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EFFECTIVENESS FOR THE DUAL RAMSEY THEOREM

DAMIR D. DZHAFAROV, STEPHEN FLOOD, REED SOLOMON, AND LINDA WESTRICK

Abstract. We analyze the Dual Ramsey Theorem for k partitions and ℓ col-
ors (DRT

k

ℓ
) in the context of reverse math, effective analysis, and strong re-

ductions. Over RCA0, the Dual Ramsey Theorem stated for Baire colorings
Baire-DRT

k

ℓ
is equivalent to the statement for clopen colorings ODRT

k

ℓ
and to

a purely combinatorial theorem CDRT
k

ℓ
.

When the theorem is stated for Borel colorings and k ≥ 3, the resulting
principles are essentially relativizations of CDRT

k

ℓ
. For each α, there is a

computable Borel code for a ∆0
α coloring such that any partition homogeneous

for it computes ∅(α) or ∅(α−1) depending on whether α is infinite or finite.
For k = 2, we present partial results giving bounds on the effective content

of the principle. A weaker version for ∆0
n reduced colorings is equivalent to

Dn
2 over RCA0 + IΣ0

n−1 and in the sense of strong Weihrauch reductions.

1. Introduction

This paper concerns the reverse mathematical and computational strength of
variations of the Dual Ramsey Theorem. For k ≤ ω, let (ω)k denote the set
of all partitions of ω into exactly k pieces. Such a partition can be represented
as a surjective function from ω to k. Thus (ω)k inherits a natural topology by
considering it as a subset of kω.

Dual Ramsey Theorem ([4], [14]). For any k, ℓ < ω, suppose we have a coloring

(ω)k = ∪i<ℓCi. If for each i < ℓ, Ci has the property of Baire, then there is a

partition p ∈ (ω)ω such that any coarsening of p down to exactly k pieces has the

same color.

The reason that this theorem is dual to the original Ramsey’s Theorem concerns
what objects are being colored. In the original Ramsey’s theorem, we color the
k-element subsets of ω, which correspond to injective functions from k to ω. In the
Dual Ramsey Theorem, we color surjective functions from ω to k.

A straightforward choice argument shows that the Dual Ramsey Theorem fails
if no regularity conditions on the Ci are assumed. The theorem was first proved
for Borel colorings by Carlson and Simpson [4], and extended to colorings with
the Baire property by Prömel and Voigt [14]. From the perspective of reverse
mathematics or computational mathematics, the variation in hypothesis gives us
two theorems to consider. We call them the Borel Dual Ramsey Theorem and the
Baire Dual Ramsey Theorem respectively.

Carlson and Simpson asked for a recursion-theoretic analysis of the Borel Dual
Ramsey Theorem. In order to answer this, it is necessary to choose a method for
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encoding the coloring, and one must consider the potential effects of a topologically
intricate coloring. Previous work side-stepped these issues by restricting attention
to open colorings only [12] or by focusing attention only on the main combinatorial
lemma which Carlson and Simpson used in their proof, and on its variable word
variants [12, 7, 11].

From the work of [12], we know that over RCA0, ODRT
k
ℓ implies RTk−1

ℓ , where

ODRT
k
ℓ is the restriction of the Borel Dual Ramsey Theorem to open colorings

only, and RT is the usual Ramsey’s Theorem. This provides a lower bound on
the strength of the Borel Dual Ramsey Theorem. Conversely, in unpublished work
Slaman has shown that the Borel Dual Ramsey Theorem follows from Π1

1-CA0

[18]. No direct implication is known between the Dual Ramsey Theorems and the
variable word theorems, because the Dual Ramsey Theorem does not require the
“words” in its solution to be finite (and by Proposition 3.15, it cannot require this),
while the proof of the Dual Ramsey Theorem from the variable word theorems uses
infinitely many sequential applications of the latter (Theorem 3.18). Overall, this
leaves a rather large gap, and we do not close it. However, we do provide significant
clarification of the key difficulties. In particular, for the first time we directly tackle
the topological aspect of the Borel version of the theorem.

1.1. Combinatorial core of the Borel Dual Ramsey Theorem. Since the
Borel version follows from the Baire version plus the additional principle “Every
Borel set has the property of Baire”, our first step is to understand the Baire
version.

To be clear, an instance of the Baire Dual Ramsey Theorem is a sequence of
pairwise disjoint open sets O0, . . . , Oℓ−1 whose union is dense in (ω)k, and a se-
quence of dense open sets {Dn}n∈ω. Such an instance simultaneously represents all
colorings (ω)k = ∪i<ℓCi for which the symmetric difference Ci∆Oi is disjoint from
∩nDn. There may be uncountably many such colorings, because no condition is
placed on how 2ω \ ∩nDn is colored. Any solution p ∈ (ω)ω to the Baire version
must have (p)k ⊆ ∩nDn.

In Section 3.1 we define a purely combinatorial principle CDRTk
ℓ , which precisely

captures the strength of the Baire version. In the following, if p ∈ (ω)ω and k ≤ ω,
let (p)k denote the set of coarsenings of p into exactly k pieces. Recalling that we
consider p as a surjective function p : ω → k, let

p∗ := p ↾ min p−1(k − 1).

In other words, p∗ is a string on alphabet k− 1, it tells us by its length what is the
smallest element of p’s last block, and it tells us how p partitions the finitely many
smaller elements into its first k − 1 blocks. Let (< ω)k−1 = {p∗ : p ∈ (ω)k}.

Theorem 1.1. Let k, ℓ < ω. Over RCA0, the following are equivalent.

(1) The Baire Dual Ramsey Theorem for k partitions and ℓ colors.

(2) ODRT
k
ℓ

(3) CDRT
k
ℓ , which states: for every c : (< ω)k−1 → ℓ, there is a p ∈ (ω)ω and

a color i < ℓ such that for every x ∈ (p)k, c(x∗) = i.

Thus we have reduced the Baire version of the theorem to a purely combinatorial
statement. The proof of the equivalence is essentially an effectivization of [14].

Aside from the results in [12], the strengths of the CDRT
k
ℓ statements are wide

open. We include one more result, which was known to Simpson (see [4, page 268])
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Figure 1. Implications over RCA0 between variants of the Dual
Ramsey Theorem considered in this paper and some related prin-
ciples. The parameter k ≥ 4 is arbitrary.
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and subsequently rediscovered by Patey [13]: a proof of one case of the Carlson-
Simpson Lemma from Hindman’s Theorem. With minor modifications, we adapt
this proof in Section 3.2 to show that Hindman’s Theorem for ℓ colorings implies
the stronger CDRT

3
ℓ . See Figure 1.1 for a summary of what is known about the

combinatorial core of the Dual Ramsey Theorem.
We close Section 3 with a self-contained proof of CDRT

k
ℓ from the Carlson-

Simpson Lemma (Theorem 3.18). In our proof, the only non-constructive steps are
ω · (k − 2) nested applications of the Carlson-Simpson Lemma.

The earliest claim we are aware of for a proof of CDRT
k
ℓ is in [14], where a

generalization of CDRT
k
ℓ called Theorem A is attributed to a preprint of Voigt

titled “Parameter words, trees and vector spaces”. However, as far as we can tell,
this paper never appeared. Another proof of CDRTk

ℓ can be found in [19], but as a
corollary of a larger theory.

1.2. Computational strength of the Borel Dual Ramsey Theorem. In Sec-
tions 4 and 5, we consider the Borel Dual Ramsey Theorem, or Borel-DRT, from
the perspective of effective combinatorics. The behavior is different depending on
the number of pieces k in the partition, with the k ≥ 3 case being addressed in
Section 4 and the k = 2 case in Section 5.

When k ≥ 3, given a fast-growing function f one can design an open, f -
computable coloring such that all of its homogeneous partitions compute a function
which dominates f (this was already essentially done in [12]). But if f is hyper-
arithmetic, that same coloring has an effective Borel code as a ∆0

α set. Thus by
sneaking the computation of f into an effective Borel code, we obtain a computable
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instance of Borel-DRT3
2. As a result, Borel-DRT3

2 can be informally considered as

some kind of hyperjump of ODRT3
2. Formally, we have the following in Theorem

4.7.

Theorem 1.2. For every computable ordinal α > 0 and every k ≥ 3, there is

a computable Borel code for a ∆0
α coloring c : (ω)k → 2 such that every infinite

partition homogeneous for c computes ∅(α) if α is infinite, or ∅(α−1) if α is finite.

The preceding theorem gives a coding lower bound on the complexity of solutions
for k ≥ 3. In contrast, we remark that the best known basis theorem for the k ≥ 3
case is still the following result of Slaman [18]: Every hyperarithmetic instance
of the Borel Dual Ramsey Theorem has a hyperarithmetically low solution. This
result can also be extracted from our analysis as follows. Given a Borel coloring,
there is a hyperarithmetic witness that it has the property of Baire. Use Theorem
1.1 to computably reduce this instance of the Baire Dual Ramsey Theorem to an
instance of CDRT. It is arithmetic to check whether a given partition p ∈ (ω)ω is
a solution to a given instance c of CDRT. Therefore the collection of solutions is
non-empty Σ1

1. Applying the Gandy Basis Theorem gives the desired solution.
When k = 2, it is likewise possible to create effectively Borel instances which

correspond to hyperarithmetically computable open colorings. However, there are
two important differences with the k = 2 case. First, ODRT2

ℓ is computably true.
As a consequence, when k = 2 the Borel variant has a sharper basis theorem.

Theorem 1.3. Every ∆0
n instance of Borel-DRT2

ℓ has a ∆0
n solution.

This result follows from the more general Theorem 5.4. Note that the ∆0
n in-

stance is a subset of (ω)k which could be topologically intricate, while the solution
is a single ∆0

n partition p ∈ (ω)ω.

The second difference in the k = 2 case is that CDRT2
ℓ is Weihrauch equivalent

to the infinite pigeonhole principle RT
1
ℓ . (Observe that an instance of CDRT2

ℓ is
essentially a coloring of ω.) This immediately offers lower bounds: for each n,
Dn

ℓ ≤sW Borel-DRT
2
ℓ , where D

n
ℓ is the problem whose instances are ∆0

n colorings
c : ω → ℓ and whose solutions are the infinite sets monochromatic for c. The
question is whether these could possibly be equivalences when Borel-DRT

2
ℓ is likewise

restricted to ∆0
n instances. We are only able to show a partial result in this direction

(Theorem 5.7).

Theorem 1.4. Let ∆0
n-rDRT

2
2 be the restriction of Borel-DRT2

2 to instances c which
are given by ∆0

n formulas and for which c is reduced, meaning that c(p) depends

only on p∗ for all p ∈ (ω)2. Then

(1) ∆0
n-rDRT

2
2 ≡sW Dn

2 .

(2) Over RCA0 + IΣ0
n−1, ∆

0
n-rDRT

2
2 is equivalent to Dn

2 .

1.3. Reverse mathematics and Borel sets. In Section 6, we consider problems
motivated by the reverse mathematics of the Borel Dual Ramsey Theorem. We
observe that the Borel Dual Ramsey Theorem can be obtained by composing “Every
Borel set has the property of Baire” (let us call it BP) with the Baire Dual Ramsey
Theorem. So a natural next step is to understand the strength of BP. We show
the following as a part of Theorem 6.9.

Theorem 1.5. Over RCA0, ATR0 is equivalent to the following statement. For

every Borel code B, there is some point x such that x ∈ B or x 6∈ B.
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This result mainly shows that the usual definition of Borel sets, which is given
in [17] using ATR0 as a base theory, really does not make sense in the absence of
ATR0. This provides an obstacle to a satisfactory analysis of BP. While BP follows
from ATR0, (Proposition 6.5), in the reversal BP formally implies ATR0 only due to
the technical reason above. We leave a deeper analysis of BP and the Borel Dual
Ramsey Theorem to future work [2].

The proof of Theorem 1.5 uses a method of effective transfinite recursion, ETR,
which is available in ACA0 (and possibly in weaker systems). Greenberg and Mon-
talbán [8] use ETR to establish equivalences of ATR0 and claim that ETR is provable
in RCA0. However, their proof of ETR overlooks an application of Σ0

1 transfinite in-
duction, and in general, transfinite induction for Σ0

1 formulas does not hold in RCA0.
While the main results in [8] continue to hold because Greenberg and Montalbán
show the classified theorems imply ACA0 without reference to ETR (and hence can
use ETR in ACA0 to complete the equivalence with ATR0), we have included a proof
of ETR in Section 6 to make explicit the use of transfinite induction.

In the final Section 7 we list a number of open questions.

2. Notation

We use ω to denote the natural numbers, which in subsystems of Z2 is the set
{x : x = x}, often denoted by N in the literature. Despite this notation, we do not
restrict ourselves to ω-models. Second, when we refer to the parameters k and ℓ in
versions of the Dual Ramsey Theorem, we assume k and ℓ are arbitrary standard
numbers with k, ℓ ≥ 2. By a statement such as “RCA0 proves Borel-DRTk

ℓ implies

Baire-DRT
k
ℓ ”, we mean, for all k, ℓ ≥ 2, RCA0 ⊢ Borel-DRT

k
ℓ → Baire-DRT

k
ℓ . For

many results, the quantification over k and ℓ can be pulled inside the formal system.
However, in some cases, issues of induction arise and we wish to set those aside in
this work.

For k ≤ ω, let k<ω denote the set of finite strings over k and let kω denote the set
of functions f : ω → k. As noted above, unless explicitly stated otherwise, we will
always assume that k ≥ 2. For σ ∈ k<ω, |σ| denotes the length of σ, and if |σ| > 0,
σ(0), . . . , σ(|σ| − 1) denote the entries of σ in order. For p ∈ kω and σ ∈ k<ω, we
write σ ≺ p if σ is an initial segment of p. Similarly, if σ, τ ∈ k<ω, we write σ � τ
if σ is an initial segment of τ and σ ≺ τ if σ is a proper initial segment of τ . We
write p ↾ n to denote the string obtained by restricting the domain of p to n. The
standard (product) topology on kω is generated by basic clopen sets of the form

[σ] = {p ∈ kω : σ ≺ p}

for σ ∈ k<ω.
We use the following notational conventions for partitions. For k ≤ s ≤ ω, we

use (s)k to denote the set of all partitions of s into exactly k pieces. The pieces
are also called blocks. Each such partition can be viewed as a surjective function
p : s → k, where the blocks are the sets p−1(i) for i < k. More than one surjective
function can describe the same partition, so we pick a canonical one. We say that
p : s → k is ordered if for each i < j < k, min p−1(i) < min p−1(j). We then more
formally define the k-partitions of s as

(s)k = {p ∈ ks : p is surjective and ordered}.

We also let (< ω)k denote ∪r∈ω(r)
k.
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If k ≤ s ≤ t ≤ ω and p ∈ (t)s, then we define (p)k = {x ◦ p : x ∈ (s)k}. In
English, if p is a partition of t into exactly s pieces, (p)k is the set of ways to further
coarsen t down to exactly k pieces, so we call (p)k the set of k-coarsenings of p.

If (ω)k = ∪i<ℓCi and p ∈ (ω)ω with (p)k ⊆ Ci, then we say that p is homogeneous

for the color Ci.
The set (ω)k inherits the subspace topology from kω with basic open sets of

the form [σ] ∩ (ω)k for σ ∈ k<ω. This topology is also natural from the partition
perspective. For example, if we considered a partition instead as an equivalence
relation R ⊆ ω× ω, the same topology is also generated by declaring {R : (n,m) ∈
R} to be clopen for each pair (n,m) ∈ ω × ω.

