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Sequent Calculi for Intuitionistic Godel-Lob Logic

Iris van der Giessen and Rosalie lemhoff

Abstract  This paper provides a study of sequent calculi for intuitionistic
Godel-Lob logic (iGL), which is the intuitionistic version of the classical modal
logic GL, known as Godel-Lob logic. We present two different sequent calculi,
one of which we prove to be the terminating version of the other. We study
those systems from a proof-theoretic point of view. One of our main results is
a syntactic proof for the cut-admissibility result for those systems. Finally, we
apply this to prove Craig interpolation for intuitionistic Godel-L&b logic.

1 Introduction

Intuitionistic Godel-Lob logic (iGL) is an interesting logic for various reasons. It is
the intuitionistic variant of one of the most well-known classical modal logics GL,
which is the provability logic of Peano Arithmetic (PA). This logic is obtained by
adding Godel-Lob’s axiom (A — A) — A to the standard Hilbert calculus
for classical propositional normal modal logic K. In this logic, we read [(0A as “A is
provable in PA.” Completeness of GL with respect to PA augmented with the prov-
ability predicate is shown in Solovay’s famous completeness theorems in [16]. For
more information about GL and PA, see Boolos [4].

LogiciGL is the intuitionistic variant of GL, meaning that it consists of the standard
Hilbert calculus for intuitionistic normal modal logic K together with the Godel-L6b
axiom. Therefore, one might expect that iGL would be the provability logic for Heyt-
ing Arithmetic (HA), where [JA means “A is provable in HA.” However, iGL is only
sound with respect to the provability part of HA, but completeness fails. That is,
there are principles of the provability logic of HA which are not provable in iGL (see
Leivant [12]). What the provability logic for HA is, is a long-standing open question.
Recently, Ardeshir and Mojtahedi [1] found the X;-provability logic for HA. A key
element in their study is logic iCGL, which is an extension of iGL by the so-called
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completeness axiom A — [A. This logic is also known as strong Lob logic iSL
and is complete with respect to an arithmetical theory based on what is called slow
provability (see Visser and Zoethout [21]). It is certainly conceivable that iGL has a
provability interpretation as well for some nonstandard provability predicate.

Logic iGL is also interesting because of its natural semantic framework. Ursini
[19] is the first who devoted a paper to this logic (he denotes it as ID), in which he
treats both a relational and an algebraic semantics. He shows the existence of a char-
acteristic model and frame, the finite model property, the finite frame property, and
decidability. The Kripke semantics for iGL is a natural combination of intuitionistic
and modal logic where the modal relation has the classical GL properties: transitive
and conversely well-founded. An overview of semantic results for iGL and other intu-
itionistic modal logics can be found in Litak [13]. Ursini’s paper is marked by 1°,
and he announced that “two succeeding papers (II°, I1I°) with the same title could
follow, devoted to a certain related double modal calculus and to the syntax of ID in
the style of natural deduction.” To the best of our knowledge, these papers have never
appeared. The current paper continues Ursini’s line of research, because it provides
a proof theory for iGL based on the sequent calculus for GL developed by Avron [2].

In this article we give a proof-theoretic analysis of two different sequent calculi
for iGL, one of which is terminating. We call the systems GL3i and GL4i. We study
these calculi following the same line of research as in [10] for intuitionistic modal
logics iK and iKD. The proof for termination of GL4i is interesting, because it uses
a nonstandard induction based on Bilkova [3]. Our aim here is to establish the cut-
admissibility result for both systems.

We present a nontrivial syntactic proof for the cut-admissibility in GL3i based
on results of Valentini [20] and Goré and Ramanayake [8]. They prove the cut-
elimination theorem for sequent calculi for classical modal logic GL. The cut-
elimination for sequent calculi for GL has an interesting history, nicely described in
[8]. In short, Valentini presented a proof for sequents built from sets, a proof in which
many steps remained implicit and therefore difficult to check. It is often assumed that
set-based proofs for cut-elimination can easily be adopted to multiset-based calculi.
For GL this is not obvious and led to the search of new cut-elimination proofs for
GL. However, Goré and Ramanayake prove the cut-elimination theorem for multiset
sequents, placing Valentini’s argument in a formal setting.

The cut-admissibility theorem implies several results, such as the subformula prop-
erty and consistency. It also implies that those sequent calculi, indeed, represent iGL.
By the subformula property, we can conclude that intuitionistic Godel-Lob logic is
conservative over IPC, which means that no new propositional tautologies can be
derived. In the last section we use our results to prove the Craig interpolation prop-
erty for iGL.

The study of those systems is technically challenging, because it combines the
difficulties of GL, with its highly nontrivial proofs of cut-elimination, with the already
complicated framework of intuitionistic modal logics. In addition, termination proofs
for sequent calculi for GL require rather complicated methods, because of the behavior
of the so-called GLR rule. In this paper, we will adopt several methods used in the
study of sequent calculi for GL and apply those in such a way that we can use them
in our intuitionistic framework.

The paper is structured in the following way. Section 2 gives the preliminaries of
both sequent systems for iGL. We present the syntactic cut-admissibility result for
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our nonterminating calculus GL3i in Section 3. In Section 4 we give the terminating
result for GL4i. Section 5 states the equivalence between GL3i and GL4i which imme-
diately implies the cut-admissibility for GL4i. The last two sections cover the Craig
interpolation property for iGL and future work.

2 Intuitionistic Godel-Lob Logic

We consider the modal language with constant L, propositional variables p,q, . ..,
connectives A (conjunction), Vv (disjunction), — (implication), and the modal oper-
ator 0. Note that we do not include <. In contrast to classical modal logic, < is not
interdefinable via [J. Formulas are denoted by A, B, C,.... If A is a formula, =4 is
defined as A — L. We call formulas of the form L0A boxed formulas.

Definition 2.1 Intuitionistic Godel-Lob logic iGL is given by the Hilbert system
containing:

1. intuitionistic propositional tautologies;

2. K-axiom: 0(4 - B) - 0OA — OB;

3. Godel-Lob’s axiom: (OA — A) — A,

4. closed under modus ponens: if A and A — B in iGL, then also B in iGL;

5. closed under necessitation: if A is in iGL then also (A4 in iGL.

We want to examine multiset sequent calculi for iGL. We use multisets of formulas
that are denoted by Greek letters I', A, .... For two multisets I', A, we denote by
I' U A the multiset that contains only formulas A that belong to I and A, and the
number of occurrences of A is the sum of the occurrences in I' and A. Let I" be a
multiset. We define (IT to be the multiset {{]A | A € I'} and CIT" to be the multiset
ruagr.

We consider single-conclusion sequents, which are expressions of the form
I' = C, where T is a finite multiset of formulas and C is a formula. In a sequent
notation, I', A denotes I' U A, T, A4 denotes I" U {4}, and [1A denotes {4, JA}.
Sol,A,[HA = Creadsas (' UA U{A4,0A4}) = C. Inasequent ' = C, we
call " the antecedent and C the succedent, which is standard terminology also for
multi-conclusion sequents. We sometimes denote a sequent by S.

