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Reducibility of equivalence relations arising from

non-stationary ideals under large cardinal

assumptions

David Asperó
Tapani Hyttinen Vadim Kulikov and Miguel Moreno

Abstract Working under large cardinal assumptions such as supercompact-
ness, we study the Borel-reducibility between equivalence relations modulo re-
strictions of the non-stationary ideal on some fixed cardinal k . We show the
consistency of El

++,l++

l -club , the relation of equivalence modulo the non-stationary
ideal restricted to Sl

++

l

in the space (l++)l

++
, being continuously reducible to

E2,l++

l

+-club, the relation of equivalence modulo the non-stationary ideal restricted
to Sl

++

l

+ in the space 2l

++
. Then we show that for k ineffable E2,k

reg , the relation
of equivalence modulo the non-stationary ideal restricted to regular cardinals in
the space 2k , is S1

1-complete. We finish by showing, for P1
2-indescribable k ,

that the isomorphism relation between dense linear orders of cardinality k is
S1

1-complete.

1 Introduction

Throughout this article we assume that k is an uncountable cardinal that satisfies
k

<k = k . The equivalence relations modulo (restrictions of) the non-stationary ideal
have provided a very useful tool, and a main focus of study, in generalized descriptive
set theory. In [1] it was shown that the relation of equivalence modulo the non-
stationary ideal is not a Borel relation, and that if V = L, then it is not D1

1. The
equivalence relation modulo the non-stationary ideal restricted to a stationary set S,
denoted E2,k

S (see Definition 1.3), is useful when it comes to studying the complexity
of the isomorphism relations of first order theories (⇠=T , see Definition 1.5). In [1] it
was proved that, under some cardinality assumptions, E2,k

Sk

w

is Borel reducible to ⇠=T

for every first order stable unsuperstable theory T , where Sk

l

is the set of l -cofinal
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ordinals below k . Similar results were obtained in [1] for the other non-classifiable
theories. This motivates the study of the Borel-reducibility properties of E2,k

S .

Theorem 1.1 ([1], Theorem 56) The following is consistent: For all stationary S
and S0, E2,k

S is Borel reducible to E2,k
S0 if and only if S ✓ S0.

Theorem 1.2 ([1], Theorem 55) The following is consistent: E2,w2
Sw2

w

is Borel re-

ducible to E2,w2
Sw2

w1
.

In [6] the authors used the Borel-reducibility properties of the equivalence relation
modulo the non-stationary ideal to prove that in L, all S1

1 equivalence relations are
reducible to ⇠=DLO, where DLO is the theory of dense linear orderings without end
points, which means that this equivalence relation is on top of the Borel-reducibility
hierarchy among S1

1-equivalence relations, i.e. it is S1
1-complete. This result stands

in contrast to the classical, countable case, k = w , for which it is known that all other
isomorphism relations are reducible to ⇠=DLO [3], but far from all S1

1-equivalence re-
lations are reducible to it; even some Borel-equivalence relations such as E1 are not
reducible to any isomorphism relations in the countable case. So the question re-
mained: is the S1

1-completeness of ⇠=DLO just a manifestation of the pathological
behaviour of L or is it a more robust property in the generalised realm? One of
the contributions of this paper is that the S1

1-completeness of ⇠=DLO is indeed a rather
robust phenomenon and holds whenever k has certain large cardinal properties (The-
orem 3.10).

It was asked in [2] and in [7, Question 3.46] whether or not the equivalence rela-
tion modulo the non-stationary ideal on the Baire space can be reduced to the Cantor
space for some fixed cofinality: in our notation, whether or not Ek,k

Sk

µ

 E2,k
Sk

µ

. We
approach the problem by proving several results in this direction. Our results have
the forms

Ek,k
Sk

µ

 E2,k
Sk

µ⇤
,

Ek,k
Sk

µ

 E2,k
reg(k),

and
Ek,k

reg(k)  E2,k
reg(k),

where µ

⇤ is larger than µ and reg(k) is the set of regular cardinals below k , for
k Mahlo. These results are obtained under various assumptions and sometimes in
forcing extensions.

Many of the results in the area of reducibility of equivalence relations modulo
non-stationary ideals use combinatorial principles, like ⌃, and other reflection prin-
ciples. In this paper we bring also some large cardinal principles into the picture.

The generalized Baire space is the set k

k with the bounded topology. For every
z 2 k

<k , the set
[z ] = {h 2 k

k | z ⇢ h}
is a basic open set. The open sets are of the form

S
X where X is a collection of

basic open sets. The collection of k-Borel subsets of k

k is the smallest set which
contains the basic open sets and is closed under unions and intersections of length k .
Since in this paper we do not consider any other kind of Borel sets besides k-Borel,
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we will omit the prefix “k-”.

The generalized Cantor space is the subspace 2k ⇢ k

k with the relative subspace
topology. For X ,Y 2 {k

k ,2k}, we say that a function f : X !Y is Borel if for every
open set A ✓ Y the inverse image f�1[A] is a Borel subset of X . Let E1 and E2 be
equivalence relations on X and Y respectively. We say that E1 is Borel reducible to E2
if there is a Borel function f : X !Y that satisfies (h ,x ) 2 E1 , ( f (h), f (x )) 2 E2.
We call f a reduction of E1 to E2. This is denoted by E1 B E2, and if f is con-
tinuous, then we say that E1 is continuously reducible to E2, which is denoted by
E1 c E2.

For every stationary S ⇢ k , we define the equivalence relation modulo the non-
stationary ideal restricted to a stationary set S, on the space l

k for l 2 {2,k}:

Definition 1.3 For every stationary S ⇢ k and l 2 {2,k}, we define El ,k
S as the

relation

El ,k
S = {(h ,x ) 2 l

k ⇥l

k | {a < k | h(a) 6= x (a)}\S is not stationary}.

Note that E2,k
S can be identified with the equivalence relation on the power set of

k in which two sets A and B are equivalent if their symmetric difference restricted to
S is non-stationary. This can be done by identifying a set A⇢ k with its characteristic
function.

For every regular cardinal µ < k , we denote {a < k | c f (a) = µ} by Sk

µ

. A
set C is µ-club if it is unbounded and closed under µ-limits. For brevity, when
S = Sk

µ

, we will denote El ,k
Sk

µ

by El ,k
µ-club. Note that ( f ,g) 2 El ,k

µ-club if and only if the
set {a < k | f (a) = g(a)} contains a µ-club.

For a Mahlo cardinal k , the set reg(k) = {a < k | a a regular cardinal} is sta-
tionary. We will denote the equivalence relation El ,k

reg(k) by El ,k
reg .

Given an equivalence relation E on X 2 {k

k ,2k}, we can define the l -product
relation of E for any 0 < l < k . The l -product relation P

l

E is the relation defined
on Xl ⇥Xl by h P

l

E x if h

g

E x

g

holds for every g < l , where h = (h
g

)
g<l

and x = (x
g

)
g<l

. We endow the space Xl , X 2 {k

k ,2k}, with the box topology
generated by the basic open sets:

{P
a<l

O
a

| 8a < l (O
a

is an open set in X)}.
One of the motivations to study Borel reducibility in generalized Baire spaces is

the connection with model theory. This connection consists in the possibility to study
the Borel reducibility of the isomorphism relation of theories by coding structures
with universe k via elements of k

k . We may fix this coding, relative to a given
countable relational vocabulary L = {Pn | n < w}, as in the following definition.

