → M be a definable function. All but finitely many p∈ M
have an open neighborhood V on which one of the following holds:

(1) the restriction of f to V is constant;
(2) f(V) is open and the restriction of f to V is a homeomorphism onto its image.

Proof. It is enough to show that the set ofp satisfying either (1) or (2) above is dense. Fix
a definable openU ⊆ M. We show thatU contains a point at which either (1) or (2) holds.
We first suppose that the restriction off to U does not have finite fibers. Then there is a
p ∈ U for which there are infinitely manyq ∈ U satisfying f (q) = f (p). This implies that
there is a definable openV ⊆ U such thatf (q) = f (p) for all q ∈ V. Then (1) holds at any
point in V. We now suppose thatf |U has finite fibers. After applying Proposition 3.7 and
replacingU with a smaller definable open set if necessary we suppose thatf is continuous
on U. After applying Proposition 4.7 and replacingU with a smaller definable open set
if necessary we assume thatf |U is injective. Thenf (U) is infinite and thus contains a
definable open setW. By Proposition 3.7 there is a definable openW′ ⊆ W such that
( f |U)−1 is continuous onW′. Then (f |U)−1(W′) is infinite and thus contains a definable
open setV ⊆ U. The restriction off to thisV is a homeomorphism onto its image. �

Finally, we characterize when algebraic closure onM admits exchange.

Proposition 5.2. Exactly one of the following holds:

(1) there is a non-empty definable open U⊆ M and a locally constant correspondence
U ⇒ M with infinite image.

(2) acl satisfies exchange.



TAME TOPOLOGY OVER DP-MINIMAL STRUCTURES 13

Proof. Let π1, π2 : M2 → M be the projections onto the first and second coordinates,
respectively. We first suppose that acl satisfies exchange and show that (1) does not hold.
Suppose towards a contradiction thatU ⊆ M is definable and open and thatf : U ⇒ M
is a locally constant correspondence with infinite image. The restriction ofπ1 to Graph(f )
has finite fibers hence:

dim Graph(f ) = dim(U) = 1.

If (a, b) ∈ Graph(f ) then there is an open neighbourhoodV ⊆ U of a such that (a′, b) ∈
Graph(f ) for all a′ ∈ V. Therefore the restriction ofπ2 to Graph(f ) has infinite fibers, so
as acl admits exchange:

dim Graph(f ) ≥ 1+ dimπ2[Graph(f )].

As f has infinite image dimπ2[Graph(f )] = 1 so dim Graph(f ) = 2, contradiction. We
now suppose that acl does not satisfy exchange. Then there isa set of parametersK ⊆ M
anda, b ∈ M such that:

b ∈ acl(K ∪ {a}) \ acl(K) and a < acl(K ∪ {b}).

This implies that there is aK-definableD ⊆ M × M such that (a, b) ∈ D and for every
a′ ∈ M and there are only finitely manyb′ ∈ M such that (a′, b′) ∈ D. As a < acl(K ∪ {b}),
a is an interior point of{x ∈ M : (x, b) ∈ D}. Let D′ be theK-definable set of (p, q) ∈ D
such thatp is an interior point of{x ∈ M : (x, q) ∈ D}. If ( p, q) ∈ D′ thenp is an interior
point of {x ∈ M : (x, q) ∈ D′}. After replacingD with D′ if necessary we suppose thatp is
an interior point of{x ∈ M : (x, q) ∈ D} for all (p, q) ∈ D. This implies thatπ1(D) is open.
We declareV = π1(D) and letg : V ⇒ M be theK-definable correspondence such that
Graph(f ) = D. If q ∈ g(p) for somep ∈ V thenp is in the interior of{x ∈ M : q ∈ f (x)}.
Let N be such that|g(p)| 6 N for all p ∈ V. For 16 i 6 N let Ei be the set ofp ∈ V such
that |g(p)| = i. As

|V \ [Int(E1) ∪ . . . ∪ Int(EN)]| < ∞

we havea ∈ Int(En) for somen. We letU = Int(En) and f be the restriction ofg to U. As
b is in the image off andb < acl(K), f must have infinite image. We show thatf is locally
constant. Letp ∈ U and f (p) = {q1, . . . , qn}. It follows by definition ofV that for every
1 6 i 6 n we can choose a neighborhoodWi ⊆ U of p such thatqi ∈ f (p′) for anyp′ ∈Wi .
Let W be the intersection of theWi . If p′ ∈ W then{q1, . . . , qn} ⊆ f (p). As p′ ∈ En we
have| f (p)| = n so{q1, . . . , qn} = f (p). Thus f (p) is constant onW. �
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