The space (ω)k is not compact since, for example, the collection of open sets
[0n1] for n ≥ 1 cover (ω)2 but this collection has no finite subcover. However,
if σ ∈ (< ω)k, then [σ] ⊆ (ω)k and [σ] is a compact clopen subset of (ω)k. To
generate the topology on (ω)k, it suffices to restrict to the basic clopen sets of the
form [σ] with σ ∈ (< ω)k. Although the notation [σ] is ambiguous about whether
the ambient space is kω or (ω)k (or ℓω or (ω)ℓ for some ℓ > k), the meaning will be
clear from context.

We denote the ith block of the partition p by p−1(i) (we start counting the blocks
at 0, so the last block of a k-partition is indexed by i = k − 1). We denote the
least element of p−1(i) by µp(i). If p ∈ (ω)k, we will often have use for the string
p∗ = p ↾ µp(k − 1). We can also apply this notation if p ∈ (s)k for any s ≥ k.

Sometimes it is convenient to consider colorings of (p)k for some p ∈ (ω)ω, and
then ask for a homogeneous partition q ∈ (p)ω . This is not really more general than
the case we have been considering, because a coloring (p)k = ∪i<ℓCi corresponds
canonically to the coloring of (ω)k defined by

(1) x ∈ Ĉi ⇐⇒ x ◦ p ∈ Ci.

In this case any y ∈ (ω)ω is homogeneous for {Ĉi}i<ℓ if and only if y ◦ p is homo-
geneous for {Ci}i<ℓ.

3. The Baire Dual Ramsey Theorem

3.1. Three versions of the Baire Dual Ramsey Theorem. We formulate
three versions of the Baire Dual Ramsey Theorem in second order arithmetic and
show they are equivalent over RCA0.

Coding colorings or sets with the Baire property in second order arithmetic is
complicated by the fact that there are 2c (where c = 2ℵ0) many subsets of (ω)k

or kω with the Baire property. However, if we identify colorings which are the
same after discarding a meager set, then there are only continuum many with
the Baire property. Specifying only an equivalence class of colorings is consistent
with how theorems which hypothesize the Baire property usually work. They start
by fixing a comeager approximation to the set in question and then proceed by
working exclusively with this approximation. This classical observation motivates
our definition of a code for a Baire coloring.

Definition 3.1 (RCA0). A code for an open set in (ω)k is a set O ⊆ ω × (< ω)k.
We say that a partition p ∈ (ω)k is in the open set coded by O (or just in O and
write p ∈ O) if there is a pair 〈n, σ〉 ∈ O such that p ∈ [σ].

A code for an closed set in (ω)k is also a set V ⊆ ω × (< ω)k. In this case, we
say p ∈ (ω)k is in V (and write p ∈ V ) if for all pairs 〈n, σ〉 ∈ V , p 6∈ [σ].
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Definition 3.2 (RCA0). An open set O ⊆ (ω)k is dense if for all τ ∈ (< ω)k,
[τ ] ∩ O 6= ∅. That is, for all τ , there is a pair 〈n, σ〉 ∈ O such that σ and τ are
comparable as strings.

Definition 3.3 (RCA0). A code for a Baire ℓ-coloring of (ω)k is a sequence of
dense open sets {Dn}n<ω together with a sequence of pairwise disjoint open sets
{Oi}i<ℓ such that

⋃
i<ℓOi is dense in (ω)k.

Recall that RCA0 suffices to prove the Baire Category Theorem: if {Dn}n<ω

is a sequence of dense open sets, then ∩n<ωDn is dense. Classically, if a coloring
∪i<ℓCi = (ω)k has the Baire property, then it has a comeager approximation given
by sequences of open sets {Oi}i<ℓ and {Dn}n<ω such that each Dn is dense and
for each p ∈ ∩n<ωDn, p ∈ Ci if and only if p ∈ Oi.

We abuse terminology and refer to the Baire code as a Baire ℓ-coloring of (ω)k.
Similarly, an open ℓ-coloring is a coloring (ω)k = ∪i<ℓOi in which the Oi are open
and pairwise disjoint.

Definition 3.4. For each (standard) k, ℓ ≥ 2, we define Baire-DRT
k
ℓ , ODRT

k
ℓ and

CDRT
k
ℓ in RCA0 as follows.

(1) Baire-DRT
k
ℓ : For every Baire ℓ-coloring {Oi}i<ℓ and {Dn}n<ω of (ω)k, there

is a partition p ∈ (ω)ω and a color i < ℓ such that for all x ∈ (p)k,
x ∈ Oi ∩

⋂
nDn.

(2) ODRT
k
ℓ : For every open ℓ-coloring (ω)k = ∪i<ℓOi, there is a partition

p ∈ (ω)ω and a color i < ℓ such that for all x ∈ (p)k, x ∈ Oi.

(3) CDRT
k
ℓ : For every coloring c : (< ω)k−1 → ℓ, there is a partition p ∈ (ω)ω

and a color i < ℓ such that for all x ∈ (p)k, c(x∗) = i.

Our first goal is to show that the instances of CDRTk
ℓ are in one-to-one canonical

correspondence with those instances of ODRTk
l for which the coloring of (ω)k is

reduced. We define a reduced coloring without considering the coding method and
note that any reduced coloring is open.

Definition 3.5. Let y ∈ (ω)ω and m < k. A coloring of (y)k is m-reduced if
whenever p, q ∈ (y)k and p ↾ µp(m) = q ↾ µq(m), p and q have the same color. A
coloring of (y)k is reduced if it is (k − 1)-reduced.

Note that a coloring is reduced means that the color of each partition p ∈ (y)k

depends only on p∗.

Proposition 3.6 (RCA0). The following are equivalent.

(1) CDRT
k
ℓ .

(2) For every open reduced coloring (ω)k = ∪i<ℓOi, there are p ∈ (ω)ω and

i < ℓ such that (p)k ⊆ Oi.

(3) For every y ∈ (ω)ω and open reduced coloring (y)k = ∪i<ℓOi, there are

p ∈ (y)ω and i < ℓ such that (p)k ⊆ Oi.

Proof. Clearly (3) implies (2). To see that (2) implies (3), fix y ∈ (ω)ω and a
reduced open coloring (y)k = ∪i<ℓOi. Define

Ôi = {〈n, τ〉 : τ ∈ (< ω)k and τ ◦ y ∈ Oi}

It is straightforward to check that the coloring (ω)k = ∪i<ℓÔi is also reduced, and

that whenever x is homogeneous for ∪i<ℓÔi then x ◦ y is homogeneous for ∪i<ℓOi.
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To see (2) implies (1), fix c : (< ω)k−1 → ℓ. For each i < ℓ, let

Oi = {〈0, σa(k − 1)〉 : σ ∈ (< ω)k−1 and c(σ) = i}.

Then (ω)k = ∪i<ℓOi is an open reduced coloring of (ω)k, and any infinite partition
which is homogeneous for it is also homogeneous for c.

For the implication from (1) to (2), assume CDRT
k
ℓ , and suppose we are given

a coloring ∪i<ℓOi. Now, for each σ ∈ (< ω)k−1, we define c(σ) as follows. Note
that for some i < ℓ, some τ � σa(k− 1), and some n, we have 〈n, τ〉 ∈ Oi. Letting
〈n, τ, i〉 be the least triple with this property, we define c(σ) = i.

Let i < ℓ and p ∈ (ω)ω be the result of applying CDRT
k
ℓ to c. Given x ∈ (p)k,

we know that c(x∗) = i. Let n, τ be the witnesses used in the definition of c(x∗).
Let q ∈ (ω)k with q ≻ τ . Then q ∈ Oi. Since Oi is reduced and q∗ = τ∗ = x∗,
x ∈ Oi. Therefore, p is homogeneous for the coloring ∪i<ℓOj , as required. �

It is now routine to show that the number of colors does not matter.

Proposition 3.7 (RCA0). CDRT
k
ℓ and CDRT

k
2 are equivalent.

Proof. Collapse colors and iterate CDRT
k
2 finitely many times, using Proposition

3.6. �

The next proof is essentially an effective version of an argument in [14].

Theorem 3.8 (RCA0). Baire-DRT
k
ℓ , ODRT

k
ℓ and CDRT

k
ℓ are equivalent.

Proof. By settingDn = (ω)k in Baire-DRT
k
ℓ , ODRT

k
ℓ is a special case of Baire-DRTk

ℓ ,

and by Proposition 3.6, CDRTk
ℓ is a special case of ODRTk

ℓ . It remains to prove in

RCA0 that CDRTk
ℓ implies Baire-DRTk

ℓ .
Let {Oi}i<ℓ, {Dn}n<ω be a Baire ℓ-coloring of (ω)k for which the open sets Oi

are pairwise disjoint. We construct a partition y ∈ (ω)ω such that (y)k ⊆ ∩nDn

and ∪iOi restricted to (y)k is reduced. By Proposition 3.6 and CDRT
k
ℓ , there is a

homogeneous z ∈ (y)ω for this open reduced coloring. Since (z)k ⊆ (y)k ⊆ ∩nDn,
this partition z is homogeneous for the original Baire coloring.

First we describe the construction in a classical way, and then remark on how it
can be carried out in RCA0.

Build y by initial segments in stages, y = lims ys, starting with y0 being the
empty string, and then continuing with stage s = 1 as follows. Assume that at
the start of stage s, ys−1 is an (s − 1)-partition. In stage s begin by letting y0s =
ys−1

a(s − 1), so that y0s is an s-partition. Let x0, . . . , xr be a list of the elements
of (s)k. For each i = 0, . . . r, let q = xi ◦ yis. Let τ ∈ (< ω)k be such that q � τ
and τ meets ∩n≤sDn and ∪i<ℓOi. Then extend yis to yi+1

s in such a way that
xi ◦y

i+1
s = τ . In general there is more than one way to do this, but which way does

not matter. For concreteness, for each n ≥ |yis| we could set yi+1
s (n) to be the least

m such that xi(m) = τ(n). At the conclusion of these substages we are left with
yr+1
s . Let ys = yr+1

s . This completes the construction of y.
We need to justify why this construction can be carried out in RCA0. To that

end, we make the following claims in RCA0:

(1) For any q ∈ (< ω)k and s, there is an extension τ � q which meets ∪i<ℓOi

and ∩n≤sDn. To see that for all s, such a τ exists, apply Σ0
1 induction.

(2) There is a function f : (< ω)k × ω → (< ω)k with the properties above.
This follows because in RCA0, we can select the τ with least witness.
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(3) There is a function which outputs the sequence

y01 , . . . , y
r1
1 , y

0
2 , . . . , y

r2
2 , y

0
3 , . . .

This can be obtained by primitive recursion using the function f .

Therefore, y exists in RCA0. Next we show that (y)k ⊆ ∩nDn. Let w ∈ (y)k and
fix n. Let x ∈ (ω)k with x◦y = w. Let s ≥ n be large enough that x ↾ s ∈ (s)k. Then
x ↾ s was one of the ways to coarsen considered during stage s of the construction.
By construction, (x ↾ s) ◦ ys meets Dn. So x ◦ y ∈ Dn.

Finally, we claim that the restriction of ∪i<ℓOi to (y)k is a reduced coloring.
Given if w1, w2 ∈ (y)k with w∗

1 = w∗
2 , let x1 and x2 be such that x1 ◦ y = w1 and

x2 ◦ y = w2. Then x∗1 = x∗2. Let x = (x∗1)
a(k − 1) and let s = |x|. Then x ∈ (s)k

and x was considered at stage s of the construction. By construction, x ◦ ys meets
Oi for some i. Since x ◦ ys is an initial segment of both w1 and w2, it follows that
w1 and w2 are both in Oi. Finally, as w1, w2 ∈ ∩nDn, we have w1, w2 ∈ Ci, as
needed. �

Since ODRT
k+1
ℓ implies RTk

ℓ over RCA0 [12], we have the following corollary.

Corollary 3.9 (RCA0). CDRT
k+1
ℓ implies RT

k
ℓ .

Proposition 3.10. For any ℓ ≥ 2, RCA0 proves CDRT
2
ℓ and hence also ODRT

2
ℓ .

Proof. Let c : (< ω)1 → ℓ. Since (< ω)1 = {0n : n ∈ ω}, c can be viewed as an

ℓ-coloring of ω. By RT
1
ℓ , there is a color i and an infinite set X such that for every

n ∈ X , c(0n) = i. Let z be the partition which has a block of the form {n} for each
n ∈ X and puts all the other numbers in z−1(0). Then z is homogeneous for c. �

3.2. Connections to Hindman’s theorem. In this section, we show that Hind-
man’s Theorem for ℓ-colorings implies CDRT

3
ℓ . In [4], Simpson remarks that one

case of the Carlson-Simpson Lemma follows from Hindman’s Theorem. Ludovic
Patey showed us a proof, and the same argument gives a strong form of CDRT3

ℓ .
We include Patey’s proof here.

Definition 3.11 (RCA0). Let Pfin(ω) denote the set of (codes for) all non-empty
finite subsets of ω. X ⊆ Pfin(ω) is an IP set if X is closed under finite unions and
contains an infinite sequence of pairwise disjoint sets.

Theorem 3.12 (Hindman’s theorem for ℓ-colorings). For every c : Pfin(ω) → ℓ
there is an IP set X and a color i < ℓ such that c(F ) = i for all F ∈ X.

Theorem 3.13 (essentially Patey [13], see also [4, page 268]). Over RCA0, Hind-

man’s theorem for ℓ-colorings implies CDRT
3
ℓ . In particular, CDRT3

ℓ is provable in

ACA
+
0 .

Proof. Hindman’s Theorem follows from ACA
+
0 by [3], so it suffices to prove the

first statement. Fix ℓ ≥ 2 and assume Hindman’s Theorem for ℓ-colorings. Since
Hindman’s Theorem for 2-colorings implies ACA0, we reason in ACA0. By Propo-
sition 3.6, it suffices to fix an open reduced coloring (ω)3 = ∪i<ℓOi and produce
p ∈ (ω)ω and i < ℓ such that for all x ∈ (p)3, x ∈ Oi. We write the coloring as
c : (ω)3 → ℓ with the understanding that c(x) = i is shorthand for x ∈ Oi.
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For a nonempty finite set F ⊆ ω with 0 /∈ F and a number n > maxF , we let
xF,n ∈ (ω)3 be the following partition.

xF,n(k) =





0 if k /∈ F and k 6= n

1 if k ∈ F

2 if k = n

Thus, the blocks are ω − (F ∪ {n}), F and {n}. Note that we can determine the
color c(xF,n) as a function of F and n and that since c is reduced, if x ∈ (ω)3 and
x ↾ µx(2) = xF,n ↾ n, then c(x) = c(xF,n).

The remainder of the proof is most naturally presented as a forcing construction.
After giving a classical description of this construction, we indicate how to carry
out the construction in ACA0. The forcing conditions are pairs (F, I) such that

• F is a non-empty finite set such that 0 /∈ F ,
• I is an infinite set such that maxF < min I, and
• for every nonempty subset U of F there is an i < ℓ such that c(xU,n) = i
for all n ∈ F ∪ I with maxU < n.

