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Abstract

This paper improves two existing theorems of interest to neo-logicist
philosophers of mathematics. The first is a classification theorem due to
Fine for equivalence relations between concepts definable in a well-behaved
second-order logic. The improved theorem states that if an equivalence
relation F is defined without non-logical vocabulary, then the bicardinal
slice of any equivalence class—those equinumerous elements of the equiv-
alence class with equinumerous complements—can have one of only three
profiles. The improvements to Fine’s theorem allow for an analysis of
the well-behaved models had by an abstraction principle, and this in turn
leads to an improvement of Walsh and Ebels-Duggan’s relative categoric-
ity theorem.

1 Introduction

Neo-logicist philosophers of mathematics are impressed by the fact that some
abstraction principles can interpret interesting fragments of mathematics. These
principles are sentences of an enriched second-order language of the following
form: for E an equivalence relation between second-order objects, and 0 a func-
tor taking second-order objects to first order objects, the abstraction principle
Ag[0] is the sentence

(VX,Y)(0X = dY + BE(X,Y)) (1)

In virtue of their form, say neo-logicists, abstraction principles are eligible to be
“analytic truths”™—meaning that they are epistemically near enough to logical
truths.! And if abstraction principles count, in some sense, as near enough to
logical, then so should any mathematics they interpret.

1See most notably [26] and [10].
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So goes the argument, and not without objections and replies. Much turns
on what would count as a “(near enough to) logical” abstraction principle. But
a plausible minimal requirement is this: an abstraction principle’s equivalence
relation must itself be “logical”,? and so cannot require identification of particular
objects, concepts, or relations for its definition. The thinking is that logic
is indifferent to particulars, whether objects, concepts (monadic second-order
objects), or relations (polyadic second-order objects). So for an abstraction
principle to be logical, it is necessary that its equivalence relation be accordingly
indifferent. A natural way to flesh out this notion of “indifference” is with the
notion of permutation invariance: the status of the relation doesn’t vary, no
matter how one exchanges the objects of its concern.?

Further complicating the neo-logicist’s hopes is the fact that not all ab-
straction principles—even those based on permutation invariant equivalence
relations—should count as logical: so not only does said neo-logicist need an
account of how an abstraction principle could be logical, but that account must
also sort the good principles from the bad. So more needs to be said for what
kinds of logical equivalence relations there are on concepts, and which are apt
to yield suitably logical abstraction principles. It is thus of interest to classify
logical equivalence relations on concepts.

This paper proves a classification theorem for such equivalence relations.
Though discovered independently, it happens that the classification theorem
here presented is a stronger version one already on the books. Kit Fine’s Theo-
rem 4 of |7, p. 142] classifies infinite concepts in standard models. The theorem
is then used to determine the finest abstraction principle satisfiable on all infinite
standard models |7, Theorem 6, p. 144].

But Fine’s theorem in its given form hides its true power; hence our new
presentation. In our version the result is put in a deductive setting in which
cardinalities are well-behaved. This is relatively minor, but it allows us to apply
the theorem to problems cast in just such deductive settings (about which more
in a moment). More importantly, our version of the theorem sorts equivalence
relations, and their abstraction principles, more usefully. In other words: there
are abstraction principles well-discussed in the literature on neologicism, but
as Fine states the theorem in [7], one needs to squint to see how their equiva-
lence relations are classified. The version here given allows for more clear-eyed
recognition of this sorting, and allows for a generalization of the classification
to (Dedekind) finite concepts as well.

It is something of a journey from this restatement and expansion of Fine’s
theorem to its payoff, but the midpoint is a worthy stop. The improved theorem
enables an analysis of when a given abstraction principle has a well-behaved

2We put aside concerns, like those of Quine in [18], that second-order languages are them-
selves not “logical” in virtue of their quantifying over higher-order objects.

3This view is associated with Tarski’s identification of logical notions as those that are
permutation invariant in this sense (see [22]), for a more recent defense see the work of
Gila Sher (see [21]). Other relevant discussions can be found in [2] and [16]. The so-called
Tarski-Sher thesis identifying logicality with permutation invariance is controversial; that
permutation invariance is a necessary feature of logical notions is not (see [15]).



model (not just a standard model). The existence of such models, as we shall
see, are determined by the classification of the principle’s equivalence relation on
a certain sub-class of concepts—the bicardinally equivalent ones. This at least
gives the neo-logicist a tool for analyzing the space of abstraction principles.

The terminal payoff comes in the form of a more direct result: the restated
and expanded theorem allows an improvement of the relative categoricity theo-
rem given by Walsh and Ebels-Duggan in [24]. Walsh and Ebels-Duggan showed
that abstraction principles are naturally relatively categorical when and only
when their equivalence relation is coarser than that of the neo-logicist’s favored
abstraction principle, HP. Using the improved version of Fine’s theorem, we show
that this result obtains even when we remove the qualifier “naturally”. This im-
provement allows for a plausible case to be made that HP and its ilk pass a
minimal threshold for logicality, since (unqualified) relative categoricity is ar-
guably the correct notion of permutation invariance for abstraction principles.

The remainder of this paper is organized as follows. Sections 2-4 are in-
troductory, motivating the project and setting in place the formal machinery
for the theorems. Section 2 explains why Fine’s theorem could use improve-
ment, and gives an informal characterization of the improved theorem, which
we call the “Main Theorem”. Section 3 describes the second-order language in
which we will work, and its structures; as well as listing our use of standard
abbreviations and giving formal clarifications of the terms we have loosely de-
fined above and in section 2. Here also we describe the cardinality assumptions
we adopt with slight modification from [24], explaining the sense in which our
background logic admits only “well-behaved cardinalities”. The next section 4
explains why restricting our attention to bicardinally equivalent concepts is apt
to our purposes.

With preliminaries done, section 5 provides a rigorous statement and proof
of the Main Theorem. The remaining sections discuss the relevance of the
Main Theorem to the neo-logicist project. Our aim in these sections will not be
to argue for or against a particular version of neo-logicism, but instead to let
the Main Theorem shed light on some technical questions of interest. Section 6
will address the sorting of so-called “bad companions” by the Main Theorem;
while section 7 proves and discusses the extension of the relative categoricity
theorem of [24]. For ease of exposition, we put off some of the more tedious or
repetitive proofs to appendices, we conclude with these.

2 Why bother a sleeping theorem?

The restatement and expansion of Fine’s theorem is more than just a curious
exercise, for we believe there is a better statement of the theorem than the
original. We begin by giving Fine’s version.

To state Fine’s theorem efficiently, we need a bit of notation which we will
use in the rest of the paper. Letting “U”, “N”, and “—” denote the usual boolean
functions on sets of union, intersection, and difference, we will use “XAY” to
mean the symmetric difference between X and Y, namely the set (X —Y)U(Y —



X). And we’ll denote the complement of X in a universe M by M — X. Finally,
we'll say that X and Y are bicardinally equivalent to mean that |X| = |Y|
and |[M — X| = |M — Y|; that is, that X and Y are equinumerous (in a given
structure M) and that their complements are also equinumerous (also in the
given structure). We'll abbreviate bicardinal equivalence by writing “X BY”.
Note that B is (provably) an equivalence relation in second-order logic.

Now, to Fine’s theorem: Let M be a standard model of second-order logic,
X and Y be infinite concepts such that XHY, and E be a permutation invariant
equivalence relation. The concepts X and Y are representative just if

M (VZ,W)(Z,WBX AEX,Y) > E(Z,W)) (2)

Fine’s Classification Theorem. Given a standard model M, infinite concepts
X and Y of M are representative if and only if they meet exactly one of the
following conditions.

1. | XAY| = |X] < |M]|. In Fine’s words, X and Y are “small but very
different”.

2. w< M -X|,|M-Y|<|X|=|M|and |(M - X)A(M -Y)| = |(M —
X)U(M —Y)|. In Fine’s words this is that X and Y “are almost universal
but with infinite very different complements.”

3. | X|=|M-X|=|M|=|M-Y|=1Y],and | XAY| = | XA(M-Y)| = |X|
or vice versa. In Fine’s words, X and Y “are bifurcatory with one very
different from the other and from its complement.”

This statement of Fine’s theorem is somewhat dizzying; Fine’s statement is
more succinct since he uses definitions we have spelled out. But the complexity
of the theorem is not by itself a count against it. The reason it can be improved,
however, is that its classes do not obviously organize the variations of equiva-
lence relations at play in the investigation of abstraction principles. The above
statement of Fine’s theorem also obscures a generalization of the theorem: in
fact there is a general version of Fine’s theorem that applies to finite, as well
as infinite, concepts. It is hard to see how this could be given the classification
Fine offers.

Restating Fine’s theorem will make it easier to use, and highlights the con-
nections between the resultant classification and abstraction principles of par-
ticular interest to neo-logicists. (Unfortunately, restating and expanding the
theorem to the finite case requires proving it anew. One would hope to rely
on Fine’s proof, but in fact once the work is done for the extension, the initial
theorem is all but proved.)

To improve on Fine’s classification theorem, we start by thinking about three
types of abstraction principles and their similarities.

We noted in the Introduction 1 that Frege’s logicist project was to show that
arithmetic is in some sense “really” logic by showing that arithmetic laws are in
fact logical laws. Frege executes his program in two steps: first by proving in



second-order logic (without our cardinal assumptions) that BLV,

VX, Y)(eX =Y X =Y) (3)
implies HP:

VX, Y)#X =#Y < X =rY) (4)
Here “=" indicates co-extensiveness of concepts, and “~” indicates equinumer-

ousity, the existence of a bijection between concepts. Note that in the notation
of (1), BLVis A_ and HP is Ax.

Frege then shows that in second-order logic (with full comprehension), HP
interprets (what is now called) second-order Peano Arithmetic. In fact, relatives
of HP will do the same thing,* including the bicardinality principle, BP, which is
Ag. So if BLV is logical, then so are HP and BP, and thus so is arithmetic.

But BLV is no principle of logic, since it is quite famously inconsistent in
second-order logic, deriving the Russell paradox. Neo-logicism proceeds against
Frege’s objections in [8, §63ff], asserting arithmetic is logical from the second
part of the program alone—that is, that as HP is plausibly logical, so then is
arithmetic.”

At a minimum, abstraction principles must be consistent to count as logical.
But that this minimum is not enough is the “bad company” problem: there are
consistent abstraction principles that are otherwise unacceptable, at least to the
neo-logicist. The prototypical bad companion is NP:%

VX, Y)(nX =nY < | XAY| <w) (5)

The principle NP is unwelcome to the neo-logicist because in contexts of well-
behaved cardinalities, it implies that the universe is Dedekind finite.”

Another bad companion, discussed in [24, § 5.5], is the Complementation
Principle, CP,

VX, Y)(@X = @Y
(X|=Y]|=|M-X|A(X=YVX=M-Y))V
(IX]# M = X|AY|#[M=Y])])

This principle sorts only concepts the same size as their complements. Such
concepts are grouped together with only their complements, and all other con-
cepts are grouped in a “junk” equivalence class. As we will show below, this
principle counts as “bad company” as well (see section 6.3).

4Interpreting Peano Arithmetic does not require the full power of HP, but only that an
abstraction principle match HP on all finite concepts. See [12], and [14] for further discussion.

5Wright’s [26] marks the staring point of neo-logicism, though the observation that Frege’s
program proceeds in two parts was made in [17, p. 183, p. 194].

6 The first bad companions appeared in [3]; one of these was simplified into NP by Wright
in [27].

7And this is unwelcome to neo-logicists because they claim an abstraction principle
shouldn’t imply anything about sortal concepts unrelated to the abstracts; see [9, p. 415],
[27, pp. 295-7] and [28, pp. 314-5], as well as [6].



Taking stock, we have so far two good abstraction principles in HP and BP,
and three bad ones (BLV, NP, and CP). Can we sort these into useful classes?
We can if, like Fine, we look at their behavior just on bicardinally equivalent
concepts. Clearly, when restricted to just bicardinally equivalent concepts, the
equivalence relations of HP (equinumerousity) and BP are trivial: they include
all such concepts.

Second, BLV and NP are, in a sense, of the same type: the equivalence rela-
tions for both are concerned with the size of the symmetric difference between
the two related concepts. The principle BLV discriminates concepts if their sym-
metric difference has non-zero size. Likewise NP discriminates if the symmetric
difference is Dedekind infinite. Say such equivalence relations that sort concepts
according to the size of their symmetric difference, are separations: two con-
cepts with “few” objects falling under one but not both of the two concepts are
equivalent; two concepts with “many” such objects are not equivalent.

