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A CHOICE-FREE CARDINAL EQUALITY
GUOZHEN SHEN

ABSTRACT. For a cardinal a, let fin(a) be the cardinality of the set of
all finite subsets of a set which is of cardinality a. It is proved without
the aid of the axiom of choice that for all infinite cardinals a and all

natural numbers n,
ofin(a)™ _ olfin(a)]™

On the other hand, it is proved that the following statement is consistent
with ZF: there exists an infinite cardinal a such that

2ﬁn(a) < 2ﬁn(a)2 < 2ﬁn(a)3 << 2ﬁn(ﬁn(a)).

1. INTRODUCTION

For a cardinal a, let fin(a) be the cardinality of the set of all finite subsets
of a set which is of cardinality a. The axiom of choice implies that fin(a) = a
for any infinite cardinal a. However, in the absence of the axiom of choice,
this is no longer the case. In fact, in the ordered Mostowski model (cf. |2,
pp. 198-202]), the cardinality a of the set of atoms satisfies

fin(a) < [fin(a)]* < fin(a)? < [fin(a))® < fin(a)® < ---
< fin(fin(a)) < fin(fin(fin(a))) < --- < Vo - fin(a). (1)

It is natural to ask which relationships between the powers of the cardinals
in (1) for an arbitrary infinite cardinal a can be proved without the aid of
the axiom of choice.

The first result of this kind is Lauchli’s lemma (cf. [3] or [2, Lemma 5.27]),
which states that for all infinite cardinals a,

2No~ﬁn(a) — 2ﬁn(a)'

Léuchli’s lemma implies that, in the ordered Mostowski model, the powers
of the cardinals in (1) are all equal, where a is the cardinality of the set of
atoms.

In this paper, we give a complete answer to the above question. We first
prove in ZF that for all infinite cardinals a,

2ﬁn(ﬁn(a)) — 2ﬁn(ﬁn(ﬁn(a))) — 2ﬁn(ﬁn(ﬁn(ﬁn(a)))) —
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Then, as our main result, we prove in ZF that for all infinite cardinals a and

all natural numbers n,
ofin(a)" _ olfin(a)]"

Finally, we prove that the following statement is consistent with ZF: there

exists an infinite cardinal a such that

2ﬁn(a) < 2ﬁn(a)2 < 2ﬁn(a)3 <l < 2ﬁn(ﬁn(a)).

2. BASIC NOTIONS AND FACTS

Throughout this paper, we shall work in ZF. In this section, we indicate
briefly our use of some terminology and notation. The cardinality of =z,
which we denote by |z|, is the least ordinal o equinumerous to z, if x is
well-orderable, and the set of all sets y of least rank which are equinumerous
to x, otherwise. We shall use lower case German letters a, b for cardinals.

For a function f, we shall use dom(f) for the domain of f, ran(f) for
the range of f, f[z] for the image of z under f, f~![x] for the inverse image
of x under f, and f[x for the restriction of f to x. For functions f and g,

we use g o f for the composition of g and f.

Definition 2.1. Let x,y be arbitrary sets, let a = |z|, and let b = |y]|.

(1) = < y means that there exists an injection from z into y; a < b means
that z < v.

(2) = <* y means that there exists a surjection from a subset of y onto x;
a <* b means that z <* y.

(3) a £ b (a £* b) denotes the negation of a < b (a <* b).

(4) a < b means that a < b and b £ a.

(5) a =" b means that a <* b and b <* a.

It follows from the Cantor—Bernstein theorem that if a < band b < a
then a = b. Clearly, if a < b then a <* b, and if a <* b then 2* < 2°. Thus
a =" b implies that 2% = 2°.

Definition 2.2. Let x,y be arbitrary sets, let a = |z, and let b = |y]|.

(1) x¥ is the set of all functions from y into x; a® = |z¥|.

(2) 2% is the set of all injections from y into x; a® = |2¥|.

(3) [z]Y is the set of all subsets of x which have the same cardinality as y;
[a]® = [[x]"].

(4) sea(s) = Upen 27 sea(a) = | seq()].

(5) 564 () = Uy e 2% seq™(a) = | s0q™ (1),
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Below we list some basic properties of these cardinals. We first note that
fin(a) <* seq!(a) < seq(a).