Extension of conditions is defined as for Mathias forcing: (F̂ , Î) ≤ (F, I) if F ⊆

F̂ ⊆ F ∪ I and Î ⊆ I.
By the pigeonhole principle, there is an i < l such that c(x{1},n) = i for infinitely

many n > 1. For any such i, the pair ({1}, {n ∈ ω : n > 1 and c(x{1},n) = i}) is

a condition. More generally, given a condition (F, I) there is an infinite set Î ⊆ I

such that (F ∪ {min I}, Î) is also a condition. To see this, let U0, . . . , Us−1 be
the nonempty subsets of F ∪ {min I} containing min I. By arithmetic induction,
for each positive k ≤ s, there exist colors i0, . . . , ik−1 < ℓ such that there are
infinitely many n ∈ I with c(xUj ,n) = ij for all j < k. (If not, fix the least k for
which the fact fails, and apply the pigeonhole principle to obtain a contradiction.)

Let i0, . . . , is−1 be the colors corresponding to k = s and let Î be the infinite set
{n ∈ I : ∀j < s (c(xUj ,n) = ij)}.

Fix a sequence of conditions (F1, I1) > (F2, I2) > · · · with |Fk| = k and let
G =

⋃
k Fk. To complete the proof, we use G to define a coloring d : Pfin(ω) → ℓ

to which we can apply Hindman’s Theorem. However, first we indicate why we can
form G in ACA0.

The conditions (F, I) used to form G can be specified by the finite set F , the
number m = min I and the finite sequence δ ∈ ℓM where M = 2|F | − 1 such that
if F0, . . . , FM−1 is a canonical listing of the nonempty subsets of F , then I = {n ≥
m : ∀j < M (c(xFj ,n) = δ(j))}. The extension procedure above can be captured by
an arithmetically definable function f(F,m, δ) = 〈F ∪ {m},m′, δ′〉 where F ∪ {m},

m′ and δ′ describe the extension (F ∪ {m}, Î). Because the properties of this
extension where verified using arithmetic induction and the pigeonhole principle,
both of which are available in ACA0, we can define f in ACA0 and form a sequence
of conditions (F1,m1, δ1) > (F2,m2, δ2) > · · · giving G =

⋃
k Fk.

It remains to use G = {g0 < g1 < · · · } to complete the proof. By construction,
for each non-empty finite subset U of G, there is color iU < ℓ such that c(xU,n) = iU
for all n ∈ G with n > maxU . Define d : Pfin(ω) → ℓ by d(F ) = i{gm:m∈F}. We
apply Hindman’s theorem to d to obtain an IP set X and a color i < ℓ. Since X
contains an infinite sequence of pairwise disjoint members, we can find a sequence
E1, E2, . . . of members of X such that maxEk < minEk+1. Define p ∈ (ω)ω to be



EFFECTIVENESS FOR THE DUAL RAMSEY THEOREM 11

the partition whose blocks are p−1(0) = ω−
⋃

k{gm : m ∈ Ek} and, for each k ≥ 1,
p−1(k) = {gm : m ∈ Ek}. Note that for all k ≥ 1,

max p−1(k) = max{gm : m ∈ Ek} < min p−1(k + 1) = min{gm : m ∈ Ek+1}.

It remains to verify that p and i have the desired properties. Consider any
x ∈ (p)3; we must show that c(x) = i. Let U = x−1(1) ∩ µx(2) and let n = µx(2).
Then n = µxU,n(2) and x ↾ n = xU,n ↾ n, so since c is reduced, c(x) = c(xU,n).
Therefore, it suffices to show c(xU,n) = i.

We claim U is a finite union of p-blocks. Because x is a coarsening of p, x−1(1) is
a (possibly infinite) union of p-blocks p−1(j1)∪p−1(j2)∪· · · with 0 < j1 < j2 < · · ·
and n = µx(2) = min x−1(2) = min p−1(b) for some b ≥ 2. Let ja be the largest
index such that ja < b. Since the p-blocks are finite and increasing, U = x−1(1) ∩
µx(2) = p−1(j1) ∪ · · · ∪ p−1(ja). Note that n ∈ G (because p−1(b) 6= p−1(0)) and
maxU < n.

It follows that U = {gm | m ∈ F} where F = Ej1 ∪ · · · ∪ Eja . Since our fixed
IP set X is closed under finite unions, F ∈ X and therefore d(F ) = i. By the
definition of d, d(F ) = i{gm|m∈F} = iU , so i = iU . Finally, U is a finite subset of
G, n ∈ G and maxU < n, so c(xU,n) = iU = i as required. �

Observe that this proof of CDRT
3
ℓ from HT produces a homogeneous p with

a special property: max p−1(i) < min p−1(i + 1) for all i > 0. We show that this

strengthened “ordered finite block” version of CDRT3
ℓ is equivalent to HT. However,

there is no finite block version of CDRTk
ℓ for k > 3.

Proposition 3.14 (RCA0). If for every ℓ-coloring of (< ω)2 there is an infinite

homogeneous partition p with max p−1(i) < min p−1(i + 1) for all i > 0, then

Hindman’s Theorem for ℓ-colorings holds.

Proof. Given c : Pfin(ω) → ℓ, define ĉ : (< ω)2 → ℓ by ĉ(σ) = c({i < |σ| : σ(i) =
1}). Let p be a homogeneous partition for ĉ with max p−1(i) < min p−1(i + 1) for
all i > 0. The set of all finite unions of the blocks p−1(i) for i > 0 satisfies the
conclusion of Hindman’s Theorem. �

Proposition 3.15. There is a 2-coloring of (< ω)3 such that any infinite homoge-

neous partition p has p−1(i) infinite for all i > 0.

Proof. For σ ∈ (< ω)3, set c(σ) = 1 if σ contains more 1’s than 2’s and set c(σ) = 0
otherwise. Let p be homogeneous for this coloring. Suppose for contradiction that
i > 0 is such that p−1(i) is finite. Let N = i+ 2+ |p−1(i)| and let x = w ◦ p where

w(n) =





1 if n = i

2 if i < n ≤ N

3 if n = N + 1

0 otherwise

Since x∗ has more 2’s than 1’s, c(x∗) = 0. Now coarsen in a different way: let
h ∈ [i + 1, N ] be chosen so that the size of p−1(h) ∩ [0, µx(3)] is minimized. Let
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y = z ◦ p where

z(n) =





1 if i ≤ n ≤ N and n 6= h

2 if n = h

3 if n = N + 1

0 otherwise.

Since at least one p-block has moved from x−1(2) to y−1(1) and since y−1(2) con-
tains only the smallest p-block from x−1(2), c(y∗) = 1. So p was not homoge-
neous. �

3.3. CDRT and the Carlson-Simpson Lemma. The Carlson-Simpson Lemma
is the main technical tool in the original proof of the Borel version of the Dual
Ramsey Theorem. The principle is usually stated in the framework of variable
words, but it can also be understood as a special case of the Combinatorial Dual
Ramsey Theorem.

Carlson-Simpson Lemma (CSL(m, ℓ)). For every coloring c : (< ω)m → ℓ, there
is a partition p ∈ (ω)ω and a color i such that for all x ∈ (p)m+1, if p−1(j) ⊆ x−1(j)
for each j < m, then c(x∗) = i.

The condition p−1(j) ⊆ x−1(j) for j < m captures those x ∈ (p)m+1 which
keep the first m many blocks of p distinct in x. Therefore, CSL(m, ℓ) is a special
case of CDRT

m+1
ℓ . Two related principles, OVW(m, ℓ) and VW(m, ℓ) have also

been studied (see [12, 7, 11]). We do not deal with these principles, but it may
be useful to note that VW(m, ℓ) is the strengthening of CSL(m, ℓ) which requires
each nonzero block p−1(j) to be finite, and OVW(m, ℓ) is the further strengthening
which requires max p−1(j) < min p−1(j + 1) for all j > 0.

In Proposition 3.16, we give three equivalent versions of the Carlson-Simpson
Lemma. The version in Proposition 3.16(2) is (up to minor notational changes
which are easily translated in RCA0) the statement from Lemma 2.4 of Carlson and
Simpson [4].

Proposition 3.16 (RCA0). The following are equivalent.

(1) CSL(m, ℓ).
(2) For each coloring c : (< ω)m → ℓ, there is a partition p ∈ (ω)ω and a color i

such that for all j < m, p(j) = j and for all x ∈ (p)m+1, if p−1(j) ⊆ x−1(j)
for each j < m, then c(x∗) = i.

(3) For each y ∈ (ω)ω and open reduced coloring (y)m+1 = ∪i<ℓOi, there is a

partition p ∈ (y)ω and a color i such that for all j < m, y−1(j) ⊆ p−1(j)
and for all x ∈ (p)m+1, if p−1(j) ⊆ x−1(j) for each j < m, then x ∈ Oi.

Proof. (2) implies (1) because CSL(m, ℓ) is a special case of (2). The extra condition
in (2) that p(j) = j for j < m says that the partition p does not collapse any of the
first m-many blocks of the trivial partition defined by the identity function. The
equivalence between (2) and (3) is proved in a similar way to Proposition 3.6.

It remains to prove (1) implies (2). Fix an ℓ-coloring c : (< ω)m → ℓ. Define
c̃ : (< ω)m → ℓ by c̃(σ) = c(0a1a · · ·a (m − 1)aσ). Apply CSL(m, ℓ) to c̃ to get
p̃ ∈ (ω)ω and i < ℓ such that for all x̃ ∈ (p̃)m+1, if p̃−1(j) ⊆ x̃−1(j) for all j < m,
then c̃(x̃∗) = i.
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Let p ∈ (ω)ω be the partition defined by

p(j) =

{
j if j < m

p̃(j −m) if j ≥ m
.

We claim that p satisfies the conditions in (2) for the coloring c with the fixed color
i. Fix x ∈ (p)m+1 such that p−1(j) ⊆ x−1(j) for all j < m. We need to show that
c(x∗) = i. Since x does not collapse any of the first m-many p-blocks, x(j) = j
for all j < m. Define x̃ ∈ (p̃)m+1 by x̃(j) = x(j +m). Then p̃−1(j) ⊆ x̃−1(j) for
all j < m. Therefore, c̃(x̃∗) = i. Now, x∗ = 0a1a . . .a (m − 1)ax̃∗. Therefore,
c(x∗) = c̃(x̃∗) = i, as required to complete the proof that (1) implies (2). �

Let y ∈ (ω)ω and (y)k = ∪i<ℓCi be an m-reduced coloring for some 1 < m < k.

We define the induced coloring (y)m+1 = ∪i<ℓĈi as follows. For q̂ ∈ (y)m+1,

q̂ ∈ Ĉi if and only if q ∈ Ci for some (or equivalently all) q ∈ (y)k such that
q̂ ↾ µq̂(m) = q ↾ µq(m). This induced coloring is a reduced coloring of (y)m+1 and
therefore we can apply CSL(m, ℓ) to it.

Our proof of CDRTk
ℓ from the Carlson-Simpson Lemma will use repeated appli-

cations of the following lemma, which is proved using ω many nested applications
of CSL(m, ℓ).

Lemma 3.17. Fix 1 < m < k and y ∈ (ω)ω. Let (y)k = ∪i<ℓCi be an m-reduced

coloring. There is an x ∈ (y)ω such that the coloring restricted to (x)k is (m− 1)-
reduced.

Proof. Fix an m-reduced coloring (y)k = ∪i<ℓCi. We define a sequence of infinite
partitions xm, xm+1, · · · starting with index m such that xm = y and xs+1 is a
coarsening of xs for which xs

−1(j) ⊆ xs+1
−1(j) for all j < s. That is, we do not

collapse any of the first s-many blocks of the partition xs when we coarsen it to
xs+1. This property guarantees that the sequence has a well-defined limit x ∈ (ω)ω.
We show this limiting partition x satisfies the conclusion of the lemma.

Assume xs has been defined for a fixed s ≥ m and we construct xs+1. Set
x0s = xs. Let σ0, . . . , σr be a list of the elements of (s)m. We define a sequence of
coarsenings x1s, . . . , x

r
s and set xs+1 = xrs.

Assume that xjs has been defined. Define

σ+
j (n) =

{
σj(n) if n < s

m+ (n− s) if n ≥ s
,

and let wj
s = σ+

j ◦xjs. That is w
j
s collapses the first s-many blocks of xjs intom-many

blocks in the j-th possible way and leaves the remaining blocks of xjs unchanged.
Since wj

s is a coarsening of y, the coloring ∪i<ℓCi is also an m-reduced coloring of

(wj
s)

k. Let (wj
s)

m+1 = ∪i<ℓĈi be the induced coloring. This coloring is reduced, so
let ijs < ℓ and zjs ∈ (wj

s)
ω be the result of applying CSL(m, l) as stated in Proposition

3.16(3). Then zjs leaves the first m blocks of wj
s separate, and any coarsening of

zjs into at least m + 1 pieces receives color ijs, provided the first m blocks are left
separate.

To define xj+1
s , we want to “uncollapse” the first m-many blocks of zjs to reverse

the action of σ+
j in defining wj

s. Since wj
s collapsed the first s-blocks of xjs to m-

many blocks and since zjs is a coarsening of wj
s, if x

j
s(u) < s, then zjs(u) < m. We

define xj+1
s by cases as follows.
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(1) If xjs(u) < s, then xj+1
s (u) = xjs(u).

(2) If xjs(u) ≥ s and zjs(u) = a < m, then xj+1
s (u) = xjs(µ

zj
s(a)).

(3) If zjs(u) ≥ m, then xj+1
s (u) = zjs(u) + (s−m).

Below we verify that xj+1
s is an infinite partition coarsening xjs which does not

collapse any of the first s-many blocks of xjs. This completes the construction of
xj+1
s and hence of xs+1 and x.

We verify the required properties of xj+1
s . By (1), xjs

−1
(a) ⊆ xj+1

s

−1
(a) for all

a < s, so we do not collapse any of the first s-many blocks of xjs in x
j+1
s . There is no

conflict between (1) and (3) because xjs(u) < s implies zjs(u) < m. Furthermore, (3)
renumbers the zjs-blocks starting with index m to xj+1

s -blocks starting with index
s without changing any of these blocks. Therefore, xj+1

s is an infinite partition.
In (2), we handle the case when the xjs-block containing u is not changed by

wj
s (except to renumber its index) but is collapsed by zjs into one of the first m-

many zjs-blocks. In this case, µzj
s (a) = µxj

s(b) for some b < s and we have set
xj+1
s (u) = b. It is straightforward to check (as in the proof of Theorem 3.8) that
xj+1
s is a coarsening of xjs and that σ+

j ◦ xj+1
s = zjs.

To complete the proof, we verify that the restriction of ∪i<ℓCi to (x)k is (m−1)-
reduced. Fix p ∈ (x)k and we show the color of p depends only on p ↾ µp(m− 1).

Let q ∈ (ω)ω be the unique element with p = q ◦ x, and let σ = q ↾ µq(m − 1).
Then σa(m− 1) ∈ (s)m for some s, and

p ↾ µp(m− 1) = σ ◦ (x ↾ µx(s− 1)).

During stage s and afterward, the first s blocks of xs are always kept separate.
Therefore, the above equation remains true when x is replaced with xj+1

s , where j
is the unique index such that σj = σ. Therefore, p is a coarsening of σ+

j ◦xs+1
j = zjs

and p keeps the first m blocks of zjs separate. Therefore, the color of p is ijs,
the homogeneous color obtained when we applied CSL(m, ℓ) to obtain zjs. This
completes the proof that the restriction of ∪i<ℓCi to (x)

k is (m−1)-reduced because
the indices s and j in zjs are determined only by p ↾ µp(m− 1). �

We end this section with the proof of CDRTk
ℓ .