We study two calculi for intuitionistic Godel-Lob logic. One is a terminating
version of the other. The most important rule is the GLR rule, which is

CLOA= A4
I1,dr = 0A

This rule has two flavors: in GL4i multiset IT cannot contain boxed formulas, while
in GL3i there is no restriction on II. Table | presents the rules for GL3i, which is
the propositional intuitionistic calculus G3ip from Troelstra and Schwichtenberg [ 18]
together with the modal rule GLR. To stress again, IT here is an arbitrary multiset of
formulas, so it may contain boxed formulas. Table 2 presents the system GL4i, which
contains the rules for the terminating calculus G4ip from Dyckhoff [60] together with
the modal rule GLR and an additional left implication rule for box. So we have five
left implication rules. Recall that, in contrast to GL3i, we put a restriction on multiset
IT in the rules GLR and LI — in GL4i: IT does not contain boxed formulas. This is
necessary to guarantee termination (see Section 4).

Both systems do not contain structural rules explicitly, but weakening and con-
traction are admissible. We use the nonterminating system GL3i to present a proof-
theoretic proof for cut-admissibility based on the work of Valentini [20] and Goré

GLR
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Table 1 Sequent calculus GL3i.

— At t i _
Lp=p pratomie rL=cC LL
= A =B .. IA,B=C
I'=>AAB IMAAnB=C
I'= A; A= C I''B=C
— T Rv; (=12
TS A va, Rvii=12 TAVB=C
A= B R 'A—>B= A4 I'B=C
Tr=A4A->8 ~ IA—B=C
Or,OA4= 4 GLR
I,OT = 04
Table 2 Sequent calculus GL4i.
— At t i —_—
T.p=p opaome risc -t
= A r=B8 IA,B=C L
FT= ANB LArB=C
I'= A4; . rAa==«=C I'B=C
TS A v, RYVii=12 TLAVB=C Lv
'A=B R LpA=C Lp—, p atomic
r=A->B 7 Topod=sc PF
IMA—(B—>C)=D B>C=A—B IC=D L
—
TAAB>C=D 7 F(A—>B)—>C =D
A—C,B—C=D L Or,04= 4 0,0r,B = C o
LAVB>C—=D /7 MOMLOA— B=C -
Or,O04 = 4 .
m GLR In GLR and LO —, no boxed formulas in IT.

and Ramanayake [8], who proved cut-elimination for sequent calculi for classical GL.
This approach is not applicable to GL4i, because of the restriction in the GLR rule.
However, equivalence of GL3i and GL4i immediately implies the cut-admissibility
result for GL4i. Furthermore, the cut-admissibility results for both GL3i and GL4i
imply equivalences between the systems iGL, GL3i, and GL4i, which shows that all
those systems express intuitionistic Godel-Lob logic.

We fix some terminology. The sequents At and L_L are called initial sequents or
axioms. The GLR rules are called modal rules, and all rules except for GLR are called
logical rules. In the axioms and logical rules, the principal formula of an occurrence
is defined as usual. In the GLR rule, all formulas in OII" as well as [0 A are principal.
Formula OJA on the right-hand side of the conclusion in the GLR rule is called the
diagonal formula. We also call OA in the principal formula of LO — the diagonal
formula. A derivation in GL3i (resp., in GL4i) is a tree built up from the rules in GL3i
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(resp., GL4i) whose leaves are initial sequents. We use the same for GL4i. We use
the letter X to denote derivations. The height of a derivation is the greatest number
of successive applications of rules in it. We use standard notation g 3 I' = C for
derivability of sequent I' = C in GL3i. We do the same for GL4i. The notation
Fawsin ' = C means that sequent I' = C is derivable in GL3i with a height of
derivation at most n.
In the following, and at later points, we will write Sy --- Sk /S as short notation

for the rules

S1 S1 S2

S S
for k = 1,2, respectively. The following definition is useful in both systems.

Definition 2.2 A rule Sy ---Si/S is invertible in GL3i (resp., GL4i) if whenever
S is derivable in GL3i (resp., GL4i) we have that S; is derivable in GL3i (resp., GL4i)
for all i. That is, S/S; is admissible in the calculus. A rule is height-preserving
invertible if whenever \~, S we have I, S; for all ;.

3 A Syntactic Proof for Cut-Admissibility

This section provides an analysis of the system GL3i. A substantial part is devoted to
a syntactic proof of cut-admissibility. Immediate corollaries of the admissibility of
cut are the subformula property, consistency, and conservativity over IPC. At the end
of this section we will see the correspondence between GL3i and the Hilbert system
for intuitionistic Godel-Lob logic. This means that formula A is provable in iGL if
and only if sequent (= A) is provable in GL3i. First we look at basic concepts. We
define the degree d(A) of a formula A inductively by d(L) = 0, d(p) = 1, and
d(AANB)=d(AVv B) =d(A — B) = d(A) + d(B) + 1. We start with a useful
lemma.

Lemma 3.1 (GL3i weakening, contraction, inversion) For each n, we have the
Jollowing in GL3i.

1. Extended axiom rule: + T',C = C for every formula C.

2. Falsum rule: F, T = Limpliest, I' = C.

3. Weakening: Fn T = C impliest, T, A = C.

4. Inversion: Rules RA, LA, LV, and R — are height-preserving
invertible.

5. Inversion L —: Ift-, T,A— B = C, thent, ', B = C.

6. Contraction: ., I, D, D = C impliest-, I', D = C.

Proof  Statement (1) is proved by induction on the degree of formula C. All others
are proved by induction on height n. Weakening is needed in the proofs for inversion,
and inversion is used in the proof of contraction. O

Now we turn to the proof of cut-admissibility in GL3i. The proof is based on the
works of Valentini [20] and Goré and Ramanayake [8]. Both prove cut-elimination
for sequent calculi for classical GL in which—in contrast to our system—the structural
rules are explicitly contained. Valentini considers sequents built from sets, whereas
Goré and Ramanayake adapted his proof to multisets. The use of multisets instead of
sets means that we have to take into account contraction. Goré and Ramanayake have
formalized ideas of Valentini in order to give a robust proof for a multiset sequent
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calculus for GL. We will see that Valentini’s proof idea can also be applied to GL3i, a
system without explicit weakening and contraction, which are admissible in it. Since
weakening and contraction are admissible, we do not need all the elements of the
machinery used in [8], but we use these elements relevant for iGL.

A well-known method for establishing the cut-admissibility theorem is to trans-
form topmost cuts of the form

I'=D D,A=C
Na=s=c

into cut-free derivations with the same end-sequent. Standard is to use a double induc-
tion (d, h), where d is the degree of the cut-formula and / is the height of the cut,
where the cut-height is defined as the height of its left premise derivation plus the
height of its right premise derivation.

However, for provability logic, this is not sufficient. Therefore Valentini introduces
a third induction parameter called “width,” which is computed “globally.” A third
parameter is necessary when we encounter the following problem: consider a cut
where both premises are derived from the GLR rule and the cut-formula is principal
in both sides:

cut

by} Xy
GLR Or,0B = B OB, B,0A,0OC = C GLR
n,,0r = B I1,,0B,0A = OC

I,.1I,.0r, 0A = 0OC cut(HB)

A reasonable thing to do is the following, where we use the admissibility of contrac-
tion:

by}
Er,0B = B %y %
Or = OB Or,0B = B ct, ET.OB= B ho
Or,or = B ) Or = OB OB, B,0A,OC = C
———————— contraction cuty
LI = B B,O0 LA, O0C = C

cuts
or,or,bA,0C = C

O, BA,O0C = C
,,I,,00, 0A = OC
But here, it is not possible to eliminate cut; when using the standard induction on
(d, h). Although the cut-formula in cut; is the same as in cut(CJB), which means
that the degree d remains the same, the cut-height / of cut; is not necessarily smaller
than the cut-height of cut(CdB). The reason is that the cut-height of cut; is defined
in terms of the height of X;, but the cut-height of cut(CdB) also depends on X,. So
we cannot compare both cuts in terms of (d, h).