Lastly, we have CP. Such an equivalence relation is neither trivial, nor a
separation, but it has many of the drawbacks of separations. And such an
equivalence relation can be generalized, as NP is a generalization of BLV: two
bicardinally equivalent concepts can be grouped together if their symmetric dif-
ference is “small”, or the complement of their symmetric difference is “small”’. So
let us say that on bicardinally equivalent concepts, such relations are comple-
mentations: they sort concepts by the size of their symmetric difference, or the
size of the complements of their symmetric difference.

Finally, say that an equivalence relation E is a refinement of an equivalence
relation E’ if whenever two concepts are E-equivalent, they are E’ equivalent.®

We can now state the informal (though somewhat inexact) version of our
main theorem:

(Informal) Main Theorem. Let E be a purely logical equivalence relation,
and let our background logic be a strong but natural version of second-order
logic. If we look only at E on bicardinally equivalent concepts, then E is either
the trivial equivalence relation, or it is a refinement of a separation, or it is a
refinement of a complementation.

This version of Fine’s result makes more obvious the relationship between
its classification scheme and the kinds of abstraction principles that have been
seen in the neo-logicist’s laboratory. In restating the theorem we observe a
striking alignment: the problematic abstraction principles arise from non-trivial
equivalence relations. This is no accident; as we will see in section 6, abstraction
principles involving non-trivial equivalence relations limit the size of their models
in just the way that is typical of bad company.

8See [7] and [1] for discussion of “finer” and “coarser” equivalence relations and their rele-
vance to neo-logicism. Cook’s [5] standardizes the terminology and indicates relations between
different kinds of invariance. It was Cook’s paper that made me see the connection to Fine’s
work.



3 The language Ly, comprehension, and cardinal-
ity assumptions

Our background logic is a basic, though robust, version of second-order logic,
adopted with slight weakening from §2 of [24]. In short, the language Lo uses
lower-case letters to vary over first-order objects, and upper-case letters to vary
over second-order objects of all finite arities (arity will be clear from context in
our presentation)—such objects of singular arity are called “concepts” or “sets”,
others are called “relations”. All terms of L are variables; we exclude constants
of either type. Formulae of Ly and their interpretation are as usual.
Thus models of this language are of the form

M = (M, $,[M], S2[M],...) (6)

where M is non-empty and the members of S;[M] are subsets of M* for i > 1.
We do not require S;[M] to be the full power-set of M, for compatibility of
our results with those of [24]; that is, we work in the non-standard semantics.
Likewise we require our models to satisfy comprehension axioms for all formulae
in their signature; these axioms are of the form

(3X)(Vy)(Xy < @(y,p, R)) (7)

where p is a sequence of parameters from M, and R is a sequence of relation
parameters from (J;cy Si[M]. This ensures that all finite concepts, and many
more besides, are included in S;[M]. The remaining axioms of our logic, which
we will call “second-order logic” are those of D2 found in [19, pp. 65-7], but
excluding the axiom of choice. We will soon be augmenting this logic with
choice principles to ensure well-behaved cardinalities. .

Most symbols used are standard; we rehearse a few: The symbol U, which
appears in Proposition 8, means the disjoint union; we will at times abuse
notation using it to mean the union of two disjoint sets. As usual we use “=<”"
to assert the existence of an injection, and “~” the existence of a bijection. We
will also use expressions like “|X| < |Y|” and “|X| = |Y|”, and we will use the

convention of writing, e.g., X < Y to mean that f is an injection from X into
Y'; likewise with the other expressions. As above the expression “B” indicates

the relation of bicardinality; the expression “X é Y” means that f is a bijection
from M to itself and f(X) =Y and f(M — X) = M — Y. Both ~ and B are
provably equivalence relations in second-order logic; we will say in the obvious
circumstances that concepts are cardinally, or bicardinally, equivalent.

We identify concepts as infinite in M if they are Dedekind infinite, that is,
that there is in M an injection from the concept into a proper subconcept of
itself, and we write this with the expression | X| > w. We say that X is finite in
M if it is not Dedekind infinite, writing it |X| < w. These expressions are used
exclusively within the model M. When we wish to say that a set X is finite or
infinite in the metatheory, we will either say so explicitly, or use “|X| = n for
some n € N” or “|X| < |NJ”.



We will abuse notation and use “M” for both the first order domain of M
and the universal concept {z | x = z}; and we’ll use functional notation for
relations that are functional in M. In general we will write f € M to mean
that for some i € N, f is an i-ary function and f € S;1[M]; similarly with
concepts and relations. We write f(X) to mean the image of X under f; such
a relation is always in M by comprehension.

Though Ly is expressively rich, it is not too rich, for (crucially for our results),
any function 7 : M — M that extends to permute objects of all types in M is
an automorphism of M. This can be seen by the fact that, for a given M and
m: M — M’ the “push model of M under 7’ is always isomorphic to M, with 7
the witnessing isomorphism.” If 7 is also such as to make M the same structure
as its “push model”, then such a 7 is an automorphism. By comprehnsion, if
m: M — M is a bijection in M, then m meets the needed criteria. Thus, we
may state the relevant result in the following form for our use:

Permutation Invariance PI. If 7: M — M € M is bijection and ®(%, X) is
an Lo-formula, then

M E (vz, X)(®(F, X) < ®(n(

m(X))) (8)

z),
Under the same hypotheses about 7, if F(X,Y) is an Lo-definable equiva-
lence relation on concepts of M, then

MEEX,)Y) < E(n(X),n(Y)) (9)

Here, of course, E being Lg-definable means definable without parameters:
the formula defining F has only the second-order variables X and Y free. De-
finability via an Lo-formula is the technical correlate of the informal “purely
logical” used in Section 1. Our main results depend on PI, in the sense that
they obtain for any equivalence relation that is permutation invariant, not just
those Lo-definable.

The second way our background logic is robust is that we require that the
relation of equinumerousity behave as it does in more familiar contexts, e.g.,
ZFC. In particular, we require the following to obtain in all models M under
consideration:

Cardinal Comparability CC.
ME VX, V)X <YVY <X) (10)
Infinite Sums are Maxima ISM.
ME (VX Y)(X Y] 2w = [X 0Y] = max(|X], [Y]) (11)
Infinite Products are Maxima IPM.

ME (VX Y)(X] Y] = w = [X x Y] =max(|X],[Y]) (12)
9See [4, pp. 225-31] for more on this method.




Cardinalities are Well-Founded CWF. For any Lg-formula ®(X),
MEBX)(P(X)) = EX)(VY)(P(Y) = X =Y) (13)

We take over these principles nearly directly from [24]; both for their hand-
iness and as we will apply the Main Theorem to offer a solution to some open
questions from that paper (see section 7).!° Thus, in what follows and unless
otherwise noted, all structures satisfy full comprehension and these cardinality
assumptions.

The principles CC and ISM are ubiquitous in the proof of our first version of
the Main Theorem, Theorem 6. The schematic principle CWF is used in moving
from Theorem 6 to the second formal version of the Main Theorem, Theorem 7.
The principle IPM is deployed mainly in the form of a pairing function in sec-
tion 7.

We will need specific notation suited to dealing with the divergence, in non-
standard semantics, between Dedekind finitude and finitude in the metathe-
ory. As this notation pertains only to the proof of the formal version of the
Main Theorem, we introduce it in section 5.

4 Bicardinal equivalence and permutation invari-
ance

Our Main Theorem says that an Lg-definable equivalence relation, when re-
stricted to bicardinally equivalent concepts, can have one of only three profiles.
But why is it interesting to look at this particular restriction of such equivalence
relations? This portion of our paper will motivate this restriction.

Our interest in Lop-definable equivalence relations is that, provided that
second-order languages are a part of logic, these relations meet at least one
criterion of logicality: they are permutation invariant. But one interesting fact
about second-order logic is that there are Ly-definable properties that can dis-
tinguish second-order objects. To see what this means, consider the formula

Singleton(X) : (Fz)(Vy)(Xy < y = x) (14)

The formula Singleton(X) can distinguish between second-order objects in suf-
ficiently rich structures for second-order languages: if a structure includes dis-
tinct first-order objects a and b, then in that structure Singleton({a}) while
=Singleton({a,b}). These second-order objects are thus distinguished by the
formula “Singleton(X)”. Thus, while first-order objects are indistinguishable
using only Lg-definable notions, second-order objects are not. It makes sense,
then, that we would want to pay special attention to collections of second-order

10Tn [24] the principles CC, ISM, and IPM were deployed as consequences of the principle GC,
though GC’s well-ordering was in the main results only to show that the restrictions to small
concepts and to abstracts were required (see [24, equations 4.22-4.23 and following]). In this
paper we will use only the cardinal consequences of GC listed above. Our logic is also weaker
than that deployed in [24] in that we make no use of the principle AC.



objects that are not distinguishable in this way. And we need not look far for
concepts that are so indistinguishable. As can be see from PI, concepts are
bicardinally equivalent if and only if they cannot be distinguished using an L-
formula. It is thus of interest to see how purely defined equivalence relations
behave on these concepts in particular.

Relatedly, bicardinal equivalence is indicative of permutations. Let E be
an equivalence relation on concepts. We will say that F is an indicator of
permutations just if, for any second-order structure M,!! and any function

[+ M — M such that if X € M then f(X) e M, if
(VX Y)E(f(X), f(Y)) = E(X,Y)) (15)

in that structure, then f is a permutation (it is a bijection from the first-order
domain M to itself).

Theorem 1. Bicardinality is an indicator of permutations.

Proof. Observe that if f is not injective, then (15) fails: let x,y be such that

f(z) = f(y), and note that ~({z,y} B{f(x)}) f({z,y}) = {f(2)} B{ff(2)}.
So it remains only to show that if f is injective and (15) holds in M, then f is

surjective.

Further, if |M] is finite in M, then every injection on M is a permutation.
So we may further assume that M is not finite in M.

Working in M, we show first that

if [ X| = [M] then X — f(X) B f(X - f(X)) (16)

That the concepts are equinumerous follows from the fact the f is injective. To
see that their complements are equinumerous, we have that:

(M| > [M — (X — f(X))] (17)
= [(M = X)u f(X)| = [f(X)] = [M] (18)

where the last equality follows again by the injectivity of f. By the Schroder-
Bernstein theorem, |M — (X — f(X))| = |[M|.'? An identical argument shows
that | M — f(X — f(X))| = [M].
Thus by (16) we have

M — f(M)B f(M — f(M)) (19)
Since H is preserved under complementation,

f(M)BM — f(M — f(M)) (20)
which implies that

[M| = [f(M)| = [M = f(M = f(M))] (21)

1INot just those with well-behaved cardinalities.
12Note this is provable in unaugmented second-order logic, see [19, Theorem 5.2, p. 102ff]).
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So by (16) together with (20) and (21) we obtain that
fM)BM — f(M — f(M))B f(M — f(M = f(M))) (22)

By assumption we have (15), and so MBM — f(M — f(M)) from (22). Comple-
mentation then gives that (B f(M — f(M)), which means that M — f(M) = (),
and so f(M) = M. Thus f is surjective, and so a permutation. O

Bicardinally equivalent concepts are thus interesting in their own right. So
it makes sense to observe the behavior of purely defined equivalence relations
on just concepts that are H-equivalent.

For this reason we introduce the following notation. As is customary, given
an equivalence relation F and a concept X we denote the E-equivalence class
containing X by [X]g. Looking at how E behaves on the sets B-equivalent
to X, we say that the bicardinal slice of E is the set of equivalence classes of
B-equivalent sets. More formally,

Definition 2. Let M be a model and E an equivalence relation on sets of M.
Given a set X in M, we let

EB)(X,Y) s XBY AE(X,Y) (23)
so that
Xle@ = [X]lan[Xle (24)

Thinking of F as a collection of concepts, we can then write

EB) ={X]p@) | X € M} (25)
We can then think of E as consisting in bicardinal slices of the form

EB)x ={lV]p@m | XBY} (26)

EB)= |J E@)x (27)
XeM

These notions will be used in stating Theorem 7, the formal version of the
Main Theorem.

5 The bicardinal classification of equivalence re-
lations

We are now nearly in a position to state our main results formally. Our theorem
will classify equivalence relations at bicardinal slices. We first must formally
state the classes into which any relation can be sorted.

Theorem 7 is the formal version of the Main Theorem, which we prove in
two stages. The intermediate stop is Theorem 6, the remaining step is deploying
the cardinality assumption CWF to obtain the final result.
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Proving these theorems is onerous because non-standard models allow that
concepts finite according to M might not be finite in the metatheory. This
distinction is important because the proofs of our main results depend on Lem-
mata 22 and 24, which deploy, in the metatheory, finitely many permutations
that “move” one concept onto another while preserving equivalence classes.
Thus, we will at times wish to indicate for given sets X and Y that finitely
many copies of Y are enough to cover X. Thus we write n x |Y| > | X| to mean
that for some set Z with |Z| =n € N, M = |Z x Y| > | X|. Similar expressions
will be used in an associated way so that their meaning is obvious.

