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RESIDUE FIELD DOMINATION IN REAL CLOSED VALUED

FIELDS

CLIFTON EALY, DEIRDRE HASKELL, AND JANA MAŘÍKOVÁ

Abstract. We define a notion of residue field domination for valued fields
which generalizes stable domination in algebraically closed valued fields.
We prove that a real closed valued field is dominated by the sorts internal
to the residue field, over the value group, both in the pure field and in the
geometric sorts. These results characterize forking and þ-forking in real
closed valued fields (and also algebraically closed valued fields). We lay
some groundwork for extending these results to a power-bounded T -convex
theory.

1. Introduction

The notion of domination of a theory by its stable part was developed by
Haskell, Hrushovski and Macpherson in [HHM08] and illustrated in the case
of an algebraically closed valued field. It follows from the elimination of imag-
inaries in [HHM06] that the stable part of an algebraically closed valued field
consists essentially of vector spaces over the algebraically closed residue field.
In [HHM08, Chapter 12] it is shown that an algebraically closed valued field is
dominated over its value group by its residue field. Our goal here is to prove
an appropriate analogue of these results for a certain class of ordered valued
fields. In an ordered valued field (that is, an ordered field with a convex val-
uation) both the value group and the residue field are ordered, so there is no
stable part. Instead we consider a notion of domination by the residue field
over the value group. We prove the following theorems (the terminology is
defined in the subsequent pages).

1) Over a maximal base, an ordered valued field is dominated by the value
group and residue field (Corollary 2.6).

2) Over a maximal base and its value group, a real closed valued field is dom-
inated by the sorts internal to the residue field (Corollary 2.10).

3) Over a maximal base, forking and þ-forking are determined by the value
group and residue field (Theorem 3.4).
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4) An expansion of a maximal base in the geometric sorts is dominated by the
value group and residue field, and over its value group is dominated by the
sorts internal to the residue field (Theorem 4.6).

We hope to be able to extend these results to the more general situation of
substructures of power-bounded T -convex structures in some future work. For
this reason we work in the T -convex setting (see [vdDL]) whenever possible.

Let R be any o-minimal field (that is, an o-minimal expansion of a real
closed field) in a language Lo. Expand Lo to L by adding a unary predicate
V for a convex subring (which we will also refer to as V ), and consider R as
an L-structure. When the reduct R|Lo

is a pure real closed field, Th(R) is
the theory of real closed valued fields, RCVF. This theory has elimination of
quantifiers in an appropriate language [CD], and elimination of imaginaries in
an appropriate sorted language [M]. In the more general setting where R|Lo

is an o-minimal field with theory T , one gets similar results if the structure
R is T -convex; that is, if f(V ) ⊆ V for all continuous functions f : R → R
that are ∅-definable in Lo. In this case, Th(R) is universally axiomatisable (in
L expanded by a constant for an element of R>V ), has quantifier elimination
relative to quantifier elimination in R|Lo

, and there is a natural way to make
the residue field into a model of T (see [vdDL]). It is not yet known what
is a minimal sorted language in which Th(R) has elimination of imaginaries
(see [HHM13]). Stronger statements about the definable sets can be made
when R is power-bounded; that is, if for each definable f : R → R there is λ
in the field of exponents of R such that |f(x)| < xλ for all sufficiently large
x. Furthermore, if an o-minimal field is power-bounded, then every model of
its theory is power-bounded (see for example [vdD, p. 23] for more details on
power-boundedness).

For most of the paper, we work in a monster model Req, where R is an
L-structure such that its Lo-reduct is a power-bounded o-minimal field, and V
is a T -convex subring (although for most results we will restrict to the special
case of a pure RCVF). In what follows we shall refer to such structures R as
power-bounded T -convex structures. The quotient k : = V/m, where m is the
maximal ideal of V, is the residue field of R, and we write res : V → k for the
natural map. The ordered abelian group R×/(V \m) is the value group Γ, and
we write v : R× → Γ for the natural map. The valuation is also well-defined
on RV := R×/(1 +m), which is viewed as a multiplicative group. Associated
to RV is an exact sequence of abelian groups (note that while k× and RV are
multiplicative groups, Γ is additive):

1 → k× → RV → Γ → 0,

where the map k× → RV is inclusion (note that x +m = x(1 + m) for x ∈ R
with v(x) = 0), and RV → Γ is the map x(1 + m) 7→ v(x), where x ∈ R×.
Setwise, x(1 +m) ∈ RV is just the open ball around x of radius v(x). For any
γ ∈ Γ, we write RVγ for the fiber above γ, and observe that RV0 is definably
isomorphic to k×.
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For any substructure K of R, we write VK for its valuation ring, ΓK for its
value group and kK for its residue field. Algebraic closure and definable closure
are always taken in the model-theoretic sense and in the sorted structure Req,
unless stated otherwise. Note that since R, k, and Γ are ordered, algebraic
closure in these sorts is equal to definable closure. For sets A, B and a subfield
C of R, we write C[A,B] for the ring generated by A and B over C, C(A,B)
for the field generated by A and B over C, and C〈A,B〉 for the o-minimal
structure generated by A and B over C. We shall also write Γ(A) = dcl(A)∩Γ
and k(A) = dcl(A) ∩ k. In general, for any collection of sorts S, we write
S(A) = dcl(A) ∩ S.

Given a valued field K, we shall write

Bop
γ (a)= {x ∈ K : v(x− a) > γ},

Bcl
γ (a)= {x ∈ K : v(x− a) ≥ γ}

for the open (respectively closed) ball of radius γ around a, where a ∈ K,
γ ∈ ΓK . If we do not want to specify whether the ball is open or closed, we
write Bγ(a).

We use the following results about definable sets in T -convex theories.

Fact 1.1. [T, Theorem 12.10], [vdD, Proposition 7.6] Let R be T -convex with
T power-bounded and let S ⊆ R be a definable set. Then S is a finite boolean
combination of points, intervals, and open and closed balls defined over R.

Fact 1.2. [vdD, Theorem A] Let R be T -convex, and let S ⊆ Rn be a definable
set. Then res(S) ⊆ kn is definable in k, considered as a model of T .

Fact 1.3. [vdD, Theorem B] Let R be T -convex with T power-bounded, and
let S ⊆ (R×)

n
be a definable set. Then v(S) ⊆ ΓR

n is definable in Γ, considered
as an ordered vector space over the field of exponents.

In a pure valued field, the dimension inequality relates the transcendence
degree of a field extension to the degrees of the extensions of the value group
and residue field. In a power-bounded T -convex theory, the proof of the cor-
responding result, called the Wilkie Inequality, is much more subtle.

Fact 1.4. [vdD, Theorem C] Let T be power-bounded with field of exponents
F , and let R � S be T -convex structures. Then

rk(S/R) ≥ rk(kS/kR) + dimF (ΓS/ΓR).