Definition 1.4 Fix a bijection p : k

<w ! k . For every h 2 k

k define the L -
structure A

h

with universe k as follows: For every relation Pm with arity n, every
tuple (a1,a2, . . . ,an) in k

n satisfies

(a1,a2, . . . ,an) 2 PA
h

m () h(p(m,a1,a2, . . . ,an))� 1.

When we describe a complete theory T in a vocabulary L 0 ✓ L , we think of it
as a complete L -theory extending T [{8x̄¬Pn(x̄) |Pn 2 L \L 0}.
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Definition 1.5 (The isomorphism relation) Assume T is a complete first order the-
ory in a countable vocabulary. We define ⇠=T as the relation

{(h ,x ) 2 k

k ⇥k

k | (A
h

|= T,A
x

|= T,A
h

⇠= A
x

) or (A
h

6|= T,A
x

6|= T )}.

In the second section we will study the reducibility between different cofinalities,
and in the last section we will study the reducibility of Ek,k

reg and E2,k
reg . Here is the list

of the main results in this article:
• (Theorem 2.11) Suppose k is a Pl

+

1 -indescribable cardinal for some l < k

and V = L. Then there is a forcing extension where k is collapsed to become
l

++ and El

++,l++

l -club c E2,l++

l

+-club.
• (Corollary 2.14) Let k2 < k3 < · · · < kn < · · · be a sequence of supercom-

pact cardinals. There is a generic extension V [G] in which kn = ¿n for
all n � 2 and such that: Ew2,w2

w-club c Ew2,w2
w1-club, and for every n > 2 and every

0  k  n�3, Ewn,wn
wk-club c Ewn,wn

wn�1-club.
This corollary follows from [[8], Theorem 1.3] and gives a model (differ-

ent from L or the one in Theorem 1.2) in which reducibility between different
cofinalities holds.

• (Theorem 3.5) Suppose S = Sk

l

for some regular cardinal l < k , or
S = reg(k) and k weakly compact. If k has the weakly compact diamond
(Definition 3.2), then Ek,k

S c E2,k
reg .

• (Corollary 3.6) Suppose V = L and k is weakly compact. Then E2,k
reg is S1

1-
complete.

• (Corollary 3.7) Suppose k is a weakly ineffable cardinal. Then Ek,k
reg c E2,k

reg .
• (Theorem 3.8) If k is a P1

2-indescribable cardinal, then Ek,k
reg is S1

1-complete.
• (Corollary 3.9) Suppose k is an ineffable cardinal (or weakly ineffable and

P1
2-indescribable). Then E2,k

reg is S1
1-complete.

• (Theorem 3.10) Let DLO be the theory of dense linear orderings without end
points. If k is a P1

2-indescribable cardinal, then ⇠=DLO is S1
1-complete.

2 Reducibility between different cofinalities

In [1] the authors studied the reducibility between the relations E2,k
µ-club and showed

in particular the consistency of E2,l++

l -club c E2,l++

l

+-club. In this section we continue along
these lines.

Definition 2.1 We say that a set X ⇢ k strongly reflects to a set Y ⇢ k if for all
stationary Z ⇢ X there exist stationary many a 2 Y with Z \a stationary in a .

In [1, Theorem 55] it is proved that: If k is a weakly compact cardinal, then
Sk

l

strongly reflects to reg(k), for any regular cardinal l < k . This result can be
generalized to Pl

1 -indescribable cardinals:

Definition 2.2 A cardinal k is Pl

1 -indescribable (for l < k) if whenever A ⇢ V
k

and s is a P1 sentence such that

(V
k+l

,2,A,(V
k+x

| x < l )) |= s ,

then for some a < k ,

(V
a+l

,2,A\V
a

,(V
a+x

: x < l )) |= s
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Note that, in Definition 2.2, the existence of some a < k at which the required
reflection is effected is equivalent to the existence of stationary many such a < k .

Lemma 2.3 Suppose k is a Pl

1 -indescribable cardinal. There are l many dis-
joint stationary subsets of k , hS

g

i
g<l

, such that for every g < l , S
g

✓ reg(k) and k

strongly reflects to S
g

.

Proof Let S⇤
b

denote the set of all the Pb

1 -indescribable cardinals below k . Since

“k is Pb

1 -indescribable” is a P1 property of the structure (V
k+l

,2,(V
k+x

| x < l )),
the set S⇤

b

is stationary for every b < l .
Let us show that for every stationary set X ✓ k ,

B = {a 2 S⇤
b

| X \a is stationary in a}
is stationary. Let C be a club in k . The sentence

(C is unbounded in k)^ (X is stationary in k)^ (k is Pb

1 -indescribable)

is a P1 property of the structure (V
k+l

,2,X ,C,(V
k+x

| x < l )). By reflection, there
is g < k such that C\ g is unbounded in g , and hence g 2C, X \ g is stationary in g ,
and g is Pb

1 -indescribable. We conclude that C\B 6= /0.
Let us denote S⇤

b

\S⇤
b+1 by S

b

. Let us show that for every stationary set X ✓ k ,

{a 2 S
b

| X \a is stationary in a}
is stationary. Let C be a club in k . Since {a 2 S⇤

b

| X \a is stationary in a} is
stationary, we can pick g 2 C \ {a 2 S⇤

b

| X \a is stationary in a} such that g is
minimal.

Claim 2.3.1 g is not Pb+1
1 -indescribable.

Proof Suppose, towards a contradiction, that g is Pb+1
1 -indescribable. The sen-

tence

(C\ g is unbounded in g)^ (X \ g is stationary in g)^ (g is Pb

1 -indescribable)

is a P1 property of the structure (V
g+b+1,2,X \ g,C\ g,(V

g+x

| x < b + 1)). By
reflection, there is g

0 < g such that C\ g

0 is unbounded in g

0, X \ g

0 is stationary in
g

0, and g

0 is Pb

1 -indescribable. This contradicts the minimality of g .

We conclude that S
b

is stationary and {a 2 S
b

| X \a is stationary in a} is station-
ary, for every b < l .

The notion of ⇧-reflection was introduced in [1] in order to find reductions between
equivalence relations modulo non-stationary ideals (see below).

Definition 2.4 (⇧-reflection) Let X ,Y be subsets of k and suppose Y consists of
ordinals of uncountable cofinality. We say that X ⇧-reflects to Y if there exists a
sequence hD

a

i
a2Y such that:

• D
a

⇢ a is stationary in a for all a 2 Y .
• if Z ⇢ X is stationary, then {a 2 Y | D

a

= Z \a} is stationary.

Theorem 2.5 ([1], Theorem 59) Suppose V = L and that X ✓ k and Y ✓ reg(k).
If X strongly reflects to Y , then X ⇧-reflects to Y .