However, since finiteness in M is not the same as finiteness in the metathe-
ory, we cannot count on expected relations of cardinality obtaining. In partic-
ular, in M we have the expected Archimedean property in that

VX, V(XLIY|<w—= 32)(|Z] <wA|ZxY|>|X])) (28)

is a theorem of second-order logic. But in a non-standard model it is not in
general true that for any X,Y € S;[M] with M | |X|,|Y] < w, there is an
n € N such that M |=n x |Y| > |X|. For this reason we introduce the following
definition:

Definition 3. Given X,Y € S;[M], we write |X| < |Y| to mean there is an
n € N such that
M Enx Y] > |X]| (29)

Further, we write | X| < |Y| to mean | X| < |Y| and —(|Y| < |X|). Note that
< and < are relations in the metatheory; they are not, in general, expressible
in LQ.

In what follows, all concepts are understood to be concepts in given struc-
tures M. In accordance with the two steps towards our main result, we give
two definitions for the purposes of classification.

Definition 4. Let E be an Lg-definable equivalence relation over concepts of
a given structure M. For any concept X, we say that E(B)x

1. is trivial if [X]E(E) = [X]a.
2. is separative, or refines a separation, if for all Y, Z € [X|g,
EY,Z)= |YANZ| < |X] (30)
3. is complementative, or refines a complementation, if for all Y, Z € [X]g,
EY,Z)= (YAZ] < |X|or M —(YAZ)| <|X)|) (31)
Obviously if F(H)x is separative then it is complementative; therefore we say
that F(B)x is properly separative or refines a separation if it is separative and

non-trivial, and properly complementative or refines a complementation if it is
complementative, non-separative, and non-trivial.
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Remark 5. If X is properly complementative and Y € [X]g(g), then M —Y €
X]e®)-

We now state the intermediate and final results as:

Theorem 6. Let E be an Ly-definable equivalence relation over a given struc-
ture M. Then for any concept X, F(H)x is either trivial, separative, or com-
plementative.

If |[M|] > 2 then exactly one of these options holds.

If X is finite in M and E(B)x is nontrivial, then either

MEEY,Z) s |YAZ < |X]| (32)

" MEEWY,Z) s [[YAZ] < |X|or M — (YAZ)| < |X]] (33)

Theorem 7 (Formal Main Theorem). Let E be an Ly-definable equivalence
relation over a given structure M. Then for any concept X, E(H)x is either
trivial, separative, or complementative.

If |M| > 2 then exactly one of these options holds.

Further, if M |= | X| < w then [X]g(g) is either [X]g, or {X}, or {X, M -X}.

As we have said above, this is a strong version of Fine’s theorem—as one
can see with the aid of a few pages of Venn Diagrams.

5.1 Non-Archimedian arithmetic

The proof of Theorems 6 and 7 will require, for a given X, the use of finitely
(in the metatheory) many permutations, each of which fixes some member of
[X]g@). These permutations will “shuttle” portions of a given set Z onto its
image under a bijection f: Z — X.

We will deploy the relations < and < in the next section to prove Lemma 22,
which is crucial to proving Theorem 7 in its full generality. For this we will need
to show that certain expected “arithmetic” relations hold. Though tedious to
state, we provide them as follows.

13



Proposition 8. The following hold for all X, Y, Z, W € M:

(X S [Yor [Y] < 1X] (34)

[ X| S [Y]and |Z] < W[ = [X U Z| [y UW]| (35)
(1Z]=|W|and [ X UZ| <Y UW| = |X| < |Y]) (36)
(X| 2 Y22 = [X] 2 ]Z] (37)

(XI QY uzl= (X QY|or |X|<]Z])  (38)
(X|=YuZz|=|X|QY]or |X]<|Z] (39)
IX|<lyuZl=(X|<l|Y|or|X|<|Z])  (40)

X| Q| XuY|=|X|<|Y] (41)

YUzl <X = Y| <[X]and [Z] S[X]  (42)
YUZ|l<|X|=|Y|<|X|and|Z| <|X]  (43)
X|al|Y|=|X|<|yuZ| (44)

XUY|<|Z|and W] =|Y|= |XUW]|<|Z] (45)
X| QY UuZ|and W] =Y|=|X| 2 |WUZ| (46)
XUY|<|Zland W] =|Y|= |XUW]|<|Z| (47)
[X| <Y uZ|and W] =|Y|=|X|<|WUZ| (48)

Their proofs are even more tedious, so we relegate them to Appendix 9.
The following two propositions relate infinity, in both its meta- and intra-
theoretic senses, to the relation <1, and are easy to prove using (34) and IPM.

Proposition 9. For all X, Y € M,
IX|<Y| < foralln e w,M E=nx|X|<|Y] (49)
Proposition 10. If M = |X| > w, then

Y| < X[ & MEY]<[X]

5.2 Preparatory results

Our route to proving Theorem 7 is via Lemma 22, which is proved in the next
section. This lemma specifies sufficient conditions for when E(B)x is trivial.
The main way that we prove Lemma 22 is by exploiting the following conse-
quence of PI:

Proposition 11. Let 7 € M be a permutation of M such that 7 fixes X. Then
for any Y € [X]g, n(Y) € [X]&.

ForbyPI, Y € [X|g & n(Y) € [n(X)]g = [X]E, since 7 fixes X. Intuitively,
the idea is that we can show sets X and Y to be E-equivalent if X is equivalent
to some Z, and there is a permutation fixing X but sending Z to Y.

We introduce the following notation to shorten our exposition.
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Definition 12. Let f: X — Y be a bijection with X and Y disjoint. The we
say that the permutation induced by f, o(f) : M — M, is the function defined
by

fx) re X
Uf)e) =qfa) z€Y
T otherwise

Notice that if f € M then «(f) € M is a well-defined bijection.

Our goal in this subsection is to prove Lemmata 13, 14, 15, and 16, the
proofs of which exploit Proposition 11. Lemmata 13 and 14 are those with the
most involved proofs. In the remainder of this section, where context makes
subscripts unnecessary we will use “[X]” to indicate [X]g.

Lemma 13. Suppose thereisa ¥V # X with Y € [X] and let Z C Y — X with
f
ME Z < X —Y. Suppose further that at least one of the following obtains:

1zl 41X nY] (50)
1Z| S |M — (X UY) (51)

Then there is a permutation 7 € M such that [7X] = [X] and Z C n(X —
Y) C n(X), and
m(x)#£rxsaxeZUf(2) (52)

Proof. The proof is essentially the same whether (50) or (51) obtains. We set
W to be X NY if the former obtains, and M — (X UY) if not. We reason in M.

As in the proposition, let Z é X —Y, and let Z % n X W. The function
¢ induces for each j < m a partial function h; : W — Z defined by h;(w) =
g~ '(j,w). Note that each h; is injective from its domain to its range, which are
disjoint; so ¢(h;) is well-defined for each j < n.

We define for each j three permutations, as follows:

pj = t(hy) (53)
q; = t(f | rng(hy)) (54)
qj(pj(z)) = € dom(h;)
rj(@) =< pjlgi(z)) =z € f(rng(hy)) (55)
T otherwise

So p; switches rng(h;) and dom(h;)), ¢; switches rng(h,) and f(rng(h;)), and
r; switches f(rng(h;)) and dom(h;).

Note that p; fixes Y, g; fixes p;(X), and r; fixes ¢;(p;(Y)); thus three
applications of Proposition 11 yield that for s; = p; o g; or;,

5(X), 85 (Y) € [5;(X)] = [X] (56)
Note further that for w € dom(h;),

sj(w) =1;(g;(pj(w))) = ¢;(pj(g;(p;(w)))) = pj(pj(w)) = w (57)
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where the third equality is due to the fact that ¢; | dom(h;) is the identity
function. It follows from this and the construction of p;,q;, and r; that if

sj(x) # x, then x € rng(h;) U f(rng(h;)). Conversely, if x € rng(h;) C Y — X,
then sj(x ) € X-Y,and 1f33 € f(rng(h;)) C X —Y, then sj(z) € Y — X. Thus
if € rng(h;) U f(rng( ;) then s;(x) ;é x. So we have established

sj(x) # x < x € rng(h;) U f(rng(hy)) (58)

Set m = s 0...0 8,1, and note that Z = {J,_,, rng(h;). So we have

(X —Y)=sp0...08, 1 (X —Y) (59)
=s00...08sn 1 (X =Y) = f(2) U f(2)) (60)
= (X - Y) f(Z))Usoo...osn1(f(2)) (61)
=((X-Y)=f(Z)Uspo...08,_1 (f (g rng(hj))) (62)
=(X-Y)-f(Z)u Ejnsj(f(rng(hj))) (63)
=(X-Y)-f(2)Uu LJR ri(q;(p;(f (rng(h;))))) (64)
=(X-Y)-f(2)Uu LJR rj(q;(f(rng(h;))))) (65)
=((X-Y)-f(2) Ugrj(f‘l(f(rng(hj))))) (66)
=((X-Y)=f(2) UJEJ rj (tg(h;)) (67)

=((X-Y) Urng (68)
=(X-Y)-f(2) UJZ@ (69)

Here (61) follows by (58), as does (63). Equations (65, 66, and 67) follow
respectively from (53, 54, and 55).
Thus Z C (X —=Y) C n(X) € [X] by (56); moreover, (58) implies (52). O

Lemma 14. Suppose thereisa Y # X with Y € [X], and let Z C M — (X UY)

I
with Z < X NY. Suppose further that one of the following obtains:

HED S (70)
1zl 2|y - X]| (71)

Then there is a permutation © € M such that [7X] = [X], Z C 7n(X NY),
and satisfying (52).
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As the idea for the proof of Lemma 14 is essentially the same as that of
Lemma 13, we omit it.
Now for two easy lemmata:

f
Lemma 15. Suppose Z C M —(XUY), Z < X -Y withY € [X] and Y # X.
Then there is a permutation 7 € M such that [7X] = [X], Z C n(X - Y),
satisfying (52).

!
Lemma 16. Suppose Z C X —Y, Z X XNY with Y € [X] and YV # X.
Then there is a permutation 7 € M such that [7#X] = [X], Z C 7(X NY), and
satisfying (52).

Proof of Lemmata 15 and 16. For Proposition 15, note that # = «(f [ Z) fixes
Y, so [X] = [x(X)] by Proposition 11. The rest is obvious and routine.
For Lemma 16, proceed similarly but set 7 = «(f | Z). O

5.3 Almost complementarity and symmetry

The results of the previous section showed what functions are needed in or-
der to, speaking loosely, “transform one set into another”, while staying in the
same equivalence class. In this section we define properties that determine suf-
ficient conditions for the application of those results. In particular, we establish
Lemma 22, which says that as long as these properties obtain for a set of a given
cardinality, then all sets of that cardinality are E-equivalent.

We begin, then, by defining these properties.

Definition 17. We say that sets X, Y are almost complementary in M if | X| =
|Y| and none of the following is satisfied in M:

Y - X|<9|XNY]| (72)
X -Y|<Q|XNY| (73)
X -Y| <M - (XUY)| (74)
Y X[ 9 |M - (XUY)| (75)

Similarly, we say that X,Y are symmetric in M if | X| = |Y| and for some
Z € M distinct from X and Y, |Z| = | X| and neither of the following is satisfied
for M:

Z-(XUY) <9 [X -] (76)
|Z —(XUY)| Q]Y — X| (77)

In many cases, we will establish that either (76) or (77) holds in M by
establishing that one of the following holds for M:

M- (XUY)| <X -Y] (78)
M- (XUY)| <Y — X| (79)

This is licensed by (37).
The following two propositions follow by (47) and (48) and CC.
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Proposition 18. Suppose 7w : M — M is a permutation. Then:

1. X, Y are almost complementary if and only if 7(X), 7(Y") are almost com-
plementary.

2. XY are symmetric if and only if 7(X),7(Y") are symmetric.

Proposition 19. Distinct sets X and Y cannot be both almost complementary
and symmetric.

Definition 20. In what follows, distinct, E-equivalent sets that satisfy one
of (72-75) and one of (76-77) will play a special role. Thus we say that sets
X,Y are opportune if they are distinct, Y € [X], and they are neither almost
complementary nor symmetric. We moreover will say that a single set X is
opportune if there is a Y such that the pair X, Y is opportune.

Definition 21. Two sets X, Y are relatively finite in M just if | X =Y | = |[Y - X|
in M. (Note that if X,Y are relatively finite, then X HY.) We set RF(X) to
be the set of sets Y that are relatively finite in M to X.

Lemma 22. If X,Y are opportune then RF(X) C [X]gg). That is, every set
relatively finite to X in M is E-equivalent to X.