Fact 2.3. For all cardinals a, seq™(a) < fin(fin(a)).

Proof. For every set x, the function f defined on seq!(x) given by f(t) =
{t[n] | n < dom(#)} is an injection from seq'"!(z) into fin(fin(z)). O

Lemma 2.4. For all non-zero cardinals a, seq(seq(a)) = seq(a).

Proof. Cf. |1, Lemma 2|. O
Lemma 2.5. For all non-zero cardinals a, seq(a) = Ry - seq!!(a).

Proof. Cf. |4, Lemma 2.22]. O
Lemma 2.6. For all infinite cardinals a, X, - seq'(a) <* seq'(a).

Proof. Let x be an infinite set. Let p be a bijection from w X w onto w
such that n < p(m,n) for any m,n € w. Let f be the function defined on
seq!"l(x) given by

ft) = (m,tn),

where m,n € w are such that dom(t) = p(m,n). It is easy to see that f is
(). O

a surjection from seq!!(z) onto w X seq
Proposition 2.7. For all infinite cardinals a,
seq'(a) =" fin(fin(a)) =" fin(fin(fin(a))) =* - - - =" seq(a).
Proof. Immediately follows from Fact 2.3 and Lemmata 2.4, 2.5 and 2.6. [
Corollary 2.8. For all infinite cardinals a,
gseq'™!(a) _ ofin(fin(a)) _ ofin(fin(fin(a))) _ ,  _ 9seq(a)
Proof. Immediately follows from Proposition 2.7. O
The following lemma will be used in Section 4.
Lemma 2.9. For all cardinals a and all n € w, a2~ < fin(a)"*1.

Proof. Let x be an arbitrary set and let n € w. Let f be the function defined
on 22 such that for all ¢ € 2% f(¢) is the function on n + 1 given by

{t(a) | a Cn and k € a}, otherwise.

fF)(k) = {
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Clearly, ran(f) C fin(z)"t1. It is easy to verify that for all ¢ € 22®) ¢ is the
function defined on p(n) given by

Ha) = {U F®m), if o = o
U(mkEa QIGIA Uken\a f(t)(k:)), otherwise.

Hence, f is an injection from 2 into fin(z)"+!. O

3. THE MAIN THEOREM

In this section, we prove our main result which states that for all infinite

cardinals a and all natural numbers n,

ofin(a)" _ olfin(a)]"

The main idea of the proof is originally from |[3].

Fix an arbitrary infinite set A and a non-zero natural number n. For a

finite sequence (x1,...,z,) of length n, we write & = (xy,...,z,) for short.
For finite sequences ¥ = (x1,...,z,) and ¥ = (y1, ..., yn), we introduce the
following abbreviations: ¥ C ¢ means that x; C y; for any i = 1,...,n;

Z C ¢ means that ¥ C ¢ but & # y; ¥ LU ¥ denotes the finite sequence
(r1Uy1, ..., x,Uy,); £MY denotes the finite sequence (z1 Ny, ..., Tn NYp);
3 denotes the finite sequence (3,..., @) of length n. For an operator H
and an m € w, we write H™ (X) for H(H(---H(X)---)) (m times), and
if m =0 then H®(X) is X itself.

Definition 3.1. For all natural numbers kq,...,k, and [y, ...,[, such that

k; <l; for any : = 1,...,n, we introduce the following three functions:

(1) F,z is the function defined on o([A]Fr x -+ x [A]*n) given by
EoppX) = {7€[A" x-- x [A]""| ZC § for some ¥ € X };

(2) G, zr 1s the function defined on o([A]F x -+ x [A]*") given by

g, | forall 7 € [A]" x - x [A])
if ¥ C ¢ then v € Fn,E,f(X> ’

(3) H, ;7 is the function defined on o([AFr x -+ x [A]*) given by
H, 5r(X) =G, gr(X)\ X

n

G, er(X) = {:E’ € (A1 x - x [A]

The proof of the following fact is easy and will be omitted.