Now suppose that R � R〈a〉 are power-bounded T -convex structures, and
a ∈ R is a singleton. If the extension R〈a〉 is not immediate, then by Fact 1.4,
exactly one of the value group and residue field increases. There is a precise
description of the increased value group or residue field.

Fact 1.5. Let R � R〈a〉 be models of a power-bounded T -convex theory.

i) If res(a) /∈ kR then kR〈a〉 = kR〈res(a)〉 [vdDL, Lemma 5.1].
ii) Assume T is power bounded with field of exponents F . If v(a) /∈ ΓR then

ΓR〈a〉 = ΓR ⊕ F · v(a) [vdD, Lemma 5.4].
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Furthermore, in a power-bounded T -convex theory, the residue field and
value group are orthogonal, in the sense of the following statement.

Fact 1.6. [vdD, Proposition 5.8] Let R be a model of a power-bounded T -
convex theory. Any definable function from kR to ΓR or from ΓR to kR has
finite image.

Our general goal is to study the extent to which types in the valued field
are controlled by their restriction to different sorts in the structure. We call
this property domination. It generalizes the notion of stable domination in
[HHM08] and is related to the notion of compact domination [HPP]. The
reader will note the definition of domination is reminiscent of the uniqueness
of nonforking extensions in a stable theory. Thus, in an extremely imprecise
sense, the existence of domination is an instance of stable-like behavior in the
structure.

Let S and T be collections of sorts which are stably embedded in all models
of some theory. Assume that S and T are rosy and hence have some notion of
independence.

Definition 1.7. Let C ⊆ A be sets of parameters. We say that tp(A/C) is
dominated by S if whenever B ⊃ C with S(B) independent from S(A) over
S(C), one has that tp(A/CS(B)) implies tp(A/CB). Further, we say that
tp(A/C) is dominated by S over T if tp(A/CT (A)) is dominated by S.

We will also express the property of domination using automorphisms, as
follows.

Fact 1.8. Let A, B, C, S, and T be as above, with S(B) independent from
S(A) over S(C). Then the following are equivalent:

i) tp(A/CT (A)S(B)) implies tp(A/CT (A)B);
ii) given an automorphism σ of R fixing CT (A)S(B), there is an automor-

phism agreeing with σ on A and fixing CT (A)B.

In Corollary 2.6, we use this terminology with S = Γ∪ k. In Corollary 2.10,
S consists of (some of) the sorts internal to the residue field and T is the
value group. In both cases, the notion of independence is given by þ-forking
(we recall the definition in Section 3, or see [A]). We will only need to use
þ-independence applied to parameters from k, Γ, or RVγ , all of which are
o-minimal, which allows us, for most of the paper, to use the more concrete
description below [EO, Section 6].

Definition 1.9. Given any (possibly infinite) tuple of parameters (ai) from a
definable set whose induced structure is o-minimal, and a set of parameters C, a
subtuple (aij ) is said to be an o-minimal basis of (ai) over C if (ai) ∈ acl(C(aij ))
and the aij are algebraically independent over C. When the length of (aij ) is
finite, this length is called the rank of the tuple (ai) over C. Any definable set
has rank equal to the maximal rank of a tuple from the definable set, and a
type has rank equal to the rank of any tuple realizing the type.
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Fact 1.10. The following are equivalent when the parameters A come from a
set with induced o-minimal structure:

i) A |⌣
þ

C
B;

ii) for every finite tuple a from A, the rank of tp(a/CB) equals the rank of
tp(a/C).

Example 1.11. In a real closed field, algebraic independence in the sense
of model theory is the same as field theoretic algebraic independence. Thus
A |⌣

þ

C
B if and only if any tuple from acl(CA) which is algebraically dependent

over acl(CB) is also algebraically dependent over acl(C). It is also equivalent
to say that acl(CA) is linearly disjoint from acl(CB) over acl(C); the algebraic
closure of the base is necessary here. Clearly, in a divisible ordered abelian
group, A |⌣

þ

C
B if and only if acl(CA) ∩ acl(CB) = acl(C).

Combining Definition 1.7 with Fact 1.8, we see that tp(A/C) is dominated by

k over Γ if, whenever one has B with k(B) |⌣
þ

k(C)
k(A), and an automorphism

σ : A → A′ fixing CΓ(A)k(B), then there is an automorphism τ : A → A′

fixing CΓ(A)B. Note that k(C) = k(CΓ(A)) = k(CΓ(A′)) by Fact 1.6.

Recall that a definable set E is internal to a definable set D if there is a
finite set A such that E ⊆ dcl(D ∪ A).

Definition 1.12. Given a set B, and S ⊆ Γ, we define

kIntBS = acl(k(B){RVγ(B)}γ∈S).

As k(B) and RVγ(B), where γ ∈ S, are all internal to the residue field, so is

kIntBS . In the ACVF case, acl(CkIntMΓL
) can be shown to be precisely the part

of M eq which is internal to the residue field and contained in sets definable
over C and Γ(L) [HHM08, 12.9]. This may also be true in the RCVF case, but
we have not investigated it. Since the residue field is stably embedded, and the
function witnessing the internality of RVγ uses parameters from within RVγ,
kIntBS is also stably embedded.

In the case where B is a model, any element of RVγ(B) is definable over
kB from any other element. This is clearly true for γ = 0, and is obtained for
arbitrary γ using the b(1+m)-definable bijection RV0(B) → RVγ(B) given by
x(1 +m) 7→ bx(1 + m), where v(b) = γ and v(x) = 0. Thus, if for each γ ∈ S,
we let dγ be an element of RVγ(B), then

kIntBS = acl(kB{dγ}γ∈S).

The following proposition corresponds to [HHM08, 12.9, 12.10] in the context
of algebraically closed valued fields. The proof given there uses Morley rank,
which is not available to us in the ordered field context.

Proposition 1.13. Let R be a power-bounded T -convex structure with field
of exponents F , and let L and M be substructures of R. Let C be a common
substructure of L and M , and suppose that ΓL ⊆ ΓM . The following are
equivalent.
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i) For some (equivalently any) choice of elements (ai) and (bj) from L and
(ei) from M such that (v(ai)) is an F -basis of Γ(L) over Γ(C), (res(bj)) is
an o-minimal basis of k(L) over k(C), and for each i, v(ei) = v(ai), and
for all finite subtuples a1, . . . , ar, b1, . . . , bs, the sequence

res(a1/e1), . . . , res(ar/er), res(b1), . . . , res(bs)

is algebraically independent over kM (in the model-theoretic sense);
ii) kIntLΓL

is algebraically independent from kIntMΓL
over CΓL;

iii) kIntLΓL
|⌣

þ

CΓL
kIntMΓL

.

Proof. Let (ai), (bj), and (ei) be sequences as in the hypothesis of the propo-
sition. For each i, we let di =B

op
v(ai)

(ai).

Claim. The sequence d1, . . . , dr, res(b1), . . . , res(bs) is algebraically independent
over CΓL.