Proof. Let Z € RF(X) with Z L X in M; we may assume that f fixes Z N X
pointwise. We show that there is a permutation = of M such that 7(X) = Z
and [7(X)] = [X].
First we partition Z:
Zi=f 1 X-Y)nY - X Zy =
Zs=f"HXNY)NY - X Zy =
Zs=fHX)NX=XNZ

-Y)-Y
HXNY)-Y

where the equality in Z5 is due to the choice of f. It is easy to see that these
sets are pairwise disjoint and that their union is Z.

fl1Zy
Note that Z; < X —Y. Since X and Y are not almost complementary, at
least one these holds:

[Z:] 21X NY]| 12| 9 IM = (X UY) (80)

Either way Lemma 13 provides a permutation 71 € M such that [r; X] = [X]
and Z; C m(X —Y) C m(X) and satisfying (52). Note that by (52), Zs C
m1(X), so
Z1UZ5C7T(X) (81)
Set Xl = 7T1(X),Yi = 7T1(Y).
1z
Then since Zy C M — (X; UY7) (by (52)), and since (by (52) again) Z, jz
X1 — Y1, by Proposition 15 there is a permutation o € M with Zy C ma (X7 —
Y1) C m(X1) € [X] and satisfying (52). By (81) and (52), we have

Z1UZyU 25 C 7T2(X1) S [X] (82)
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1z
Set Xy = ma(X1), Ya = ma(Y1). Since Z3 C Ya — Xp and Z3 =< X5N Y, (by
(52) twice), there is by Lemma 16 a permutation 75 € M satisfying (52) and
with Z C m5(X2 — Ya) C m3(X3) € [X]. By (82) and (52) we have that

Z1UZyU Z3U Zs C 7T3(X2) (83)

Finally set X35 = m3(X3),Ys = 73(Y2). Note that Z4 ¢ M — (X3 UY3) and

f1Z4
that Z, =< X3NYs (by (52) twice). Notice now that since 7, 7o, and 75 € M
are permutations and since X,Y are not symmetric, X3, Y3 are not symmetric
by Proposition 18. Thus we have at least one of

|Z4] 9| X3 — Y3 | Z4] 2 |Y3 — X3 (84)
obtains. So by Lemma 14, there is a permutation 74, € M such that
Zy Cma(XsNYs) C my(X3) € [X] (85)
By (83) and again (52) we have that
Z=71UZyUZ3sUZy U Zs = my(X3) = ma(ms(ma(m(X)))) =n(X) (86)
for m = 7 o g o w3 o 4; which was to be established. O

Dealing with opportune sets via Lemma 22 will enable us to deal with cases
in which X is finite, both within and outside of M. We use a special class of
opportune sets to deal with X infinite in M.

Definition 23. We will say that X,Y are ideally opportune if they are oppor-
tune and either | X| < |[M—X|or |Y] < |M—Y|. We will also say that the single
concept X is ideally opportune if there is a Y such that X, Y are opportune and
| X] <M - X].

We now turn to proving another lemma that will address the more general
case, in which X is not finite in the metatheory (though it may be finite in M).
We begin with another preparatory lemma.

Lemma 24. Suppose X is ideally opportune, and X B Z. Then Z € [X].

Proof. Note that if | X| < w then X and Z are relatively finite, so Z € [X|gg)
by Lemma 22. So we assume | X| > w.

Thus by Proposition 10, and since X is ideally opportune, we may assume
that |Z| = |X| < |M - X|=|M - Z|.

Now if | X| = |M — X]|, then

(M —Z| > |Z| = |X|=|M - X| = |M|
If |Z— X|<|X —Z| thenas M — X = (M — (X UZ))U (Z — X), by ISM, we

obtain
X[ <M —(XUZ) (87)
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Similarly for | X — Z| < |Z — X|.
On the other hand if |X| < |[M — X/, then as | X| = |Z|, | X UZ| < |M — X|
by ISM. Then by ISM again, we have that

M — (XU 2Z)| =|M|=|M-X][]>|X]|

which again yields (87).

Given (87) with f a witnessing injection, observe that f(X) and X are
disjoint and so relatively finite. By Lemma 22, since X is one of a pair of
opportune sets, f(X) € [X]g@). But then f(X), X are opportune as well.
Moreover, as Z, f(X) are disjoint and equinumerous, they also are relatively
finite. So by Lemma 22, Z € [f(X)]E(EI) = [X]E(El) O

5.4 The intermediate Theorem 6

We are now nearly ready to prove Theorem 6. We first deal with degenerate
cases, namely those in F(H)x that may be trivial and also separative. The
following propositions follow from IPM and (40) and (44) of Proposition 8.

Proposition 25. If
MEIM|<1VIX|=0V|X|=|M|<w (88)

then E(BH)x is both a separation and trivial.
Further, if |M| = 2 and |X| = 1, then E(B)x is either both trivial and a

complementation, or it is a separation.
Proposition 26. If Y, Z € [X]g are symmetric, then |[YAZ| < | X|.

Proposition 27. If Y, Z € [X|g are almost complementary, then |Y NZ|, |M —
YU2Z)|<|X].

Proposition 28. If M =w < |X| < |M — X| and E(B)x is either separative
or complementative, then it is not trivial.

The crucial move in proving Theorem 6 is in the following Lemma:

Lemma 29. Suppose M = |[M| > 2A1 < |[X| < |M — X| and F is an Lo
definable equivalence relation over M. Then F(H)x is exactly one of: trivial,
properly separative, or properly complementative.

Proof. We first establish the lemma for the case where | X | < w in M. Obviously
no more than one can obtain; we show at least one must. Since all equinumerous
sets finite in M are relatively finite in M, by Lemma 22, if there are opportune
sets in [X]p(g), then

(X]g = [XlgN RF(X) C [X]p@

and so F(H)x is trivial. So we may assume there are no opportune sets Y, Z €
[X]g@), and thus that for any Y, Z € [X]gm), either Y, Z are symmetric, or
Y, Z are almost complementary by Lemma 22.
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Suppose now that all pairs of set in [X]pg) are symmetric. By Proposi-
tion 26, all such pairs satisfy (30). Now by Proposition 18 this holds for every
concept bicardinally equivalent to X; thus F(H)x is properly separative.

On the other hand, if there are Y,Z € [X]g@) that are not symmetric,
then these are almost complementary. By Proposition 27, the non-symmetric
concepts in [X]pg) satisfy (31). Clearly then (30) fails of them, so E(H)x is
not separative. By Proposition 26 all the symmetric concepts satisfy (30), and
so (31). Proposition 18 ensures then that E(B)x is complementative, and since
(as just shown) not separative, it is properly complementative. So the result
holds for all |X| finite in M.

The case in which X is infinite in M is similar. By Proposition 28, at most
one of the options can hold; we show at least one must. By Lemma 24 if F(B)x
is non-trivial then there are no ideally opportune concepts in [X]pg(g). Since by
assumption |X| < |M — X]| it follows that there are no opportune concepts in
[X]e@). The above argument establishes again that F(B)x is either properly
separative or properly complementative. O

Corollary 30. Suppose M = |M| >2A1< |[M —X| < |X|and E is an Lo
definable equivalence relation over M. Then E(H)x is exactly one of: trivial,
properly separative, or properly complementative.

Proof. 1t is easy to see that if F is an equivalence relation, then so is the L
definable
E(X,)Y)& E(M-X,M-Y)

Thus, by Lemma 29, E¢(H)y—x is exactly one of trivial, properly separative,
or properly complementative. But by the definition of E¢, E°(H)j—x has the
same profile as F(B)x. O

Lemma 29 and Corollary 30 suffice to prove the first part of Theorem 6. The
remainder follows from the following lemma.

Lemma 31. Suppose M |= | X| < w and there is a W # X with W € [X]|g@),
and E(H)x non-trivial. Then for any Y, Z € [X]g, either (32) or (33) holds.

Proof. By the first part of Theorem 6, E(H)x is either properly separative
or properly complementative. By Lemma 22, we know that though X, W are
relatively finite (since they are finite), they are not opportune, so X, W are
either symmetric or almost complementary.

We will first show that if X, W are symmetric, then for any Z € [X]|g,

I XAZ| < |X|=>= MEEX,2) (89)
Assume X, W symmetric, so for some H with | X| = |[W| = |H|,
|H—- (XUW)|> X -W|[,|W - X| (90)
Assuming

IXAZ| < |X| (91)
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we have that | X| = |H| > |H — (X UW)|; it then follows from (41) of Proposi-
tion 8 that
IXNW|> | X -W|,|W-X]| (92)

So by (38) of Proposition 8, we have
|Z - X|<|XAZ| < | X NW| (93)

Thus by Lemma 13, Z — X C 7(X) with 7(X N Z) = X NZ and E(n(X), X).
Thus Z € [X]g, and this establishes (32).

Now we will show that if X, W are almost complementary, then for any
Z € [X]g,

(IXAZ| < |X|or [XNZ|,|M~(XUZ)|<|X[]=MEEX,Z) (94)

So assume X, W are almost complementary.
If (91) obtains, then we have

(Z-X)NW|<|Z-X|<|ZAX|<|XNW| (95)

by (41) of Proposition 8, and so Z € [X|g by Lemma 13.
On the other hand suppose

XNz <|X| (96)
M —(XUZ)|<|X| (97)

By (96) and (41), | X N Z| < |X — Z|. But then by (97) and (41) again,'?

(W-2)nX|<|XNZ < |WnZ| and (98)
W —(XUZ)|<|M—(XUZ)|a|WnZ| 50 (99)
W —Z|a|WnZ| (100)

by (40). As similar argument shows that
Z-W|<|WnZ (101)

and thus that [WAZ| < |W| by (38). From here we can use the argument from
earlier in this proof establishing (32), and the fact that [W]g = [X]g, and we
have that Z € [X]g. O

From Theorem 6 we obtain the following corollary, which we will use in
proving Theorem 7.

Corollary 32. If X is finite in the metatheory, then [X]g @ is either [X]g, or
{X},or {X,M - X}.

Proof. Tf X is finite in the metatheory then | X AY| <1 | X|if and only if | X AY | =
0. Likewise for [ X NY[,|M — (X UY)| < |X|. O

13The reader may wish to aid her reasoning in these following arguments using Venn Dia-
grams; label a set A “S” for relatively small, and B “L” for relatively large, if A<B. Proposition 8
basically asserts that the expected reasoning will obtain (e.g., if A is relatively large but AN B
is relatively small, it follows that A — B is relatively large).

22



5.5 The Classification Theorem 7

To prove Theorem 7 we need to use CWF to address some complications lingering
due to our use of non-standard semantics. We show that under CWF all proper
separations and proper complementations on finite concepts are the finest pos-
sible, even if “finite” only means “finite in M”. Theorem 7 follows from the
theorem proved in this section.

Definition 33. Suppose that E is properly separative on [X]g. Then J € M
is called a measure of E on [X]g just if for all Y, Z € [X]g,

E(Y,Z) < |YAZ| < |J]|

Suppose that E is properly complementative on [X]g. Then J € M is called
a measure of E on [X]g just if for all Y, Z € [X]g,

E(Y,Z) & [YAZ| < |J|or M — (YAZ)| < ||

Theorem 34. Let M |= |X| < w. If E is nontrivial at [X]g then its measure
is (.

Proof. If E is nontrivial on [X]g then by Theorem 6 it is either a proper sepa-
ration or a proper complementation. Suppose J is a non-zero measure of E on
[X]e.

Let L(§) abbreviate the formula

VU,V e (X]g)(E(U, V) = ([UAV] < [¢| v [M — (UAV)] < [¢])

Clearly L(J), so by CWF, there is a smallest .J' such that L(J'). If J" # 0,
then observe that by Corollary 32 that |J'| # n for any natural number n—
that is, J is not finite in the metatheory. Thus, letting j € J’ we have that
—L(J" = {j}), and so there are U,V € [X]g(g) such that

E(U,V)but [UAV]| £ |J' = {j}] (102)

(If the witnessing U,V to —L(J’) satisfy the second disjunct of the consequent,
just choose U, M —V so that they satisfy (102)). As L(J) we have that [UAV| =

| — {3}
By assumption F(H)y is non-trivial, so regardless of whether it is a com-
plementation or a separation, there is a Z with

U4V UAV| < |J] 1Z—(UUV)| <] (103)

As |X| > |J|, |U| = |V| = |X]|, and [UAV| < |J|, we have that |[UNV| > |X]|
by Proposition 8. Thus, with (103) we have that

[UnV|,|Z—-(UuUV) >2 (104)
Thus,let a e UNV and b,c € Z — (U U V), and set
U = (U~ {a}) U {} Vi (V-{ahulg  (05)
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Note now that as
[UAU'| = |[VAV'| =2 < ]| (106)

we have E(U,U"), E(V,V’), and so E(U’,V'). Thus, since L(J), |[U'AV'| < |J],
but it is easy to see that the construction of U’ and V' ensure that |[U'AV’| =
[JU{a}| > |J| O

Theorem 34 proves Theorem 7 for X finite in M. For the rest one needs only
consider X such that M = |X| > w. By Proposition 10, if E(B)x is separative,
then

M E (3X' C X)W, Z € [X]|g)(E(Y, Z) = [YAZ| < | X)) (107)

and likewise if F(H)x is complementative. This completes the proof of Theo-
rem 7.