The width circumvents the problem, because it enables us to define a derivation
of CII' = B in which each application of the cut rule is eliminable. Informally, the
width is the number of GLR rules in the left premise of the cut in which the cut-
formula is not introduced by weakening. We will now adopt Valentini’s method to
see that it works for GL3i.

contraction
GLR

Definition 3.2 Consider the rules in Table 1. We say that a formula A is intro-
duced by weakening in rule p if p is an axiom rule and A € T" or p is the GLR rule
and 4 € I1.

Note that formulas introduced by weakening are exactly the nonprincipal formulas of
the corresponding rule. So one can ask why we redefine such formulas. We do this in
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order to be consistent with the terminology as in Valentini [20], where weakening is
an explicit rule. It also gives an intuitive insight into the role of a particular formula
in a GLR rule.

Definition 3.3 Let X be a derivation with end-sequent I' = C. An instance p
of the GLR rule appearing in X is n-ary (over I' = C) if the segment between the
conclusion of p and end-sequent I' = C contains exactly n — 1 applications of the
GLR rule.
For a cut-free derivation X with end-sequent I' = C, let GLR(2, ) denote the

number of GLR rules p in X satisfying the following:

1. pis2-aryoverI' = C;

2. C is the diagonal formula of the 1-ary GLR rule in ¥ below p;

3. C is not introduced by weakening in p.

Remark 3.4 The number GLR(2, ) may be different from 0, but only if C is a
boxed formula, due to clause (2).

In the following we write ¥/ " = D to denote the derivation
)
I'=D
Definition 3.5 (Width) Consider a topmost cut as shown below:
3 pIP
I'=D>D D,A=C
NA=C

The width of cuty is defined as w(cutg) = GLR(2,%;/T" = D).

Remark 3.6 The width is defined on the basis of the left premise (and X;) of the
cut and is independent of the right premise (and X, ). The width has only been defined
for topmost cuts as this restriction is sufficient for our purpose.

cutg

Example 3.7 Let us calculate the width w(cut(CJ_1)) in the following:
0L, 1,0D0=D P
O@D~»1),0L=50D " 0OLO@D > L), L1
LD - 1),0L =1 GLR Ol1,L,0D =D
O@D — L) = 0L OL= 0D
O@OD — 1) = 0D
There is one 2-ary GLR rule over the left premise of the cut, which is rule p. Formula
O.L is not introduced by weakening in p, so w(cut(CJ L)) = 1.

cut(CdL1)

The width is used as the induction parameter in the cut-elimination proof. In partic-
ular, the induction value for a topmost cut is (d, w, k), where d is the degree of the
cut-formula, w is the width of the cut, and 4 is the cut-height. The idea of reducing
the width is to transform a 2-ary GLR rule p over the left premise I' = D of the
cut satisfying requirements (1)—(3) from Definition 3.3 into a GLR rule where D is
introduced by weakening. What is important to note is that this only works because
we allow boxed formulas in IT in the definition of the GLR rule in the rules of GL3i
(see Table 1). This is not possible in the terminating system GL4i.

Before proving the cut-elimination theorem using the width, we introduce some
derivation transformations that are useful in the proof. Some transformations are
based on parts of a derivation. To this end, it is useful to look at stub-derivations,
which are more general than derivations. Stub-derivations were introduced by Goré
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and Ramanayake in [8]. Informally, stub-derivations can be obtained by deleting a
proper subderivation from a derivation, thereby obtaining a derivation with a “gap.”

Definition 3.8 A stub-derivation in GL3i is defined recursively as follows:

1. initial sequents p,I" = p and L,I" = C are stub-derivations;
2. for any sequent S and stub-derivation ®, each of
stub stub ® () stub
@~ & @7

is a stub-derivation;

3. an application of a logical or GLR rule to stub-derivation(s) that end with its
premise(s) results in a stub-derivation;

4. an application of the cut rule to stub-derivations concluding its premises
results in a stub-derivation.

If no cut rule is used in a stub-derivation ®, we say that ® is a cut-free stub-derivation.
A stub-derivation with one occurrence of “stub” is called a single stub-derivation,
also introduced in [8]. In the rest, we only consider those single stub-derivations. For
a single stub-derivation ®, we sometimes write ®[stub] to indicate the stub occur-
rence.

Definition 3.9 Let X be a derivation, and let ®[stub] be a single stub-derivation
with an occurrence of one of the following:
stub stub >’ Py stub
@ g ) SR E (g E b
where X/ is a derivation, and suppose that

@Zp 2T p T Ep

are correct derivations in GL3i for some rule 8. We say that a single stub-derivation
©® and a derivation X are compatible with binding rule B, and we obtain a correct
derivation by replacing the “stub” in ® by X, denoted by ®[X].

Example 3.10 This example is taken from [8]. The left single stub-derivation and
the derivation on the right are compatible with binding rule LV

21 X2
O = stub A—>B=A—>B Y= A B=28 R
BV(A>B) = A—> B B=>A>B
‘We have
)2P)
A,B = B b
[E]= —22=35 ¢ 1
B=A—B A—B=A—B Ly

BV(A—>B)=A— B

Definition 3.11 Let © be a cut-free stub-derivation. Let A be a (nonempty) mul-
tiset of formulas. We define ®* by recursion as follows. Intuitively, ® is obtained
from ® by weakening with A.

1. axiom
(@) atom: (T, p = p)® = (T, p. A = p),
b LT L=>0)2=T,1LA=C);
2. stub-instance
(a) (stub/T = C)2 = (stub/T, A = C),
(b) (stub ®/T = C)2 = (stub O2/T,A = C),
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(¢) (® stub/T = C)2 = (O stub/T, A = C);
3. unary connective rule: (®’/T = C)2 = (®@'"2/T,A = C);
4. binary connective rule: (0; @,/ = C)2 = (@1A G)ZA/F, A= C);
5. GLR rule: (®'/T = C)* = (®'/T,A = ().

Notice that the recursion terminates at an axiom rule, stub-instance (a) or a GLR rule.
For a sequent S = (I' = C), we write S = (I, A = C).

Lemma 3.12 Let ©® be a cut-free stub-derivation, and let A be a multiset of for-
mulas. Then ®2 is also a cut-free stub-derivation.

Proof This is by inspection of the recursion in Definition 3.11. O

Example 3.13 We continue with Example 3.10. If A is a (nonempty) formula
multiset, then the single stub-derivation obtained from ® by weakening with A is:
$A
1
®*= sub A—>BA=A—>B
Bv(A—- B),A=A—B
We also see that the following is a correct derivation:

A
x5 R
)y
@A[EA] — A, B,A= B Res 1
B, A= A— B A— B,A=A—> B

BV(A—B).A—> A— B Lv

Lemma 3.14 Let © be a cut-free single stub-derivation, and let ¥ be a cut-free
derivation with end-sequent I' = C such that ©® and X are compatible with binding
rule B yielding a correct derivation O[X]. For any multiset A, we have the following.

1. If there is an application of the GLR rule in the segment from f to the end-
sequent in O[X], then OA[X'] is a correct derivation for any cut-free deriva-
tion X' with end-sequent T' = C. In particular, ®*[X] is a correct deriva-
tion.

2. If there is no application of the GLR rule in the segment from f to the end-
sequent in O[X], then O2[X'] is a correct derivation for any cut-free deriva-
tion ¥’ with end-sequent I, A = C. In particular, @A[EA] is a correct
derivation.