Theorem 2.6 ([1], Theorem 58) If X ⇧-reflects to Y , then E2,k
X c E2,k

Y .
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⇧-reflection also implies some reductions for the relations Ek,k
µ-club on the space k

k .
To show this, we first need to introduce some definitions.

Definition 2.7 For every a < k with g < c f (a) define Ek,k
g-club � a by:

Ek,k
g-club � a = {(h ,x ) 2 k

k ⇥k

k | 9C ✓ a a g-club,8b 2C,h(b ) = x (b )}.

Proposition 2.8 Suppose g < l < k are regular cardinals. If Sk

g

strongly reflects
to Sk

l

, then Ek,k
g-club c Ek,k

l -club.

Proof Suppose that for every stationary set S ⇢ Sk

g

it holds that

{a 2 Sk

l

| S\a is stationary in a}

is a stationary set, and define F : k

k ! k

k by

F(h)(a) =

(
f
a

(h), if c f (a) = l

0, otherwise.

where f
a

(h) is a code in k\{0} for the (Ek,k
g-club � a)-equivalence class of h .

Let us prove that if (h ,x ) 2 Ek,k
g-club, then (F(h),F(x )) 2 Ek,k

l -club. Suppose
(h ,x ) 2 Ek,k

g-club. There is a g-club where h and x coincide and so there is a club C
such that for all a 2C\Sk

l

the functions h and x are (Ek,k
g-club �a

)-equivalent. Thus,
by the definition of F , for all a 2 C\ Sk

l

, F(h)(a) = F(x )(a). We conclude that
(F(h),F(x )) 2 Ek,k

l -club.
Let us prove that if (h ,x ) /2 Ek,k

g-club, then (F(h),F(x )) /2 Ek,k
l -club. Suppose

that (h ,x ) /2 Ek,k
g-club. Then there is a stationary S ⇢ Sk

g

on which h(a) 6= x (a).
Since A = {a 2 Sk

l

| S \ a is stationary in a} is stationary and for all a 2 A,
f
a

(h) 6= f
a

(x ), we conclude that (F(h),F(x )) /2 Ek,k
l -club.

Corollary 2.9 Suppose g < l < k are regular cardinals. If Sk

g

⇧-reflects to Sk

l

,
then

1. E2,k
g-club c E2,k

l -club.
2. Ek,k

g-club c Ek,k
l -club.

Proof 1. Follows from Theorem 2.6.
2. By the definition of ⇧-reflection, Sk

g

⇧-reflecting to Sk

l

implies that for all
S ✓ Sk

g

the set {a 2 Sk

l

| S \a is stationary in a} is a stationary set. The
result follows from Proposition 2.8.

In [1], the consistency of Sl

++

l

⇧-reflecting to Sl

++

l

+ was shown. This gives a model

in which E2,k
l -club c E2,k

l

+-club and El

++,l++

l -club c El

++,l++

l

+-club .

Theorem 2.10 ([1], Theorem 55) Suppose that k is a weakly compact cardinal and
V = L. Then:

1. E2,k
l -club c E2,k

reg holds for all regular l < k .
2. For every regular l < k there is a forcing extension where k is collapsed to

become l

++ and E2,l++

l -club c E2,l++

l

+-club.
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The proof of this theorem can be generalised using Lemma 2.3 to show the con-
sistency of El

++,l++

l -club c E2,l++

l

+-club:

Theorem 2.11 Suppose k is a Pl

+

1 -indescribable cardinal and that V = L.
Then there is a forcing extension where k is collapsed to become l

++ and
El

++,l++

l -club c E2,l++

l

+-club.

Proof Let us collapse k to l

++ with the Levy collapse

P= { f : reg(k)! k

<l

+ | rang( f (µ))⇢ µ, |{µ | f (µ) 6= /0}| l}

where f � g if and only if f (µ)✓ g(µ) for all µ 2 reg(k). Let us define P
µ

and Pµ

for all µ by: P
µ

= { f 2 P | sprt( f ) ⇢ µ} and Pµ = { f 2 P | sprt( f ) ⇢ k\µ}. It is
known that all regular l < µ  k satisfy:

(i) if µ > l

+, then P
µ

has the µ-c.c.,
(ii) P

µ

and Pµ are <l

+-closed,
(iii) P= P

k

� l

++ = ǩ ,
(vi) if µ < k , then P � c f (µ̌) = l

+,
(v) if p 2 P, s a name, and p � “s is a club in l

++”, then there is a club E ⇢ k

such that p � Ě ⇢ s .

Claim 2.11.1 There is a sequence hS
g

i
g<l

+ of disjoint stationary subsets of Sl

++

l

+

such that in V [G] Sl

++

l

⇧-reflects to S
g

for every g < l

+.

Proof Let G be a P-generic over V , and define G
µ

= G\P
µ

and Gµ = G\Pµ . So
G

µ

is P
µ

-generic over V , Gµ is Pµ -generic over V [G
µ

], and V [G] =V [G
µ

][Gµ ]. Let
S⇤

b

denote the set of all Pb

1 -indescribable cardinals below k and S
b

= S⇤
b

\S⇤
b+1. We

will show that Sl

++

l

⇧-reflects to SV
b

for all b < l

+. Let us fix b < l

+ and denote
by Y the set SV

b

. By Lemma 2.3 we know that SV
b

is stationary and by (v), it remains
stationary in V [G]. By (i) we know that there are no antichains of length µ in P

µ

,
and since |P

µ

| = µ we conclude that there are at most µ antichains. On the other
hand, there are µ

+ many subsets of µ . Hence, there is a bijection

h
µ

: µ

+ ! {s | s is a nice P
µ

name for a subset of µ}

for each µ 2 reg(k) such that µ > l

+, where a nice P
µ

name for a subset of µ̌ is of
the form

S
{{ǎ}⇥A

a

| a 2 B} with B ⇢ µ̌ and A
a

an antichain in P
µ

. Notice that
the nice P

µ

names for subsets of µ̌ are subsets of V
µ

. Let us define

D
µ

=

(
[h

µ

([([G)(µ+)](0))]G if this set is stationary
µ otherwise.

We will show that hD
µ

i
µ2Y is the needed ⇧-sequence in V [G].

Suppose, towards a contradiction, that there are a stationary set S ⇢ Sl

++

l

and a
club C ⇢ l

++ (in V [G]) such that for all a 2 C\Y , D
a

6= S\a . By (v) there is a
club C0 ⇢C such that C0 2V . Let Ṡ be a nice name for S and p a condition such that
p forces that Ṡ is stationary. We will show that

H = {q < p | q � D
µ

= Ṡ\ µ̌ for some µ 2C0}

is dense below p, which is a contradiction. Let us slightly redefine P.
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Let P⇤ = {q | 9r 2 P(r � sprt(r) = q)}. Clearly P ⇠= P⇤, P⇤ ✓ V
k

, and
P⇤

µ

= P⇤ \V
µ

, where P⇤
µ

= {q | 9r 2 P
µ

(r � sprt(r) = q)}. It can be verified
that the properties mentioned above also hold for P⇤

µ

. From now on denote P⇤
µ

by
P

µ

. Let r be a condition stronger than p and

R = (P⇥{0})[ (Ṡ⇥{1})[ (C0 ⇥{2}[ ({r}⇥{3})).
Let 8Aj be the formula:

If A is closed and unbounded and t < r are arbitrary, then there exists q < r and
a 2 A such that q �P ǎ 2 Ṡ.