Fact 3.2. Let ky,...,k, and ly,...,l, be natural numbers such that k; < I;
foranyi=1,... n.
(i) ]fX g Y g [A]kl X oo X [A]k” then FnEf(X) g Fn];l-'(Y)

(i) If X C[AJfr x - x [Af then X C G g p(X).
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(iii) If X CY C [A]kl X oo X [A]k" then GmEI(X) - Gn,E,f(Y)'

(iv) IF X C[AJ x - X [A]" then G, (G, (X)) = G, ().
() 17X S LA o AP then By 57(0, £00) = Fy57(0).
(Vi) F, ;7 is injective on {X C [A]Fr x - x [A]Fn | G, (X)) =X}

(vii) If X C [A]" x -+ x [A]* and m € w then

H“,?;(X)zanmff(ﬂ( )\ HE

n,k,l (X
(viii) Let l},..., I, be natural numbers such that l; < U} for anyi=1,...,n.
If X C [A]"“ X - x [A]*¥n then G,zr(X) € G, z5(X), and hence
G,z 7(X) = X implies that G, ;7(X) = X.

The key step of our proof is the following lemma.

Lemma 3.3. For all natural numbers ky,...,k, and ly,...,l, such that
ki <l foranyi=1,...,n, if X C[A" x ... x [A]* then

H(x) = 2.

Before we prove Lemma 3.3, we use it to prove our main theorem.

Theorem 3.4. For all infinite cardinals a and all natural numbers n,

ofin(a)" _ olfin(a)]"

Proof. Let A be an infinite set such that |A| = a. The case n = 0 is obvious.
So assume that n is a non-zero natural number. For all natural numbers
ki, ... kn,m, let s(k,m) be the finite sequence

(DY PN P P2 1<icn
where p; is the j-th prime number, and let t(k) = s(k, ky + -+ k).

For all X C fin(A)" and all natural numbers kq, ..., k,, m, we define
X=X N (A" x o x [A]*);
( ) 2\
ZE, Fn k,s( m ( )
Notice that for any finite sequence ¥ = <ZL’1, ey Ty, ran(T) = {xq, ..., 2 )
Now, let ® be the function defined on p(fin(A)™) given by
O(X) = {ran(g) | I1,...,knmew(m <ki+---+kyand j€ Z;,) }.

We claim that ® is an injection from p(fin(A)") into p([fin(A4)]"™).

Let X C fin(A)". For all ¥ = (y1,...,yn) € Z%,,, it is easy to see that
gl = Pt - phrpi bl o for any @ =1, n, and thus |yi| < --- < [yal,
which implies that ran(y) € [fin(A)]". Hence ®(X) C [fin(A)]". Moreover,
X is uniquely determined by ®(X) in the following way:
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First, for all natural numbers kq, ..., k,, m such that m < k; +--- + ky,,
Zf  1s uniquely determined by ®(X):

Zg o ={7€[A" x - x [A]" | ran() € ®(X)},

where [; = p* - plop pi o, forany i = 1,...,n.
Then, for all natural numbers k4, ..., k,,m such that m < k1 +-- -+ ky,
by Fact 3.2(iv)(vi)(viii), Yz

k,m

is the unique subset of [A]* x - - x [A]k” such

that G,z (Yz,,) = Yz, and F, ¢ ¢ (Y,,) = Zf,,, which implies that
Y7, is uniquely determmed by ®(X).
Now, for all natural numbers kq, . .., k,, it follows from Fact 3.2(vii) and

Lemma 3.3 that

_YE,O\( \( ( K 1+ +kn—1\ k14 +kn) ))>

and thus X is uniquely determined by ®(X).
Finally, since

it follows that X is also uniquely determined by ®(X).

Hence, @ is an injection from p(fin(A)") into @([fin(A)]"), and thus
ofin(@) < olfin@I" Since [fin(a)]” <* fin(a)", it follows that 2[fin@I" < gfin(@™
and thus 2f0(@" = 2lin(@I" follows from the Cantor-Bernstein theorem. [0

We still have to prove Lemma 3.3. To this end, we need the following
version of Ramsey’s theorem, whose proof will be omitted.