Proof of Claim. We first show algebraic independence over C. Assume to
the contrary that di0 ∈ acl(C(di)i 6=i0(bj)). Then v(ai0) ∈ Γ(C(di)i 6=i0(bj)).
However, it follows from Fact 1.5 ii) that

Γ(C(di)i 6=i0(bj)) = Γ(C)⊕ F ((v(ai)i 6=i0).

This contradicts the independence of (ai). Similarly, it follows from Fact 1.5 i)
that

k(C(di)(bj)j 6=j0) = k(C)〈res(bj)j 6=j0〉.

If some res(bj0) ∈ acl(C, (di)(bj)j 6=j0) then res(bj0) ∈ k(C)〈res(bj)j 6=j0〉, which
would contradict the assumption of independence on the res(bj).

We now show that d1, . . . , dr, res(b1), . . . , res(bs) is algebraically independent
over CΓL. If not, then there is some k with 1 ≤ k ≤ r, an element x ∈
{d1, . . . , dr, res(b1), . . . , res(bs)} and a non-constant function f definable with
parameters in {d1, . . . , dr, res(b1), . . . , res(bs)}\{x}∪{v(a1), . . . , v(ak−1)} with
f(v(ak)) = x. This would contradict Fact 1.6.

✷ (Claim)

Now we prove the equivalence of the three statements. The equivalence of
ii) and iii) is Fact 1.10. Note that the o-minimal rank of k(Cb1, . . . , bs) over
k(C) equals s, so by the Wilkie inequality,

rk(Γ(Cb1, . . . , bs)/Γ(C)) = 0.

By the above claim, kIntLΓL
is algebraically independent from kIntMΓL

over CΓL

if and only if some (equivalently every) sequence d1, . . . , dr, res(b1), . . . , res(bs)
has rank r + s over kIntMΓL

, which, by stable embeddedness of kIntMΓL
, hap-

pens if and only if the sequence d1, . . . , dr, res(b1), . . . , res(bs) has rank r + s
over M . As each di is interdefinable over M with res(ai/ei), the sequence
d1, . . . , dr, res(b1), . . . , res(bs) has rank r+s over M if and only if res(a1/e1), . . . ,
res(ar/er), res(b1), . . . , res(bs) has rank r + s over M , which is equivalent to
i). �
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2. Isomorphism theorems

We begin with some remarks about separated bases over a maximal subfield.

Definition 2.1. Let C ⊆ R be a valued field. We say that a finite sequence
m1, . . . , mn ∈ R, is separated over C if

v(
n∑

i=1

cimi) = min{v(ci) + v(mi) : 1 ≤ 1 ≤ n}

for all c1, . . . , cn ∈ C.

Definition 2.2. A valued field C is maximal if it has no proper immediate
extension. It is spherically complete if every non-empty chain of balls defined
over C has an element in C.

The fact that a field is maximal if and only if it is spherically complete dates
to Kaplansky and Ostrovski (see [K, Theorem 8.28]). The Hahn field R((Q))
is an example of a maximal real closed field. It follows from results in [T] that
any power-bounded T -convex theory has a maximal model; details of the proof
are not relevant for this article. The definition of spherical completeness can
be extended to a finite vector space over the valued field C in the following
way.

Lemma 2.3. Let C be a spherically complete valued field, and assume that the
tuple m = (m1, . . . , mn) is separated over C. Then the valued group

Cn ·m = {
n∑

i=1

cimi : ci ∈ C}

is spherically complete, in the sense that every non-empty chain of balls with
centers in Cn ·m and radii in v(Cn ·m) has an element in Cn ·m.

Proof. The proof is a straight-forward calculation. �

It is also well-known that a finite-dimensional vector space over a maximal
field has a separated basis (see [H, Lemma 2.6] for a proof). Indeed, the follow-
ing stronger statement is true, as shown in the proof of [HHM08, Proposition
12.11].

Fact 2.4. Let L and M be valued field extensions of the maximal valued
field C such that Γ(L) ∩ Γ(M) = Γ(C) and kL and kM are linearly disjoint
over kC . Then, for any finite-dimensional subspace U of M over C, there is a
separated basis m = (m1, . . . , mn) for U over C which is also separated over
L. Furthermore,

v(Ln ·m) ∩ Γ(M) =
⋃

1≤i≤n

(
v(mi) + Γ(C)

)
.

For the rest of this section we assume that R is a pure real closed valued field.
We now prove our first domination statement, in the formulation involving
automorphisms.
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Theorem 2.5. Let C, L, M be ordered valued fields with C maximal and
C ⊆ L ∩ M . Assume that ΓL ∩ ΓM = ΓC and kL is linearly disjoint from
kM over kC. Suppose there are automorphisms σ and τ of R fixing CΓLkL
with σ(L) = L′, τ(M) = M ′. Then there is an automorphism of R which
maps N = C(L,M) to N ′ = C(L′,M ′) and restricts to σ on L and τ on M .
Furthermore, ΓN is the group generated by ΓL and ΓM , and kN is the field
generated by kL and kM .

Proof. We first assume that τ = id. We extend σ|L to C[L,M ] by setting
σ(
∑n

i=1 ℓimi) =
∑n

i=1 σ(ℓi)mi, and then to the field of fractions N in the only
possible way. We need to show that the extended function, also called σ, pre-
serves the valuation and the ordering. It will then extend to an automorphism
of R by quantifier elimination. The fact that σ is a valued field isomorphism
is proved in [HHM08, Proposition 12.11], and it is also shown there that ΓN is
the group generated by ΓL and ΓM , and that kN is the field generated by kL
and kM . Here we need to show that σ also preserves the ordering. We thank
Tom Scanlon for pointing out the argument below, which is much simpler than
our original proof.

Suppose for contradiction that there is a ∈ C[L,M ] with a > 0, σ(a) < 0.
First suppose that a = ℓm for some ℓ ∈ L and m ∈ M . Dividing by m,
we see that this contradicts the assumption that σ preserves the ordering on
L. Now let a =

∑n
i=1 ℓimi. As ΓN is the group generated by ΓL and ΓM ,

v(a) = v(ℓm) for some ℓ ∈ L, m ∈ M . Write a = ℓma1, where a1 ∈ C[L,M ]
and v(a1) = 0. As σ(a) = σ(ℓm)σ(a1) and σ(ℓm) does not change sign (as
already noted), it must be that a1 and σ(a1) have opposite sign. But then
res(a1) and res(σ(a1)) = σ(res(a1)) have opposite sign, which contradicts the
fact that σ is the identity on kN , as it is generated by kL and kM .

Now suppose τ is any automorphism fixing CkLΓL and such that τ : M →
M ′. Apply τ−1 to N ′ = C(L′,M ′) to get a valued field Ñ = C(L̃,M) for

L̃ = τ−1(L′). As ΓL = ΓL′ = ΓL̃ and kL = kL′ = kL̃, the hypotheses of the

theorem apply to L̃ and M , so we may apply the case of the theorem that we

have already proven to deduce that there is an isomorphism from N to Ñ which
restricts to τ−1 on L and the identity on M . Composing this isomorphism with
τ gives us the desired map N → N ′. �

We restate the theorem in the language of domination.