Proof From Lemma 3.12, we know that ®2 is a correct cut-free single stub-
derivation. So for both (1) and (2) we only have to show that the end-sequent of X’
is a correct premise regarding binding rule 8 and ©2.

The single stub-derivation ® has one of the following stub-instances (which are
sub-stub-derivations of ©2):

stub stub k4 e’ stub
@ ) MO (o & stb

By assumption, ® and ¥ are compatible, so the following are correct instances of
binding rule B, where I' = C is the end-sequent of X and Sepq(e) is the end-sequent
in @

r C S, ,
(a) F?C B (b) = end(©®’)

(C) Send(@’) '=~C

S S p
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For case (1) we distinguish two easy cases. If some rule below § is a GLR rule,
we know, by inspection of Definition 3.11, that sequent S remains the same in eA,
so the stub-instances in ©* remain the same as in ®. This immediately implies the
desired result.

If no rule below f is a GLR rule, but § itself is, we know, by inspection of Defi-
nition 3.11, that the antecedent of sequent S becomes enlarged with A in ®2, so the
following is the stub-instance in ® in which the right presents a correct instance of
GLR rule 8:

stub rs=«= 8
sAa N
So every cut-free derivation ¥’ with end-sequent I' = C is compatible with ©2,

For case (2), in which rule 8 and all rules below 8 are not a GLR rule, we know,
by inspection of Definition 3.11, that the following is a correct stub-instance of @4:

stub stub QA QA stub
o O @

Since f is not a GLR rule, we have a correct instance of 8, where S,4@a) is the
end-sequent in ®’4;

(a)

ILA=C ﬁ a==c Send(@’A) (C) Send(@’A) aA=~C

(a) SA SA SA

So every cut-free derivation X’ with end-sequent I', A = C is compatible with @%.
O

We examine one more transformation of derivations, also used in [20] and [8].

Definition 3.15 Let ¥ be a cut-free derivation with end-sequent of the form
I'’ OB = C, where an occurrence of I B is introduced by weakening in every 1-ary
GLR rule over I, 0B = C. Let A be a multiset of formulas. We define 4+ 05
by recursion as follows, by replacing occurrence C1B by A.

1. axiom
(a) atom: (T, p,OB = p)2~UB = (', p, A = p),
(b) L: (I, L,OB = C)2”B8 = (I LA = C);
2. unary connective rule: (¥'/T,0B = C)2~08 = (x/A~HB /T A = (C);
3. binary connective rule:
(21 /0,08 = C)AwHE = (zf»DB wawDB /I A = C);
4. GLR rule: (X'/T,0B = C)2UB = (X'/T,A = C).

Lemma 3.16 Let X be a cut-free derivation with end-sequent of the form
OB = C, where an occurrence of OB is introduced by weakening in every
1-ary GLR rule over T, 1B = C. Let A be a multiset of formulas. Then £2*58
is a well-defined cut-free derivation.

Proof  We use induction on the height n of derivation X. For n = 0, X is an initial
sequent of the form (T, p, OB = p)or (I', L,0B = C). Thenalso (T', p, A = p)
and (T', L, A = C) are initial sequents, since (1B is not an atom or L.

Suppose that =, I, 0B = C and that the last rule applied is a logical rule.
Formula 0B cannot be a principal formula; therefore the premise(s) have the form
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I, 0B = C’ for some I'" and C’. By the induction hypothesis, I'', A = C’ are
derivable. Applying the logical rule again, we obtain -, I', A = C.

Now suppose that the last rule applied is the GLR rule. We use the fact that OB
is introduced by weakening in any 1-ary GLR rule; therefore, introducing A with
weakening also gives a correct application of the GLR rule. This gives us a correct
derivation.

Note that cut-freeness is guaranteed by the fact that X is cut-free. O

Theorem 3.17 (Cut-admissibility) Let
3 >,
=D D,A=C
NA=~C
be a topmost cut. This can be transformed into a cut-free derivation with the same
end-sequent.

cut(D)

Proof Let (d, w, h) be the induction value of cut(D), where d is the degree of the
cut-formula D, w is the width of cut(D), and 4 is the cut-height. We have four cases:

(a) at least one of the premises is an axiom;

(b) both premises are not axioms and the cut formula D is not principal in the left
premise;

(c) both premises are not axioms and D is principal in the left premise only;

(d) D is principal in both the left and right premise.

Case (a)
For case (a), we refer to Negri, von Plato, and Ranta [15].

Case (b)

In case (b), we assume that D is not principal in the left premise of the cut. This
means that an L-rule is applied to the left premise (so no GLR rule). Here we look at
the LA-rule. The derivation

b
ABTI'=D o
AAB. T =D D.A=C

; cut(D)
AAB T/, A= C

with ' = A A B, T" is transformed into the following derivation with one cut with
degree d:

z 2
A,B,T"= D D,A=C
A, B, T', A= C
AANB T/ A= C

cuty

LA

We have w(cut(D)) = w(cuty), because the 2-ary GLR rules in the left premise of
cut; remain the same as those in the left premise of cut(D). And we see that the
cut-height of cut; is # — 1. So by induction we can remove cut;.

For LV and L—, we refer to [15]. Note that the presence of the new parameter w
does not affect the correctness of the proofs in a similar way as for LA.
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Case (c)

For case (c), we assume that D is not principal in the right premise of the cut and
principal in the left. In this case we only have to focus on the last rule applied in the
right premise. For proofs of nonmodal R- and L-rules, see [15]. Here we provide the
details for case L — to see that the introduction of the width does not affect the proof.
In the following, we omit subderivations 3;, and so on, for readability. Derivation

D,A— B,AN = A D,B,AN'"=C
I'=sD D,A— B AN =C
INd— B,A'=C

L—

cut(D)

with A = A — B, A’ is transformed into the following derivation with two cuts of
degree d:
I'=D D,A— B,AN' = A I'=D D,B,A"=C
cuty cuty
I'A— B AN = A IB,A'"=C
IA— B,A'=C

L—

We have w(cut;) = w(cuty) = w(cut(D)), since the width is defined solely on the
basis of the left premise of the cut which is not changed in the transformation. The
cut-height of both cuts is reduced to a height of at most # — 1.

For case (c), we are left with one more possibility, which is the case where the
right premise ends with a GLR rule. Note that we are in the case where D is not
principal. We can get rid of cut(D) as follows:

DA, 04 = A
— 2GR A, 04 = A
r=p DI,0A =04 v : GLR
) cut(D) 1,04 = 04
I, 1,04 = 04

Case (d)
Now we turn to case (d), where formula D is principal in both the left and right
premise. If D is not boxed, then again we refer to [15]. We work out the case in
which D = A — B to see that the width does not change the proof. Derivation
A, I' =B A— B, A=A B A=C
r=4-B8 %7 A—>BA=C Cut(A_};;
IA=C

can be transformed into the following derivation with three cuts:

AT = B
TS A-B X7 ALB A=A et AT = B BA=C
TLA—= A ! ATA=C 2
TAT.A=C _ ?
W contraction

In cut; the degree and width remain d and w, but its cut-height reduces to at most
h — 1. Both in cut, and cut; the degree of the cut-formula is lower than d. So in
these cases it does not matter what happens with the width or height. So we have a
cut-free derivation for I', A, T’ A = C. Contraction gives us a cut-free derivation
forT,A = C.