Theorem 3.18. For all for k ≥ 2 and all ℓ, CDRTk
ℓ holds.

Proof. For k = 2, CDRTk
ℓ follows from the pigeonhole principle as in Proposition

3.10. Now assume k ≥ 3. Consider CDRT
k
ℓ in the form given in Proposition 3.6.

Let y ∈ (ω)ω and (y)k = ∪i<ℓOi be an open reduced coloring. These satisfy the
assumptions of Lemma 3.17 with m = k − 1. After k − 2 applications of Lemma
3.17, we obtain x ∈ (y)ω such that the restriction of ∪i<ℓOi to (x)k is 1-reduced
and hence the color of p ∈ (x)k depends only on p ↾ µp(1). Since the numbers
n < µp(1) must lie in p−1(0), the color of p is determined by the value of µp(1).
By the pigeonhole principle, there is an infinite set X ⊆ {µx(a) : a ≥ 1} and a
color i such that for all p ∈ (x)k, if µp(1) ∈ X , then p ∈ Ci. It follows that for any
z ∈ (x)ω such that µz(a) ∈ X for all a ≥ 1, (z)k ⊆ Ci as required. �

It is interesting to note that the only non-constructive steps in this proof are the
ω · (k − 2) nested applications of the Carlson-Simpson Lemma.



EFFECTIVENESS FOR THE DUAL RAMSEY THEOREM 15

4. The Borel Dual Ramsey Theorem for k ≥ 3

In the next two sections we consider the Borel Dual Ramsey Theorem from the
perspective of effective mathematics. We define Borel codes for topologically Σ0

α

subsets of (ω)k by induction on the ordinals below ω1. Let L be some countable

set of labels which effectively code for the clopen sets ∅, (ω)k and [σ] and [σ] for
σ ∈ (< ω)k.

Definition 4.1. We define a Borel code for a Σ0
α or Π0

α set.

• A Borel code for a Σ0
0 or a Π0

0 set is a labeled tree T consisting of just a
root λ in which the root is labeled by a clopen set from L. The Borel code
represents that clopen set.

• For α ≥ 1, a Borel code for a Σ0
α set is a labeled tree with a root labeled

by ∪ and attached subtrees at level 1, each of which is a Borel code for a
Σ0

βn
or Π0

βn
set An for some βn < α. The code represents the set ∪nAn.

• For α ≥ 1, a Borel code for a Π0
α set is the same, except the root is labeled

∩. The code represents the set ∩nAn.

For α ≥ 1, a Borel code for a ∆0
α set is a pair of labeled trees which encode the

same set, where one encodes it as a Σ0
α set and the other encodes it as a Π0

α set.

The codes are faithful to the Borel hierarchy in the sense that every code for a
Σ0

α set represents a Σ0
α set and every Σ0

α set is represented by a Borel code for a
Σ0

α set. There is a uniform procedure to transform a Borel code B for a Σ0
α set A

into a Borel code B for a Π0
α set A: leave the underlying tree structure the same,

swap the ∪ and ∩ labels and replace the leaf labels by their complements.
Observe also that a code for a Σ0

1 set essentially agrees with the definition of
a code for an open set in Definition 3.1 (up to a primitive recursive translation
mapping elements of ω× (< ω)k to leaves of a Σ0

1 code, and mapping each leaf of a
Σ0

1 code to an element or sequence of elements of ω × (< ω)k). The one difference
is that we must include a leaf label of ∅ in the definition of a Borel code, so that
the empty set has a Σ0

1 code. Having included ∅ as a label, we also include (ω)k to
keep complementation effective.

We recall some notation from hyperarithmetic theory. Let O denote Kleene’s
set of computable ordinal notations. The ordinal represented by a ∈ O is denoted
|a|O, with |1|O = 0, |2a|O = |a|O +1, and |3 · 5e|O = supj |ϕe(j)|O. The H-sets are
defined by effective transfinite recursion on O as follows: H1 = ∅, H2a = H ′

a and
H3·5a = {〈i, j〉 | i ∈ Hϕa(j)}. The reader is referred to Sacks [16] for more details.
To use oracles that line up better than the H-sets do with the levels of the Borel
hierarchy, define

∅(a) =

{
Ha if |a|O < ω

H2a otherwise.

If |a|O = |b|O = α, then ∅(a) ≡1 ∅(b), so we sometimes just write ∅(α) in that

situation. As usual, ωCK
1 denotes the least noncomputable ordinal.

Recall the standard effectivizations of the notions described above. We say that
a Borel code B is computable if it is computable as a labeled subtree of ω<ω. We say
B is effectively Σ0

α (respectively effectively Π0
α) if the root is labeled ∪ (respectively

∩) and additionally there is a ∈ O with |a|O = α, and a computable labeling of the
nodes of B with notations from {b : b ≤O a}, such that the root is labeled with a
and each node has a label strictly greater than all its extensions.
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It is well-known that an open set of high hyperarithmetic complexity can be
represented by a computable Borel code for a Σ0

α set, where α is an appropriate
computable ordinal. In the following proposition, we use a standard technique to
make this correspondence explicit. Fix an effective 1-to-1 enumeration τn for the
strings τ ∈ (< ω)k.

Proposition 4.2. There is a partial computable function p(x, y) such that p(a, e) is

defined for all a ∈ O and e ∈ ω and such that if a ∈ O and R =
⋃
{[τn] : n ∈W

∅(a)
e },

then Φp(a,e) is a computable Borel code for R as a Σ0
α+1 set, where α = |a|O.

Proof. We define p(a, e) for all e by effective transfinite recursion on a ∈ O. Let
Φp(1,e) be a Borel code for the open set R =

⋃
{[τn] : n ∈We}.

For the successor step, consider R =
⋃
{[τn] : n ∈ W

∅(2a)
e }. Each set which is Σ0

1

in ∅(2a) is Σ
0
2 in ∅(a) and for such sets, we can effectively pass from a Σ

0,∅(2a)

1 index

to a Σ
0,∅(a)

2 description. Specifically, uniformly in e, we compute an index e′ such
that for all oracles X , ΦX

e′ (x, y) is a total {0, 1}-valued function and

n ∈ WX′

e if and only if ∃t ∀s ≥ t (ΦX
e′ (n, s) = 1).

Let Rt =
⋃
{[τn] : ∃s ≥ t (Φ

∅(a)

e′ (n, s) = 0)}. R0 ⊇ R1 ⊇ · · · is a decreasing sequence

of sets such that x 6∈ R if and only if ∀t (x ∈ Rt). Therefore, R = ∪tRt. Each set Rt

can be represented as Rt =
⋃
{[τn] : n ∈ W

∅(a)
et }, where et is uniformly computable

from e and t. Applying the induction hypothesis, we define p(2a, e) to encode a
tree whose root is labeled by a union and whose t-th subtree at level 1 is the Borel
code representing the complement of Φp(a,et).

For the limit step, consider R =
⋃
{[τn] : n ∈ W

∅
(3·5d)

e }. Uniformly in e, we
construct a sequence of indices et for t ∈ ω such that for all oracles X , ΦX

et
(x)

converges if and only if ΦX
e (x) converges and only asks oracle questions about

numbers in the first t many columns of X . Let Rt =
⋃
{[τn] : n ∈ W

⊕i≤t∅(ϕd(i))

et }
and note that R = ∪tRt. We can effectively pass to a sequence of indices e′t such

that Rt =
⋃
{[τn] : n ∈ W

∅(ϕd(t))

e′t
}. By induction, each p(ϕd(t), e

′
t) is the index for

a computable Borel code for Rt as a Σ0
2ϕd(t) set, so we may define p(3 · 5d, e) to be

the index of a tree which has ∪ at the root and Φp(ϕd(t),e′t)
as its subtrees. Since

2ϕd(t) <O 3 · 5d for all t, the resulting Borel code has the required height. �

To force the Dual Ramsey Theorem to output computationally powerful homo-
geneous sets, we use the following definition and a result of Jockusch [10].

Definition 4.3. For functions f, g : ω → ω, we say g dominates f , and write g � f ,
if f(n) ≤ g(n) for all but finitely many n.

Theorem 4.4 (Jockusch [10], see also [15, Exercise 16-98]). For each computable

ordinal α, there is a function fα such that fα ≡T ∅(α) and for every g � fα, we
have ∅(α) ≤T g.

In Theorem 4.7, we use these functions fα to show that for every computable
ordinal α, there is a computable Borel code for a set R ⊆ (ω)3 such that any
homogeneous partition p ∈ (ω)ω for the coloring (ω)3 = R ∪R computes ∅(α).
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Theorem 4.5. Let A be a set and fA be a function such that A ≡T fA and for every

g � fA, we have A ≤T g. There is an A-computable clopen coloring (ω)3 = R ∪ R
for which every homogeneous partition p satisfies p ≥T A.

Proof. Fix A and fA as in the statement of the theorem. Without loss of generality,
we assume that if n < m, then fA(n) < fA(m). For x ∈ (ω)3, let ax = µx(1) and
bx = µx(2). Let Oa,b = {x ∈ (ω)3 : ax = a∧ bx = b}. Set R = {x ∈ (ω)3 : fA(ax) ≤
bx}. Since R =

⋃
{On,m | fA(n) ≤ m} and R =

⋃
{On,m | fA(n) > m} both R and

R are A-computable open sets.

Claim. If p ∈ (ω)ω is homogeneous, then (p)3 ⊆ R.

It suffices to show that there is an x ∈ (p)3 with x ∈ R. Let u = µp(1). Because
p has infinitely many blocks, there must be some i with µp(i) ≥ f(u). Consider the
partition x = w ◦ p, where w(1) = 1, w(i) = 2, and w(m) = 0 for all other m. Then
since ax = u and bx ≥ f(u), we have x ∈ (p)3 with f(ax) ≤ bx, so x ∈ R.

Claim. If p ∈ (ω)ω is homogeneous, then A ≤T p.

Fix p and let g(n) = µp(n + 2). Since g is p-computable, it suffices to show
g � fA. Because n < µp(n+1) and fA is increasing, we have fA(n) < fA(µ

p(n+1)).
Therefore, to show g � fA, it suffices to show fA(µ

p(n+ 1)) ≤ µp(n+ 2) = g(n).
Let xn ∈ (p)3 be defined by xn = wn◦p, where wn(n+1) = 1, wn(n+2) = 2, and

wn(m) = 0 for all other m. Note that axn
= µp(n+1) and bxn

= µp(n+2). By the
previous claim, xn ∈ R, so fA(axn

) ≤ bxn
. In other words, fA(µ

p(n+1)) ≤ µp(n+2)
as required. �

Corollary 4.6. For each k ≥ 3 and each recursive ordinal α, there is an ∅(α)-

computable clopen set R ⊆ (ω)k such that if p ∈ (ω)ω is homogeneous for (ω)k =
R ∪R, then ∅(α) ≤T p.

Proof. For k = 3, this corollary follows from Theorems 4.4 and 4.5. For k > 3, use
similiar definitions for R and R ignoring what happens after the first three blocks
of the partition. �

Theorem 4.7. For every recursive ordinal α, and every k ≥ 3, there is a com-

putable Borel code for a ∆0
α+1 set R ⊆ (ω)k such that every p ∈ (ω)ω homogeneous

for the coloring (ω)k = R ∪R computes ∅(α).

Proof. Let R,R be the ∅(α)-computable clopen sets from the previous corollary. By

Proposition 4.2, both R and R have computable Borel codes as Σ0
α+1 subsets of

(ω)k. Therefore, R has a computable Borel code as ∆0
α+1 set. By the previous

corollary, if p is homogeneous for (ω)k = R ∪R, then p ≥T ∅(α), as required. �

For α = 1, Theorem 4.7 says there is a ∆0
2 clopen set R ⊆ (ω)3 such that R

and R have computable Borel codes as Σ0
2 sets (and hence as ∆0

2 sets) and any
homogeneous partition for (ω)3 = R ∪R computes ∅′.

5. The Borel Dual Ramsey Theorem for k = 2

5.1. Effective Analysis. We consider the complexity of finding infinite homoge-
neous partitions for colorings (ω)2 = R ∪ R as a function of the descriptive com-
plexity of R and/or R. We begin by showing that if R is a computable open set,
there is a computable homogeneous partition.
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Theorem 5.1. Let R be a computable code for an open set in (ω)2. There is a

computable p ∈ (ω)ω such that (p)2 ⊆ R or (p)2 ⊆ R.

Proof. If there is an n ≥ 1 such that [0n] ∩ R = ∅, then the partition x ∈ (ω)ω

with blocks {0, 1, . . . , n}, {n + 1}, {n + 2}, . . . satisfies (x)2 ⊆ R. Otherwise, for
arbitrarily large n there are τ ≻ 0n1 with [τ ] ⊆ R, and hence there is a computable
sequence τ1, τ2, . . . of such τ with 0i ≺ τi. Computably thin this sequence so that
for each i, 0|τi| ≺ τi+1. The partition x with blocks x−1(i) = {j : τi(j) = 1} for
i > 0 satisfies (x)2 ⊆ R. �

To extend to sets coded at higher finite levels of the Borel hierarchy, we will need
the following generalization of the previous result.

Theorem 5.2. Let R be a computable code for an open set in (ω)2 such that

R ∩ [0n] 6= ∅ for all n. Let {Di}i<ω be a uniform sequence of computable codes for

open sets such that each Di is dense in R. There is a computable x ∈ (ω)ω such

that (x)2 ⊆ R ∩ (∩iDi).

Proof. We build x as the limit of an effective sequence τ0 ≺ τ1 ≺ · · · with τs ∈ (<
ω)s+1. We define the strings τs in stages starting with τ0 = 〈0〉 which puts x(0) = 0.
For s ≥ 1, we ensure that at the start of stage s + 1, we have [σ ◦ τs] ⊆ R for all
σ ∈ (s+ 1)2. That is, the open sets in (ω)2 determined by each way of coarsening
the s+ 1 many blocks of τs to two blocks is contained in R.

At stage s+ 1, assume we have defined τs ∈ (< ω)s+1. If s ≥ 1, assume that for
all σ ∈ (s + 1)2, [σ ◦ τs] ⊆ R. Let σ0, . . . , σMs−1 list the strings σ ∈ (s + 2)2. We
define a sequence of strings τ0s ≺ · · · ≺ τMs

s and set τs+1 = τMs
s .

We define τ0s to start a new block as follows. Since [0|τs|]∩R 6= ∅, we effectively
search for γs ∈ (< ω)2 such that 0|τs| ≺ γs and [γs] ⊆ R. Since γs ∈ (< ω)2, there
is at least one m < |γs| such that γs(m) = 1. Define τ0s with |τ0s | = |γs| by

τ0s (m) =





τs(m) if m < |τs|
s+ 1 if γs(m) = 1 (and hence m ≥ |τs|)
0 if m ≥ |τs| and γs(m) = 0.

Note that τs ≺ τ0s , and that [σ ◦ τ0s ] ⊆ R for all σ ∈ (s + 2)2. To see the latter,
let j be least such that σ(j) = 1 and consider two cases. If j < s + 1, then
σ ↾ s + 1 ∈ (s + 1)2 and the conclusion follows by the induction hypothesis. If
j = s+ 1, then σ ◦ τ0s = γs.