Clearly, 8Aj says r � (Ṡ is stationary). By (v) it is enough to quantify over club
sets in V . Notice that t < r, q < t, A is a club, and a 2 A are first order expressible
using R as a parameter. The definition of ǎ is recursive in a:

ǎ = {(ǧ,1P) | g < a}
and it is absolute for V

k

. Then q �P ǎ 2 Ṡ is equivalent to saying that for each q0 < q
there exists q00 < q0 with (ǎ,q00) 2 Ṡ, and this is first order expressible using R as a
parameter. Therefore 8Aj is a P1 property of the structure (V

k

,2,R), even more

(8Aj)^ (k is Pb

1 -indescribable)

is a P1 property of the structure (V
k+l

+ ,2,R,(V
k+x

| x < l

+)). By reflection, there
is µ < k Pb

1 -indescribable, such that µ 2C0, r 2 P
µ

, and

(V
µ+l

+ ,2,R,(V
µ+x

| x < l

+)) |= 8Aj.

In the same way as in Claim 2.3.1, we can show that there is there is µ < k Pb

1 -
indescribable that is not Pb+1

1 -indescribable, i.e. (µ̌G 2 Y )V [G], such that µ 2 C0,
r 2 P

µ

, and (V
µ+l

+ ,2,R,(V
µ+x

| x < l

+)) |= 8Aj . Notice that a 2 S\µ implies
that (ǎ, q̌) 2 Ṡ for some q 2 P

µ

. Let Ṡ
µ

= Ṡ\V
µ

, thus r �P
µ

(Ṡ
µ

is stationary). Let
us define q as follows: dom(q) = dom(r)[ {µ

+}, q � µ = r � µ and q(µ+) = f ,
dom( f ) = {0}, and f (0) = h�1

µ

(Ṡ
µ

). Since Pµ is <l

+-closed and does not kill
stationary subsets of Sl

++

l

, (Ṡ
µ

)G
µ

is stationary in V [G], and by the way we chose µ ,
(Ṡ

µ

)G
µ

= (Ṡ
µ

)G. Therefore q �P (Ṡ
µ

is stationary), and by the definition of D
µ

(in
V [G]) we conclude that q �P Ṡ

µ

= D
µ

. Finally, by the way we chose µ , we get that
(Ṡ

µ

)G = S\µ . We conclude that H is dense below p, a contradiction.

From now on in this proof, we will work in V [G]. In particular, k will be l

++.

Claim 2.11.2 Ek,k
l -club c P

l

+ E2,k
l -club.

Proof Let H be a bijection from k to 2l

+ . Define F : k

k ! (2k)l

+ by
F ( f ) = ( f

g

)
g<l

+ , where f
g

(a) = H( f (a))(g) for every g < l

+ and a < k .
Let us show that F is a reduction of Ek,k

l -club to P
l

+ E2,k
l -club.

Clearly f (a) = g(a) implies H( f (a)) = H(g(a)) and f
g

(a) = g
g

(a) for every
g < l

+. Therefore, f Ek,k
l -club g implies that for all g < l

+, f
g

E2,k
l -club g

g

holds. So
f P

l

+ E2,k
l -club g.

Suppose that for every g < l

+ there is C
g

, a l -club, such that f
g

(a) = g
g

(a)
holds for every a 2C

g

. Since the intersection of less than k l -club sets is a l -club
set, there is a l -club C on which the functions f

g

and g
g

coincide for every g < l

+.
Therefore H( f (a))(g) = H(g(a))(g) holds for every g < l

+ and every a 2 C, so
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H( f (a)) = H(g(a)) for every a 2 C. Since H is a bijection, we can conclude that
f (a) = g(a) for every a 2C, and hence f Ek,k

l -club g.

By Claim 2.11.1, there is a sequence hS
g

i
g<l

+ of disjoint stationary subsets of Sk

l

+

such that Sk

l

⇧-reflects to S
g

for all g < l

+. Let hDg

a

i
a2S

g

be a sequence that wit-
nesses that Sk

l

⇧-reflects to S
g

.
For every h 2 k

k define F(h) by:

F(h)(a)=

(
1 if there is g < l

+ with a 2 S
g

and F (h)�1
g

[1]\Dg

a

stationary in a

0 otherwise

where (F (h)
g

)
g<l

+ = F (h) and where F is the reduction given by Claim 2.11.2.
Suppose h , x are not Ek,k

l -club-equivalent. By Claim 2.11.2 there exists g < l

+ such
that F (h)�1

g

[1]DF (x )�1
g

[1] is stationary. Therefore, either F (h)�1
g

[1]\F (x )�1
g

[1]
or F (x )�1

g

[1]\F (h)�1
g

[1] is stationary. Without loss of generality, let us assume
that F (h)�1

g

[1]\F (x )�1
g

[1] is stationary. Since Sk

l

⇧-reflects to S
g

,

A = {a 2 S
g

| (F (h)�1
g

[1]\F (x )�1
g

[1])\a = Dg

a

}

is stationary and Dg

a

is stationary in a , and therefore A ✓ F(h)�1[1]. On the other
hand, for every a in A we have F (x )�1

g

[1]\Dg

a

= /0, so A\F(x )�1[1] = /0 and
we conclude that A ✓ F(h)�1[1]DF(x )�1[1]. Therefore F(h)�1[1]DF(x )�1[1] is
stationary, and F(h) and F(x ) are not E2,l++

l

+-club-equivalent.

Suppose F(h) and F(x ) are not E2,l++

l

+-club-equivalent, so F(h)�1[1]DF(x )�1[1]
is stationary. Since l

+ < k , by Fodor’s lemma we know that there exists
g < l

+ such that {a 2 S
g

| F(h)(a) 6= F(x )(a)} is stationary. Hence, the sym-
metric difference of the sets {a 2 S

g

| F (h)�1
g

[1] \ Dg

a

is stationary in a} and
{a 2 S

g

| F (x )�1
g

[1]\ Dg

a

is stationary in a} is stationary. For simplicity, let us
denote by A

h

the set {a 2 S
g

| F (h)�1
g

[1]\Dg

a

is stationary in a} and A
x

the set
{a 2 S

g

| F (x )�1
g

[1]\Dg

a

is stationary in a}. Therefore, either A
h

\A
x

or A
x

\A
h

is stationary. Without loss of generality we can assume that A
h

\A
x

is station-
ary. Hence,

S
a2A

h

\A
x

(F (h)�1
g

[1]\Dg

a

)\F (x )�1
g

[1] is stationary and is contained
in F (h)�1

g

[1]DF (x )�1
g

[1]. By Claim 2.11.2 we conclude that h and x are not
Ek,k

l -club-equivalent.