Now we look at the most interesting case, where D is boxed, say, D = OB. Cut-
formula OB is principal in both the left and right premise, so the cut is as follows:
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)y Xy
GLR Or,0B = B OB, B,HA,00C = C GLR
I1,,00r = OB I1,,0B,0A = OC

I, 11, O, OA = 0OC cutB)
The reduction is divided into two cases:

(i) w = w(cut(CB)) = 0. This means that in any 1-ary GLR rule p over
T, 0B = B, we have that OB is introduced by weakening in p. This means
that we can apply Definition 3.15 and Lemma 3.16 to obtain a cut-free derivation
EIDF”DB . (Strictly speaking, if ', 0B = B is the conclusion of a GLR rule, we
have that OT", OT" = B can be derived from X;.) So the reduction is the following:

o n): X
l HOIL,OB = B >
77BF’ ar=5 contraction or = os OB, B,1A,0C = C cut
Or = B B.OTOAOC=C !
Or, 00, OA,0OC = C 2
Or.OA.OC = C contraction
GLR

M, T, 00, 0OA = OC

Since EIDF”’DB is a well-defined cut-free derivation of OI', " = B, we are
allowed to apply contraction to get a cut-free derivation of LII' = B. We can elim-
inate cuty since its degree and width are d and w and its height is # — 1. We can
eliminate cut, because its degree is less than d.

(i) For w = w(cut(ddB)) > 0, first note that, by inspection of the rules, in
the backward direction of the proof tree, boxed formulas do not disappear in the
antecedent of the sequents. We have that 3; is of the following form, where ©;
is a single stub-derivation compatible with sequent IT, OTT’, OT", OB, OA = OA:

)
s, = _ Or'.0B.B.OA DA A
I1,011,00r’,0B,0A = 04
©;
So the topmost cut is
!
%
Or’,0B,B,OA,O4A = A
1,01, 0r’,0B,0A = 04
Oy Xy
GLR CLr,0B = B 0B, B, A, O0C = C GLR
I1,,0r = OB I,,0B,0A = 0OC

M, 1,00, 0A = 0OC cut(tB)
where p is a 2-ary GLR rule over the left premise I1;, 0" = OB and OB is not
introduced by weakening in p (so OB ¢ I1,0I1"). We write OT = OIT’, 0T in
the conclusion of p. The goal is to eliminate cut(CIB).

Rule p is a 1-ary GLR rule over LI, 0B = B, so there is no GLR rule in the
segment between p and GLR. We can apply Lemma 3.14(2) to conclude that the
following is a correct derivation of the sequent 04, OI' = OB, which we call ®:
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cut-free
OA.AOA= A
OA, A TL,OCLOB.0OA = 04 P
® =
@lDA,A
04, A,OT, 0B = B
0A4,0r = OB

/

GLR

Now consider the following derivation with three cuts, where cut; and cut, cut on
formula (I B:

b DY
® GroB=B o ®  OBBEADA=A
OA. OGO = B OAOFBEAOAS A -
0OA.OA, OA, OT. OT.GOT.0A = A4

OA4,COTHA = A

contraction

We first look at cut; and cut,. We have d(cut;) = d(cuty) = d. When comparing the
width of cut; and cut, to the width of cut(CJB), we see that the 2-ary rule p over the
left premise in cut(C1B) is replaced by the 2-ary GLR rule o’ in the left derivation ®
of cuty and cut,. In the GLR applications p’, OB is derived by weakening, so p’ does
not contribute to the width in cut; and cut,. Therefore, w(cut;) = w(cuty) < w —1.
In particular, the width becomes w — 1 or 0, where w(cut;) = w(cuty) = 0 in case
A = OB or OA = OB, because then [IB is also introduced by weakening in all
other 2-ary GLR rules in ®U4:4 Therefore, we can eliminate cut; and cuty. Also,
cuts is eliminable, because the degree of the cut-formula is d — 1. So we can apply
contraction to get a cut-free proof X for A, LI, DA = A.
Now consider

z
OA, O HA = A4
I1,0B,00,0A = 0OA4

4

0,
Or,0B = B b
————""GLR !
Or = OB OroB=B
Or, G = B , 4
————— contraction
Gr = B

We can get rid of cuty, because w(cuty) = w — 1, since I B is introduced by weak-
ening in GLR rule p”. So there is a cut-free proof with end-sequent 0T, LIT" = B.
Applying contraction gives us a cut-free proof X’ with conclusion LIT' = B. Now
we can conclude the proof with the following derivation:

Yy,
GOr,0B = B >
s/ Or = OB OB,B,0A,OC = C cuts
Or = B B.OILHA,OC = C cute
Er, 0T EA,OC = C .
IZ‘F’ DA7 DC = C contraction
GLR

I, 11,00, 0A = 0OC
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In this reduction, cuts and cute are eliminable as in case (i) above yielding a cut-
free proof of LOI', O, JA,00C = C. Applying contraction gives us a cut-free
proof. O

The elimination of cut4 deserves more attention. We can remove the cut because the
width reduces. Note that the cut-free derivation ¥ does not have any effect on the
calculation of the width of cuts. This means that the elimination of cut;, cut,, and
cutz does not affect the width of cuts lower in the tree. In [8], it is said that cuty is
“shielded” by the GLR instance p”. This shielding is crucial.

The reduction in the proof of the theorem is quite complex and blows up the proof
complexity enormously. See Overview 3.20 to see the cut-elimination of case d(ii) in
one proof tree.

Sometimes it is easier to find cut-free proofs in a direct way. We illustrate this in
the following example.

Example 3.18 We look at an example for w(cut(CdB)) > 0. Take B = L. We
consider the following derivation from Example 3.7, where [J_L is principal in the
2-ary GLR rule p over O(OD — 1) = OL:
OL,1,0D0=D
B(0D - ),0L=0D " OL,00D — 1), L= 1
D@D > D OL=1 o L oL ,op=p
O@D —» 1) = 01 OL= 0D
O@D — L) = 0D

It is possible to reduce this derivation to a cut-free derivation using the reductions
in Theorem 3.17. But the following gives a shorter cut-free derivation of the sequent
O@dbp — 1) = Ob:

(0D — 1),0D = OD 0@D — 1),0D, L = D
0OdEDp - 1),0D0 = D
O@ED — 1) = 0D

cut(dL)

L—

GLR

The admissibility of cut implies the subformula property, consistency, and conserva-
tivity over IPC. The following corollary states the equivalence between the Hilbert
calculus and our sequent calculus GL3i.

Corollary 3.19 Formula \T — C is provable in iGL if and only if sequent
I' = C is derivable in GL3i.

Proof  For the proof from left to right, we prove that =g A implies g3 ( = A).
We show that the axioms and rules in the Hilbert system are derivable in GL3i. The
intuitionistic tautologies are evident. For the K-axiom we have

[(A — B),0A,A,0B = A 0O(A — B),A,0B,B = B
0(A — B),0A,0B = B
0O(A — B),0A = OB
= 04— B) > 04—~ 0OB

GLR

R —

The other axioms are left for the reader. The cut rule is used in the proof for modus
ponens.