We continue to define the τ js strings by induction. Assume that τ js has been
defined and consider the j-th string σj enumerated above describing how to collapse
(s + 2) many blocks into 2 blocks. Since τ0s � τ js , we have σj ◦ τ0s � σj ◦ τ js and
hence [σj ◦ τ

j
s ] ⊆ R. Because ∩n<s+1Dn is dense in R, we can effectively search for

a string δjs ∈ (< ω)2 such that σj ◦ τ js � δjs and [δjs ] ⊆ ∩n<s+1Dn. To define τ j+1
s ,

we uncollapse δjs. Let j
∗ be the least number such that σj(j

∗) = 1. Define

τ j+1
s (m) =





τ js (m) if m < |τ js |
j∗ if m ≥ |τ js | and δ

j
s(m) = 1

0 if m ≥ |τ js | and δ
j
s(m) = 0

It is straightforward to check that τ js � τ j+1
s and that σj◦τ j+1

s = δjs. This completes
the construction of the sequence τ0s � · · · � τMs

s and of the computable partition
x. It remains to show that if p ∈ (x)2, then p ∈ R and p ∈ ∩n∈ωDn. Fix p ∈ (x)2

and let w ∈ (ω)ω be such that ω ◦ x = p. Let s0 be least such that w(s0 + 1) = 1.
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Claim. p ∈ R.

Let σ = (0s0)a1, so that σ ≺ w. At stage s0 + 1, we defined τ0s0 ≺ x with the

property that [σ ◦ τ0s0 ] ⊆ R. Since σ ◦ τ0s ≺ p, we have p ∈ R.

Claim. p ∈ ∩n<ωDn.

Fix k ∈ ω and we show p ∈ Dk. Let s = max{k, s0}. Consider the action during
stage s+1 of the construction. Let σ = w ↾ (s+2). Then σ ∈ (s+2)2, so let j be such
that σj = σ. We defined δjs and τ j+1

s such that σj ◦τ j+1
s = δjs and [δjs] ⊆ ∩n<s+1Dn,

so in particular, [δsj ] ⊆ Dk. Since τ
j+1
s ≺ x, we have δjs = σj ◦ τ j+1

s ≺ p, so p ∈ Dk

as required. �

The next proposition is standard, but we present the proof because some details
will be relevant to Theorem 5.4. In the proof, we use codes for open sets as in
Definition 3.1.

Proposition 5.3. Let n ∈ ω and let A ⊆ 2ω be defined by a Σ0
n+1 predicate. There

are a ∆0
n+1 code U for an open set in (ω)2, a ∆0

n+2 code V for an open set in (ω)2

and a uniformly ∆0
n+1 sequence 〈Di : i ∈ ω〉 of codes for dense open sets such that

U ∪ V is dense and for all p ∈ ∩i∈ωDi, if p ∈ U , then p ∈ A and if p ∈ V then

p 6∈ A. Furthermore, the ∆0
n+1 and ∆0

n+2 indices for U , V and 〈Di : i ∈ ω〉 can be

obtained uniformly from a Σ0
n+1 index for A.

Proof. We proceed by induction on n. Throughout this proof, σ, τ , ρ and δ denote
elements of (< ω)2. In addition to the properties stated in the proposition, we
ensure that if 〈m,σ〉 ∈ U (or V ) and τ � σ, then there is a k such that 〈k, τ〉 ∈ U
(or V respectively). Thus, if U ∩ [σ] 6= ∅, then there is 〈k, τ〉 ∈ U with σ � τ .

For n = 0, we have X ∈ A⇔ ∃k ∃mP (m,X ↾ k) where P (x, y) is a Π0
0 predicate.

Without loss of generality, we assume that if P (m,X ↾ k) holds, then P (m′, Y ↾ k′)
holds for all k′ ≥ k, m′ ≥ m and Y ∈ 2ω such that Y ↾ k = X ↾ k. Let
U = {〈n, σ〉 : P (σ, n)}, V = {〈0, σ〉 : ∀x∀τ � σ (¬P (τ, x))} and Di = (< ω)2 for
i ∈ ω. It is straightforward to check these codes have the required properties.

For the induction case, let A ⊆ 2ω be defined by a Σ0
n+2 predicate, so X ∈ A⇔

∃kP (X, k) where P is a Π0
n+1 predicate. For k ∈ ω, let Ak = {X : ¬P (X, k)}.

Apply the induction hypothesis to Ak to fix indices (uniformly in k) for the ∆0
n+1

codes Uk and 〈Di,k : i ∈ ω〉 and for the ∆0
n+2 code Vk so that if p ∈ ∩i∈ωDi,k, then

p ∈ Uk implies ¬P (k, p) and p ∈ Vk implies P (k, p). Let

U = {〈〈k,m〉, σ〉 : 〈m,σ〉 ∈ Vk} and

V = {〈0, σ〉 : ∀k ∀τ � σ ∃m ∃ρ � τ 〈m, ρ〉 ∈ Uk}.

U is a ∆0
n+2 code for ∪kVk, and V is a ∆0

n+3 code such that 〈m,σ〉 ∈ V if and
only if every Uk is dense in [σ]. We claim that U ∪ V is dense. Fix σ and assume
U ∩ [σ] = ∅, so Vk ∩ [σ] = ∅ for all k. Since Uk ∪ Vk is dense, Uk ∩ [τ ] 6= ∅ for all
τ � σ and all k, so 〈0, σ〉 ∈ V .

For i = 〈ai, bi〉, define Di = Dai,bi ∩ (Ui ∪ Vi). Di has a ∆0
n+2 code as a dense

open set and the index can be uniformly computed from the indices for Ui, Vi and
Dai,bi . Furthermore, if p ∈ ∩iDi then p ∈ ∩i,kDi,k and p ∈ ∩k(Uk ∪ Vk).

Assume that p ∈ ∩iDi. First, we show that if p ∈ U , then p ∈ A. Suppose
p ∈ U = ∪kVk and fix k such that p ∈ Vk. Since p ∈ ∩iDi,k for this fixed k, p 6∈ Ak

by the induction hypothesis. Therefore, P (k, p) holds and hence p ∈ A.
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Second, we show that if p ∈ V then p 6∈ A. Assume p ∈ V and fix 〈0, σ〉 ∈ V
such that σ ≺ p. It suffices to show ¬P (k, p) holds for an arbitrary k ∈ ω. Since
p ∈ ∩iDi, we have p ∈ Uk ∪ Vk and p ∈ ∩iDi,k. If p ∈ Uk, then ¬P (k, p) holds by
induction and we are done. Therefore, suppose for a contradiction that p ∈ Vk. Fix
〈0, τ〉 ∈ Vk such that σ � τ and τ ≺ p. Since 〈0, σ〉 ∈ V and σ � τ , there are ρ � τ
and m such that 〈m, ρ〉 ∈ Uk, and therefore [ρ] ⊆ Uk ∩ Vk. This containment is the
desired contradiction because q ∈ [ρ]∩∩iDi,k would satisfy q ∈ Ak and q 6∈ Ak. �

Theorem 5.4. For every coloring (ω)2 = R ∪R such that R is a computable code

for a Σ0
n+2 set, there is either a ∅(n)-computable x ∈ (ω)ω which is homogeneous

for R or a ∅(n+1)-computable x ∈ (ω)ω which is homogeneous for R.

Proof. Fix R and fix a Π0
n+1 predicate P (k, y) such that for y ∈ (ω)2, y ∈ R ⇔

∃k P (k, y). Let Uk, Vk and 〈Di,k : i ∈ ω〉 be the codes from Proposition 5.3 for
Rk = {y : ¬P (y, k)}. Let U = ∪kVk, V = ∪{[σ] : ∀k Uk is dense in [σ]} and Di,
i ∈ ω, be the corresponding codes for R. We split non-uniformly into cases.

Case 1: Assume V is dense in [0ℓ] for some fixed ℓ. We make two observations.
First, U is disjoint from [0ℓ]. Therefore, each Vk is disjoint from [0ℓ] and hence each
Uk is dense in [0ℓ]. Second, suppose y ∈ (

⋂
i,kDi,k) ∩ (

⋂
k Uk). For each k we have

y ∈ ∩iDi,k and y ∈ Uk, so ∀k ¬P (k, y) holds and hence y ∈ R.

We apply Theorem 5.2 relativized to ∅(n) to the computable open set O = [0ℓ]
(which has nonempty intersection with [0j ] for every j) and the ∅(n)-computable
sequence of codes Di,k and Uk for i, k < ω. By the first observation, each coded

set in this sequence is dense in O. Therefore, there is a ∅(n)-computable x ∈ (ω)ω

such that (x)2 ⊆ [0ℓ] ∩ (
⋂

i,kDi,k) ∩ (
⋂

k Uk). By the second observation, (x)2 ⊆ R
as required.

Case 2: Assume V is not dense in [0m] for any m. In this case, since U ∪ V is
dense, we have U ∩ [0m] 6= ∅ for all m. We apply Theorem 5.2 relativized to ∅(n+1)

to the ∅(n+1)-computable open set U and the ∅(n+1)-computable sequence of dense
sets Di for i ∈ ω to obtain an ∅(n+1)-computable x with (x)2 ⊆ U ∩ (

⋂
iDi) ⊆ R

as required. �

We end this section by showing that the non-uniformity in the proof of Theorem
5.1 is necessary.

Theorem 5.5. For every Turing functional ∆, there are computable codes R0

and R1 for complementary open sets in (ω)2 such that ∆R0⊕R1 is not an infinite

homogeneous partition for the reduced coloring (ω)2 = R0 ∪R1.

Proof. Fix ∆. We define R0 and R1 in stages as R0,s and R1,s. Our construction

proceeds in a basic module while we wait for ∆
R0,s⊕R1,s
s to provide appropriate com-

putations. If these computations appear, we immediately diagonalize and complete
the construction.

For the basic module at stage s, put 02s+11 ∈ R0,s and 02s+21 ∈ R1,s. Check

whether there is a 0 < k < s such that ∆
R0,s⊕R1,s
s (i) = 0 for all i < k and

∆
R0,s⊕R1,s
s (k) = 1. If there is no such k, then we proceed to stage s + 1 and

continue with the basic module.
If there is such a k, then we stop the basic module and fix i < 2 such that

0k1 ∈ Ri,s. (Since k < s, we have already enumerated 0k1 into one of R0,s or R1,s
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depending on whether k is even or odd.) We end the construction at this stage and
define Ri = Ri,s and R1−i = R1−i,s ∪ {0t1 | 2s+ 2 < t}.

This completes the construction. It is clear that R0 and R1 are computable
codes for complementary open sets and (ω)2 = R0∪R1 is a reduced coloring. If the
construction never finds an appropriate value k, then ∆R0⊕R1 is not an element of
(ω)ω and we are done. Therefore, assume we find an appropriate value k at stage
s in the construction. Fix i such that 0k1 ∈ Ri,s and assume that p = ∆R0⊕R1 is
a element of (ω)ω . We show p is not homogeneous by giving elements q0, q1 ∈ (p)2

such that q0 ∈ Ri and q1 ∈ R1−i.
By construction, 0k1 ≺ p. Let q0 ∈ (p)2 be any coarsening with 0k1 ≺ q0 Then

q0 ∈ Ri because [0k1] ⊆ Ri.
On the other hand, since p ∈ (ω)ω, there are infinitely many p-blocks. Let n be

least with µp(n) > 2s+2. Let q1 ∈ (p)2 be any coarsening for which q1 ∈ [0µ
p(n)1].

Since µp(n) > 2s+ 2, we put 0µ
p(n)1 ∈ R1−i, so q1 ∈ R1−i as required. �

5.2. Strong reductions for reduced colorings. In this section, we think of
Borel-DRT

2
2 as an instance-solution problem. Such a problem consists of a collec-

tion of subsets of ω called the instances of this problem, and for each instance, a
collection of subsets of ω called the solutions to this instance (for this problem). A
problem P is strongly Weihrauch reducible to a problem Q if there are fixed Tur-
ing functionals Φ and Ψ such that given any instance A of P, ΦA is an instance
of Q, and given any solution B to ΦA in Q, ΨB is a solution to A in P. There
are a number of variations on this reducibility and we refer to the reader to [6]
and [9] for background on these reductions and for connections to reverse math-
ematics. In this paper, we will only be interested in problems arising out of Π1

2

statements of second order arithmetic. Any such statement can be put in the form
∀X(ϕ(X) → ∃Y ψ(X,Y )), where φ and ψ are arithmetical. We can then regard
this as a problem, with instances being all X such that ϕ(X), and the solutions
to X being all Y such that ψ(X,Y ). Note that while the choice of ϕ and ψ is not
unique, we always have a fixed such choice in mind for a given Π1

2 statement, and
so also a fixed assignment of instances and solutions.

A reduced coloring (ω)2 = R0 ∪ R1 is classically open and the color of p ∈
(ω)2 depends only on µp(1). When R0 and R1 are codes for open sets, there is
a homogeneous partition computable in R0 ⊕ R1, although by Theorem 5.5, not
uniformly. We consider the case when the open sets R0 and R1 are represented by
Borel codes for Σ0

n sets with n ≥ 2.

∆0
n-rDRT

2
2 is the statement that for each reduced coloring (ω)2 = R0∪R1 where

R0 and R1 are Borel codes for Σ0
n sets, there exists an x ∈ (ω)ω and an i < 2 such

that (x)2 ⊆ Ri. In effective algebra, this statement is clear, but in RCA0, we need
to specify how to handle these codes.

Recall that a Borel code for a Σ0
n set is a labeled subtree of ω<n+1 which we

write as (B,ϕ) to specify the labeling function ϕ. For a leaf σ and a partition p,
we write p ∈ ϕ(σ) if p is an element of the clopen set coded by ϕ(σ), and we write
ϕ(σ) = [τ ] to avoid specifying a coding scheme.

In reverse mathematics there are two ways that membership in a Σ0
α set could be

discussed. The evaluation map method works for arbitrary α and requires a strong
base theory. This method will be discussed in the next section. The virtual method
works only for finite α. For each n < ω, there is a fixed Σ0

n formula η(B,ϕ, p) such
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that if (B,ϕ) is a Borel code for a Σ0
n set and p ∈ (ω)2, then η(B,ϕ, p) says p is in

the set coded by (B,ϕ). In this section we use only the virtual method.
The formula is defined as follows. We begin by defining formulas βk(σ,B, ϕ, p)

for 1 ≤ k ≤ n by downward induction on k. For σ ∈ B with |σ| = k, βk(σ,B, ϕ, p)
says that p is in the set coded by the labeled subtree of (B,ϕ) above σ. Since any
σ ∈ B with |σ| = n is a leaf, βn(σ,B, ϕ, p) is the formula p ∈ ϕ(σ). For 1 ≤ k < n,
βk(σ,B, ϕ, p) is the formula

(ϕ(σ) = ∪ → α∪
k ) ∧ (ϕ(σ) = ∩ → α∩

k ) ∧ (ϕ(σ) ∈ L→ αL
k ), where

α∪
k (σ,B, ϕ, p) is ∃τ ∈ B

(
σ ≺ τ ∧ |τ | = k + 1 ∧ βk+1(τ, B, ϕ, p)

)

α∩
k (σ,B, ϕ, p) is ∀τ ∈ B

(
(σ ≺ τ ∧ |τ | = k + 1) → βk+1(τ, B, ϕ, p)

)

and αL
k (σ,B, ϕ, p) is p ∈ ϕ(σ).