Corollary 2.6. Let C ⊆ M be substructures of R with C maximal, kM a
regular extension of kC and ΓM/ΓC torsion free.Then tp(M/C) is dominated
by the value group and residue field.

Proof. Let L ⊇ C be another substructure and assume that kLΓL |⌣
þ

kCΓC
kMΓM .

We need to show that tp(M/CΓLkL) ⊢ tp(M/L). That is, as in Fact 1.8, for
any automorphism τ of R fixing CΓLkL there is an automorphism agreeing
with τ on M and fixing L. This is the conclusion of Theorem 2.5. The hy-
potheses of the theorem are satisfied because the þ-independence of the residue
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fields implies their algebraic independence over acl(kC) (and thus over kC), and
hence their linear disjointness over kC by the regularity assumption (see [L,
Theorem VIII 4.12]). Similarly, the þ-independence of the value groups im-
plies, as observed in Example 1.11, that ΓL∩ΓM ⊆ dcl(ΓC). But the definable
closure of ΓC is just the divisible hull of ΓC , and by our assumption on torsion
dcl(ΓC) ∩ ΓM = ΓC . Thus ΓL ∩ ΓM = ΓC . �

Corollary 2.6 has the following consequence in the special case that L is an
immediate extension of the real closure Crc of C. Despite the fact that C is
not necessarily dense in its real closure, the order type of M with respect to L
is determined by its order type with respect to C. This applies in particular
when L is a maximal extension of Crc.

Corollary 2.7. Let C ⊆ M be substructures of R with C maximal, kM a regu-
lar extension of kC and ΓM/ΓC torsion free. Let L be an immediate extension
of the real closure Crc of C. Then

tp(M/C) ⊢ tp(M/L).

Proof. The fact that tp(M/C) ⊢ tp(M/CkCrcΓCrc) is immediate. By the previ-
ous corollary, tp(M/CkLΓL) ⊢ tp(M/L). The conclusion follows as kCrc = kL
and ΓCrc = ΓL. �

We now move on to proving our stronger domination result: over a maximal
base, the ordered valued field is dominated by the k-internal sorts over its
value group. Those readers familiar with [HHM08, 12.15] may safely skip to
the final claim of the proof of Theorem 2.9 below. However, as the proof in
[HHM08] incorrectly defines the parameters ei, tacitly uses the uniqueness of
non-forking extensions in a stable theory (not available to us), and, rather
than using [HHM08, 12.11] directly, uses the following equivalent formulation
not explicitly stated in [HHM08], we hesitate to refer new readers to the proof
in [HHM08], and have instead reproduced it here.

Corollary 2.8. Let C, L, and M be substructures of a large algebraically
(respectively real) closed valued field. Assume that C is a maximal substructure
of both L and M with ΓL ∩ ΓM = ΓC, and kL, kM linearly disjoint over kC. If
L′ |= tp(L/CΓMkM) then L′ |= tp(L/M). Furthermore, ΓC(L,M) is the group
generated by ΓL and ΓM , and kC(L,M) is the field generated by kL and kM .

Proof. Let σ : L → L′ witness L′ |= tp(L/CΓMkM). We wish to extend σ to
an isomorphism σ̃ : C(L,M) → C(L′,M) which is the identity on M . Suppose
that M = C(m) where m is a possibly infinite tuple and that σ(m) = m̃. We
need to find τ such that τ : m̃ 7→ m while fixing L, kM and ΓM . Letting

M̃ = C(m̃) we see that M |= tp(M̃/CΓMkM). We apply [HHM08, 12.11]
(resp. Theorem 2.5) with the roles of L and M reversed. This gives us both
the desired τ and proves the desired statements about the value group and
residue field of C(L,M). Then we define σ̃ = τ ◦ σ. �

Below, R is a real closed valued field.
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Theorem 2.9. Let C be a maximal real closed valued field. Let L, M be real
closed valued fields with C ⊆ L ∩M and ΓL ⊆ ΓM . Assume that kIntLΓL

is al-

gebraically independent from kIntMΓL
over CΓL. Suppose σ is an automorphism

of R fixing CΓLkInt
M
ΓL

and such that σ(L) = L′. Then there is an automor-
phism of R which restricts to σ on L, fixes M pointwise, and maps C(L,M)
to C(L′,M).

Proof. In outline, we begin, as in [HHM08, Proposition 12.15], by perturbing
the valuation to a finer one, v′, which satisfies the hypothesis that Γ(L,v′) ∩
Γ(M,v′) = Γ(C,v′). We can then apply Corollary 2.8 to extend σ|L to a valued
field isomorphism from C(L,M) = N to C(L′,M) = N ′ which extends the
identity on M . Finally we show that σ also preserves the ordering on the fields.
This last step requires some details of the construction of the perturbation of
the valuation, so it is worth repeating (and correcting) the proof from [HHM08]
here. We use the language of places for this construction; information about
places can be found in [ZS, Chapter VI].

The assumption that L and L′ satisfy the same type over CΓLkInt
M
ΓL

allows

us to assume that σ fixes CΓMkIntMΓL
. For suppose that there is some µ ∈ ΓM

with σ(µ) = µ′. We wish to show there is τ : µ′ 7→ µ fixing L′kIntMΓL
so

that we may replace σ with τ ◦ σ. By stable embeddedness of Γ, we must
show that µ and µ′ realize the same type over Γ(L′kIntMΓL

), so it suffices to

show Γ(L′kIntMΓL
) = ΓL. Suppose that there is an L′-definable function f from

kIntMΓL
to Γ. By the orthogonality of k and Γ, for every λ ∈ ΓL, f takes only

finitely many values on RVλ(M), and thus these values are algebraic over L′

and hence in ΓL′ = ΓL.
Choose a1, . . . , ar from L and e1, . . . , er fromM such that, for each 1 ≤ i ≤ r,

v(ai) = v(ei) and {v(ai)} forms a Q-basis for ΓL modulo ΓC . Choose b1, . . . , bs
from L such that {res(b1), . . . , res(bs)} is a transcendence basis for kL over kC.
By Proposition 1.13, the elements

res(a1/e1), . . . , res(ar/er), res(b1), . . . , res(bs)

are algebraically independent over kM . For 0 ≤ j ≤ r, let

R(j) = dcl(kM , res(a1/e1), . . . , res(aj/ej), res(b1), . . . , res(bs)).

In particular,

R(0) = dcl(kM , res(b1), . . . , res(bs)) = dcl(kM , kL) and

R(r) = dcl(kM , res(a1/e1), . . . , res(ar/er), kL).