The direction from right to left is done by induction on the height of the derivation
of ' = C. O



Overview 3.20
w(cut(COB)) > 0. Double lines indicate contraction.

z
OIr/,0B,B,OA,O04= A
II,00,0B,0A = 04
(S]] o
Or,0B = B OB, B,HOA,0C = C
I1,,0r = OB II,,0B,0A = OC
1, I1,,00r,0A = O0C

GLR GLR

cut(OB)

cut-free

OA4,4,04= A 0OA4,A,04= A

This is an overview of the cut-elimination reduction of the proof of Theorem 3.17 for a cut with cut-formula OB with

reduces to cut-free derivation

cut-free

GLR’

)

OA, 4, 11,00, 0B,0A > 04 _ o} OA, A, I1,07, 0B, 0A = 0A
@[\]A.A @IDA.A
OA,A,0OT,0B8 = B of OA,A,OT,0B = B
GLR GLR
04,07 = OB EOr,0B8 = B OA,0OT = OB

OB,B,HA,04= A

cuty
OA,OCL,GT = B

cuty

OA,0T, B,0A, 0A = 4

0A, 04, 0A4, OT, OT, O, A = A
OA, 0T, 0A = 4

cuts

II,0B,0r,0A = 04 GLR
(O]
Or,0dB = B =, o
———  GLR
Or = os Or,0B = B EOr.OB = B =,
cuty >
ur,or = B Or = OB 0B, B,0A,OC=C
—_— cul
Or = B B,0T,EA,0C = C >

cutg

Or,0r,0A,0c = C

Or,H0A,0C = C
I,,11,,0r,0A = 0OC

GLR

N
w
(o))

JOYWa| pue UISSII) J9P UBA
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4 Termination

In this section we turn to the terminating sequent calculus GL4i. There are various
concepts of termination. We are interested in strong termination: there is a well-
founded ordering on sequents such that, for all the rules in the calculus, the premises
are smaller in this ordering than the conclusion. Strictly speaking, GL4i is not strongly
terminating, but it has a property very close to it, which we call termination modulo
extended axioms. We will see that all sequents of the form I, C = C are provable in
GL4i. Including these in the system yields strong termination. Termination modulo
extended axioms is a key ingredient in the syntactic proof of equivalence between
GL3i and GL4i (see Section 5). We prove termination modulo extended axioms for
GL4i based on a loop-preventing proof search for a sequent calculus for GL from [3].

Calculus GL4i is an extension of the terminating calculus G4ip discovered indepen-
dently by Dyckhoff [6] and Hudelmaier [9]. The extension is analogous to the exten-
sions of G4ip to calculi for iK and iKD as developed in [10]. The propositional system
G3ip is not strongly terminating, because in the standard ordering on sequents the left
premise of the left implication rule L — does not decrease in complexity. However,
it is weakly terminating; that is, there is a terminating process of deciding the deriv-
ability of a sequent involving a global check in the proof search (see [18]). Dyckhoff
and Hudelmaier replaced L — by four left implication rules, corresponding to the
outermost connective in A for principal formula A — B. They defined an ordering
on sequents to show that G4ip strongly terminates. To do so, define the degree d of
formulas as d(L) = d(p) = 1,d(AV B) =d(A — B) =d(A) +d(B) + 1, and
d(A A B) = d(A) + d(B) + 2. In addition, we have to deal with the modality and
define d(0A) = d(A) + 1. This is slightly different from the standard degree which
we use for GL3i. Dyckhoff’s ordering extends to multisets in the following way, as
in Dershowitz and Manna [5] : ['g <« I'; if and only if T’y is the result of replacing
one or more formulas in I'; by zero or more formulas of lower degree. Extend this to
sequents: (I'y = C1) K (T = Cy) if 'y, Cy K Iy, Cs.

Terminating calculi for iK and iKD from [10] strongly terminate in this ordering.
This is not the case for GL4i, because the premise of the GLR rule is not lower than
the conclusion with respect to <. Recall the rule

Or,O04A= A4

I1,07 = 04 GLR
where IT does not contain any boxed formulas. The premise of the rule is not neces-
sarily lower than the conclusion with respect to the ordering <. Intuitively, the size
of the sequent in the premise is “doubled” compared to the sequent in its conclusion,
because I' is “duplicated.” The same problem arises in the left premise of LI —.
This means that the degree alone does not suffice to act as the induction parameter
on sequents to ensure termination. We define the appropriate ordering in the proof of
Theorem 4.2. Similar problems are discussed for termination of tableau systems for
GL in Goré and Kelly [7].

We need the following lemma for GL4i. Compare this lemma to Lemma 3.1.

Lemma 4.1 (GL4i weakening, contraction, inversion) For all n, we have the fol-
lowing in GLA4i.
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1. Falsum rule: Fo ' = Limpliest-, T’ = C.

2.  Weakening: Fn T = C impliest, T, A = C.

3. Inversion: RA, LA, LV, R —, Lp—, LA—, and LV — are height-
preserving invertible.

4. InversionL ——: Ift, I',(A—> B) - C = D, thent, I',C = D.

5. InversionLO—: Ift, I1,0I, (A - B) = C, then -, I1,0TI', B = C.

6. Extended axiom: + T,C = C for every formula C.

7. Contraction: o, T,D,D = C impliest, T, D = C.

Proof  Statements (1)—(5) and (7) are proved by induction on height n. Weakening
is used in proofs for inversion. Inversion is used in the proof for contraction. State-
ment (6) is proved by induction on Dyckhoft’s degree of formula C using inversion
of R —. O

The reason that we need extended axioms is due to the form of the GLR rule and
LO —. Infinite branches can occur by repeated GLR and L0 — inferences. In the
following tree, we have a loop where we can apply L[] — with diagonal formula (0 A
infinitely many times, indicated by the vertical dots:

O0AS D.OC0A 04 As4 "B~ T.1i5a4 o
H(0A— 1).0C.04=> 4 O s o
(04 > 1),0C = C LU=

GLR

04 > 1) = 0OcC
However, we see that we create an infinite branch for the provable sequent

0(0A — 1),0C, 04,04, A = A,

where formula A occurs in both the antecedent and the conclusion of the sequent.
In fact, we will see in the proof of termination that infinite branches always contain
sequents of the form I', C = C. The reason is that there is a finite number of boxed
subformulas in the end-sequent. For the GLR rule, we observe that each boxed for-
mula may appear at most once in a conclusion of a sequent in a single branch, because
it moves into the antecedent and stays there. For a second application of the GLR rule
with the same boxed formula [JA4 we obtain an extended axiom I', 04 = A, which
is provable. In the proof we will also take into account the left premise of L1 —,
which may end in a provable sequent of the form I', A = A, as in the example above.
This makes it possible to stop the proof search at that point in the tree, cutting off the
infinite branch.

Theorem 4.2 Proof search in GLA4i is terminating modulo extended axioms.

Proof  Consider a proof search for sequent I' = C. Let ¢ be the number of all
boxed subformulas in I' = C counted as a set. We have at most ¢ different boxed
formulas in an antecedent of a sequent in the proof search counted as a set. We use
¢ to define the induction parameter. For a sequent (A = D) in the proof search,
define b(A = D) to be the number of boxed formulas in A counted as a set. We
have c—b(A = D) > 0. We prove the theorem by induction on (c—b(A = D), K)
ordered in a lexicographical way. Note that the first entry ranges over natural numbers
with the standard ordering, and the second entry ranges over sequents with ordering
<.
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If asequentis of the form I', C = C, then we are done by definition of termination
modulo extended axioms. So suppose that it is not an extended axiom.

If we backwards apply a logical rule different from L —, then ¢ — b decreases
or ¢ — b stays the same and the premises are lower with respect to <. Therefore, we
can apply the induction hypothesis to conclude that the proof search terminates.