The formula η(B,ϕ, p) is ∃σ ∈ B (|σ| = 1∧β1(σ,B, ϕ, p)). In RCA0, we write p ∈ B
for η(B,ϕ, p). The statement ∆0

n-rDRT
2
2 now has the obvious translation in RCA0.

A Borel code (B,ϕ) for a Σ0
n set is in normal form if B = ω<n+1 and for every

σ with |σ| < n, if |σ| is even, then ϕ(σ) = ∪, and if |σ| is odd, then ϕ(σ) = ∩. In

RCA0, for every (B,ϕ), there is a (B̂, ϕ̂) in normal form such that for all p ∈ (ω)2,

p ∈ B if and only if p ∈ B̂. Moreover, the transformation from (B,ϕ) to (B̂, ϕ̂) is
uniformly computable in (B,ϕ). We describe the transformation when (B,ϕ) is a
Borel code for a Σ0

2 set. The case for a Σ0
n set is similar.

Let (B,ϕ) be a Borel code for a Σ0
2 set. By definition, λ ∈ B with ϕ(λ) = ∪.

Each σ ∈ B with |σ| = 1 is the root of a subtree coding a Σ0
0 set (if ϕ(σ) ∈ L), a

Σ0
1 set (if ϕ(σ) = ∪) or a Π0

1 set (if ϕ(σ) = ∩). Consider the following sequence of
transformations.

• To form (B1, ϕ1), for each σ ∈ B with |σ| = 1 and ϕ(σ) = ∪, remove the
subtree of B above σ (including σ). For each τ ∈ B with τ ≻ σ, add a new
node τ ′ to B1 with |τ ′| = 1 and ϕ1(τ

′) = ϕ(τ) ∈ L.
• To form (B2, ϕ2), for each leaf σ ∈ B1 with |σ| = 1, relabel σ by ϕ2(σ) = ∩
and add a new successor τ to σ with label ϕ2(τ) = ϕ1(σ).

• To form (B3, ϕ3), for each σ ∈ B2 with |σ| = 1, let τσ ∈ B1 be the first
successor of σ. Add infinite many new nodes δ ≻ σ to B3 with ϕ3(δ) =
ϕ2(τσ).

• To form (B4, ϕ4), let σ be the first node of B3 at level 1. Add infinitely
many copies of the subtree above σ to B4 with the same labels as in B3.

In (B4, ϕ4), the leaves are at level 2, every interior node is infinitely branching
and ϕ4(σ) = ∩ when |σ| = 1. There is a uniform procedure to define a bijection

f : B4 → ω<3. We define (B̂, ϕ̂) by B̂ = ω<3 and ϕ̂(σ) = ϕ4(f
−1(σ)). In RCA0,

for all p ∈ (ω)2, η(B,ϕ, p) holds if and only if η(B̂, ϕ̂, p) holds.
When (B,ϕ) is a Borel code for a Σ0

n set in normal form, η(B,ϕ, p) is equivalent
to ∃x0 ∀x1 · · ·Qn−1xn−1 (p ∈ ϕ(〈x0, x1, . . . , xn−1〉)) where Qn−1 is ∀ or ∃ depending
on whether n− 1 is odd or even. We have analogous definitions for Borel codes for
Π0

n sets in normal form.
To define Dn

2 , let [ω]n denote the set of n element subsets of ω. We view the
elements of [ω]n as strictly increasing sequences s0 < s1 < · · · < sn−1.

Definition 5.6. A coloring c : [ω]n → 2 is stable if for all k, the limit

lim
s1

· · · lim
sn−1

c(k, s1, . . . , sn−1)
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exists. L ⊆ ω is limit-homogeneous for a stable coloring c if there is an i < 2 such
that for each k ∈ L,

lim
s1

· · · lim
sn−1

c(k, s1, . . . , sn−1) = i.

Dn
2 is the statement that each stable coloring c : [ω]n → 2 has an infinite limit-

homogeneous set.

Below, the proof of Theorem 5.7(2) is a formalization of the proof of Theorem
5.7(1), and the additional induction used is a consequence of this formalization.
We do not know if its use is necessary; that is, we do now if RCA0 + IΣ0

n−1 can be
replaced simply by RCA0 when n > 2.

Theorem 5.7. Fix n ≥ 2.

(1) ∆0
n-rDRT

2
2 ≡sW Dn

2 .

(2) Over RCA0 + IΣ0
n−1, ∆

0
n-rDRT

2
2 is equivalent to Dn

2 .

Corollary 5.8. ∆0
2-rDRT

2
2 is equivalent to SRT

2
2 over RCA0.

Proof. D2
2 is equivalent to SRT

2
2 over RCA0 by Chong, Lempp, and Yang [5]. �

Corollary 5.9. ∆0
2-rDRT

2
2 <sW SRT

2
2.

Proof. D2
2 <sW SRT

2
2 by Dzhafarov [6, Corollary 3.3]. (It also follows immediately

that ∆0
2-rDRT

2
2 ≡W D2

2 <W SRT
2
2.) �

Proof of Theorem 5.7. We prove the two parts simultaneously, remarking, where
needed, how to formalize the argument in RCA0 + IΣ0

n−1.

To show that ∆0
n-rDRT

2
2 ≤sW Dn

2 , and that ∆0
n-rDRT

2
2 is implied by Dn

2 over

RCA0 + IΣ0
n−1, fix an instance (ω)2 = R0 ∪ R1 of ∆0

n-rDRT
2
2 where each Ri is a

Borel code for a Σ0
n set. Without loss of generality, R0 and R1 are in normal form.

For each k ≥ 1, fix the partition pk = χ{k} (that is, pk has blocks ω \ {k} and {k}).
For m < n, we let Ri(t0, . . . , tm) denote the Borel set coded by the subtree of

Ri above 〈t0, . . . , tm〉. Since 〈t0, . . . , tn−1〉 is a leaf, Ri(t0, . . . , tn−1) is the clopen
set ϕi(〈t0, . . . , tn−1〉). If m < n − 1, then Ri(t0, . . . , tm) is a code for a Σ0

n−(m+1)

set (if m is odd) or a Π0
n−(m+1) set (if m is even) in normal form.

We define a coloring c : [ω]n → 2 as follows. Let c(0, s1, . . . , sn−1) = 0 for all
s1 < · · · < sn−1. For m ≤ n, let Qm stand for ∃ or ∀, depending as m is even or
odd, respectively. Given 1 ≤ k < s1 < . . . < sn−1, define

c(k, s1, . . . , sn−1) = 1

if and only if there is a t0 ≤ s1 such that

(∀t1 ≤ s1) · · · (Qmtm ≤ sm) · · · (Qn−1tn−1 ≤ sn−1) pk ∈ ϕ0(〈t0, . . . , tn−1〉)

and for which there is no u0 < t0 such that

(∀u1 ≤ s1) · · · (Qmum ≤ sm) · · · (Qn−1un−1 ≤ sn−1) pk ∈ ϕ1(〈u0, . . . un−1〉).

(Note that s1 bounds t0, t1 and u1, whereas the other sm bound only tm and um.)
The coloring c is uniformly computable in (R0, ϕ0) and (R1, ϕ1) and is definable in
RCA0 as a total function since all the quantification is bounded.

We claim that for each k ≥ 1,

lim
s1

· · · lim
sn−1

c(k, s1, . . . , sn−1)
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exists. Furthermore, if this limit equals 1, then pk ∈ R0, and if this limit equals 0,
then pk ∈ R1. We break this claim into two halves.

First, for 1 ≤ m ≤ n− 1, we claim that for all fixed 1 ≤ k < s1 < . . . < sm,

lim
sm+1

· · · lim
sn−1

c(k, s1, . . . , sm, sm+1, . . . , sn−1)

exists, and the limit equals 1 if and only if there is a t0 ≤ s1 such that

(2) (∀t1 ≤ s1) · · · (Qmtm ≤ sm) pk ∈ R0(t0, . . . , tm)

and there is no u0 < t0 such that

(3) (∀u1 ≤ s1) · · · (Qmum ≤ sm) pk ∈ R1(u0, . . . , um).

The proof is by downward induction on m. (In RCA0, the induction is performed
externally, so we do not need to consider its complexity.) For m = n− 1, there are
no limits involved and the values of c are correct by definition.

Assume the result is true for m+ 1 and we show it remains true for m. By the
definition of R0(t0, . . . , tm), t0 satisfies (2) if and only if

(∀t1 ≤ s1) · · · (Qmtm ≤ sm)(Qm+1tm+1) pk ∈ R0(t0, . . . , tm, tm+1),

which in turn holds if and only if there is a bound v such that for all sm+1 ≥ v,

(∀t1 ≤ s1) · · · (Qmtm ≤ sm)(Qm+1tm+1 ≤ sm+1) pk ∈ R0(t0, . . . , tm, tm+1).

If Qm+1 is ∃, then over RCA0, this equivalence requires a bounding principle. Since
pk ∈ R0(t0, . . . , tm+1) is a Π0

n−(m+2) predicate and m + 2 ≥ 3, we need at most

BΠ0
n−3 which follows from IΣ0

n−1. An analogous analysis applies to numbers u0
satisfying (3). Thus, we can fix a common bound v that works for all t0 ≤ s1 in (2)
and all u0 < t0 ≤ s1 in (3).

Suppose there is a t0 ≤ s1 satisfying (2) for which there is no u0 < t0 satisfying
(3). Then, for all sm+1 ≥ v, t0 satisfies the version of (2) for m + 1, and there is
no u0 < t0 satisfying the version of (3) for m+ 1. Therefore, by induction

∃v∀sm+1 ≥ v
(
lim
sm+2

· · · lim
sn−1

c(k, s1, . . . , sn−1) = 1
)

and hence limsm+1 · · · limsn−1 c(k, s1, . . . , sn−1) = 1 as required.
On the other hand, suppose that there is no t0 ≤ s1 satisfying (2), or that

for every t0 ≤ s1 satisfying (2), there is a u0 < t0 satsifying (3). Then, for all
sm+1 ≥ v, we have the analogous condition for m+1 and the induction hypothesis
gives limsm+1 · · · limsn−1 c(k, s1, . . . , sn−1) = 0. This completes the first part of the
claim.

We can now prove the rest of the claim. For each k ≥ 1, we have pk ∈ R0 or
pk ∈ R1. Let t0 be least such that pk ∈ R0(t0) or pk ∈ R1(t0). Since pk ∈ Ri(t) is
a Π0

n−1 statement, we use IΣ0
n−1 to fix this value in RCA0.

Suppose pk ∈ R0(t0), so for all u0 < t0, it is not the case that pk ∈ R1(u0). By
the first half of the claim with m = 1, we have for every s1 ≥ t0

lim
s2

· · · lim
sn−1

c(k, s1, s2, . . . , sn−1) = 1,

and therefore lims1 · · · limsn−1 c(k, s1, . . . , sn−1) = 1.
Suppose pk 6∈ R0(t0), and hence pk ∈ R1(t0). Again, by the first half of the

claim with m = 1, we have for every s1 ≥ t0

lim
s2

· · · lim
sn−1

c(k, s1, s2, . . . , sn−1) = 0,
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so lims1 · · · limsn−1 c(k, s1, . . . , sn−1) = 0. This completes the proof of the claim.
Since c is an instance of Dn

2 , fix i < 2 and an infinite limit-homogeneous set L
for c with color i. By the claim, pk ∈ R1−i for all k ∈ L. List the non-zero elements
of L as k0 < k1 < · · · , and let p ∈ (ω)ω be the partition whose blocks are [0, k0)
and [km, km+1) for m ∈ ω. Each x ∈ (p)2 satisfies µx(1) = km for some m. Since
R0 ∪R1 is a reduced coloring, x and pkm

have the same color, which is R1−i. Since
x was arbitrary, (p)2 ⊆ R1−i as required to complete this half of the theorem.

Next, we show that Dn
2 ≤sW ∆0

n-rDRT
2
2, and that Dn

2 is implied by ∆0
n-rDRT

2
2

over RCA0. (No extra induction is necessary for this implication.) Fix an instance
c : [ω]n → 2 of Dn

2 , and define a partition R0 ∪R1 of (ω)2 as follows. For x ∈ (ω)2

with µx(1) = k, x ∈ Ri for the unique i such that

lim
s1

· · · lim
sn−1

c(k, s1, . . . , sn−1) = i.

Since each of the iterated limits is assumed to exist over what follows on the right,
we may express these limits by alternating Σ0

2 and Π0
2 definitions, as

(∃t1∀s1 ≥ t1)(∀t2 ≥ s1∃s2 ≥ t2) · · · c(k, s1, . . . , sn−1) = i.

Thus, R0 and R1 are Σ0
n-definable open subsets of (ω)2. By standard techniques,

there are Borel codes for R0 and R1 as Σ0
n sets uniformly computable in c and in

RCA0. (Below, we illustrate this process for D3
2.)

By definition, (ω)2 = R0∪R1 is a reduced coloring and hence is an instance of ∆0
n-

rDRT
2
2. Let p ∈ (ω)ω be a solution to this instance, say with color i < 2. Thus, for

every x ∈ (p)2, the limit color of k = µx(1) is i. Define L = {µp(m) : m ≥ 1}. Since
for each k ∈ L, there is an x ∈ (p)2 such that µx(1) = k, L is limit-homogeneous
for c with color i.

We end this proof by illustrating how to define the Borel codes for R0 and R1

as Σ0
3 sets from a stable coloring c(k, s1, s2). In this case, we have

lim
s1

lim
s2
c(k, s1, s2) = i⇔ ∃t1(∀s1 ≥ t1 ∀t2 ≥ s1)(∃s2 ≥ t2) c(k, s1, s2) = i.

The nodes in each Ri are the initial segments of the strings 〈〈k, t1〉, 〈s1, t2〉, s2〉 for
k ≤ t1 < s1 ≤ t2 < s2 and the labeling functions are ϕi(σ) = ∪ if |σ| ∈ {0, 2},
ϕi(σ) = ∩ if |σ| = 1 and ϕi(〈〈k, t1〉, 〈s1, t2〉, s2〉) = [0k1] if c(k, s1, s2) = i and is
equal to ∅ if c(k, s1, s2) = 1 − i. It is straightforward to check in RCA0 that Ri

represents the union of clopen sets [0k1] such that the limit color of k is i. �

6. Reverse math and Borel codes

6.1. Equivalence of the Borel and Baire versions over ATR0. In this subsec-
tion we show that over the base theory ATR0, the Baire and Borel versions of the
Dual Ramsey Theorem are equivalent. We make the following definition in reverse
mathematics.

Definition 6.1 (RCA0). A Borel code is a pair (B,ϕ), where B ⊆ ω<ω is well-
founded and ϕ is a labeling function as in Definition 4.1.

This definition differs slightly from the definition of a Borel code which is found
in the standard reference [17]. In that treatment, there is no labeling function, but
certain conventions on the strings in B determine the labels. Because there is no
labeling function, the set of leaves of B may not be guaranteed to exist in weak
theories. In [17], the base theory for anything to do with Borel sets is ATR0, so this
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distinction is never used. We would like to consider weaker base theories. When the
base theory is weaker, a constructive presentation of a Borel code should include
knowledge of which nodes are leaves. For example, this leaf-knowledge was used in
the proof of Theorem 5.7. This is the reason for including the labeling function in
our definition.