For each 0 ≤ j ≤ r− 1, choose a place p(j) : R(j+1) → R(j) fixing R(j) and such
that p(j)(res(aj+1/ej+1)) = 0, which is possible by the algebraic independence
of res(a1/e1), . . . , res(ar/er) over kM . Also choose a place p∗ : k(N) → R(r)

fixing R(r). Write pv : dcl(N) → k(N) for the place corresponding to our given
valuation v. Define pv′ : dcl(N) → R(0) to be the composition

pv′ = p(0) ◦ · · · ◦ p(r−1) ◦ p∗ ◦ pv.
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Let v′ be a valuation associated to the place pv′ . Notice that all the places p(j)

and p∗ are the identity on kM , so we may identify (M, v) and (M, v′), including
identifying the value groups ΓM and Γ(M,v′). Similarly, the places are all the
identity on kL, so the value groups ΓL and Γ(L,v′) are isomorphic, but we shall
see that we cannot simultaneously identify ΓM with Γ(M,v′) and ΓL with Γ(L,v′).
Also notice that we cannot expect v′ to be convex with respect to the ordering.

We now have two valuations v and v′ on N . If x ∈ M ⊆ N , then v(x) =
v′(x), and if x, y ∈ L ⊆ N then v(x) ≤ v(y) implies v′(x) ≤ v′(y). Furthermore,
the construction has ensured that for any x ∈M with v(x) > 0,

0 < v′(a1/e1) ≪ · · · ≪ v′(ar/er) ≪ v′(x),

where γ ≪ δ means that nγ < δ for any n ∈ N (and hence Γ(L,v′) 6= ΓL). Let
∆ be the subgroup of Γ(N,v′) generated by v′(a1/e1), . . . , v

′(ar/er). Then ∆ is
a convex subgroup of Γ(N,v′) and Γ(N,v′) = ∆ ⊕ Γ(N) (where the right-hand
group is ordered lexicographically).

To see that Γ(L,v′) ∩ Γ(M,v′) = Γ(C,v′), let m ∈ M and ℓ ∈ L be such that
v′(m) = v′(ℓ). Set v′(ai

ei
) = δi and v′(ei) = ǫi. As (v(ai)) generates ΓL over ΓC ,

and ΓL and Γ(L,v′) are isomorphic,

v′(ℓ) =

r∑

i=1

piv
′(ai) + γ =

r∑

i=1

piδi +

r∑

i=1

piǫi + γ,

where pi ∈ Q and γ ∈ ΓC . The set

{δ1, . . . , δr, ǫ1, . . . , ǫt}

is algebraically independent over ΓC since Γ(N,v′) = ∆ ⊕ ΓN . Next, note that
since v′(ei) = v(ei), {v

′(ei)} forms a Q-basis of ΓL ⊆ ΓM = Γ(M,v′) over ΓC .
Let µ1, . . . , µt be such that {ǫi} ∪ {µj} forms a Q-basis of ΓM over ΓC . Then

v′(m) =

r∑

i=1

p′iǫi +

t∑

i=1

qiµi + γ′,

where qi ∈ Q and γ′ ∈ ΓC . It follows that each pi = p′i = 0 and each qi = 0,
hence v′(ℓ) = v′(m) ∈ ΓC .

Next we must check that kv′(L) and kv′(M) are linearly disjoint. But note
that the place p(0) ◦ · · · ◦p(r−1) ◦p∗ : k(N) → dcl(k(M), k(L)) is the identity on
kM and kL and thus also on their compositum. Thus kL and kM being linearly
disjoint over kC implies linear disjointness of k(L,v′) and k(M,v′) over k(C,v′).

Hence we can apply Corollary 2.8 to deduce that the isomorphism σ|L ex-
tends to a valued field isomorphism σ′ : (N, v′) → (N ′, v′) which is the identity
on M . As v′ is a refinement of v, σ′ is also an isomorphism of (N, v).

It remains to show that σ′ preserves the ordering on N . Assume to the
contrary, and let n be minimal with

∑n
i=1 ℓimi > 0 and σ′(

∑n
i=1 ℓimi) <

0, where mi ∈ M and ℓi ∈ L. Since Γ(LM) = ΓM , we may assume that
v(
∑n

i=1 ℓimi) = 0. Let U = Cn · m where m = (m1, . . . , mn). Modifying m
if needed we may assume that m forms a separated basis for U over C with
respect to v′, and hence, by Fact 2.4, is also separated over L with respect
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to v′. In fact, m is also separated over L with respect to v: for consider an
element x = ℓ̃1m1 + · · ·+ ℓ̃nmn of Ln ·m. Since Γ(N,v′) = ∆⊕ ΓN and by the
construction of v′, v′(x) = δ + v(x) for some δ ∈ ∆. On the other hand,

v′(x) = min{v′(ℓ̃1m1), . . . , v
′(ℓ̃nmn)} = min{δ1 + v(ℓ̃1m1), . . . , δn + v(ℓ̃nmn)}.

Suppose the minimum is achieved at j. Then v(x) = v(ℓ̃jmj). To show that

v(ℓ̃jmj) ≤ v(ℓ̃imi) for all i, suppose for a contradiction that it is not. Then

δj + v(ℓ̃jmj) ≤ δi + v(ℓ̃imi) implies

0 < v(ℓ̃jmj)− v(ℓ̃imi) ≤ δi − δj ,

a contradiction with the convexity of ∆.
Since m forms a separated basis of Ln ·m over L, we have

v(a) = min{v(ℓ1m1), . . . , v(ℓnmn)}.

By the minimality of n, v(ℓ1m1) = · · · = v(ℓnmn), since if, say, v(ℓ1m1) >
v(a), then subtracting ℓ1m1 from a would not change the sign of a, nor would
subtracting σ′(ℓ1m1) from σ′(a). Thus for each i, v(ℓimi) = 0, so

v(mi) = −v(ℓi) = λi ∈ ΓL.

This implies ℓ1 B
op
λ1
(m1) + · · ·+ ℓn B

op
λn
(mn)> 0, since an element thereof is

of the form

ℓ1(m1 + d1) + · · ·+ ℓn(mn + dn) = a + (ℓ1d1 + · · ·+ ℓndn)

for some d1, . . . , dn with v(di) > λi. As v(ℓ1d1+· · ·+ℓndn) ≥ min{v(ℓidi)} > 0,
we see that adding it to a cannot change the sign of a. Thus

x1 B
op
λ1
(m1) + · · ·+ xn B

op
λn
(mn)> 0

is a formula in tp(ℓ1, . . . , ln/kInt
M
ΓL
), which σ′ preserves. So σ′(a) > 0.

�

As for Theorem 2.5, we can restate the theorem in terms of domination.

Corollary 2.10. Let C ⊆ L be elementary substructures of R with C maximal.
Then tp(L/C) is dominated over its value group by the k-internal sorts.

Proof. Let M ⊇ CΓL be another substructure of R and assume that

kIntMΓL

þ

|⌣
kIntCΓL

kIntLΓL
.