Notice that Theorem 2.11 implies the consistency of

E2,l++

l -club c El

++,l++

l -club c E2,l++

l

+-club c El

++,l++

l

+-club .

In particular, for l = w we get the expression

E2,w2
w-club c Ew2,w2

w-club c E2,w2
w1-club c Ew2,w2

w1-club.

Question 2.12 Is it consistent that

E2,k
g-club �c Ek,k

g-club �c E2,k
l -club

holds for all g,l < k and g < l?

We will finish this section by showing that the reduction Ew2,w2
w-club c Ew2,w2

w1-club can
be obtained using other reflection principles. Specifically, full reflection implies this
reduction. For stationary subsets S and A of k , we say that S reflects fully in A if



10 D. Asperó, T. Hyttinen, V. Kulikov and M. Moreno

the set {a 2 A | S\a is non-stationary in a} is non-stationary. Notice that if S ⇢ Sk

g

reflects fully in Sk

l

, then the set {a 2 Sk

l

| S\a is stationary in a} is a stationary set.

Theorem 2.13 ([8], Theorem 1.3) Let k2 < k3 < · · · < kn < · · · be a sequence of
supercompact cardinals. There is a generic extension V [G] in which kn = ¿n for all
n � 2 and such that:

1. Every stationary set S ⇢ Sw2
w

reflects fully in Sw2
w1 .

2. For every 2 < n and every 0  k  n�3, every stationary set S ⇢ Swn
wk reflects

fully in Swn
wn�1 .

In the generic extension of 2.13 it holds that w

<wi
i = wi for all i < w (see [[8],

Theorem 1.3]).

Corollary 2.14 Let k2 < k3 < · · ·< kn < · · · be a sequence of supercompact cardi-
nals. There is a generic extension V [G] in which kn = ¿n for all n � 2 and such that:
Ew2,w2

w-club c Ew2,w2
w1-club, and for every n> 2 and every 0 k n�3, Ewn,wn

wk-club c Ewn,wn
wn�1-club.

In [8] it was also proved that Theorem 2.13 (ii) is optimal, in the sense that it
cannot be improved to include the case k = n� 2 [8, Proposition 1.6]. The best
possible reduction we can get using only full reflection is the one in Corollary 2.14.
By a S1

1-completeness result, it is known that the following is consistent:

8k < n�1 (Ewn,wn
wk-club c Ewn,wn

wn�1-club),

see Theorem 3.1 below.

3 S1
1-completeness

An equivalence relation E on X 2 {k

k ,2k} is S1
1 if E is the projection of a closed set

in X2 ⇥k

k and it is S1
1-complete if every S1

1 equivalence relation is Borel reducible
to it. The study of S1

1 and S1
1-complete equivalence relations is an important area of

generalised descriptive set theory, because e.g. the isomorphism relation on classes
of models is always S1

1. The same holds, in fact, in classical descriptive set theory,
but the behaviour of S1

1 complete relations there is different. For example, in the
classical setting (k = w) the isomorphism relation is never S1

1-complete, while in
generalised descriptive set theory this is often the case (see for example [6, 1]).

Theorem 3.1 ([6], Theorem 7) Suppose V = L and k > w . Then Ek,k
µ-club is S1

1-
complete for every regular µ < k .

We know that Ek,k
l -club � a is an equivalence relation for every a < k with

c f (a)> l . Let us define the following relation:

(h ,x ) 2 Ek,k
reg � a , {b 2 reg(a) | h(b ) 6= x (b )} is not stationary.

It is easy to see that Ek,k
reg � a is an equivalence relation.

Definition 3.2 (Weakly compact diamond) This notion was originally defined in
[9]. Let k > w be a cardinal. The weakly compact ideal is generated by the sets of
the form {a < k | hV

a

,2,U \V
a

i |=¬j} where U ⇢V
k

and j is a P1
1-sentence such

that hV
k

,2,Ui |= j . One can define a diamond principle with respect to this ideal
(rather than the non-stationary ideal). A set A ⇢ k is said to be weakly compact, if
it does not belong to the weakly compact ideal. Note that k is weakly compact if and
only if there exists A ⇢ k which is weakly compact, i.e. the weakly compact ideal is
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proper. For weakly compact S ⇢ k , the S-weakly compact diamond, WC
k

(S), is the
statement that there exists a sequence (A

a

)
a<k

such that for every A ⇢ S the set

{a < k | A\a = A
a

}

is weakly compact. We denote WC
k

= WC
k

(k).

For a survey on weakly compact diamonds, see [5].

Fact 3.3 The main facts that we will use are the following:
• If k is weakly compact and V = L, then WC

k

holds.
• If k is weakly ineffable (same as almost ineffable), then WC

k

holds.
See [5] for proofs and references.

Lemma 3.4 Let k be a weakly compact cardinal. The weakly compact diamond
WC

k

implies the following principle WC⇤
k

. There exists a sequence h f
a

i
a2reg(k)

such that
• f

a

: a ! a ,
• for all g 2 k

k and stationary Z ⇢ k the set

{a 2 reg(k) | g�a = f
a

^a \Z is stationary}

is stationary.

Proof For the sake of this proof we view functions f : a ! a as subsets of a ⇥a .
Let (A

a

)
a<k

be the WC
k

-sequence and let p : k ⇥k ! k be a bijection. Let C
p

be the set {a < k | p[a ⇥a] = a}. It is standard to verify that C
p

is a club. For
all a 2 reg(k) let f

a

= p

�1[A
a

] if a 2 C
p

and p

�1[A
a

] is a function (i.e. for all
b < a there exists exactly one g such that (b ,g) 2 p

�1[A
a

]) and otherwise set f
a

to
be arbitrary. Let us show that this sequence is as desired. Let g 2 k

k be a function
and Z stationary. Let Cg be the set {a < k | g[a]⇢ a} which is again a club. The set

{a < k | p[g]\a = A
a

}

is weakly compact and so is

{a 2Cg \C
p

| p[g]\a = A
a

}.

But since a 2C
p

\Cg, we have p[g]\a = p[g\ (a ⇥a)], so this set is equal to

S = {a 2Cg \C
p

| g\ (a ⇥a) = p

�1[A
a

]}
= {a 2Cg \C

p

| g�a = f
a

}.

By the weak compactness of S, the stationarity of Z is reflected to a stationary subset
S0 ⇢ S, so Z \a is stationary for all a 2 S0.

Theorem 3.5 Suppose S = Sk

l

for some l regular cardinal, or S = reg(k) and k is
a weakly compact cardinal. If k has the weakly compact diamond, then Ek,k

S c E2,k
reg .