6 The classification of “Bad Companions”

The “bad company problem” faced by neo-logicists is the two part challenge of
finding a plausuble criterion for the “logicality” of abstraction principles, and
showing that the good abstraction principles like HP are logical in this sense,
while the bad ones like BLV, NP, and CP are not. It is thus relevant to note how
Theorem 7 and its apparatus bear on the joint consistency of abstraction prin-
ciples, since at the very least any abstraction principles qualifying as “logical”
should be jointly consistent.

Consistency results in the absence of well-behaved cardinalities are difficult
to obtain. As such our discussion will be directed towards the neo-logicist who
thinks “logical” abstraction principles must be jointly consistent in the presence
of well-behaved cardinalities. We’ll thus use “jointly consistent” as if it implicitly
has the qualification on the behavior of cardinalities.

Such a neo-logicist is committed to thinking that joint consistency with
HP is a necessary condition for the logicality of abstraction principles. In the
remainder of this section we apply Theorem 7 and its apparatus to discern which
abstraction principles are consistent with a Dedekind infinite universe. These
obviously determine which abstraction principles are consistent with HP, and
thus which must be ruled out from being “logical”.

One reason why the bad company problem can appear vexing is that any
“logical” equivalence relation can give rise to an abstraction principle. Facing
an untamed menagerie of such equivalence relations, the neo-logicist would face
an equally wild zoo of abstraction principles. The import of Theorem 7 is in
taming the menagerie—or better, classifying the species. At each bicardinal
slice of M, there are only three “classes” of equivalence relations on that slice.
This enables us to see clearly why certain abstraction principles have the types
of models they do: at certain (finite or infinite!) bicardinal classes, non-trivial
equivalence relations distinguish more equivalence classes than there are objects.
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We have said that BLV, NP, and CP all count as bad companions. We thus
have so far two bad companions deploying refinements of separations, and one
deploying a refinement of a complementation. Of the former, BLV involves the
finer (in fact finest) separation; as we will see in contexts with IPM it is in a sense
the paradigm case of a separative abstraction principle. We will also discuss the
paradigm case of a complementative abstraction principle; it is not CP but a
close relative, the Liberated Complementation Principle (LCP):

VX YV)UX =Y & X=YVX=M-Y)

Remark 35. The equivalence relation for BLV is the finest equivalence relation
that refines a separation for every X € M (it is also the finest equivalence
relation full stop, see [1]).

The equivalence relation for NP refines a separation at all bicardinal slices of
M for Dedekind infinite sets.

Finally, the equivalence relation for LCP refines a complementation at X € M
if |X| = |M — X|, and in fact it is the finest equivalence relation refining a
complementation at bicardinal slices for such X.

6.1 Translation and restricted abstraction principles

In the remainder of this section we will need the following definitions:

Definition 36. For M = | X|,w < |[M| = |M — X|, we will write Y < [X]g as
shorthand for |Y| < |[X|VY € [X]g.

Let E be an equivalence relation. Let ¢(Y, Z) be a formula. We say that ¢
1s functional below X in M if

M E [X| <M = X[ A (W)Y < [X]g - (2)p(Y,2))  (108)
We say that ¢ is functional at X if
ME VY)Y € [X]lg— 32)e(Y,Z) (109)

Often in the presence of such a ¢ we will use functional notation, using
F,(Y") for the unique object Z such that (Y, Z), dropping the subscript where
it is unneeded for understanding.

If Ag[0] is an abstraction principle, and ¢ a formula functional below X in
M, then we say that 0 translates Ap/ (< X) via ¢ in M to mean that

MW, 2)(Y,Z < [X]g = (0(F,(Y)) = (0(Fo(2)) < E'(Y, Z)))  (110)

If ¢ is functional at X, then we say that Ag[0] translates Ap/ (= X) via ¢ in
M to mean that

M E (W, 2)(V.Z € [X]g = (0(F,(Y)) = 0(F,(2)) & E(Y,2))) (111)
Finally we may say that Ag[0] translates Ags in M via ¢ just if
M (WY, Z)(0(F,(Y)) = 0(Fyp(Z2)) < E'(Y, Z)) (112)
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These definitions afford us the capacity to talk of the restricted abstraction
principles Ag[0](< X) and Ag[0](= X) in the sense that M satisfies one of
these just if “(Vx)(z = z)” translates that principle in M via “Y = Z7”.

In what follows of this section we show that if 2 < |X| = |M —X| and E(B)x
is non-trivial, then (in the presence of IPM) Ag is inconsistent. The engine of
these results will be the following two propositions.

Proposition 37. Let @ be an Lyp-sentence. Suppose that for all M = Ag[d],
Ag[0] A w translates Ap/ (= M) in M via ¢, and that Ag.(= M) and w are
jointly inconsistent (in our background logic). Then Ap and w are jointly
inconsistent (in our background logic) as well.

Proof. If Ap N\ w is consistent then by the completeness of second-order logic
for the non-standard semantics, there is a structure M = (M, S1[M],...,0)
Ap Nw. As ¢(Y,Z) is functional at M, define 9'Y = 9(F,(Y)); 0’ is then
a function in M from concepts to objects. We now augment M to M’ =
(M,S1[M],...,0,0"), and note that since Ap translates Ap/ (= M), M'
Ap|0'](= M). Since @ is an Lg-sentence (with parameters from M), M’ = w.
A routine induction on the complexity of formulas shows that M’ satisfies the
comprehension axioms in the expanded language Lo[0']. Thus if Ag[0] A @ has
a model then so does Ap/[0'](= M) A w. O

For the next proposition, observe that if M |= |M| > w, then IPM ensures
that there is a bijection (-,-) : M x M — M. We will use this notation in what
follows, as well as writing (X,Y) to mean {(z,y) | z € X,y € Y}.1* We also
obtain:

Proposition 38. For [M| > w, let (-,-) : M x M — M be a bijection, whose
existence is assured by IPM. For X,V if either

Y[=1<|X[<[M-X]| (113)

or
V],w < |X] < M - X] (114)
then (Y, X) € [X]g.

Lemma 39. Let M = |X| > w. If M |= |X| < |M — X| and E(B)x refines a
separation, then Ap translates BLV(< X)) via

oY.Z) = Z = (Y. X) (115)

Under the same conditions, if F(H)x refines a complementation (and does
not refine a separation), then Ag translates LCP via

(Y, U):=3BV)((0D e Y AV =Y, X))V(OD €M —-Y ANV = (M —-Y,X)))
AV AMXYANV =U)V(V=(MX)AU=10))) (116)

14The arguments of this section elaborate on the one given in [6].
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Proof. For both assertions, note: By hypothesis, M = |M| > |X| > w, so by
IPM the bijection (-,-) exists. Notice that since E(B)x is non-trivial, 90 # 90Y
for any Y € [X]g, since otherwise by PI E(H)x would be trivial, as E((), X)
holds whenever E((, f(X)) holds for | X| = |f(X)| and |M — X| = |f(M — X)|.
Further if this Y # () then (Y, X) € [X]g by Proposition 38 (under the conditions
of the second assertion this follows since | X| = |M — X| = |M]|.)

We prove the first assertion in brief: It is easy to verify that o is functional
(and so is functional below X). Let Y|, |Z| < |X]|.

For distinct Y, Z # 0, |{Y, X)A\{(Z, X)| = | X| by IPM, so if Y # Z then since
E(B)x is a separation, “E((Y, X),(Z, X)), and so by Ag, 0(Y, X) # 0(Z, X).
Conversely if Y = Z then (Y, X) = (Z, X). Since E is an equivalence relation,
it follows that E((Y, X),(Z, X)), and so, by Ag, that 9(Y, X) = 9(Z, X).

For the second assertion, it is easy to verify that ¢ is functional (and so is
functional below X'). Towards verifying the consequent of (110) and working in
M, we need only show that

OUL(Y)=0U,(Z) Y =ZVY =M —Z (117)

for all concepts Y, Z € M.

By the definition of U, U,(0) = Uy(M) = 0. So clearly if X and Y are
chosen from @, M, then (117) obtains.

Now, if Y = @ then U,(Y) = 0, and if Y = M then U,(Y) = 0. On the
other hand if Y # 0, M, then Uy,(Y) € [X]g. Thus by Ag[0], 0(U,(Y)) #
O(Uy(0)) = 0(Uy(M)). Thus:

0#7Z—0U0)#0UyZ) (118)
M+#Z — 0(U,M) #0(U,Z) (119)

Now if Y, Z # (), M then we have

Y £ 2 [U(V)AU(Z)] = |X] (120)
Y # M~ 2~ |M— (Uy(Y)AU(2)] = |X]| (121)

So, since F(H)x refines a complementation we have that

U, (Y)=0U,(2)) Y =2ZVY=M—-Z (122)

Clearly by the construction of U,:
Y=2—-EU,Y),Uy2)) (123)
Z#0#Y =M—-Z— EU,(Y),U,(2)) (124)

So we have, again by Ag[0] and the F(B)x refining a complementation:
Y =ZVY =M~ Z = 0Uy(Y)) =0(U,(2)) (125)

Which completes the proof of the translation of LCP. O
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We know now some of which abstraction principles translate restrictions of
BLV and LCP. We now show when, in the presence of IPVM, these restrictions are
inconsistent for each such principle. Each of the following two subsections will
conclude by applying Lemma 39; the final subsection applies Theorem 7 to unify
those results.

6.2 Refinements of separations and BLV(= X)

The utility of Lemma 39 is in relating equivalence relations that are non-trivial
on bicardinal slices to what might be called their prime examples. In this
section we treat BLV and its restrictions as the prime examples of separations,
and show that in infinite structures, refinements of separations translate certain
restrictions of BLV. The next section proves analogous results for LCP and its
restrictions.

From the Lemma we obtain very quickly:

Corollary 40. Suppose M | |X| =|M — X| = |M|. Then M }£= BLV(= X).
Proof. Given X as in the hypothesis, if M = BLV(= X ) then E(B)x is a separa-
tion, and so refines a separation. Thus BLV(= X) translates both BLV[g1](< X)
and BLV[eo](< M — X). With M 2 X and M £ M — X, set

ey ysx
gleaY) M =Y] < |M-X|

Clearly then BLV(= X) and |X| = |M — X| = |M]| translate BLV, which is
inconsistent. Thus BLV and | X| = |[M — X| = |M| are jointly inconsistent, and
by Proposition 37, BLV(= X) and | X| = |M — X| = | M| are jointly inconsistent,
which was to be demonstrated. O

The sitation is no better for BLV(= X)) if M is finite (in M):
Lemma 41. Suppose M =0 < |X| < |M| < w. Then M [~ BLV(= X).

Proof. Let X be given, and since |M| > 1, we establish the following abbrevia-
tions: for z € X and a € X,

X, =X — {2} (126)
a+ X, =X, U{a} (127)

Notice that for all z € X and a € X, |a+ X,| € [X]g but a + X, # X. Thus if
M = BLV(= X), then eX # e(a+ X,). Moreover, for distinct 2,y € X, a + X,
and a + X, are distinct (thus so are their abstracts), and for distinct a,b ¢ X,
a+ X, and b+ X, are distinct (thus so are their abstracts).

Now [{a+ X, | x € X}| = |X| for each a ¢ X, and |{a + X, | a & X}| =
|M — X| for each x € X. Further for fixed 29 € X, a0 € X,

{ag+ Xy lzeXIn{a+ Xy, |a g X} = {ao+ Xy}
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Lastly note that by Permuation Invariance, el # £X,e(a + X,) for any a ¢
X,z € X. Thus, and since M |= |M| < w, and letting

A={e(ap+ Xy) |z € X} B={cla+ Xy,) |a & X} (128)
we have
M| = |M - X[+ |X] (129)
= Al +[(B —{e(ao + Xu)}) U {eX}] (130)
= |[AUBU{eX}| (131)
< [AUBU{eX}| + [{e0}] (132)
< |mg(e)| < [M] (133)
which means that |M| < |M], a contradiction. O

The preceding results on refinements of separations and on restrictions of
BLV yield:

Corollary 42. If E(B)x refines a separation and M [ |X| = |M — X|, then
M = Ag.