In Section 5.2 we diverged from the standard definition in a second way, by
ascertaining membership in a Σ0

n set virtually. The standard method, which we
use in this section, is via evaluation maps.

Definition 6.2 (RCA0). Let (B,ϕ) be a Borel code and x ∈ (ω)k. An evaluation

map for B at x is a function f : B → {0, 1} such that

• For leaves σ ∈ B, f(σ) = 1 if and only if x ∈ ϕ(σ).
• If ϕ(σ) = ∪, f(σ) = 1 if and only if there exists n such that σan ∈ B and
f(σan) = 1.

• If ϕ(σ) = ∩, f(σ) = 1 if and only if for all n such that σan ∈ B, f(σan) =
1.

We say x ∈ B if there is an evaluation map with value 1 at the root, and we say
x 6∈ B if there is an evaluation map with value 0 at the root.

Observe that both x ∈ B and x 6∈ B are Σ1
1 statements. In general, ATR0 is

required to show that evaluation maps exist. Similarly, (ω)k = C0 ∪ . . . ∪ Cℓ−1 is
the Π1

2 statement that for every x ∈ (ω)k and i < ℓ, there is an evaluation map for
Ci at x and for some i < ℓ, x ∈ Ci.

Definition 6.3 (RCA0). Let B be a Borel (or open or closed) code for subset of
(ω)k. A Baire code for B consists of open sets U and V and a sequence 〈Dn : n ∈ ω〉
of dense open sets such that U ∪ V is dense and for every p ∈ ∩n∈ωDn, if p ∈ U
then p ∈ B and if p ∈ V then p 6∈ B.

Definition 6.4 (RCA0). A Baire code for a Borel coloring (ω)k = C0 ∪ · · · ∪ Cℓ−1

consists of open sets Oi, i < ℓ, and a sequence 〈Dn : n ∈ ω〉 of dense open sets such
that ∪i<ℓOi is dense and for every p ∈ ∩n∈ωDn and i < ℓ, if p ∈ Oi then p ∈ Ci.

We confirm that ATR0 proves that every Borel set has the property of Baire.
This is just an effectivization of the usual proof.

Proposition 6.5 (ATR0). Every Borel code for a subset of (ω)k has a Baire code.

Proof. Fix a Borel code B. For σ ∈ B, let Bσ = {τ ∈ B : τ is comparable to σ}.
Bσ is a Borel code for the set coded coded by the subtree of B above σ in the
following sense. Let f be an evaluation map for B at x. The function g : Bσ → 2
defined by g(τ) = f(τ) for τ � σ and g(τ) = f(σ) for τ ≺ σ is an evaluation map
for Bσ at x which witnesses x ∈ Bσ if and only if f(σ) = 1. We denote this function
g by fσ,x.

Formally, our proof proceeds in two steps. First, by arithmetic transfinite re-
cursion on the Kleene-Brouwer order KB(B), we construct open sets Uσ, Vσ and
Dn,σ, n ∈ ω, which are intended to form a Baire code for Bσ. This construction
is essentially identical to the proof of Proposition 5.3. Second, for any x ∈ (ω)k

and evaluation map f for B at x, we show by arithmetic transfinite induction on
KB(B) that if x ∈ ∩n∈ωDn,σ, then x ∈ Uσ implies x ∈ Bσ via fσ,x and x ∈ Vσ
implies x 6∈ Bσ via fσ,x. For ease of presentation, we combine these two steps.
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Since ATR0 suffices to construct evaluation maps, we treat Borel codes as sets in a
naive manner and suppress explicit mention of the evaluation maps.

If σ is a leaf coding a basic clopen set [τ ], we set Uσ = [τ ], Vσ = [τ ] and

Dn,σ = (ω)k. Similarly, if σ codes [τ ], we switch the values of Uσ and Vσ. In either
case, it is clear that these open sets form a Baire code for Bσ.

Suppose σ is an internal node coding a union, so Bσ is the union of Bσak for
σak ∈ B. We define Uσ to be the union of Uσak for σak ∈ B and Vσ to be the
union of [τ ] such that Vσak is dense in [τ ] for all σak ∈ B. The sequence Dn,σ is
the sequence of all open sets of the form Dn,σak ∩ (Uσak ∪ Vσak) for n ∈ ω and

σak ∈ B. As in the proof of Proposition 5.3, Uσ ∪ Vσ and each Dn,σ are dense.
Let x ∈ ∩n∈ωDn,σ. Suppose x ∈ Uσ and we show x ∈ Bσ. By the definition of

Uσ, fix σ
ak ∈ B such that x ∈ Uσak. Since x ∈ ∩n∈ωDn,σak, we have by induction

that x ∈ Bσak and hence x ∈ Bσ. On the other hand, suppose x ∈ Vσ and we
show x 6∈ Bσ. Fix τ such that τ ≺ x and [τ ] ⊆ Vσ, and fix k such that σak ∈ B.
Since x ∈ ∩n∈ωDn,σ, x ∈ Uσak ∪ Vσak. However, Vσak is dense in [τ ]. Therefore,
x 6∈ Uσak (because Uσak and Vσak must be disjoint as in the proof of Proposition
5.3), so x ∈ Vσak. Since x ∈ ∩n∈ωDn,σak, we have by induction that x 6∈ Bσak.

Because this holds for every σak ∈ B, it follows that x 6∈ Bσ, completing the case
for unions.

The case for an interior node coding an intersection is similar with the roles of
Uσ and Vσ switched. �

Proposition 6.6 (ATR0). Baire-DRT
k
ℓ implies Borel-DRT

k
ℓ .

Proof. By Proposition 6.5, fix Baire codes Ui, Vi and Dn,i for each Ci. We claim
that the open sets Ui for i < ℓ and the sequence of dense open sets Dn,i for i < ℓ
and n < ω form a Baire code for this coloring. Note that if i < ℓ and x ∈ ∩n,iDn,i,
then x ∈ Ui implies x ∈ Ci. Therefore, it suffices to show that ∪i<ℓUi is dense.

Suppose not. Then there is τ such that [τ ] ∩ Ui = ∅ for all i. Because each set
Ui∪Vi is open and dense, by the Baire Category Theorem there is x ∈ [τ ] such that
x ∈ ∩n∈ω,i<ℓDn,i and x ∈ ∩i<ℓ(Ui∪Vi). Since x is not in any Ui, we have x ∈ Vi for
each i. Therefore, for each i, x 6∈ Ci, contradicting that (ω)k = C0 ∪ · · · ∪Cℓ−1. �

Lemma 6.7 (RCA0). For every code O for an open set, there is a Borel code B
such that (ω)k = B ∪B and for all x ∈ (ω)k, x ∈ B if and only if x ∈ O.

Proof. The content here lies in the proof that (ω)k = B ∪ B. That is, we need to
show that in the obvious Borel code, every x ∈ (ω)k has an evaluation map.

Fix O. Let (B,ϕ) be the Borel code consisting of a root and a single leaf for
each 〈s, τ〉 ∈ O, where the leaf is labeled with [τ ].

We claim that for every x ∈ (ω)k, there is a unique evaluation map f for B
at x, and f(λ) = 1 if and only if x ∈ O. To prove this claim, we define two
potential evaluation maps, f0 and f1. Let f0(λ) = 0 and f1(λ) = 1. Then for each
i ∈ {0, 1} and each leaf σ with label τ , define fi(σ) = 1 if and only if x ∈ [τ ]. Both
these functions have ∆0

1(x,B, ϕ) definitions, and exactly one of them satisfies the
condition to be an evaluation map. Clearly, this condition implies that x ∈ B if
and only if x ∈ O. �

Corollary 6.8 (RCA0). Borel-DRT
k
ℓ implies Baire-DRT

k
ℓ .
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Proof. The previous proposition shows that Borel-DRTk
ℓ implies ODRTk

ℓ and hence

implies Baire-DRTk
ℓ . �

6.2. The strength of “Every Borel set has the property of Baire”. We
have just seen that over ATR0, the Borel and Baire versions of the Dual Ramsey
Theorem are equivalent. But only one direction used ATR0, in order to assert that
every Borel set has the property of Baire. In this section, we ask if this principle
really requires ATR0. We find that it does, but the reason is unsatisfactory, because
it depends on a technicality in the standard definition of a Borel set. Some of the
authors of the present paper removed that technicality in the later-researched but
earlier-appearing paper [2]. When the technicality is removed, a principle strictly
weaker than ATR0 emerges. We refer the reader to [2] for details.

In this section we show:

Theorem 6.9 (RCA0). The following are equivalent.

(1) ATR0.

(2) For every Borel code B for a subset of (ω)k, there is an x ∈ (ω)k such that

x ∈ B or x 6∈ B.

(3) Every Borel code B for a subset of (ω)k has a Baire code.

In fact, the implication from (2) to (1) can be witnessed using only trivial Borel
codes, which we define as follows.

Definition 6.10 (RCA0). A Borel code (B,ϕ) for a subset of (ω)k is trivial if every
leaf is labeled with either ∅ or (ω)k.

If B is a trivial Borel code, then an evaluation map for B at p is independent of
p, so we can refer to an evaluation map f for B. Because we work with trivial Borel
codes, the underlying topological space does not matter as long as Borel codes are
defined in a manner similar to Definitions 6.1 and 6.2. For example, Theorem 6.9
holds for Borel codes of subsets of 2ω or ωω as defined in Simpson [17]. (The fact
that the leaves are labeled in Definition 6.1 does not affect any of the arguments in
this section.)

The main ideas in the proof that (2) implies (1) use effective transfinite recursion
and are similar to those in Section 7.7 of Ash and Knight [1].

Proposition 6.11 (RCA0). The statement “every trivial Borel code has an evalu-

ation map” implies ACA0.

Proof. Fix g : ω → ω and we show range(g) exists. Let B be the trivial Borel
code consisting of the initial segments of 〈n,m, 1〉 for g(m) = n and 〈n,m, 0〉 for
g(m) 6= n. Label all leaves which end in 0 with ∅, and label all leaves which end
in 1 with the entire space. Label all interior nodes with ∪. Let f be an evaluation
map for B. Then f(〈n〉) = 1 if and only if there is an m such that g(m) = n. �

In order to strengthen this result to imply ATR0, we need to verify that effective
transfinite recursion works in ACA0. Let LO(X) and WO(X) be the standard
formulas in second order arithmetic saying X is a linear order and X is a well order.
We abuse notation and write x ∈ X in place of x ∈ field(X). For a formula ϕ(n,X),
Hϕ(X,Y ) is the formula stating LO(X) and Y = {〈n, j〉 : j ∈ X ∧ϕ(n, Y j)} where
Y j = {〈m, a〉 : a <X j∧〈m, a〉 ∈ Y }. When ϕ is arithmetic, Hϕ(X,Y ) is arithmetic
and ACA0 proves that if WO(X), then there is at most one Y such that Hϕ(X,Y ).
We define our formal version of effective transfinite recursion.
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Definition 6.12. ETR is the axiom scheme

∀X
[(
WO(X) ∧ ∀Y ∀n (ϕ(n, Y ) ↔ ¬ψ(n, Y ))

)
→ ∃Y Hϕ(X,Y )

]

where ϕ and ψ range over Σ0
1 formulas.

We show that ETR is provable in ACA0. Following Simpson [17], we avoid using
the recursion theorem and note that the only place the proof goes beyond RCA0

is in the use of transfinite induction for Π0
2 formulas, which holds is ACA0 and is

equivalent to transfinite induction for Σ0
1 formulas. Greenberg and Montalbán [8]

point out that ETR can also be proved using the recursion theorem, although this
proof also uses Σ0

1 transfinite induction.

Proposition 6.13. ETR is provable in ACA0.

Proof. Fix a well order X and Σ0
1 formulas ϕ and ψ. Throughout this proof, we

let f , g and h be variables denoting finite partial functions from ω to {0, 1} coded
in the canonical way as finite sets of ordered pairs. We write f � g (or f ≺ X)
if f ⊆ g (or f ⊆ χX) as sets of ordered pairs. By the usual normal form results
(e.g. Theorem II.2.7 in Simpson), we fix a Σ0

0 formula ϕ0 such that

∀Y ∀n
(
ϕ(n, Y ) ↔ ∃f (f ≺ Y ∧ ϕ0(n, f))

)

and such that if ϕ0(n, f) and f ≺ g, then ϕ0(n, g). We fix a formula ψ0 related to
ψ in the same manner. Since ϕ(n, Y ) ↔ ¬ψ(n, Y ), we cannot have compatible f
and g such that ϕ0(n, f) and ψ0(n, g).

Our goal is to use partial functions f as approximations to a set Y such that
Hϕ(X,Y ). Therefore, we view dom(f) as consisting of coded pairs 〈n, a〉. For f to
be a suitable approximation to Y , we need that if 〈n, a〉 ∈ dom(f) and a 6∈ X , then
f(〈n, a〉) = 0. Similarly, if f is an approximation to Y j , we need that f(〈n, a〉) = 0
whenever 〈n, a〉 ∈ dom(f) and a ≥X j. These observations motivate the following
definitions.

Let f be a finite partial function and let i ∈ X . We define

f i = f ↾ {〈n, a〉 : n ∈ ω ∧ a <X i}.

We say g � f is an i-extension of f if for all 〈n, a〉 ∈ dom(g)−dom(f), g(〈n, a〉) = 0
and either a 6∈ X or i ≤X a.

For j ∈ X , f is a j-approximation if the following conditions hold.

• If 〈n, a〉 ∈ dom(f) with a 6∈ X or j ≤X a, then f(〈n, a〉) = 0.
• If 〈n, a〉 ∈ dom(f) and a <X j, then

– if f(〈n, a〉) = 1, then there is an a-extension h of fa such that ϕ0(n, h),
and

– if f(〈n, a〉) = 0, then there is an a-extension h of fa such that ψ0(n, h).

Note that if f is a j-approximation and i <X j, then f i is an i-approximation. Also,
if f is a j-approximation and g is a j-extension of f , then g is a j-approximation.

Claim. For all j ∈ X , there do not exist m ∈ ω and j-approximations f and g such
that ϕ0(m, f) and ψ0(m, g).

The proof is by transfinite induction on j. Fix the least j ∈ X for which this
property fails and fix witnesses m, f and g. To derive a contradiction, it suffices to
show that f and g are compatible. Fix 〈k, a〉 such that both f(〈k, a〉) and g(〈k, a〉)
are defined. If a 6∈ X or j ≤X a, then f(〈k, a〉) = g(〈k, a〉) = 0.
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Suppose for a contradiction that a <X j and f(〈k, a〉) 6= g(〈k, a〉). Without
loss of generality, f(〈k, a〉) = 1 and g(〈k, a〉) = 0. Fix a-extensions h and h′ of fa

and ga respectively such that ϕ0(k, h) and ψ0(k, h
′). Since f is a j-approximation,

fa is an a-approximation, and since h is an a-extension of fa, h is also an a-
approximation. Similarly, h′ is an a-approximation. Therefore, we have k ∈ ω,
a <X j and a-approximation h and h′ such that ϕ0(k, h) and ψ0(k, h

′) contradicting
the minimality of j.

Claim. For any j-approximation f and any m ∈ ω, there is a j-approximation
g � f such that either ϕ0(m, g) or ψ0(m, g).