Lemma 3.5. Let n be a non-zero natural number. There exists a function R
defined on w™ X (w\ {0}) xw such that for all natural numbers jy, ..., jn, ¢, 7
with ¢ > 0 and all finite sets Sy, ..., Sn, Y1,...,Ye, if |Si| = R(J1,- -, Jn, ¢, 1)
foranyi=1,...,n and

[S1)t x - x [Sp) =Y U U Y,
then for each i =1,...,n there exist a T; € [S;]" such that
[Ty x - x [T, C Yy
for somed=1,...,c.

Proof of Lemma 3.3. Let A be an arbitrary infinite set and n a non-zero

natural number. Let kq,...,k, and [, ..., [, be natural numbers such that
ki < l; for any ¢ = 1,...,n. Since in this proof the natural numbers
n,ky, ... kn, i, ..., 1, are fixed, we shall omit the subscripts in F 7, G, i1

and H ;r for convenience.
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Consider the following two formulae:

&(X,Z,7): X C[A]Fr x - x[A]* and &, i € fin(A)" are such that |z;| < k;
for any i = 1,...,n, such that ZM ¥ = &, and such that ZUZ € X
for any Z € [yi]® 1o x o x [y, [P el

(X, Z): For all r € w there exists a § € ([A]")" such that ¢(X, Z, 7).

We claim that for all X C [A]F* x -+ x [A]* and all Z € fin(A4)",
if (H(X),Z) then (X, u) for some @ C 7. (2)

Once we prove (2), we finish the proof of Lemma 3.3 as follows. Assume
towards a contradiction that X C [A]* x --- x [A]*» and there exists an
7 € HFt+katl) (X)) Tt is obvious that ¢(H®+ +k+D(X) 7). Now, by

repeatedly applying (2), we get a descending sequence
T Jv 0 D Upytotbn 41

which is absurd, since Z € [A]" x - - x [A]fn.
Now, let us prove (2). Let X C [A]¥ x .- x [A]* and let T € fin(A4)" be
such that ¢ (H(X), Z). It suffices to prove that

since then there must be a @ C Z such that for infinitely many r € w there
exists a ¥ € ([A]")" such that ¢(X, d,7), and for this 4 we have ¥(X, «).

We prove (3) as follows. Let » > Iy + --- + [,,. Let R be the function
whose existence is asserted by Lemma 3.5. We define

' =max{R(j1, .., Jn,2,7) | ji < ki forany i =1,...,n};

" =R(ly — |x1],. .., 1y — |zal, 2'““"’”“‘,7"’).

Since (H(X),Z), we can find an S = (S1,...,5,) € ([A]"")" such that
G(H(X),Z,S). Notice that M S = &. For each @ C 7, let

Yy = {w € [Si] 71l x o x 8]l

u U v e X for some 172117}.
We claim that
(S0 S = Y| @ 2 7). (4)

Let o € [Sy]n 11l x ... x [S,)n~I#nl, Take a 7 € [Sy]F17171l x .. x [, ]Fn—lenl
such that Z C . Then it follows from ¢(H(X),Z,S) that ZU Z € H(X),
and thus U Z € G(X). Since 7U ZC FUw € [A]"r x --- x [A]™, it follows
that U@ € F(X), and hence @ C Z Ll w for some @ € X. Now, if we take

U =alnxand v =aMnd, then we have ¥ LUv = ad € X and hence W € Yj.
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By (4) and Lemma 3.5, we can find a & = (uy,...,u,) C & such that for
each i = 1,...,n there exist a T; € [S;]” such that

B x [T € 5)

Let
Z={ve[n" M x...x [m el Gude X

Since |T;| =" > R(k1—|ul, ..., kn—|un|,2,7) foranyi = 1,...,n, it follows
from Lemma 3.5 that we can ﬁnd ay=(y1,...,yn) such that y; € [T;]" for
any ¢ = 1,...,n, and such that either

o [l € 2 ©)
or

("1l o ) N Z = 2. (7)

We claim that (7) is impossible. Since |y;| = r > I; > l; — |z;| for any
i=1,...,n, there is a @ € [y]"7 " x -+ - x [y,]"»~1#| and thus it follows
from (5) that @ € Yz, which implies that @ L ¢ € X for some ¥ C « and
such a ¥ is in ([yy]*r=1l x o x [y,]*»~lu=l)y 0 Z. Therefore (6) must hold,
from which ¢(X, u, y) follows.