If we backwards apply L] — to a sequent of the form IT, OT, 04 — B = C,
then for the right premise we have the same reasoning as above. For the left premise,
we have two cases. If [JA is not contained in 0T, then ¢ — b decreases, because I
contains no boxed formulas. If A is in 0T, say, O = O, A, then the left
premise is of the form I, 0A,0A, A = A and we close the branch, because it
is an extended axiom. So we can apply the induction hypothesis to conclude that it
terminates.

If we backwards apply the GLR rule, say, to a sequent of the form IT, OT" = A,
then ¢ — b decreases since [JA is assumed not to be in OI', and IT in the GLR is
assumed to not contain boxed formulas. Again we apply the induction hypothesis to
conclude termination modulo extended axioms. O

Note that the induction pair depends on the end-sequent. So this ordering cannot eas-
ily be used in general for GL4i for all sequents. In the proof it only works for sequents
in the particular proof search tree. This makes it difficult to compare sequents from
different proofs. However, for every c, this ordering easily extends to an ordering on
sequents that have less than ¢ boxed subformulas counted as a set.

Remark 4.3 In the proof we distinguish two cases when dealing with LCI —.
Another way to deal with these cases is to replace LC1 — by the following rules in
the system GL4i:
n,ar,B=C L0, OrLOA= A n,ar,B=«C LO->,
1,00, 04,04 - B = C I1,0r,04A - B=C
where (04 is not contained in OI" in rule LOI —,. In this new system, termination
can be proved using the same induction parameter.

5 Equivalence of GL3i and GL4i

We use the method from [6] and [10] to prove the equivalence between GL3i and
GL4i in the sense that both derive the same sequents. This equivalence and the cut-
admissibility result for GL3i immediately implies the cut-admissibility in GL4i.

Definition 5.1 A multiset is irreducible if it has no element that is a disjunction,
conjunction, or L, and there is no atom p and formula A such that p and p — A are
both contained in it. A sequent I' = C is irreducible if its antecedent I" is.

Definition 5.2 A proof in GL3i is sensible if the following holds: if the last infer-
ence is L —, then its principal formula is not of the form p — A for some atom p
and formula 4.

Definition 5.3 A proof in GL3i is strict if the following holds: if the last inference
is L — with principal formula of the form 004 — B, then the left premise is an
axiom or the conclusion of the GLR rule.

Lemma 5.4 Every irreducible sequent provable in GL3i has a sensible strict proof.
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Proof  For a contradiction, assume there are irreducible provable sequents that have
no sensible strict proof. Consider, among all proofs of all such sequents, the proof
Y with the shortest leftmost branch. Since X is not sensible or not strict, X is of the
form

Y} r
rd—B= A [LB=C
Frd>B=C -

with principal formula A — B, where A is atomic or A is boxed. Since the end-
sequent is irreducible, we know that L ¢ T" and if A is atomic, then A ¢ I'. Therefore,
the left premise cannot be an axiom, but is derived from a rule, say, p. Formula A is
atomic or boxed, so p is a left rule or the GLR rule. However, p cannot be the GLR
rule, because the proof would then be strict and sensible.

So suppose that p is a left rule. Sequent (I, A — B = A) is irreducible and has
a shorter leftmost branch in its proof than ¥. By the assumption, it has a strict and
sensible proof (. Note that 3¢ is not necessarily the same as ;. In addition, since
sequent (I, A — B = A) is irreducible, p is an instance of L —. Let A’ — B’ be
its principal formula. Since X is sensible, A’ is not atomic. So we have a proof of
the following form:

= =y
I /A—- B,A' - B = A’ I' )/A—B,B' = A P Xy
I JA—B,A > B = A I’ A —->B',B=C

I'"A>B, A >B =C L=

Now consider the following proof with the same end-sequent:

X ]
= I A— B,B' = A I’,B,B' = C
I A— B. A - B = A’ I'A—B.B = C

' A—- B, A - B =C

where the existence of X is justified by applying inversion from Lemma 3.1 to X,.
This proof is sensible, because A’ is not atomic. In case A’ is not boxed, we immedi-
ately see that the proof is also strict. If A’ is boxed, then the proof is strict since g
is strict. O

Lemma 5.5  In GL3i we have - T, (A — B) > C = A — B if and only if
FILB—-C=A— B.

Proof Both(A - B) - C =B —>Cand B - C,A = (A — B) - C
are provable sequents in GL3i. The admissibility of cut, contraction, and inversion of
R — implies the desired result. O

Theorem 5.6 The calculi GL3i and GL4i are equivalent, that is, FgLs S if and
only ifaLai S.

Proof  The proof from right to left is straightforward using the admissibility of cut,
weakening, and contraction in GL3i. The proof is done by induction on the height of
the proof of sequent S in GL4i. We write down the two interesting cases where the
last inferences are L —— and L0 —.

If L —— is the last rule, then S is of the form I', (A — B) — C = D derived
from premises I, B - C = A — B and I', C = D. By the induction hypothesis,
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we know that those premises are also derivable in GL3i. By Lemma 5.5, we have
Fawi [, (A —> B) - C = A — B. Applying L — to this sequentand I', C = D
we conclude that Fg 5 I, (A - B) - C = D.

If LO — is the last rule, then S is of the form IT, OI', 04 — B = C derived
from premises LI, A = A and I1,00', B = C, where IT does not contain a
boxed formula. By the induction hypothesis, we have that those premises are also
derivable in GL3i. Applying the GLR rule from GL3i to BHI',( 04 = A we have
Fawsi 1,00 = OA. Weakening gives us a GL3iproof of I1, T, A — B = OA.
An application of L — to this sequent and IT, OI', B = C shows that § is provable
in GL3i.

The other direction is done by induction on the ordering of sequents similarly
defined as in the terminating proof for GL4i as follows. Let S be provable in GL3i.
Let ¢ be the number of different boxed subformulas in S. So ¢ is a constant. We
fix the ordering on sequents containing c or less than ¢ different boxed subformulas.
For such a sequent S’, let 5(S’) be the number of different boxed formulas in its
antecedent counted as a set. We know that ¢ — b(S’) > 0. We perform induction on
the pair (¢ — b(S"), K).

The case where S is an axiom is trivial, since both calculi have the same axioms.
Also, for S of the form I', A = A we are done. So assume that this is not the case. We
distinguish between S being irreducible or not. If S is not irreducible, its antecedent
contains a disjunction, conjunction, or both p and p — A. For those cases we can
backwards apply the rules LV, LA, and L —, respectively. The premises of those
rules decrease in the ordering (¢ — b, <), where for L — we only need to consider
the right premise, since the left premise is of the foom I, p — A,p = p. By
inversion in GL3i (see Lemma 3.1), those premises are derivable in GL3i. So we can
apply the induction hypothesis to see that those premises are derivable in GL4i. Using
the rules in GL4i gives the desired result. See [10] for details.

Now suppose that § is irreducible. By Lemma 5.4, we may assume that the proof
of S is sensible and strict. The last rule p applied is a right rule, GLR or L —. If p is
aright rule, we inductively have a proof in GL4i, since the premises of those rules are
lower in the ordering (¢ — b, <) and the right rule p belongs to both calculi. When
p is a GLR application, we have in GL3i

[T, 04 = A
S = (OIL IT, 0T = 0A4)

GLR

where IT’ does not contain boxed formulas. We have kg g CIIT, T, 04 = A by
weakening. This sequent has ¢ or less than ¢ different boxed subformulas, so we can
compare it to S in the ordering. Our assumption is that 0 A does not appear in CIT1
or (1T, therefore making it smaller than S in the ordering. So we apply the induction
hypothesis to conclude that g4 T, T, 0A = A. Using GLR in GL4i gives us
Fewsi S.