We need to show that tp(L/CΓLkInt
M
ΓL
) ⊢ tp(L/CΓLM). That is, as in

Fact 1.8, for any automorphism σ of R fixing CΓLkInt
M
ΓL

, there is an au-
tomorphism agreeing with σ on L and fixing M . This is the conclusion of
Theorem 2.9 (for M rc and hence also for M). The hypothesis holds by Propo-
sition 1.13, as kIntM

rc

ΓC
= kIntMΓC

. �
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Corollary 2.11. Assume C, L, M are as in Theorem 2.9, except not nec-
essarily real closed, but with kL a regular extension of kC and ΓL/ΓC torsion
free. Then

tp(L/CΓLkInt
M
ΓL
) ⊢ tp(L/M).

Proof. We may assume M is maximal and real-closed, so that C̄, an immediate
maximal extension of Crc, may be constructed within M . As an aside, note
that C̄ is in fact real closed. For otherwise there would be an element c
algebraic over C̄. But c could not generate a ramified extension of C̄, as it
would necessarily give a new element in the divisible hull of ΓC̄ , which already
is divisible. Likewise it cannot be a residual extension, as k(C) is already real
closed. Nor can it be immediate, as C̄ is maximal.

Without loss of generality, L is C(ℓ) for a finite tuple ℓ. Let L̄ be C̄(ℓ) and
let L̄′ be C̄(ℓ′) (where ℓ′ is σ(ℓ)). It suffices to show that L̄, L̄′,M and C̄ satisfy
the hypotheses of Theorem 2.9, for then the conclusion of the theorem is that
σ extends by the identity on M , and hence that L and L′ realize the same type
over M as desired.

Applying Theorem 2.5, we see that ΓL̄ is generated by ΓL and ΓC̄ , and
that kL̄ is generated by kL and kC̄ . Since ΓL and ΓC̄ are both contained in
ΓM , we have established Γ(L̄) ⊆ Γ(M). Furthermore, there is a subtuple
(ℓni

) of ℓ in L such that (v(ℓni
)) generates both ΓL over ΓC and ΓL̄ over ΓC̄ .

Also there is a subtuple (ℓnj
) of ℓ such that (res(ℓnj

)) generates both kL over
kC and kL̄ over kC̄ . Taking any ei in M with v(ei) = v(ℓni

), we see that

the hypothesis kIntLΓL
|⌣

þ

CΓL
ΓLkIntΓM

L
implies by Proposition 1.13 that the

sequence {res(ℓni
/ei), res(ℓnj

)}i,j is algebraically independent over kM , and the

existence of such elements implies that kIntL̄ΓL̄
|⌣

þ

C̄ΓL̄

kIntMΓL̄
.

Finally, we need to verify that L̄ and L̄′ satisfy the same type over C̄kIntMΓL̄
.

We have that ℓ and ℓ′ satisfy the same type over CΓLkInt
M
ΓL

. Choose a tuple
m so that the res(mi) generate k(M) over k(C) (and each mi generates a
residual extension). As in Corollary 2.6, the hypothesis that kL is a regular
extension of k(C) means that the independence of kL and kM over C implies
linear disjointness. Similarly, as ΓL/ΓC is torsion free, and ΓC̄(m) = ΓC̄ , we

have that ΓL∩ΓC̄(m) = ΓC . Thus we may assume that σ(C̄(m)) = C̄(m). Now

we may apply Theorem 2.5 to L = C(ℓ) and C̄(m) and conclude that we have
an automorphism mapping L to L′ fixing C̄ and kIntMΓL̄

⊆ C̄(l, m), as required.
�

3. Forking and þ-forking

Theorem 2.5, especially as expressed in the form of Corollary 2.8, has the
pleasing consequence that forking and þ-forking over a maximal base are con-
trolled by the value group and residue field.

We begin by recalling the definitions and a few basic properties of forking
and þ-forking.
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Definition 3.1. A formula ϕ(x, b) divides over C if there is a sequence (bi)i<ω

in tp(b/C) with b = b0 and {ϕ(x, bi)} m-inconsistent. A formula ϕ(x, b) þ-

divides over C if there is d such that {ϕ(x, b̃) : b̃ |= tp(b/Cd)} is infinite
and m-inconsistent. A formula (þ-)forks over C if it implies a disjunction of
formulas which (þ-)divide over C. We say that tp(a/bC) (þ-)forks over C if
it contains a formula which (þ-)forks over C. If tp(a/bC) does not (þ-)fork
over C, we say a is (þ-)independent from b over C and write this as a |⌣C

b

(respectively a |⌣
þ

C
b). Clearly, þ-forking implies forking.

The difference between forking and dividing can sometimes be an issue,
but in a large class of theories, including weakly o-minimal theories and al-
gebraically closed valued fields, forking and dividing are the same [CS, the
remarks preceding Proposition 2.6 together with Corollary 5.5].

Forking is not transitive in a non-simple theory, but the following partial
left transitivity (sometimes called the pairs lemma) holds in all theories. Often
stated for dividing, it can be seen to hold for forking as well. The corresponding
property of þ-forking also holds in all theories.

Fact 3.2. In any theory

i) [O, Lemma 2.1.6] if a |⌣
þ

A
c and b |⌣

þ

Aa
c then ab |⌣

þ

A
c; and

ii) [S, Lemma 1.5] if a |⌣A
c and b |⌣Aa

c then ab |⌣A
c.

Lemma 3.3. In either ACVF or RCVF,

i) k(Ca)Γ(Ca) |⌣C
b if and only if k(Ca)Γ(Ca) |⌣C

k(Cb)Γ(Cb); and

ii) k(Ca)Γ(Ca) |⌣
þ

C
b if and only if k(Ca)Γ(Ca) |⌣

þ

C
k(Cb)Γ(Cb).

Proof. In both i) and ii) the left to right implication is clear, as k(Ca)Γ(Ca) |⌣C
b

implies k(Ca)Γ(Ca) |⌣C
acl(Cb) and acl(Cb) contains k(Cb)Γ(Cb) (and simi-

larly for þ-independence).
Since k and Γ are orthogonal, k(Ca)Γ(Ca) |⌣C

b if and only if k(Ca) |⌣C
b

and Γ(Ca) |⌣C
b. Furthermore, one has k(Ca)Γ(Ca) |⌣C

k(Cb)Γ(Cb) if and

only if k(Ca) |⌣C
k(Cb) and Γ(Ca) |⌣C

Γ(Cb). Thus we need to show that

k(Ca) |⌣C
k(Cb) implies k(Ca) |⌣C

b and also that Γ(Ca) |⌣C
Γ(Cb) implies

Γ(Ca) |⌣C
b.

Assume that k(Ca) 6 |⌣C
b. Then, as forking is dividing, there is a formula

ϕ(x, a) ∈ tp(k(Ca)/bC), and there is m < ω, and b = b0, b1, b2, . . . satisfying
tp(b/C) such that {ϕ(x, bi)|i < ω} is m-inconsistent. By stable embeddedness
of k, the subset of kn defined by ϕ(x, b) is also defined by ψ(x, e) for e a
tuple from the residue field. As k eliminates imaginaries, we may assume e
is the canonical parameter for the set defined by ϕ(x, b). Thus, as this set is
definable over Cb, e is contained in k(Cb). Suppose that σi is an automorphism
of R that maps b to bi and fixes C. Then, letting ei = σi(e), one sees that
{ψ(x, ei)|i < ω} is m-inconsistent and witnesses k(Ca) 6 |⌣C

k(Cb).