Proof Let h f
a

i
a<k

be a sequence that witnesses WC⇤
k

of Lemma 3.4. Let
g

a

: k ! k be the function defined by g
a

�a = f
a

and g
a

(b ) = 0 for all b � a . Let
us define F : k

k ! 2k by

F(h)(a)=

(
1 if a 2 reg(k),Ek,k

S �a is an equivalence relation, and (h ,g
a

) 2 Ek,k
S �a

0 otherwise.
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(Recall Definition 2.7 for Ek,k
S � a .) Let us prove that if (h ,x ) 2 Ek,k

S , then
(F(h),F(x )) 2 E2,k

reg . Suppose (h ,x ) 2 Ek,k
S . Note that F(h)(a) = F(x )(a) = 0

for all a /2 reg(k), so it is sufficient to show that the set

{a 2 reg(k) | F(h)(a) 6= F(x )(a)}
is non-stationary. Now, there is a club D such that D\ {a 2 S | h(a) 6= x (a)} is
non-stationary. So, letting C be the club of the limit points of D, it holds that for
all a 2 C \ reg(k), the functions h and x are Ek,k

S �a-equivalent. Thus, by the
definition of F , at the points of the set C\ reg(k) the functions F(h) and F(x ) will
get the same value.

Now let us prove that if (h ,x ) /2 Ek,k
S , then (F(h),F(x )) /2 E2,k

reg . Suppose
that (h ,x ) /2 Ek,k

S . Then there is a stationary Z ⇢ S on which h(a) 6= x (a). By
Lemma 3.4, there is a stationary set A ✓ reg(k) such that for all a 2 A we have that
Z \a is stationary and h �a = f

a

. This means that

{b < a | h(b ) 6= x (b )}
is stationary, and so (h ,x ) /2 Ek,k

S �a holds for all a 2 A. However h �a = f
a

implies that (h ,g
a

) 2 Ek,k
S �a , and so by transitivity (x ,g

a

) /2 Ek,k
S �a . Hence we

get that F(h)(a) = 1, but F(x )(a) = 0. This holds for all a 2 A and A is stationary,
so (F(h),F(x )) /2 E2,k

reg .

Corollary 3.6 Suppose V = L and k is weakly compact. Then E2,k
reg is S1

1-complete.

Proof This follows from Theorem 3.1, Fact 3.3 and Theorem 3.5.

Corollary 3.7 Suppose k is a weakly ineffable cardinal. Then Ek,k
reg c E2,k

reg .

Proof The result follows from Theorem 3.5 and Fact 3.3

Theorem 3.8 If k is a P1
2-indescribable cardinal, then Ek,k

reg is S1
1-complete.

Remark Here the notion of P1
2–indescribability is the usual one, not to be con-

fused with the Pl

1 –indescribability from Definition 2.2.

Proof Let E be a S1
1 equivalence relation on k

k . Then there is a closed set C
on k

k ⇥ k

k ⇥ k

k such that h E x if and only if there exists q 2 k

k such that
(h ,x ,q) 2 C. Let us define U = {(h � a,x � a,q � a) | (h ,x ,q) 2 C ^a < k},
and for every g < k define

C
g

= {(h ,x ,q) 2 g

g ⇥ g

g ⇥ g

g | 8a < g (h � a,x � a,q � a) 2U}.
Let E

g

⇢ g

g ⇥ g

g be the relation defined by (h ,x ) 2 E
g

if and only if there exists
q 2 g

g such that (h ,x ,q) 2 C
g

. Notice that E
g

is not neccesarly an equivalence
relation. Let us define the reduction by

F(h)(a) =

(
f
a

(h) if E
a

is an equivalence relation and h � a 2 a

a

0 otherwise.

where f
a

(h) is a code in k\{0} for the E
a

-equivalence class of h .
Let us prove that if (h ,x ) 2 E, then (F(h),F(x )) 2 Ek,k

reg . Suppose (h ,x ) 2 E.
Then there is q 2 k

k such that (h ,x ,q) 2 C and for all a < k we have that
(h � a,x � a,q � a) 2 U . On the other hand, we know that there is a club D such
that for all a 2 D\ reg(k), h � a , x � a , q � a 2 a

a . We conclude that for all
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a 2 D\ reg(k), if E
a

is an equivalence relation, then (h ,x ) 2 E
a

. Therefore, for all
a 2 D\ reg(k), F(h)(a) = F(x )(a), so (F(h),F(x )) 2 Ek,k

reg . Let us prove that if
(h ,x ) /2 E, then (F(h),F(x )) /2 Ek,k

reg . Suppose h , x 2 k

k are such that (h ,x ) /2 E.
We know that there is a club D such that for all a 2 D\ reg(k), h � a , x � a 2 a

a .
Notice that because C is closed (h ,x ) /2 E is equivalent to

8q 2 k

k (9a < k (h � a,x � a,q � a) /2U),

so the sentence (h ,x ) /2 E is a P1
1 property of the structure (V

k

,2,U,h ,x ). On the
other hand, the sentence 8z1,z2,z3 2 k

k [((z1,z2)2E^(z2,z3)2E)! (z1,z3)2E]
is equivalent to the sentence 8z1,z2,z3,q1,q2 2 k

k [9q3 2 k

k(y1 _y2 _y3)], where
y1, y2 and y3 are, respectively, the formulas 9a1 < k (z1 � a1,z2 � a1,q1 � a1) /2U ,
9a2 < k (z2 � a2,z3 � a2,q2 � a2) /2U , and 8a3 < k (z1 � a3,z3 � a3,q3 � a3) 2U .
Therefore, the sentence 8z1,z2,z3 2 k

k [((z1,z2)2 E^(z2,z3)2 E)! (z1,z3)2 E]
is a P1

2 property of the structure (V
k

,2,U).
The sentence 8z1,z2 2 k

k [(z1,z2) 2 E ! (z2,z1) 2 E] is equivalent to the
sentence 8z1,z2,q1 2 k

k [9q2 2 k

k(y1 _ y2)], where y1 and y2 are, respec-
tively, the formula 9a1 < k (z1 � a1,z2 � a1,q1 � a1) /2 U , and the formula
8a2 < k (z2 � a2,z1 � a2,q2 � a2) 2U .

Therefore, the sentence 8z1,z2 2 k

k [(z1,z2)2 E ! (z2,z1)2 E] is a P1
2 property

of the structure (V
k

,2,U).
The sentence 8z 2 k

k [(z ,z ) 2 E] is equivalent to the following sentence

8z 2 k

k [9q 2 k

k(8a < k (z � a,z � a,q � a) 2U)].

Therefore, the sentence 8z 2 k

k [(z ,z ) 2 E] is a P1
2 property of the structure

(V
k

,2,U).
It follows that the sentence

(D is unbounded in k)^((h ,x ) /2E)^(E is an equivalence relation)^(k is regular)

is a P1
2 property of the structure (V

k

,2,U,h ,x ). By P1
2 reflection, we know that

there are stationary many g 2 reg(k) such that g is a limit point of D, E
g

is an equiv-
alence relation, and (h � g,x � g) /2 E

g

. We conclude that there are stationary many
g 2 reg(k) such that f

g

(h) 6= f
g

(x ), and hence (F(h),F(h)) /2 Ek,k
reg .

Corollary 3.9 Suppose k is an ineffable cardinal, or weakly ineffable and P1
2

indescribable. Then E2,k
reg is S1

1-complete.