The proof is again by transfinite induction on j. Fix the least j for which this
property fails and fix witnesses f and m. Let 〈ns, is〉 enumerate the pairs not in the
domain of f . Below, we define a sequence f = f0 � f1 � · · · of j-approximations
such that fs+1(〈ns, is〉) is defined. Let Y be the set with χY = ∪sfs. Either
ϕ(m,Y ) or ψ(m,Y ) holds, and so there is a g ≺ Y such that ϕ0(m, g) or ψ0(m, g)
holds. Fixing s such that g � fs shows that either ϕ0(m, fs) or ψ0(m, fs) holds for
the desired contradiction.

To define fs+1, we need to extend fs to a j-approximation fs+1 with 〈ns, is〉 ∈
dom(fs+1). We break into several cases. If fs(〈ns, is〉) is already defined, let fs+1 =
fs. Otherwise, if is 6∈ X or j ≤X is, set fs+1(〈ns, is〉) = 0 and leave the remaining
values as in fs. In both cases, it is clear that fs+1 is a j-approximation.

Finally, if is <X j and fs(〈ns, is〉) is undefined, we apply the induction hypothe-
sis to the is-approximation f is

s to get an is-approximation g � f is
s such that either

ϕ0(ns, g) holds or ψ0(ns, g) holds. Define fs+1 as follows.

• For 〈m, a〉 ∈ dom(g) with a <X is, set fs+1(〈m, a〉) = g(〈m, a〉).
• For 〈m, a〉 ∈ dom(fs) with is ≤X a or a 6∈ X , set fs+1(〈m, a〉) = fs(〈m, a〉).
• Set fs+1(〈ns, is〉) = 1 if ϕ0(ns, g) holds and fs+1(〈ns, is〉) = 0 if ψ0(ns, g)
holds.

It is straightforward to verify that fs ≺ fs+1, g is an is-extension of f is
s+1 and fs+1

is a j-approximation, completing the proof of the claim.
We define the set Y for which we will show Hϕ(X,Y ) holds by 〈m, j〉 ∈ Y if

and only if j ∈ X and there is a j-approximation f such that ϕ0(m, f). It follows
from the claims above that 〈m, j〉 6∈ Y if and only if either j 6∈ X or there is a
j-approximation f such that ψ0(m, f). Therefore, Y has a ∆0

1 definition. The next
two claims show that Hϕ(X,Y ) holds, completing our proof.

Claim. If f is a j-approximation, then f ≺ Y j .

Consider 〈m, a〉 ∈ dom(f). If a 6∈ X or j ≤X a, then f(〈m, a〉) = Y j(〈m, a〉) = 0.
Suppose a <X j. If f(〈m, a〉) = 1, then there is an a-extension g of fa such that
ϕ0(m, g). Since fa is an a-approximation and g is an a-extension of fa, g is an
a-approximation. Therefore, 〈m, a〉 ∈ Y by definition and hence 〈m, a〉 ∈ Y j . By
similar reasoning, if f(〈m, a〉) = 0, then 〈m, a〉 6∈ Y and hence 〈m, a〉 6∈ Y j .

Claim. 〈m, j〉 ∈ Y if and only if ϕ(m,Y j).

Assume that 〈m, j〉 ∈ Y and fix a j-approximation f such that ϕ0(m, f). Since
f ≺ Y j , ϕ(m,Y j). For the other direction, assume that ϕ(m,Y j). Fix a j-
approximation f such that either ϕ0(m, f) or ψ0(m, f). Since f ≺ Y j and ϕ(m,Y j),
we must have ϕ0(m, f) and therefore 〈m, j〉 ∈ Y by definition. �
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We recall some notation and facts from Simpson [17] to state the equivalence of
ATR0 we will prove. We let TJ(X) denote the Turing jump in ACA0 given by fixing
a universal Π0

1 formula. We use the standard recursion theoretic notations ΦX
e and

ΦX
e,s with the understanding that they are defined by this fixed universal formula.
O+(a,X) is the arithmetic statement that a = 〈e, i〉, e is an X-recursive index

of an X-recursive linear order ≤X
e and i ∈ field(≤X

e ). OX
+ = {a : O+(a,X)} exists

in ACA0. For a, b ∈ OX
+ , we write b <X

O a if a = 〈e, i〉, b = 〈e, j〉 and j <X
e i. For

a ∈ OX
+ , the set {b : b <X

O a} exists in ACA0.

O(a,X) is the Π1
1 statement O+(a,X)∧WO({b : b <X

O a}). Intuitively, O(a,X)
says that a = 〈e, i〉 is an X-recursive ordinal notation for the well ordering given
by the restriction of ≤X

e to {j : j <X
e i}. In ATR0, if O(a,X), then the set

HX
a = {〈y, 0〉 : y ∈ X} ∪ {〈y, b+ 1〉 : b <X

O a ∧ y ∈ TJ(HX
b )}

exists. In ACA0, there is an arithmetic formula H(a,X, Y ) which, under the as-
sumption that O(a,X), holds if and only if Y = HX

a .
By Theorem VIII.3.15 in Simpson [17], ATR0 is equivalent over ACA0 to

∀X ∀a (O(a,X) → HX
a exists).

If O(a,X) with a = 〈e, i〉, then we can assume without loss of generality that there
are a′ and a′′ such that O(a′, X), O(a′′, X) and a <X

O a′ <X
O a′′ by adding two new

successors of i in ≤X
e if necessary. Therefore, to prove ATR0, it suffices to fix a and

X such that O(a,X) and prove ∀c <X
O b (HX

c exists) for each b <X
O a.

Theorem 6.14 (ACA0). The statement “every trivial Borel code has an evaluation

map” implies ATR0.

Proof. Fix a and X such that O(a,X), so the restriction of <X
O to {b : b <X

O a} is
a well order. Using ETR, we define trivial Borel codes Bx,b for x ∈ ω by transfinite
recursion on b <X

O a. We explain the intuitive construction before the formal
definition.

Let b <X
O a and x ∈ ω. We want to define a trivial Borel code Bx,b such that if f

is an evaluation map for Bx,b, then f(λ) = 1 if and only if x ∈ TJ(HX
b ). We label λ

with ∪. For each binary string σ such that Φσ
x,|σ|(x) converges, we add a successor

〈nσ〉. Here σ 7→ nσ is just some primitive recursive bijection between 2<ω and ω.
It follows that f(λ) = 1 if and only if there is a σ such that Φσ

x,|σ|(x) converges and

f(〈nσ〉) = 1. (In case Φσ
x,|σ|(x) always diverges, we may also add a leaf 〈n〉 which

is labeled with ∅. In this case, f(λ) = f(〈n〉) = 0 and x 6∈ TJ(HX
b ) which is what

we want.)
Next, we want to ensure f(〈nσ〉) = 1 if and only if σ ≺ HX

b . We label 〈nσ〉 with
∩, and for each k < |σ|, we add a successor 〈nσ, k〉. We want f(〈nσ, k〉) = 1 if and
only if σ(k) = HX

b (k). We break into cases to determine the extensions of 〈nσ, k〉.
For the first case, suppose k = 〈y, 0〉. We want f(〈nσ, k〉) = 1 if and only if y ∈ X .

If σ(k) = X(y), we label this node with the entire space, and if σ(k) 6= X(y), we
label this node with ∅. In either case, the successor nodes will be leaves so we have
f(〈nσ, k〉) = 1 if and only if k ∈ HX

b .
For the second case, suppose k = 〈y, c + 1〉 and c <X

O b. By the induction
hypothesis, we have defined the trivial Borel code By,c already. If σ(k) = 1, then
we label 〈nσ, k〉 with ∪, and attach to it a copy of By,c, treating 〈nσ, k〉 as the root
of By,c. The map f restricted to the subtree above 〈nσ, k〉 is an evaluation map for
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By,c and hence by the inductive hypothesis

f(〈nσ, k〉) = 1 ⇔ y ∈ TJ(HX
c ) ⇔ k ∈ HX

b ⇔ σ(k) = HX
b (k).

On the other hand, if σ(k) = 0, then we label 〈nσ, k〉 with ∩ and extend it by a
copy of By,c. By the inductive hypothesis, we have

f(〈nσ, k〉) = 1 ⇔ y 6∈ TJ(HX
c ) ⇔ k 6∈ HX

b ⇔ σ(k) = HX
b (k).

For the third case, suppose that k = 〈y, c+1〉 and c 6<X
O b. In this case, we know

HX
b (k) = 0. If σ(k) = 0, we label 〈nσ, k〉 with the entire space, and if σ(k) = 1 we

label it with ∅.
The formal construction follows this outline. To simplify the notation, for a

trivial Borel code B, we let B1 = B and B0 = B. Since “Φσ
x,|σ|(x) converges” is

a bounded quantifier statement and c <X
O b is a ∆0

1 statement with parameter X ,
the following recursion on b <X

O a can be done with ETR. For each x ∈ ω, we put
λ in Bx,b with label ∪. For each σ such that Φσ

x,|σ|(x) converges, we put 〈nσ〉 and

〈nσ, k〉 in Bx,b for all k < |σ|. We label 〈nσ〉 with ∩. We extend 〈nσ, k〉 as follows.

• For k = 〈y, 0〉: if σ(k) = X(y), then 〈nσ, k〉 is labeled with the whole space,
and if σ(k) 6= X(y), then it is labeled with ∅.

• For k = 〈y, c + 1〉 with c <X
O b, 〈nσ, k〉aτ ∈ Bx,b for all τ ∈ B

σ(k)
y,c , with

labels inherited from B
σ(k)
y,c .

• For k = 〈y, c + 1〉 with c 6<X
O b, 〈nσ, k〉 gets labeled with the whole set if

σ(k) = 0 and labeled with ∅ if σ(k) = 1.

This completes the construction of the trivial Borel codes Bx,b for b <X
O a by

ETR. To complete the proof, we fix an arbitrary b <X
O a and show that ∀c <X

O

b (HX
c exists).

Fix an index x and s ∈ ω such that Φ1s

x,s(x) converges. Let N be the least value

of s witnessing this convergence so Φ1s

x,s(x) converges for all s ≥ N . Let f be an
evaluation map for Bx,b.

For c <X
O b and y ∈ ω, let σ = 1N+k where k = 〈y, c + 1〉. Define fy,c(τ) =

f(〈nσ, k〉aτ). We claim fy,c is an evaluation map for By,c. By the choice of x,
Φσ

x,|σ|(x) converges. Since c <X
O b and σ(k) = 1, we have 〈nσ, k〉aτ ∈ Bx,b if and

only if τ ∈ By,c. Therefore, fy,c is defined on By,c and it satisfies the conditions for
an evaluation map because f does.

Recall that H(x,X, Y ) is a fixed arithmetic formula such that if O(x,X), then
H(x,X, Y ) holds if and only if Y = HX

x . Define

Z = {〈y, 0〉 : y ∈ X} ∪ {k : k = 〈y, c+ 1〉 ∧ c <X
O b ∧ f(〈nσ, k〉) = 1}.

For c <X
O b, let Zc = {〈y, r〉 ∈ Z : r = 0 ∨ r − 1 <X

O c}. We show the following
properties by simultaneous arithmetic induction on c <X

O b.

(1) H(c,X, Zc) holds. That is, Zc = HX
c .

(2) For all y, fy,c(λ) = 1 if and only if y ∈ TJ(Zc) = TJ(HX
c ).

These properties imply ∀c <X
O b (HX

c exists) completing our proof.
Fix c <X

O b and assume (1) and (2) hold for d <X
O c. To see (1) holds for c, fix k.

If k = 〈y, 0〉, then k ∈ Zc ⇔ y ∈ X ⇔ k ∈ HX
c . Suppose k = 〈y, d+ 1〉. If d 6<X

O c,
then k 6∈ HX

c and k 6∈ Zc. If d <X
O c, then

k ∈ Zc ⇔ f(〈nσ, k〉) = 1 ⇔ fy,d(λ) = 1.
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By the induction hypothesis, k ∈ Zc if and only if y ∈ TJ(Zd) = TJ(HX
d ), which

holds if and only if k ∈ HX
c , completing the proof of (1).

To prove (2), fix y and let k = 〈y, c+ 1〉. By definition,

k ∈ Zc ⇔ fy,c(λ) = f(〈nσ, k〉) = 1,

and y ∈ TJ(Zc) = TJ(HX
c ) if and only if there is a σ such that Φσ

y,|σ|(y) converges

and σ ≺ Zc = HX
c .

Suppose there are no σ such that Φσ
y,|σ|(y) converges. In this case, y 6∈ TJ(HX

c )

and fy,c(λ) = 0. Therefore fy,c(λ) = 1 if and only if y ∈ TJ(HX
c ) as required.

Suppose Φσ
y,|σ|(y) converges for some σ. For any such σ, 〈nσ, k〉 ∈ By,c for

all k < |σ|. By the induction hypothesis and the case analysis in the intuitive
explanation of the construction, we have fy,c(〈nσ〉) = 1 if and only if σ ≺ HX

c = Zc,
and therefore, fy,c(λ) = 1 if and only if there is a σ such that Φσ

y,|σ|(y) converges

and σ ≺ HX
c , completing the proof of (2) and of the theorem. �

We conclude with a proof of Theorem 6.9.

Proof. Lemma V.3.3 in Simpson [17] shows (1) implies (2) in the space 2ω and the
proof translates immediately to (ω)k. By Proposition 6.5, (1) implies (3). It follows
from Theorem 6.14 that (2) implies (1). We show (3) implies (2). Let B be a Borel
code. Fix a Baire code U , V and Dn for B. Since each Dn and U ∪ V is a dense
open set, there is an x ∈ (U ∪ V ) ∩ ∩n∈ωDn. If x ∈ U , then by the definition of
a Baire code, x ∈ B, and similarly, if x ∈ V , then x 6∈ B. Therefore, we have a
partition x such that x ∈ B or x 6∈ B as required. �

7. Open Questions

While Figure 1.1 summarizes the known implications among the studied princi-
ples, in most cases it is not known whether the results are optimal. It is particularly
dissatisfying that the best upper bound for these principles remains Π1

1-CA0. Ob-

serve that, on the basis of the proof of CDRTk
ℓ given in Theorem 3.18, any upper

bound on the strength of the Carlson-Simpson Lemma CSL(k − 1, ℓ) would also

imply a related upper bound on the strength of CDRTk
ℓ . Therefore, it would be

interesting to know the following:

Question 7.1. For any k ≥ 3, does CSL(k, ℓ) follow from ATR0?

The best known upper bound for CSL(2, ℓ) is ACA0; it is shown in [11] that the
stronger principle OVW(2, ℓ) follows from ACA0.

Turning attention now to lower bounds, the principles CDRTk
ℓ for k ≥ 4 are not

obviously implied by HT or ACA
+
0 . We wonder whether an implication might go

the other way.

Question 7.2. For any k ≥ 4, does CDRTk
ℓ imply HT or ACA+

0 ?

When k ≥ 4, it is known that CDRTk
ℓ implies ACA0 (this was proved for ODRTk

ℓ

in [12]). On the other hand, while CDRT
3
2 is provable from Hindman’s Theorem,

the best lower bound we have on CDRT
3
2 is RT2

2. Furthermore, nothing about the
relationship of CDRT3

2 and ACA0 is known.

Question 7.3. Is CDRT3
2 comparable to ACA0?

For the k = 2 case, can Theorem 5.7 be strengthened in the following way?
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Question 7.4. Is ∆0
n-DRT

2
2 ≡sW Dn

2 ?

These are just a few of the many questions that remain concerning these princi-
ples.
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