Proof. Corollary 40 and Lemma 41 imply that (in the presence of IPM)
ME|X|=|M-X|— —-BLV(= X) (134)

If E(B)x is a separation and M = | X| < w then by Theorem 7 M = BLV(= X)
if M = Ag. But this contradicts (134).

On the other hand, if M = |X| > w, then by Lemma 39, Ag translates
BLV(= X). So Ag cannot hold in M as again this contradicts (134). O

6.3 Refinements of complementations and LCP(= X))
The situation is quite similar for LCP. Here we handle the finite case first:
Lemma 43.
LWCP(=X)EIX|=IM-X|<w—= |M| <4 (135)
LCP = M| <w — M| <2 (136)

Here, abusing notation, “E” indicates the derivability relation in second-
order logic with well-behaved cardinalities.
We begin with the following:

Proposition 44. The following is a theorem of second-order logic:
(X, Y)(IX] > 2, V] > 2 [XUY] < [X x Y)) (137)

with a strict inequality in the consequent if X UY is Dedekind finite.
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Proof. We assume without loss of generality that X and Y are disjoint, let
a,b,c € X and d,e € Y be pairwise distinct. Then define f: X UY — X xY
by
(a,z) zeY,x#d
flx)=<(z,d) ze€X
(bye) x=d

Clearly f is injective; it is not surjective since (c,e) € rng(f). Further, if
g: X xY — X UY is a bijection, then g o f witnesses that X UY is Dedekind
infinite. O

Proof of Lemma /3. For the first assertion, suppose the antecedent. Reasoning
deductively, suppose now that |[M| > 4, then |X|,|M — X| > 2. Set X = A4
and M — X = B, then for each (a,b) € A x B, set A, = (A — {a}) U {b} and
B, = (B—{b})U{a}. Now for (a,b), (¢,d) € Ax B distinct (as a pair), we have

©A4, = ©B, ©Ad = ©Bc ©4p # ©A. (138)

So f(z,y) = ©A, = ©B, defines an injection from A x B into M = AU B,
contradicting Proposition 44. Thus, |M| < 4.

For the second assertion, suppose |M| > 2. Then f(x) = ¢{x} shows that
for rng(¢); = {¢(X | |X]| = 1}, |rng(¢)1] = |M| and so by finiteness rng(€); =
M. However for any m € M, ¢{m} # (0 by LCP so /) & rng({); = M, a
contradiction. O

Lemma 43 would make it appear that LCP(= X') must have mostly structures
of infinite size. But it has no structures of infinite size:

Proposition 45. In the presence of IPM, LCP(= X) implies the universe is
Dedekind finite.

Proof. Given IPM, if |[M| > w, there is a concept X such that |[X|=|M — X| =
|M]. We show that LCP(= X) A [M| > w translates BLV(= X), so then by
Corollary 40 and Proposition 37, the former is inconsistent.

Let f: M — X and g: M — M — X be bijections, and define ¢ by

v {f(éY) Wey
glty) gy

Clearly ¢ is functional at X. Now if Y, Z € [X]g, /) € Y, Z and Y # Z,
then by LCP(= X)) and the injectivity of f, Y # eZ. If ) € Y — Z, then as
fM)Ng(M) =0, Y # cZ. Lastly if (/0 ¢ Y, Z, then by LCP(= X) and the
injectivity of g, €Y # eZ. O

Together with Lemmata 39 and 43, from Proposition 45 we obtain

Corollary 46. If M |= |X| = |M — X| and E(B)x refines a complementation,
then M = Ag — |M| < 4.
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Proof. Propositions 43 and 45 together give that
ME|X|=|M-X|>4— —-LCP(= X) (139)

If M = |X| < w and F(B)x refines a complementation, then by Theorem 7
M = LCP(= X)) if M = Ag. But then (139) gives that | X| = |M — X| < 4.

On the contrary if M = |X| > w, then as E(B)x refines a complementation,

O

6.4 Applying the bicardinal classification

Having dealt individually with each kind of non-trivial equivalence relation, we
now apply Theorem 7, for putting together Corollaries 42 and 46 with Theorem 7
gives the following:

Theorem 47. If M = 2 < |X| = |[M — X| and E(8)x is nontrivial, then
M £ Ag.

Proof. By Theorem 7, if E(H)x is not trivial it either refines a separation or re-
fines a complementation. In the former case Ag is inconsistent by Corollary 42,
and in the latter case Ag is inconsistent by Corollary 46 and by our assumption
that |M]| > 4. O

Remark 48. The converse of Theorem 47 fails, for let Ag be the abstraction
principle NewV:

(VX,Y) (X =Y & (X[ = [Y] = [M[V (X[, Y] < |[M[AX =Y))

But by Ko6nig’s theorem, NewV is has no standard models whose first-order do-
main is a singular limit cardinal.'®

To put Theorem 47 in the terms used earlier: If M is large enough (having
greater than four elements), then M satisfies no abstraction principle whose
equivalence relation is non-trivial on concepts which evenly divide the universe.
So Theorem 7 gives a mark by which to identify (at least) many bad companions:
these insufferable principles limit the size of the universe by non-trivially carving
concepts of maximally large bicardinality.'®

15There is in fact a small error on just this point at [24, p. 596] in stating the results of [20,
p. 315]: “For instance, the claim that the abstraction principle New V is strongly stable is
equivalent to the generalized continuum hypothesis.” The correct statement is this: New V is
not strongly stable, and whether it is stable depends on whether 2% = kT for unboundedly
many K.

16Theorem 47 is in some ways a companion to Fine’s Characterization Theorem, mentioned
earlier: that what he calls the basal abstraction principle is the finest satisfiable in all infinite
domains. As Theorem 7 is a deductive analogue of Fine’s Classification Theorem, a deductive
analogue of his Characterization Theorem can also be obtained from Theorem 7, though we
leave this for Appendix 10.
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7 Classification and relative categoricity

In [24] Walsh and Ebels-Duggan introduce a criterion that distinguishes the
abstraction principle HP. The so-called “Julius Caesar problem”!” arises from
the following fact. There are abstraction principles, among them HP, with the
following unfortunate property: for a given base Ly-structure, it is possible to
interpret d in two ways, both satisfying the abstraction principle, but such that
the two expanded structures are neither isomorphic nor elementarily equivalent.
That this can be done with the equivalence relation ~ and HP was noted by
Frege himself [8, § 56, §§66ff]. Walsh and Ebels-Duggan showed that though
these abstraction principles lack these properties, some of them have weaker but
still noteworty equivalence properties.

Abusing notation somewhat, let Ag[d] be not only the abstraction principle
correlated with F, but the theory containing as axioms that abstraction prin-
ciple and the axioms of our background logic (including those for well-behaved
cardinalities). With similar abuse, we’ll use A%[0;,0s] be a theory contain-
ing axioms for our background logic and the abstraction principles Ag[0:1] and
Ag[0s]. In other words, A% [0, Do) is a theory with two copies of the abstraction
principle Ag, one for each abstraction operator. To introduce Walsh and Ebels-
Duggan’s weakened equivalence notions we first introduce the relevant notion
of an isomorphism between induced models:

Definition 49. Given a structure M = (M, S1[M], S2[M], ..., 01, 02) satisfying
A%, fori=1,2, let

M; = (rng(0;), S1[M]N P(rng(9;)), Se[M]N P(rng(9;) X rng(9;)) ..., 0;) (140)
We say that M, is the model induced by 0;.

As noted in [24], for T to be an isomorphism between M; and Moy it is
sufficient for I to satisfy the following condition: For all X € S;[M]NP(rng(d1)),

I'o1X = 05(TX) (141)

Definition 50. The theory Ap is naturally relatively categorical just if for
any model M, and any 9y, 0> such that M = A%[0y, Ds], the natural bijection
I': rng(01) — rng(9d2), defined by

T X =0, X (142)

is an isomorphism between the induced models M; and M.

The theory Ag is relatively categorical just if for any model M, and any
(91,(92 such that M ): A2E[61,(92], Ml = Mg.

The theory Apg is relatively elementarily equivalent just if for any model M,
and any 01, 0> such that M = A%[01, 9a],

My ':<P61 < Mo ':<P62

for every sentence (i.e., closed formula) ¢ in the language of the theory Ag[d],
and g, is the result of replacing every occurrence of 9 in ¢ with 0;.

17See [8, § 55, and for example [13] and [11, Chapter 14].
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Thus natural relative categoricity is distinguished from relative categoricity
in that the former requires that the natural bijection be an isomorphism, the
latter only requires that an isomorphism exist.

One of the main theorems of [24] established necessary and sufficient con-
ditions for the natural relative categoricity of an abstraction principle; some of
which we state as:

Natural Relative Categoricity Theorem NRCT ([24]). Let Ag be an ab-
straction principle. The following are equivalent:

1. Ap is naturally relatively categorical.
2. Ap[d] E (vX,Y)([Y] = |X| < [mg(0)] = E(X,Y)).

where again “E" means the deductive consequence relation for our strong back-
ground logic. Abstraction principles satisfying this second condition are said to
be cardinality coarsening on abstracts.

As can be seen plainly, = is the finest equivalence relation such that Ag
is cardinality coarsening on abstracts; thus HP is the finest naturally relatively
categorical abstraction principle. This gives the neo-logicist a criterion by which
to distinguish HP from other abstraction principles; notably, the abstraction
principle NewV, which is equivalent to BLV(< |M|), is not naturally relatively
categorical (see [24, § 5]).

But there is more than can be asked. In [23, Proposition 14, p. 1687] Walsh
shows that HP is relatively categorical in the stronger, unqualified sense. More-
over the foregoing establishes the following implication relations:

Natural relative categoricity & Cardinality coarsening on abstracts

¢

Relative categoricity

¢

Relative elementary equivalence
(143)
Walsh and Ebels-Duggan thus raised two questions in [24]:

Question 51. Are the conditions for relative categoricity the same as for natu-
ral relative categoricity? Can we drop the specification of the natural bijection
in the NRCT? More precisely is (2) equivalent to the relative categoricity of Ag?

Question 52. What is the relation between relative categoricity, natural rela-
tive categoricity, and relative elementary equivalence?

It is a consequence of Theorem 7 that Question 51 can be answered in the
affirmative, and that, in answer to Question 52, all the implication arrows of
(143) can be reversed.

From here onward it will be helpful to recall the definitions of restricted
abstraction principles from page 26.
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Lemma 53. Suppose Ag is an abstraction principle, and that Ag[0] translates
BLV(< 1) via (Y, Z). Then Ag[d] is not relatively elementarily equivalent, and
so not relatively categorical.

Proof. Let 01 be given such that M = Ag[01]. Note first that as Ag translates
BLV(< 1), |rng(9)| = |M| > w. We may thus assume that rng(9;) = M. The 0,
we will construct will have the same range; this allow us to avoid worries that
the translation ¢ of BLV(< 1) in M, which may contain nested quantifiers, may
change its behavior on the induced models M; and Ma.

For ¢ translating as above, let € U(X) if and only if p(X,Y) and z € Y.
Consider now

¥ = Ga)la = U ({a})) (144)

On the one hand, if M = —), then select a € M, and note that there
are b,c € M with b = U({a}) and a = 01U({c}). Let f(b) = a, f(a) = b,
and f the identity map on M — {a,b}. As f € M since it is definable, setting
02X = f(0:X) we have that M = A%[0;,32]. And yet My |= 1hs.

On the other hand, if M [ 91, let

A={0X|(Ea)(a =X =0U({a}))} (145)

Suppose first that |A| = |rmg(01)|. As |A] > w, there is a B C A such that
|B| = |A— B| = |A| by IPV; let g : B — A — B be a bijection. Then let

g(@lX) 81X B
82X = g_l(alX) 61X S g(B) (146)
X XA

Again we have that M |= A%[0;,0s), and My = —ho: for if 1U({a}) =a € B
then U ({a}) € A — B, and so 92U ({a}) # a. And likewise if 0,U({a}) = a €
A-B.

Lastly suppose |A| < |rng(d1)|, then as |rng(d1)| > w, then by ISM there is
an injection g : A — rng(d;) — A. Setting B = A, the construction as in (146)
again delivers the verdict that My = . O

Lastly, we prove a parallel to Lemma 39.

Lemma 54. Suppose M |= 0 < |X| < w < |M|and E(B) x refines a separation.
Then Ap translates BLV(< 1).

Proof. By Proposition 38, for any singleton Y, (Y, X) € [X]g. Further, if Y # Z
and both are singletons, then (Y, X) and (Z, X) are disjoint, so (Y, X)A(Z, X)| £
|X|. Thus, setting €Y = 9(Y, X), we have for singletons Y and Z:

Y =cZ = BE(Y,X),(Z,X)) e (V,X)=(Z,X)aY =2

We now answer Questions 51 and 52:

34



Theorem 55. An abstraction principle Ag is relatively categorical if and only
if it is cardinality coarsening on abstracts.