Proof An ineffable cardinal is both weakly ineffable and P1
2-indescribable. So the

result follows by combining Corollary 3.7 and Theorem 3.8.

We will finish this article with a model theoretic result.

Theorem 3.10 Let DLO be the theory of dense linear orderings without end
points. If k is a P1

2-indescribable cardinal, then ⇠=DLO is S1
1-complete.

Proof By Theorem 3.8 it is enough to show that Ek,k
reg c⇠=DLO. To show this, first

we will construct models of DLO, A F ( f ), for every f : k ! k , such that f Ek,k
reg g if

and only if A F ( f ) ⇠= A F (g). After that we construct the reduction of Ek,k
reg to ⇠=DLO.

Let us take the language L 0 = {L,C,<,R}, with L and C as unary predi-
cates, and < and R as binary relations. Let K be the class of L 0-structures
A = (dom(A ),L,C,<,R) that satisfy the following conditions:
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• L\C = /0.
• L[C = dom(A ).
• < ✓ L⇥L is a dense linear order without end points on L.
• R ✓ L⇥C.
• Let us denote by R�(y,x) the formula ¬R(y,x). For all x 2 C, it holds that

R(A ,x)[R�(A ,x) = L, R(A ,x) has no largest element, and R�(A ,x) has
no least element and they are non-empty.

Let us define the following partial order � on K. We say that A � B iff:
• A ✓ B,
• for all x 2CA , R(B,x) = {y 2 LB | 9z 2 R(A ,x),y < z} and

R�(B,x) = {y 2 LB | 9z 2 R�(A ,x),z < y},
• for all x 2 CB\CA there are y 2 R(B,x) and z 2 R�(B,x) such that for all

a 2 LA , a < y_a > z.
Notice that it is possible to have a chain A0 �A1 � · · · of length a in K, and a struc-
ture C 2 K, such that

S
i<a

Ai 2 K, Ai � C holds for all i < a , and
S

i<a

Ai 6� C .
But all other requirements of AEC’s are satisfied, as one can easily see, in particular
for every chain A0 � A1 � · · · of length a in K,

S
i<a

Ai 2 K.

Claim 3.10.1 (K,�) has the amalgamation property and the joint embedding
property.

Proof The joint embedding property is easily seen to follow from the amal-
gamation property. For the amalgamation property, let A ,B,C 2 K be such
that A � B and A � C hold. Without loss of generality, we can assume that
dom(B) \ dom(C ) = dom(A ). Let us construct D with dom(D) equals to
dom(B) [ dom(C ), LD = LB [ LC , and CD = CB [CC . To define <D and
RD , first define <0=<B [ <C . For every two elements b,c 2 LD define b <D c if
either b <0 c, or there is a 2 LA such that b <0 a <0 c, or b 2 LB , c 2 LC and there is
no a 2 LA such that c <0 a <0 b. For every x 2CA , R(D ,x) = R(B,x)[R(C ,x). For
all x 2CB\CA , y 2 R(D ,x) if and only if there exists z 2 LB such that z 2 R(B,x)
and y <D z. For all x 2CC \CA , y 2 R(D ,x) if and only if there exists z 2 LC such
that z 2 R(C ,x) and y <D z. It is clear that D 2 K, and B � D and C � D .

Let us denote by A1 �A0 A2 the structure D , in Claim 3.10.1, that witnesses the
amalgamation property for the structures A0 � A1 and A0 � A2. For every ordinal
a , let us denote by a

⇤ the set a ordered by the reverse order <⇤, i.e., b <⇤
g if

g 2 b . Let us order the members of Q⇥a

⇤ by: (r1,a1)<⇤a (r2,a2) iff a1 <⇤
a2, or

a1 = a2 and r1 <Q r2.
Let K<k

be the collection of all members of K of size less than k . For every
A 2 K<k

, denote by {A (i)}i<k

an enumeration of all the strong extensions of A ,
i.e. A � B, of size less than k (up to isomorphism over A ). Let P : k ! k ⇥k ,
P(a) = (pr1(P(a)), pr2(P(a))) be a bijection such that pr1(P(i))  i for all i.
Given a function f : k ! reg(k), let us construct the following sequence of models:

• A f
0 = (Q, /0,<, /0).

• For a successor ordinal, let D = A f
i �

A f
pr1(P(i))

A f
pr1(P(i))(pr2(P(i))). Define

LA f
i+1 = LD [Q, CA f

i+1 =CD , <A f
i+1=<D [ <Q [{(x,y) | x 2 LD ^ y 2 Q},

and RA f
i+1 = RD . Clearly A f

i+1 2 K.
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• For i a limit ordinal, let D =
S

j<i A
f

j . Define LA f
i = LD [ (Q⇥ f (i)⇤),

CA f
i =CD [{x}, <A f

i =<D [<⇤ f (i) [{(a,b) | a 2 LD ^b 2Q⇥ f (i)⇤}, and
RA f

i = RD [{(y,x) | y 2 LD}. Clearly A f
i 2 K.

Define A f
k

by
S

j<k

A f
j . Then A f = (LA f

k ,<A f
k ) is a model of DLO.

Notice that if i < k and C 2 K, |C | < k , are such that A f
i � C , then there

is j < k such that A f
i ( j) = C . Therefore there is l < k such that P(l) = (i, j),

A f
pr1(P(l)) = A f

i , and A f
pr1(P(l))(pr2(P(l))) = C . We conclude that if i < k and

C 2 K<k

are such that A f
i � C , then there is j < k and a strong embedding

F : C ! A f
j such that F(C ) � A f

j and F � A f
i = id. Now we will show that if f

and g are functions from k into reg(k) such that f � (k\ reg(k)) = g � (k\ reg(k)),
then f Ek,k

reg g if and only if A f ⇠= A g. First of all, let us prove that ( f ,g) 2 Ek,k
reg

implies A f ⇠= A g. Suppose ( f ,g) 2 Ek,k
reg . Then there is a club C such that for all

a 2C\ reg(k), f (a) = g(a). Since f � (k\ reg(k)) = g � (k\ reg(k)), we have that
for all a 2 C, f (a) = g(a). By the way the models A f

a

and A g
a

were constructed
for a a limit ordinal, we know that if a is such that f (a) = g(a) and there is an
isomorphism F :

S
i<a

A f
i !

S
i<a

A g
i , then there is an isomorphism G : A f

a

!A g
a

such that F ✓ G. For all i < k construct ai < k and a strong embedding Fi such that
the following hold:

(i) For every i < k there is some g 2C such that ai < g < ai+1.
(ii) For all i < j < k , fi ✓ f j.

(iii) The following holds for every limit ordinal b < k:
• for every even 0< i<w , dom(F

b+i)=A f
a

b+i , and F
b+i(A

f
a

b+i)�A g
a

b+i+1 ,

• for every odd 0< i<w , rang(F
b+i)=A g

a

b+i , and F�1
b+i(A

g
a

b+i)�A f
a

b+i+1 ,

• a

b

=
S

i<b

ai, dom(F
b

) = A f
a

b

, and rang(F
b

) = A g
a

b

.