For L —, suppose that S = (I, A — B = C) with principal formula A — B.
Since the proof of S is sensible, A is not atomic. We continue with the different forms
of A.

IfA= A, - Az, then S = (I',(4; — A2) - B = C) is derivable in GL3i
with premises I', (4; — A3) > B = A; - A and I, B = C. By Lemma 5.5,
we havethatI', A, — B = A; — A isderivable in GL3i. This sequent has c or less
than ¢ boxed subformulas, and we see that it is smaller than S in our ordering. The
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same holds for I', B = C. Hence we can apply the induction hypothesis to conclude
that those are derivable in GL4i. Applying L —— gives g4 S.

The cases where A is a conjunction, disjunction, or L are treated in a similar way.
If A = OA;, then the fact that the proof is strict implies that the left premise in L —
is the conclusion of GLR. So we have in GL3i:

Or,04; = A GLR
OI, I/,0r, 04; — B = 04, Oon, n’,0r,B = C L
S = (O, I1',0r,04; — B = C)

with IT" not containing boxed formulas. By weakening, FgLei CIT, OT, JA; = A;.
This sequent and the right premise are smaller than S. The induction hypothesis and
an application of L — results in Fgg; S. O

From the previous theorem and the cut-admissibility of GL3i in Theorem 3.17, we
obtain the following.

Corollary 5.7 The cut rule is admissible in GL4i.

6 An Application: Craig Interpolation

We can use the admissibility of cut in GL3i in order to prove the Craig interpolation
property for intuitionistic Godel-Lob logic. The Craig interpolation property for a
logic L is the statement that if -7 A — B, then there exists a formula / having only
propositional variables shared by A and B such that-; A — [ and -y I — B.
Such a formula 7 is called the interpolant of A and B. There are several gener-
alizations of Craig interpolation for sequent calculi (see Mints [14]). Here we use
the following characterization. We write Var(I") to mean all the atoms occurring in
formulas from T'.

Lemma 6.1 Let 'y, I, = C be provable in GL3i (I'1 and Ty may be empty).
Then there exists a formula I (interpolant) such that

1. Ty =1andT5, 1 = C,
2. Var(l) C Var(I'y) N Var(I'y, C).

Before we prove the lemma, we show how this implies the Craig interpolation prop-
erty for intuitionistic Godel-L&b logic.

Theorem 6.2 (Craig interpolation)  If-iq. A — B, then there exists a formula I
(interpolant) such that

1. |_iGL A—>1 Cli’ldl_iGL I — B,
2. Var(I) C Var(A) N Var(B).

Proof  Suppose that g A — B. By the interpretation of formulas in the sequent
calculus GL3i, we have Fg 31 A = B. By Lemma 6.1, we can find a formula / such
that g3 A = [ and g3 /I = B and Var(/) € Var(A) N Var(B). Again by
the interpretation, we conclude that g A — [ and g I — B. Note that we
immediately have the second requirement. O

Lemma 6.1 is proved by induction on the proof-height of I'y, I, = C. Thisis a
well-known strategy when proving Craig interpolation (see, e.g., Takeuti [17]).



Intuitionistic Godel-Lob Logic 243

Proof of Lemma 6.1  We proceed by induction on the proof-height £ of the deriva-
tion of I';, ', = C. At each stage there are several cases to consider. We deal with
some examples only.

1. k = 0and I';, I, = C is derived by the At-rule; that is, I'y,I'; = C has
the form I, p = p for some p. There are two cases, p € I'; or p € I',. Take
I =pandl = 1 — 1, respectively.

2. k =0and I'1, T, = C is derived by L_L. There are two cases, L € I'; or
1l el Take I = C and I = 1L — 1, respectively.

3. k > 0 and the last rule applied is RA:

M. = 4 Ir,T,= B
I',I'o=4AB
Applying the induction hypothesis to both premises, we have that
e there exists an interpolant /; such that I'y = I and I'5, I; = A with
Var(l;) C Var(I';) N Var(I'z, A);
o there exists an interpolant /, such that I'y = I, and I', I, = B with
Var(/,) € Var(I';) N Var(I',, B).
Take I = I; A I, as the required interpolant. The cases for LA, RV , and LV
are proved in a similar way.

4. k > 0 and the last rule applied is L —. We have two cases, A — B € I';
or A - B € I';. We look at the first case. This case is somehow distinct
from the other steps, in the sense that we apply the induction hypotheses to
sequents where I'; and I'; are “reversed.” Write '} = 1"{, A — B. We have

I,A— B Ty= 4 I|,B,T2=C
[j,A— B,y = C
We now apply the induction hypothesis on the left premise in the following
way:
e there is an interpolant /; such that I', = I; and Fi,A — B, I, = A
with Var(I;) € Var(I';) N Var(I'}, A — B, A).
For the second premise, we obtain that
e there exists an interpolant I, for which Fi, B = IlLand Iy, I, = C
with Var(I,) € Var(T'}, B) N Var(I'y, C).
Take I = I; — I,. It is easily shown that the second requirement of the
lemma is fulfilled. For the first we have to show that I i A— B = I and
I',,I = C are derivable. This is shown in the following derivation trees
using the observations made before. Double lines indicate weakening:

RA

L—

r,B=1I
, /: F2:>I]
I\, A>BIi=>A4 T|,B, =D
7 Lo Iy 1 >hLh=1 T)yhLh=C Lo
., A—-B, I = I» . Tl 5 1= C

Fi,A—>B=>11—>12

5. k > 0 and the last rule applied is GLR:
6r,,6r,,08 = B
In,,0r,,1,,0r, = 0B
We apply the induction hypothesis to the premise to obtain an interpolant 7’
such that (II'y = [’ and LI, OB, I’ = B with Var(I’) € Var(ET';) N
Var(GTy, B). Take I = OI’. Weakening of both sequents with [’ results
in sequents Ty, 0/" = I’ and OT,, 0B, 1',01' = B. Now apply the

GLR
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GLR rule to both to obtain the desired result, that is, IT;,0"; = [ and
I1,, 0T, I = OB with Var(/) C Var(IT;,dI'y) N Var(Il,, OI',, OB).

O

7 Conclusion and Future Research

This article consists of a proof-theoretic study of intuitionistic Godel-Lob logic, with
a focus on the single-conclusion sequent calculi GL3i and GL4i. The main results are
the syntactic cut-admissibility proof and the termination proof for GL4i. What is
especially interesting is that our cut-admissibility proof for GL3i highly depends on
the structure of the calculus. The small difference in the definition of the GLR rule in
GL4i compared to GL3i makes this proof strategy fail for GL4i. This example is one
among others that asks for general syntactic treatments of cut-admissibility.

At the end of the paper, we proved Craig interpolation for iGL using the cut-free
system GL3i. We conjecture that iGL also admits uniform interpolation. In [11],
Tembhoff provides a uniform modular method to prove uniform interpolation for sev-
eral intuitionistic modal logics using terminating calculi. It would be interesting to
know whether this method can be extended to GL4i to prove uniform interpolation for
iGL.

As mentioned in the introduction, there is a variety of semantic frameworks for
iGL. We chose not to include a semantic study of iGL in this paper. However, we
expect that the completeness result for the terminating calculus GL4i can also be
proved by a counter-model construction similar to the one Avron [2] provides for
the completeness result for GL.
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