Further, an abstraction principle is relatively elementarily equivalent if and
only if it is relatively categorical.

Proof. The right-to-left direction of the second assertion is trivial; for the right-
to-left direction of the first, suppose A is cardinality coarsening on abstracts,
and let M |= A% [0y, D5]. Let T be the natural bijection defined by I'o1 X = 92X ;
note that as [[X| = |X]|, since Ag is cardinality coarsening on abstracts, in
A%[01,05] it follows that 9;X = §;TX. Thus

TOLX = 9, X = 0,TX (147)

so I' is an isomorphism.'®

For the left-to-right direction of both assertions, observe that the following
exhaust the possibilities for the cardinal placement of any two equinumerous
concepts:

MEM|=Y]=|X]=[M-X|=|M-Y]|
MEM|=Y]=|X]=[M-X|>|M-Y]
MEIM|=[Y]=|X[>|M - X|> M -Y]|
Mo < X[ = Y] < [M]
MEX]=[Y]| <w < |M]
MEX]=Y|<[M| <w

To prove the second assertion, then it suffices to show that on each of these
possibilities, if M = A%[01, 2] then either (i) M; and My are isomorphic
(and so elementarily equivalent), or (ii) there are 0y, 92 such that M; and My
are not elementarily equivalent (and so not isomorphic). From the right-to-left
direction of the first assertion, we know that if E is cardinality coarsening on
abstracts, then (i) holds for all possibilities. Thus to prove the second assertion,
it suffices to prove that if F is not cardinality coarsening on abstracts, then
either M [£ Ap, or there are 91,02 with M = A%[01, D] but M; and My are
not elementarily equivalent. This will prove the first assertion as well.

So suppose that Ag is not cardinality coarsening on abstracts; let M = Ap
witness this failure. So there are X,Y € M such that

M Y] = |X] < [mg(d)| A —E(X,Y) (154)

Clearly then M =0 < | X|.

The first case in which (148) holds can be ruled out since if E(H)x is non-
trivial, then by Corollaries 42 and 46, M [~ Ag. Thus for the second case
(149) we must assume that E(B)x is trivial. Without loss of generality assume
M E X CY. Since by assumption (154), M = |M| = |X| = |Y] < |rng(9)|,
let f,g € M be respective witnesses of |X| = [rng(d)| and |Y| = |rng(9)|, then

18 This direction of the proof generalizes the proof in [23, Proposition 14].
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set 01 = fod and 0 = g o . Since 0y, 2 are both definable injections in M,
it follows that M = A%[01, 02]. Note, however, that for all Z C X, if |Z| = | X|
then Z B X. Hence, since F(B)x is trivial, F(X, Z). Thus, as

M E (Vo) ( Xz < z=x)
it follows that
My = (YU W) (Vo) Uz <z =x) N|W| = |U| = LU = W) (155)

However, notice that

Mo E (Vo) (Y >z =x)
and that fog € S[M] and fog CY XY. Thus fog € Mas, so

My | X| = [Y[A 0 X # Y

as by assumption X C Y and M = Ag[d:] A —E(X,Y). Consequently, we see
that

Mo e (VU W) (Vo) (Uz <>z =x) AN|W| = |U| = 0U = 0. W)

So by (155) Ag is not relatively elementarily equivalent, and so not relatively
categorical.

For (150) observe that by IPM if |[M| = |X| > w then there is Z C X such
that |Z| = |[M — Z| = |M|; by (148) E(B)z is trivial, and so by (149) both X
and Y are in [Z]p.

If (151) holds, then by Theorem 7, E(H) x is non-trivial, but then by Lemma 39
Apg translates BLV(< X) on M. Likewise if (152), then by Lemma 54 we see
again that Ap translates BLV(< 1) on M. But then by Lemma 53 Ag is not
relatively elementarily equivalent, and so not relatively categorical.

Finally if (153) holds then by Theorem 7, as 0 < |X| < |M]|, by Theorem 47
and M | Ag, we have that |[M| < 4 and M |= LCP(= X). If [M]| = 2 then if
E(8)x refines a complementation then it is trivial (and so cardinality coarsening
on abstracts), so |[M| = 4. But then by the argument of [24, § 5.5, p. 594|, Ag
is not relatively elementarily equivalent, and so not relatively categorical. [

Walsh and Ebels-Duggan prove another theorem [24, Theorem 1.2] for an-
other weakened equivalence property: that if all objects are abstracts, then
the induced models for Ag are isomorphic via the natural bijection if and only
if bicardinally equivalent concepts are E-equivalent. They ask an analogous
question as well: can one drop the assumption that the natural bijection is an
isomorphism and still obtain the biconditional? The proof of Theorem 55 indi-
cates an affirmative answer here also: to adapt the proof one must observe that
(149) is irrelevant on the assumption that X and Y are bicardinally, but not
FE-, equivalent. The other cases remain the same.

Thus we have:

Theorem 56. Suppose that M = A%[01, 02] A rng(d1) = rng(d2) = M. Then
M1 =2 My if and only if Ag is bicardinality coarsening on abstracts.
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It may seem surprising to see in Theorem 55 the equivalence of relative
elementary equivalence with relative categoricity. But reflection suggests that
this shouldn’t be so striking after all: for Theorem 55 depends on Theorem 7,
and so on the equivalence relations in play being permutation invariant because
Lo-definable. The equivalence is in a sense an artifact of this restriction. It is
an open question as to whether other invariance conditions (see [7], [1]), [5])
would yield the same results.

However, reflection on this equivalence could be taken as philosophically
relevant, and indeed good news for the neo-logicist. For it is trivial, by PI, that
in an Lg-structure M, if 7 is a permutation in M, then the structure resulting
from that permutation is both isomorphic and elementarily equivalent to M.
This is trivial, of course, because the permuted structure just is the original
structure. But it is noteworthy that this triviality hides the coinstantiation of
isomorphism and elementary equivalence.

In light of this, one might ask: is this coinstantiation preserved under ab-
straction? In more detail: given two abstraction operators, dq,0> for an ab-
straction principle Ag, the natural bijection I'(0; X)) = 02 will always be in any
model of Ag[0;,d2]. Therefore if 9y and d5 share the same range, then My can
be regarded as the structure resulting from the permutation I' of the structure
M. Is it the case that under any such permutation, the resulting models will be
isomorphic if and only if elementarily equivalent? Indeed, answers Theorem 55,
the answer is affirmative: this property of coinstantiation is, in the given sense,
preserved under permuations of abstractions. One might argue on behalf of the
neo-logicist (though we will not) that this shows abstraction is in some sense a
“logical” operation.

8 Conclusion

We began with the promise that strengthening Fine’s Classification Theorem
would advance our understanding of the demarcation of logical abstraction prin-
ciples. The strengthened version of Fine’s theorem yields a strengthened relative
categoricity theorem; the relevant advancement thus comes in the option pro-
vided by the latter result.

Walsh and Ebels-Duggan note that relative categoricity as we have described
it cannot rule out bad companions like NP: since NP has only Dedekind finite
models, it (the principle) is cardinality coarsening on abstracts. They also
note, however, that the equivalence relation underlying NP is not cardinality
coarsening on small concepts—a notion that applies not to abstraction principles
but to equivalence relations. (See [24, section 5.4].)

The confluence of results presented in this paper offers a stronger statement
of this point. As we can see from the results in sections 6 and 7, when nontrivial
equivalence relations are manifest in a structure, they generate failures of rel-
ative categoricity. It is curious that NP is relatively categorical as a principle.
But it is more relevant that the equivalence relation deployed by NP is nontrivial
on all infinite bicardinal slices—it has non-trivial manifestations. And wherever
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nontriviality appears in a structure satisfying an associated abstraction princi-
ple, it generates a failure of relative categoricity. Thus, even though NP is by
the letter relatively categorical, it deploys an equivalence relation that generates
failures of relative categoricity. On this line of thinking, NP can thus be ruled
out. The same goes for other bad companions.

This is a sketchy argument for several reasons, but for our purposes it needn’t
be more. As we said at the outset, our goal is to provide and clarify options.
All things considered, this sort of account may be rejected. But the results here
adduced, along with those in [24] and [23], indicate that the sort of answer just
offered is one of the things that should be considered.

In light of this, it may be worth considering relative categoricity as kin to
permutation invariance. Both are motivated by the idea that logic is indifferent
to the particulars of objects. Permutations represent this indifference by ex-
changing objects arbitrarily, while relative categoricity represents it by treating
of arbitrarily selected abstraction assignments. Here, more issues loom. Our
discussion has been organized around permutation invariance, but there are
stronger conditions claiming to be necessary for logicality. Permutation invari-
ance is intra-modular: permuations simply re-order or re-organize the elements
of a given structure. Recent work has focused on the trans-modular notion of
isomorphism between structures. This is arguably a better mark of the logical
than permutation invariance, and better matches the intuitive notion of indif-
ference to objects. Though the language L is logical in this stronger sense,
we have not addressed how a notion like relative categoricity would apply in a
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trans-modular setting.'?
One last point is worth making. The results of section 6 can be recast. Say

19Jack Woods, in [25], has addressed the question of indefinite abstraction principles in a
trans-modular setting. Given a domain D and an equivalence relation E on P(D), let

F(D)g ={f: P(D) = D| (VX,Y C D)(fX = fY < E(X,Y))}

In this setting of [25], the members of F'(D)g are called abstraction functions for E, while
an abstraction operator for E is a function o taking domains D as an argument, outputting
aset o C F(D)g. If ¢ : D — D’ is a bijection, then ¢ can be extended to an isomorphism
¢t of all types over D and D’. As such, ¢t (aP) will be {¢T o fo(¢H)~1 | f € aP} (see [25,
pp. 281ff]). The abstraction operator o is then isomorphism invariant just if ¢t (oP) = oD’
for all D, D’, and bijections ¢ : D — D’. An abstraction operator is said to be full just if for
any D, oP = F(D)g. Woods endorses the view that indifference to particular objects is the
mark of the logical, and thus that isomorphism invariance is the mark of the logical.

Woods offers as evidence for this claim the proposition on [25, p. 298] that all and only
abstraction operators logical in the sense of isomorphism invariance are both full and associ-
ated with an isomorphism invariant (in a broader sense) equivalence relation. However, this
proposition, and the lemma used to prove it (presented on [25, p. 296]), are incorrect. The
lemma in question claims that if o is (non-empty and) invariant then it is full; but the proof
makes two incorrect assumptions: the first is that if f,¢g € F(D)g and rng(f) ~ rng(g) then
M —rng(f) ~ M —rng(g) [25, p. 296]. The second is that if {(f(A)) = g(A) for f,g € F(D)g
and all A C D, then ¢t (f) = g. But this is not in general true, for the extension of ¢ to ¢T
has ¢t(f) = ¢t o fo(¢T)™t, and while this implies that ¢t (f)(A) = g((¢T)~(A)), the last
g((¢t)~1(A)) = g(A) holds only, in general, when E is coarser than ~; see [24, Theorems 1.1
and 1.2] and Theorem 55.

The lemma and resulting proposition can be shown false by the example of ~ for E and
oP = {f € F(D)g | rng(f) = D}. Clearly this is not full, and it can be shown isomorphism
invariant using the techniques of the lemma on [25, p. 297|. This would suggest suitable
restrictions on the cardinality or identity of the range of the abstraction functions might
repair the lemma and proposition. But more robust counterexamples can be generated by the
results of the present paper. For these we will first need the following observation.

Suppose M|[01, 02] with first-order domain M is standard and witnesses the fact that Ag
is not relatively categorical. Then if ¢t : M — M’ is an isomorphism, then M’[¢(81), ¢(82)]
also witnesses that Ag is not relatively categorical, for M; 2= M/ for i = 1,2.

The main idea of the counterexample is to choose a pair 01,02 of surjective abstraction
functions such that My = M[01] ¥ Mo = M[d2]. Then for M the domain of M, we let
o™ be the set of all abstraction functions 8 such that M][d] is isomorphic to M[8]. Clearly
92 will not be among these. Then, for every domain D, we set 0P to be the set containing
¢t () for each & € oM and each bijection ¢ : M — D. This ensures o will be isomorphism
invariant, but also ensures, by the observation given above, that it will not be full.