The proof that Γ(Ca) |⌣C
Γ(Cb) implies Γ(Ca) |⌣C

b is similar.
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Now suppose k(Ca) 6 |⌣
þ

C
b. We first consider the case in which tp(k(Ca)/Cb)

contains a formula that þ-divides over C.

Claim. Suppose ϕ is a formula over C such that ϕ(x, b) defines a subset of kn

and þ-divides over C. Then there is ψ(x, e), defining the same subset of kn,
which also þ-divides over C, and where e ∈ k(Cb).

Proof of Claim. We have d such that {ϕ(x, b̃) : b̃ |= tp(b/Cd)} is m-inconsistent
and infinite. As above, we can replace ϕ(x, b) with ψ(x, e) defining the same
set and with e in dcl(Cb). Thus ψ(x, e) þ-divides over C. ✷ (Claim)

Now suppose tp(k(Ca)/Cb) contains ϕ(x, b) which implies
∨
ϕi(x, bi), where

each ϕi(x, bi) þ-divides over C. By stable embeddedness of k, we may replace
ϕ(x, b) with ψ(x, e) defining the same set and with e ∈ k(Cb). By the claim,
we may replace each ϕi(x, bi) with a ψi(x, ei) defining the same set and with
ei ∈ k(Cbi). Since ϕ and ψ define the same set, as do ϕi and ψi, we have

ψ(x, e) implies
∨
ψi(x, ei). Thus k(Ca) 6 |⌣

þ

C
k(Cb).

The proof that Γ(Ca) |⌣
þ

C
Γ(Cb) implies Γ(Ca) |⌣

þ

C
b is similar. �

Theorem 3.4. Let C be a substructure of a model R of either RCVF or
ACVF, and let a, b ∈ R. Assume that C is a model (or just that k(Ca) is a
regular extension of kC and Γ(Ca)/ΓC is torsion free) and maximal. Then

i) a |⌣
þ

C
b if and only if k(Ca)Γ(Ca) |⌣

þ

C
k(Cb)Γ(Cb);

ii) a |⌣C
b if and only if k(Ca)Γ(Ca) |⌣C

k(Cb)Γ(Cb).

Proof. In both i) and ii), the left to right direction is clear. Now assume that

k(Ca)Γ(Ca) |⌣
þ

C
k(Cb)Γ(Cb), that is, k(Ca) |⌣

þ

C
k(Cb) and Γ(Ca) |⌣

þ

C
Γ(Cb).

The former (together with C being a model or our regularity assumption)
implies that k(Ca) and k(Cb) are linearly disjoint over C while the latter
(together with C being a model or our torsion free assumption) implies that
Γ(Ca)∩Γ(Cb) = Γ(C). Thus, we may apply Corollary 2.8 in the following fash-
ion to see that a |⌣Ck(Ca)Γ(Ca)

b: choose an indiscernible sequence b = b0, b1, . . .

in tp(b/Ck(Ca)Γ(Ca)). Let p(x, Ck(Ca)Γ(Ca)b) = tp(a/Ck(Ca)Γ(Ca)b).
Since, by the corollary, a partial isomorphism mapping b to bi and fixing
Ck(Ca)Γ(Ca) may be extended to one fixing a as well, we have that a |=⋂

i p(x, Ck(Ca)Γ(Ca)bi) and thus tp(a/Ck(Ca)Γ(Ca)b) does not divide (and
hence does not fork) over Ck(Ca)Γ(Ca).

By Lemma 3.3, k(Ca)Γ(Ca) |⌣
þ

C
b if and only if k(Ca)Γ(Ca) |⌣

þ

C
k(Cb)Γ(Cb).

Likewise, k(Ca)Γ(Ca) |⌣C
b if and only if k(Ca)Γ(Ca) |⌣C

k(Cb)Γ(Cb). Us-

ing Fact 3.2, a |⌣Ck(Ca)Γ(Ca)
b and k(Ca)Γ(Ca) |⌣C

b imply ak(Ca)Γ(Ca) |⌣C
b.

Since k(Ca)Γ(Ca) is in acl(Ca), this is equivalent to a |⌣C
b.

Likewise (recalling independence implies þ-independence), a |⌣Ck(Ca)Γ(Ca)
b

and k(Ca)Γ(Ca) |⌣
þ

C
b together imply a |⌣

þ

C
b. �

As k × Γ is rosy (and hence þ-forking is symmetric), we have the following
corollary.
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Corollary 3.5. a |⌣
þ

C
b if and only if b |⌣

þ

C
a when C is a maximal model.

Of course, þ-forking is symmetric in general if and only if the theory is rosy,
so one cannot expect this to hold without C being a maximal model.

4. Geometric sorts in a T -convex theory

We now turn to the problem of extending the above domination results to
the geometric sorts. This requires developing the work on prime resolutions
from [HHM08] to apply to the case of ordered valued fields. Much of the
structure below comes from [HHM08, Chapter 11], however there are enough
differences in the ordered case to make it worthwhile to reproduce it here.

4.1. Prime resolutions. Our goal in this subsection is to prove the existence
of prime resolutions of definable sets in the geometric language in a power-
bounded T -convex theory. Recall that the geometric sorts in a valued field
K are a collection of definable VK-submodules of Kn and their torsors. In
a pure algebraically closed valued field or real closed valued field, the theory
eliminates imaginaries with respect to these sorts [HHM06, M]. This collection
of sorts does not suffice to eliminate imaginaries in a richer language which
includes a function symbol for the restricted exponential function [HHM13].
Nevertheless, it is still of interest to understand domination in the context of
this sorted language.

The geometric sorts in a valued field can be identified with coset spaces of
matrix groups over the field, as follows (full details of this identification can be
found in [HHM08, Chapter 7]). Let Bn(K) (Bn(VK) and Bn(kK) respectively)
be the (multiplicative) group of upper triangular invertible n×n matrices over
K (VK and kK respectively). Further, let Bn,m(kK) be the set of elements of
Bn(kK) whose mth column has a 1 as the mth entry and 0 elsewhere. Let
Bn,m(VK) be the set of matrices in Bn(VK) which reduce modulo m compo-
nentwise to elements of Bn,m(kK). The sort Sn of VK-submodules of Kn can
be identified with the set of codes for left cosets of Bn(VK) in Bn(K) and the
sort Tn of torsors of elements of Sn can be identified with a set of codes for
elements of

⋃n

m=1Bn(K)/Bn,m(VK).
We set G =

⋃∞
n=1

(
Sn ∪ Tn

)
.

Definition 4.1. Let A be a substructure of Req. A pre-resolution of A is
a substructure D of Req such that A ⊆ acl(D ∩ R). A resolution of A is
a substructure D of R which is algebraically closed in R and is such that
A ⊆ dclD. The resolution D is prime over A if it embeds over A into any
other resolution.