We will construct these sequences by induction. For i = 0, take a0 = 0 and F0 = id.
Successor case: Suppose b is a limit ordinal or zero, and 0  i < w are such

that a

b+i and F
b+i are constructed such that (i), (ii), and (iii) are satisfied. Let

us start with the case when i is odd. Choose a

b+i+1 such that (i) holds. Since
F�1(A g

a

b+i) � A f
a

b+i+1 , there are C 2 K<k

and F ◆ F
b+i such that A g

a

b+i � C

and F : A f
a

b+i+1 ! C is an isomorphism. By the observation we made above,
there is j < k and a strong embedding G : C ! A g

j such that G(C ) � A g
j and

G � A g
a

b+i = id. Define F
a

b+i+1 = G�F
a

b+i . Clearly F
a

b+i+1 satisfies conditions (ii)
and (iii). The case when i is even is similar to the odd case.

Limit case: Suppose b is a limit ordinal such that for all i < b , ai and Fi are con-
structed such that (i), (ii), and (iii) are satisfied. By (i), we know that a

b

=
S

i<b

ai
is a limit point of C, so f (a

b

) = g(a
b

). On the other hand, by conditions (ii) and
(iii) we know that

[

i<b

Fi :
[

i<b

A f
ai !

[

i<b

A g
ai

is an isomorphism. Therefore, there is an isomorphism G : A f
a

! A g
a

such thatS
i<b

Fi ✓ G. We conclude that F
a

b

= G satisfies (ii) and (iii).
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Finally, notice that [

i<k

Fi :
[

i<k

A f
ai !

[

i<k

A g
ai

is an isomorphism. We conclude that A f and A g are isomorphic.
Let us prove that A f ⇠= A g implies ( f ,g) 2 Ek,k

reg . Suppose, towards a contra-
diction, that ( f ,g) /2 Ek,k

reg and there is an isomorphism F : A f ! A g. Since F is
an isomorphism, there is a club C such that F(

S
i<a

A f
i ) =

S
i<a

A g
i holds for all

a 2 C. Since ( f ,g) /2 Ek,k
reg , C \ {a 2 reg(k) | f (a) 6= g(a)} is nonempty. Take

a 2 C \ {g 2 reg(k) | f (g) 6= g(g)}. We know that F(
S

i<a

A f
i ) =

S
i<a

A g
i and

f (a) 6= g(a). Hence, the co-initiality of {a 2 A f | 8b 2
S

i<a

A f
i (b <A f

a)} with
respect to <A f is f (a). Since F is an isomorphism and F(

S
i<a

A f
i ) =

S
i<a

A g
i ,

the co-initiality of {a 2 A g | 8b 2
S

i<a

A g
i (b <A g

a)} with respect to <A g is also
f (a). We conclude that f (a) = c f (g(a)), so f (a) = g(a), a contradiction. To fin-
ish with the construction of the models, let us define A F ( f ) for all f : k ! k . Fix a
bijection G : k ! reg(k). Define F : k

k ! k

k by

F ( f )(a) =

(
G( f (a)) if a 2 reg(k)
0 otherwise

Clearly f Ek,k
reg g if and only if F ( f ) Ek,k

reg F (g), and F ( f ) Ek,k
reg F (g) if and only

if A F ( f ) and A F (g) are isomorphic. Now we will construct a reduction of Ek,k
reg to

⇠=DLO by coding the models A F ( f ) by functions h : k ! k .
Clearly the models A F ( f ) satisfy that

F ( f ) � a = F (g) � a , A
F ( f )

a

= A
F (g)

a

.

For every f 2 k

k define Cf ✓ Card \ k such that for all a 2 Cf , it holds that for
every b < a , |A F ( f )

b

|< |A F ( f )
a

|. For every f 2 k

k and a 2Cf choose a bijection

Ea

f : dom(A F ( f )
a

)! |A F ( f )
a

| such that for all b < a in Cf it holds that Eb

f ✓ Ea

f .
Then

S
a2Cf

Ea

f = E f is such that E f : dom(A F ( f )) ! k is a bijection, and for
every f ,g 2 k

k and a < k the following holds: If F ( f ) � a = F (g) � a , then
E f � dom(A F ( f )

a

) = Eg � dom(A F (g)
a

). Let p be the bijection in Definition 1.4.
Define the function G by:

G (F ( f ))(a)=

(
1 if a = p(m,a1, . . . ,an) and A F ( f ) |= Pm(E�1

f (a1), . . . ,E�1
f (an))

0 in the other case.

To show that G is continuous, let [h � a] be a basic open set and x 2 G�1[[h � a]].
There is b 2C

x

such that for all g < a , if g = p(m,a1,a2, . . . ,an), then E�1
x

(ai) is an

element of dom(A x

b

) for all i  n. Since for all z 2 [x � b ] it holds that A x

b

= A z

b

,
for every g < a such that g = p(m,a1,a2, . . . ,an), it holds that

A x |= Pm(E�1
x

(a1),E�1
x

(a2), . . . ,E�1
x

(an))

if and only if
A z |= Pm(E�1

z

(a1),E�1
z

(a2), . . . ,E�1
z

(an))
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We conclude that G (z ) 2 [h � a], and G �F is a continuous reduction of Ek,k
reg to

⇠=DLO.

4 Further research

In this paper we established the S1
1-completeness of a range of equivalence rela-

tions in various circumstances. Some of these theorems are proved in ZFC, some
are consistency results, and some are relative consistency results. In particular the
equivalence relation modulo the non-stationary ideal is S1

1-complete if k is an inef-
fable cardinal. This, and related equivalence relations, play a role in model theory
as exemplified by Theorem 3.10 which shows how generalized descriptive set the-
ory is different from the classical study where k = w and the isomorphism relation
of countable structures is never S1

1-complete. This was also the original motiva-
tion for studying such fine-grained questions as whether Ek,k

µ�club can be reduced to
E2,k

µ�club for some µ < k . How much more can one prove in ZFC for k > w? For
successor cardinals the answer is partially known [4] starting from V = L for every
successor cardinal k there exists a GCH and cardinal preserving forcing notion such
that in the extension the equivalence relation modulo the non-stationary ideal is not
S1

1-complete. The following questions remain open.

Question 4.1 Is it consistent that the isomorphism relation on graphs or dense
linear orders is not S1

1-complete for some k > w? Of course k cannot be P1
2-

indescribable by Theorem 3.10.

Question 4.2 Is it consistent for some cardinal k and a regular µ < k that Ek,k
µ

is not reducible to E2,k
µ

? Note: it has been shown [1] that it is consistent that E2,k
S

is not reducible to E2,k
S0 for S0 \ S stationary which implies the consistency of e.g.

Ek,k
µ

6B E2,k
µ

0 for µ 6= µ

0.

Question 4.3 Is it consistent that k is inaccessible and E2,k
S is not S1

1-complete
for some stationary S ⇢ k? What about k weakly compact and S = Sk

µ

for some
regular µ < k? Note: it follows from the result of [4] that it is consistent that E2,k

k

is not S1
1-complete (in fact D1

1) for successor k .
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