It remains to show that u #
follows that ¢(H(X),Z,y). If 4 =
impossible: Since |y;| = r > [;

Z. Since ¢(H(X),Z,S) and 47 C S, it
Z, then we also have ¢(X, ¥, %), which is
> ki = k; — |x;| for any @ = 1,...,n, there
isaz e [y)lol xoox [yt ‘”D”‘, and for such a Z, we cannot have both
FUZe H(X)and YU 7€ X. O

4. CONSISTENCY RESULTS

In this section, we establish some consistency results by the method of
permutation models. Permutation models are not models of ZF; they are
models of ZFA (the Zermelo-Fraenkel set theory with atoms). Nevertheless,
they indirectly give, via the Jech—Sochor theorem (cf. |2, Theorem 17.2]),
models of ZF.

For our purpose, we only consider the basic Fraenkel model Vg (cf. |2,
pp. 195-196]). The set A of atoms of Vg is denumerable, and = € Vf if and
only if x C Vg and x has a finite support, that is, a set B € fin(A) such that
every permutation of A fixing B pointwise also fixes x.

Lemma 4.1. Let A be the set of atoms of Vg and let a = |A|. In Vg,

2ﬁn(a) < 2ﬁn(a)2 < 2ﬁn(a)3 << 2ﬁn(ﬁn(a)).
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Proof. Let n € w. We claim that in Vg,
2aﬁ % 2ﬁn(a)”. (8)

Assume towards a contradiction that there exists an injection f € Vg from
(A% into p(fin(A)"). Let B be a finite support of f. Take an arbitrary
C € [A\ B! and a u € C?*. We say that a permutation 7 of A is even
(odd) if m moves only elements of C' and can be written as a product of an
even (odd) number of transpositions. It is well-known that a permutation
of A cannot be both even and odd. Now, let

E ={m(u) | 7 is an even permutation of A},

and let
O = {o(u) | ¢ is an odd permutation of A}.

Clearly, {€, O} is a partition of C2", for all even permutations 7 of A we
have m(€) = &, and for all odd permutations o of A we have (&) = O.
Now, let us consider f(€). For each t € f(&), let ~; be the equivalence
relation on C' such that for all a,b € C,

a~ b ifand only if Vk <n(a € t(k) < bet(k)).

For all even permutations 7 of A, since B is a finite support of f, it follows
that 7(f) = f, and thus 7(f(€)) = f(€). For all odd permutations o of A
and all t € f(€), since |C/~| < 2" and |C| = 2" + 1, there are a,b € C
such that a # b and a ~; b, and therefore the transposition 7 that swaps a
and b fixes t, which implies that o(t) = (o o7)(t) € f(€) since g o7 is even.
Hence, for all odd permutations o of A, o(f(€)) = f(€), which implies that
f(O) = f(a(&)) =a(f(€)) = f(E), contradicting the injectivity of f.

Now, it follows from Lemma 2.9 that a2~ < fin(a)"™, and therefore
295 < 2™ which implies that 28(®" < 2fin(@" ! by (8). It follows from
Theorem 3.4 that 2fin(@" = 2lfin()]"  ofin(fin(e))  Hepce

2ﬁn(a) < 2ﬁn(a)2 < 2ﬁn(a)3 <l < 2ﬁn(ﬁn(a)). 0

Now the following proposition immediately follows from Lemma 4.1 and
the Jech—Sochor theorem.

Proposition 4.2. The following statement is consistent with ZF: there is

an infinite cardinal a such that

2ﬁn(a) < 2ﬁn(a)2 < 2ﬁn(a)3 <l < 2ﬁn(ﬁn(a)).

It is natural to wonder whether the conclusion of Theorem 3.4 can be
strengthened to fin(a)” <* [fin(a)]”. We shall give a negative answer to this

question. The case n = 1 of the following lemma is proved in [5].
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Lemma 4.3. Let A be the set of atoms of Vr. In Vg, for every n € w,
fin(A)™ is dually Dedekind finite; that is, every surjection from fin(A)™ onto

fin(A)"™ is injective.