More formally: it is a consequence of Theorem 56 that there are abstraction principles with
surjective abstraction functions 01,02 on a domain M such that for no bijection ¢ : M — D
is there a bijection 7 : D — D such that

m(CH(01)(A)) = (T (82)(m(A))

(That is, the bijection 7 does not commute with ¢(*(81) and (7 (92).) This is true of NewV, as
demonstrated by Theorem 56 in conjunction with the results of [24, Section 5.2].
Thus for each D =~ M, set

oP ={0 e F(D)g |8 =T 0010 (¢ct)™! for some bijection ¢ : M — D}

The indefinite abstraction operator o is then isomorphism invariant by construction, but
¢t (02) ¢ o¢(P) for any bijection ¢, so o is not full. Applied to the cited case of NewV
developed in [24], we might choose 91 such that the natural membership relation derived from
it is well-founded. Thus for any D and any f € o, f will foster such well-founded relations
as well. But for each D there will always be 02 € F'(D)g such that the natural membership
relation is not well-founded, and thus such &2 will be omitted from each oP.
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that Ag proves the universe set-like—in symbols, A | ZFC(M)—just if CC,
ISM, IPM, and every instance of CWF is provable in the theory Ap. The results of
section 6, put into this context, say that if Ag proves the universe set-like, and
if £ is provably non-trivial at “large enough” bicardinalities, then Ag is incon-
sistent. For if Ap = ZFC(M) and E is non-trivial at a large enough cardinality,
then since ZFC(M ), at that cardinal F is either separative or complementative.
Then following the theorems of that section, IPM renders the principle inconsis-
tent. This can be summed up by:

Corollary 57. If a theory Ag proves |[M| > 4 then A is inconsistent (without
the help of our cardinality principles) if and only if Ag proves that there is a well-
ordering of M and [X|gg) is non-trivial for some X with |X| = |M — X| = |[M|.

The non-trivial direction follows because our cardinality principles follow
from a well-ordering of the universe.

Similarly we obtain necessary and sufficient conditions for satisfiability (pos-
session of a standard model):

Corollary 58. If a theory Ap proves |M| > 4 then Ap is unsatisfiable if and
only if [X]g(8B) is non-trivial for some X with | X| =|M — X| = |M]|.

The non-trivial direction again follows by our results, since the cardinality
principles are true in all standard infinite models.

These are not, however, the best results available, since a weaker condition
on the right-hand side may also be sufficient for inconsistency (respectively, un-
satisfiability). We can already obtain such improvements understanding “large
enough” to mean not “universe-sized”, but “exponentially large” in the sense of
Fine (see Appendix 10). That is, replace “for some X with | X| = |M—-X| = |M]”
on the right with “for some X such that TOP(X)”, and the corollaries still hold.

In any case, as an explanation of the consistency and satisfiability profiles
of abstraction principles it is worth considering.

Outside of the discussion on neo-logicism, we note that the classification
theorems proved herein, being completely general, may have applications of in-
terest in other research areas related to second-order logic. Having answered
some questions, it is thus apt to raise one in conclusion. We showed in Theo-
rem 6 that for concepts finite in M, the conditional arrows “=-" reverse for both
separative and complementative bicardinal slices. Is this true for more than just
finite concepts? In other words, are there Lg-definable equivalence relations in
which the arrow of implication does not reverse?

Though the lemma and proposition are false, the above counterexamples do not obviously
determine the correctness of Woods’s overall assertion: that isomorphism invariance (for ab-
straction operators) is the mark of logic’s characteristic indifference to the particularities of
objects. The second counterexample does depend on the choice of an abstraction function,
but not on the choice of any first-order object. This accords with Woods’s prediction.
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9 Appendix: The proof of Proposition 8

Proof. Suppose |X| € |Y|, so by Cardinal Comparability, for all n € N, M =
n X |Y] < |X|. Thus 1 x | X| > Y], so |Y| <|X]|, establishing (34).

For XNZ=YNW =0 and |Z| < |[W/|, suppose |X| < |Y]. Choose n, U,
F
and f such that |U| = n (in the metatheory), and |X| < |U x Y|. Then choose

u € U, and then let
) f) veX
o) = {<u,g<v>> vez (156)

The function h is an injection establishing (35).

Toward establishing (36), assume |Z| < |[W| and |X U Z| < |Y U W/, but
(Y UW| € |X U Z]). For a contradiction, assume —(|X| <1 |Y]). By (34),
|Y| < |X|. But then since |W| < |Z], by (35) we have |Y UW| < |X U Z],

contradicting our assumption.

) ¢
For (37), choose n,m such that |X| < n x |Y| and |Y] % m X |Z|. Then
define h: X — nm(n+1) x Z by

Mx) = (nmfi(z) + 91(f1(2)), g2 (f2(x)) (157)

where f; and g; output the left value of f and g respectively, and fo and ¢
output the right value of f and g, respectively. Verifying that h is injective is
routine, h € M by comprehension.

f
To establish (38), suppose M = X <n x (Y UZ). By (34), either Y < Z
or Z 4Y; assume the former, letting g witness the injection in M. Then

x) = /(@) fo(x) e Z
h(z) {(n+f1(a:), 92(f2(2)))  faz) €Y (158)

injects X into 2n x Z; h € M by comprehension. So X < Z; a similar argument
shows that if Z <Y then X 9Y. Note that (39) follows immediately.

! 9
For (40), suppose M = Y| <n x |X| and M E |Z] < m x |X|. Then

F) uey
) = {(n +i,2) we Z,g(u)=(i,v) "

injects |Y U Z| into (n +m) x | X|in M. Soif [X| < [YUZ|, [YUZ| 4 |X|,
and so Y| € |X| or |Z| ¢ |X|. By (34) this implies that either |X| < |Y] or
|X| < |Z] holds. Note that (41) follows immediately.

To establish (42), assume |Y U Z| é |X]|, then f ['Y and f | Z are the
required injections. If |X| < |Y| then by (35) and (37) |X| < |[Y U Z|; so (43)
follows from (42).

For (44), assume | X| < |, so by the definition of <1, we have that [Y| € | X|.
Thus by (42), [Y' U Z| # | X|. Then by (34), | X| < |[Y L Z].
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!
For (45), assume |X Y| < |Z| and |[W| £ |Y|. Then

{f(u) ueXx (160)

flg(w) weWw

witnesses | X UW| <1 |Z|. A similar argument establishes (46). Then (47) follows
from (45), (46) and (34), as does (48). O

10 Appendix: Fine’s Characterization Theorem

We have noted throughout that our Main Theorem is a version of Fine’s Classi-
fication Theorem; additionally Theorem 47 bears a striking similarity to Fine’s
Characterization Theorem |7, Theorem 6, p. 144]. In this last appendix we show
how to present Fine’s Characterization Theorem in the deductive setting of our
paper.

Following Fine [7, p. 143|, say that a concept is exponentially large in M
just its subconcepts outnumber the objects of M. For short-hand, now say that
a concept X is “Top” just if X and its complement are both exponentially large.
The basal equivalence relation Ey(X,Y) is the equivalence relation such that for
any M and X,Y € M, E(X,Y) holds (in the metatheory)?° just if either both
X and Y are Top and M = XBY, or neither X norY is Topand M = X =Y.

Fine’s Characterization Theorem. The basal relation Fj is the finest equiv-
alence relation satisfying Permutation Invariance such that for any infinite stan-

dard model M, M = Ag,.

The most noticable differences between Fine’s Characterization Theorem
and Theorem 47 are that the latter concerns only infinite standard models,
while the former addresses all models with well-behaved cardinalities. Fine’s
proof of the Characterization theorem uses his Classification theorem. As we
have stressed, this classification theorem is a version of what we have proved as
our Main Theorem. But it is hard to see how, given that Fine’s terminology
doesn’t neatly capture the array of possibilities. But some reflection, with Fine’s
suggested aid of a Venn Diagram, shows that the Fine’s Classification theorem
can be restated as follows.

Fine’s Classification Theorem (Restated). For X infinite and M standard:

(1) If | X| < |M] and E(B)x is does not refine a separation, then E(B)x is
trivial.

(2) If | X| =|M]|>|M - (XUY)| and E(H)x refines neither a separation
nor a complementation, then E(H)x is trivial.

(3) If | X| = |M — X| and E(B)x refines neither a separation nor a comple-
mentation, then F(B)x is trivial.

20Fine’s results are cast in terms of partitions of P(M), so at this point we won’t talk about
M satisfying Eo(X,Y), since Fine’s presentation doesn’t ensure that Eg is expressible. We
will show how to express something like Eg in Lo below, see Definition 60.
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And this yields as a corollary our Main Theorem, restricted to infinite stan-
dard models: that E(H)x must satisfy at least one of being trivial, refining a
separation, or refining a complementation.

Our Theorem 7 can thus be regarded as sharpening and expanding Fine’s
achievement in his Classification Theorem, except for one easily ironed wrinkle:

Remark 59. In the statement of our theorem: our main concern has been with
identifying Lo-definability as a necessary condition on an equivalence relation’s
being logical, so our conditions on F have been that it be Ly-definable. However,
inspection of the proofs of our results will show that Lo-definability is used only
in invoking Permutation Invariance. Thus all of our results can be put as Fine’s
are: about equivalence relations satisfying Permutation Invariance.

As we will show below, Fine’s Characterization Theorem can also be sharp-
ened and expanded, with the help of Theorem 7. We prove the Characterization
Theorem in the deductive setting of Theorem 7.

To do so, we first need to use Lg, rather than the metatheory, to describe
concepts being exponentially large, “Top”, and so to describe the basal equiv-
alence relation Ey. Given a relation R(z,y), we let R[z] = {y | R(x,y)}. If
R € M then so is R[x] by comprehension. Using this we can express, in Lo, the
claim that R “injects” from equivalence classes of subconcepts of a given concept
W to objects with the following formula (see also [24, p. 588], [19, p. 105]):

(VU C W)(3z)(R[z] CU A E(R[z],U)) A
(Va,y)(~E(R[z], Rly]) — = #y) (161)

R ‘
We will use the expression “’W’ < |M]” to abbreviate (161).2! We now

have the material required for expressing the basal equivalence relation:

21Tt is worth noting that since we are allowing non-standard models, for some E there may
be “false negatives” (where W = M we omit the restriction “ [ M”): There are models M and
equivalence relations E such that

i cr) (|22 < )

even though there is, in the metatheory, an injection from the E-partition of S1[M] to M. A
sketch of the proof is as follows:

The witnessing equivalence relation will be =~. Let L be a language expanding Lo by
countably many constants ¢; for first-order objects, and the 7" be the theory containing as
axioms all comprehension axioms in the signature, as well as all sentences of the form:

ci # ¢ for each ¢ # j
R
—(3R) (¢(R) A ‘M’ < |M]) for each formula ¢(R) of L

~
~

Every finite subset of 7" is consistent (and in fact satisfiable), so T is consistent, and has a
model whose first-order domain M is infinite in the metatheory. The resulting model witnesses
the truth of the theorem.
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Definition 60. Given E an Lg-definable equivalence relation, abbreviate as
follows:

EXPL(X) = w < |M| (162)
TOP(X) :=EXPL(X) A EXPL(M — X) (163)
Eo(X,Y) :=(TOP(X)ATOP(Y)AXBY)V (164)

(~(TOP(X)VTOP(Y))AX =Y)

The abstraction principle Ag, is the correlate of Fine’s basal abstraction
principle.

Theorem 61 (Generalization of Fine’s Characterization Theorem). The ab-
straction principle Ag, is consistent, and for any expressible equivalence rela-
tion F satisfying Permutation Invariance on all models, if Ag is consistent then
FE)y is finer than FE.

(Recall that FEy is finer than F means that = (VX,Y)(Ey(X,Y) —
E(X,Y).)

Note that Theorem 61 implies Fine’s Characterization Theorem.

Proof. We give only the portion of the proof not available elsewhere. To see
that Ag, is consistent, see [7, p. 144]|. Towards establishing the second assertion,
note that extensional equality of concepts is the finest Permutation Invariant
equivalence relation (|1, Theorem 2, p. 281] also uses this fact). Solet M | Ag;
if E is strictly finer than Ey, there are W, S such that M = TOP(W)ATOP(S),
WHS and —E(W, S). Thus E(B)w is non-trivial, and by Theorem 7, it either
refines a separation or refines a complementation.
If it refines a complementation then |W| = |M — W|. If |M| < 4 then

M= (VX,Y)(Eo(X,Y) & X ~Y)

and so Ag, is HP. But HP has no models of finite size, and since E is finer than
FEy, Ag has no finite models either. Thus M is infinite. But then by Theorem 47,
M Ag.

If F refines a separation, then by Lemma 39, Ag and |W| < |M — W/| trans-
late BLV(< W). Set R(z,y) to be (IY)(x = eY AYy); R exists by comprehension
and R[eY] =Y. It is easy to verify using BLV(< W) implies

SiM]TW

R
< [M]

and this contradicts the assumption that TOP(W).??
O

22Fine’s Characterization results can in fact be generalized neatly to more types of invari-
ance, as Fine does himself; see |7, Corollary 7, p. 146], and [5].
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