The proof of existence of prime resolutions goes via properties of opaque
equivalence relations. We summarize this briefly from [HHM08].

Definition 4.2. [HHM08, Definition 11.5]

i) Let E be a C-definable equivalence relation on a C-definable set D. We
say that E is opaque if, for each C-definable F ⊆ D, F = F ′ ∪ F ′′, where
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F ′ is a union of E-equivalence classes and F ′′ is contained in a finite union
of E-equivalence classes.

ii) We say that tp(a/C) is opaquely layered if there are sequences a1, . . . , aN of
(imaginary) elements and E1, . . . , EN of opaque equivalence relations such
that each ai is an Ei-equivalence class, each Ei is defined over C ∪ {aj :
j < i}, and dcl(Ca) = dcl(C, a1, . . . , aN).

iii) The C-definable equivalence relation E on D is opaquely layered over C if
for every d ∈ D, tp(d/E) is opaquely layered over C.

iv) Let G be a C-definable group and F a C-definable subgroup. Then G/F
is opaquely layered (opaque) over C if the equivalence relation xF = yF
is opaquely layered (opaque) over C.

Proposition 4.3. [HHM08, Lemma 11.7] Let C ⊆ R and suppose that a is
a finite tuple of imaginaries such that tp(a/C) is opaquely layered, witnessed
by a0, . . . , aN and E0 . . . , EN . Then dcl(Ca) has a pre-resolution D which is
atomic over C〈a〉. If D′ is another pre-resolution that contains C and an
element from each Ei-class, then D embeds elementarily into D′.

In the situation of the present paper, where the elements of Req are equivalence
classes in the home sort R, the statement can be strengthened to say that D
is a resolution, not just a pre-resolution.

We now apply these concepts to build prime resolutions for the geometric
sorts in T -convex theories.

Proposition 4.4. Let K be a model of a power-bounded T -convex theory.

i) The additive groups K/VK and V/mK are opaque, as is the multiplicative
group K×/(1 +mK).

ii) The multiplicative group K×/V ×
K is opaquely layered.

iii) The groups Bn(K)/Bn(VK) and Bn(K)/Bn,m(VK) are opaquely layered.

Proof. Part i) is an immediate consequence of the property arising from Fact 1.1,
that the definable subsets of K have finitely many convex components and that
the equivalence classes of each of the given quotients are convex subsets of K.

To prove part ii), let E be the equivalence relation

xEy ⇐⇒ v(x) = v(y)

on K×. Then the fact that the type of the E-equivalence class of b ∈ K× is
opaquely layered is witnessed by the equivalence relations

xE1y ⇐⇒ x/y > 0;

xE2y ⇐⇒ xE1y and v(x) = v(y)

and by the sequence of imaginary elements b/E1, b/E2.
iii) This is exactly the same as the proof of the corresponding statement in

[HHM08, Lemma 11.13]. �

Theorem 4.5. Let K be a power-bounded T -convex structure, and let C ⊆ K.
Let e be a finite set of imaginaries from G. Then dcl(Ce) admits a resolution
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D which is minimal, prime and atomic over Ce. Up to isomorphism over
Ce, D is the unique prime resolution of dcl(Ce). Furthermore, kD = k(Ce),

ΓD = Γ(Ce) and kIntDΓ(D) = kInt
acl(Ce)
Γ(Ce) .

Proof. The proof is essentially the same as that of [HHM08, Theorem 11.14].
We include it here in order to clarify a few points in the argument, and make
a few simplifications. In particular, parts of the argument are made easier due
to having definable Skolem functions in the main sort. Furthermore, the use
of [HHM08, Theorem 10.15] is unnecessary.

As in the proof of [HHM08, Theorem 11.14], we may assume that e has the
same definable closure over C as some pair (a, b) with a ∈ Bn(K)/Bn(VK)
and b ∈ Bm(K)/Bmm(VK). By Proposition 4.4 iii), these groups are opaquely
layered, and hence so is tp(ab/C) (using also [HHM08, Lemma 11.6]). By
Proposition 4.3, C〈e〉 has an atomic resolution. This resolution is prime be-
cause R has definable Skolem functions.

In either of the above cases, the resolution D is also minimal. For suppose
there is another resolution D′ with D′ ⊆ D. By primality, D embeds into
D′ over C〈e〉. As D has finite transcendence degree over C (this follows from
the proof of Proposition 4.3), D′ = D. The fact that D is unique up to
isomorphism over C〈e〉 is immediate from primality and minimality.

Finally, we show that kD = k(Ce) and ΓD = Γ(Ce). The inclusions
Γ(Ce) ⊆ ΓD and k(Ce) ⊆ kD are obvious. To see the containment in the other
direction, consider d ∈ D. As D is atomic, tp(d/Ce) is isolated, and hence
also tp(res(d)/Ce) and tp(v(d)/Ce) are both isolated. As k is real closed and
Γ is divisible abelian, the only isolated types are algebraic, so both res(d) and
v(d) are in dcl(Ce). Thus ΓD ⊆ Γ(Ce) and kD ⊆ k(Ce). All that remains is
to note that

kIntDΓD
= acl(kDRV (D)) = acl(k(Ce)RV (Ce)) = kInt

dcl(Ce)
Γ(Ce) .

�

4.2. Domination in the sorted structure. We can now state our domina-
tion results in the sorted language G.

Theorem 4.6. Let C be a substructure of R which is maximal as a valued
field. Let A be a definably closed subset of R ∪ G, with A = dcl(Ce) for a
countable tuple of imaginaries e ∈ G. Then

i) tp(A/C) is dominated by the value group and residue field;
ii) tp(A/C) is dominated by the k-internal sorts over the value group.

Proof. i) Let M be any substructure of R, containing C with kA, kM indepen-
dent over kC and ΓA, ΓM independent over ΓC . We need to show that

tp(A/CkMΓM) ⊢ tp(A/M).

Take σ ∈ Aut(R/CkMΓM) with σ(A) = A′. By Theorem 4.5 (and [HHM08,
Corollary 11.15]), there is a resolution L of A with kL = kA and ΓL = ΓA. Let
L′ be σ(L). Assume σ(L) = L′ has the same residue field and value group as
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A. As the hypotheses of Corollary 2.8 are met, we may find an automorphism
τ agreeing with σ on L and restricting to the identity on M . Since A ⊆ dcl(L),
τ maps A to A′. Thus A and A′ realize the same type over M .

ii) Let C+ = dcl(CΓA) and assume that M is a substructure containing C+

such that kIntMC+ is independent from kIntAC+ . Apply Theorem 4.5 to obtain
a resolution L of A with kIntLC+ = kIntAC+ and ΓL = ΓA. Apply Corollary
2.11 to see that tp(L/C+kIntMC+) ⊢ tp(L/M) and reason as in (i) to see that
tp(A/C+kIntMC+) ⊢ tp(A/M), as required.

�
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