Proof. Let n € w. Take an arbitrary surjection f € Vg from fin(A)" onto
fin(A)™. In order to prove the injectivity of f, it suffices to show that

for all t € fin(A)" there is an m > 0 such that f™(t) = t. (9)

Let B be a finite support of f. For each t € fin(A)", let ~; be the equivalence
relation on A\ B such that for all a,b € A\ B,

a~ b ifand only if Vk <n(a€t(k) < bet(k)).
Let C be the preorder on fin(A)", such that for all ¢,u € fin(A)",
t Cu if and only if ~, C ~;.

Claim 4.4. There is an | € w such that every C-chain without repetition
must have length less than (.

Proof of Claim 4.4. We first prove that for all u € fin(A)",
[{t € fin(A)" | ~p =~ }| < 20520, (10)

Let u € fin(A)". Let g be the function defined on fin(A)™ such that for all
t € fin(A)", g(t) is the function on n given by

g(t)(k) = (t(k) N B, {w € (A\ B)/~y | w C t(k)}).
Clearly, ran(g) C (p(B) x p((A\ B)/~,))". It is also easy to see that
gl{t € fin(A)" | ~; = ~,} is injective. Since |[(A\ B)/~,| < 2", we have
[{t € fin(A)" |~ =~} < [(0(B) x p((A\ B)/~))"| < 207+,

For each t € fin(A)", let ky = |(A \ B)/~4|. Clearly, for all ¢, u € fin(A)"
such that t C u, we have 0 < k; < k, < 2", and if k; = k, then ~; = ~,,.
Thus, by (10), every C-chain without repetition must have length less than
or equal to 2UB+2")m . 97 Now, it suffices to take [ = 2UBI+2"+)n 11 [T

Claim 4.5. For all u € fin(A)" we have f(u) C u.

Proof of Claim 4.5. Assume towards a contradiction that ~, € ~y,) for
some u € fin(A)". Let a,b € A\ B be such that a ~, b but not a ~q, b.
Clearly a # b. Let T be the transposition that swaps a and b. Then 7(u) = u
but 7(f(u)) # f(u), contradicting that B is a finite support of f. O
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We prove (9) as follows. Let t € fin(A)". By Claim 4.4, there is an [l € w
such that every C-chain without repetition must have length less than (.
Let h be a function from [ into fin(A)", such that h(0) =t and for all i < I
if i +1 < [ then h(i) = f(h(i +1)). Such an h exists since f is surjective.
Clearly, for all i < I, f¥(h(i)) = t. By Claim 4.5, h is a C-chain, and since
the length of h is I, we can find 4,j < [ such that ¢ < j and h(i) = h(j).
Now, if we take m = j — ¢, then we have m > 0 and

FrE) = f90() = FUO(FO(h0) = FO(RG)) =t. 0

Now the following proposition immediately follows from Lemma 4.3 and
the Jech—Sochor theorem.

Proposition 4.6. The following statement is consistent with ZF: there is
an infinite set A such that fin(A)"™ is dually Dedekind finite for any n € w.

Corollary 4.7. The following statement is consistent with ZF: there exists
an infinite cardinal a such that fin(a)™ £* [fin(a)]™ for any n > 2.

Proof. Notice that for all infinite sets A and all natural numbers n > 2,
there exists a non-injective surjection from fin(A)™ onto [fin(A)]". Hence,

this corollary follows from Proposition 4.6. U
We conclude this paper with two open problems.

Question 4.8. Is it provable mn ZF that 226n(a) = 22ﬁn(ﬁn(a)) or any infinite
Y
cardinal a?

Notice that Proposition 4.2 shows that 2@ = 2fn(in(@) cannot be

proved in ZF for an arbitrary infinite cardinal a.
Question 4.9. Does ZF prove that 22° = 22" for any infinite cardinal a?

Notice that for all Dedekind finite cardinals a we have a < a + 1, and
for all power Dedekind finite cardinals a (i.e., cardinals a such that 2% is
Dedekind finite) we have 2% < 21,

Question 4.9 is asked in [3]| (cf. also [2, p. 132]). Notice that, in [3],
Lauchli proves in ZF that for all infinite cardinals a,

22“ — 22“-{-1
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