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A CHOICE-FREE CARDINAL EQUALITY

GUOZHEN SHEN

Abstract. For a cardinal a, let fin(a) be the cardinality of the set of
all finite subsets of a set which is of cardinality a. It is proved without
the aid of the axiom of choice that for all infinite cardinals a and all
natural numbers n,

2fin(a)
n

= 2[fin(a)]
n

.

On the other hand, it is proved that the following statement is consistent
with ZF: there exists an infinite cardinal a such that

2fin(a) < 2fin(a)
2

< 2fin(a)
3

< · · · < 2fin(fin(a)).

1. Introduction

For a cardinal a, let fin(a) be the cardinality of the set of all finite subsets

of a set which is of cardinality a. The axiom of choice implies that fin(a) = a

for any infinite cardinal a. However, in the absence of the axiom of choice,

this is no longer the case. In fact, in the ordered Mostowski model (cf. [2,

pp. 198–202]), the cardinality a of the set of atoms satisfies

fin(a) < [fin(a)]2 < fin(a)2 < [fin(a)]3 < fin(a)3 < · · ·

< fin(fin(a)) < fin(fin(fin(a))) < · · · < ℵ0 · fin(a). (1)

It is natural to ask which relationships between the powers of the cardinals

in (1) for an arbitrary infinite cardinal a can be proved without the aid of

the axiom of choice.

The first result of this kind is Läuchli’s lemma (cf. [3] or [2, Lemma 5.27]),

which states that for all infinite cardinals a,

2ℵ0·fin(a) = 2fin(a).

Läuchli’s lemma implies that, in the ordered Mostowski model, the powers

of the cardinals in (1) are all equal, where a is the cardinality of the set of

atoms.

In this paper, we give a complete answer to the above question. We first

prove in ZF that for all infinite cardinals a,

2fin(fin(a)) = 2fin(fin(fin(a))) = 2fin(fin(fin(fin(a)))) = · · · .
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2 GUOZHEN SHEN

Then, as our main result, we prove in ZF that for all infinite cardinals a and

all natural numbers n,

2fin(a)
n

= 2[fin(a)]
n

.

Finally, we prove that the following statement is consistent with ZF: there

exists an infinite cardinal a such that

2fin(a) < 2fin(a)
2

< 2fin(a)
3

< · · · < 2fin(fin(a)).

2. Basic notions and facts

Throughout this paper, we shall work in ZF. In this section, we indicate

briefly our use of some terminology and notation. The cardinality of x,

which we denote by |x|, is the least ordinal α equinumerous to x, if x is

well-orderable, and the set of all sets y of least rank which are equinumerous

to x, otherwise. We shall use lower case German letters a, b for cardinals.

For a function f , we shall use dom(f) for the domain of f , ran(f) for

the range of f , f [x] for the image of x under f , f−1[x] for the inverse image

of x under f , and f↾x for the restriction of f to x. For functions f and g,

we use g ◦ f for the composition of g and f .

Definition 2.1. Let x, y be arbitrary sets, let a = |x|, and let b = |y|.

(1) x 4 y means that there exists an injection from x into y; a 6 b means

that x 4 y.

(2) x 4∗ y means that there exists a surjection from a subset of y onto x;

a 6∗
b means that x 4∗ y.

(3) a 
 b (a 
∗
b) denotes the negation of a 6 b (a 6∗

b).

(4) a < b means that a 6 b and b 
 a.

(5) a =∗
b means that a 6∗

b and b 6∗
a.

It follows from the Cantor–Bernstein theorem that if a 6 b and b 6 a

then a = b. Clearly, if a 6 b then a 6∗
b, and if a 6∗

b then 2a 6 2b. Thus

a =∗
b implies that 2a = 2b.

Definition 2.2. Let x, y be arbitrary sets, let a = |x|, and let b = |y|.

(1) xy is the set of all functions from y into x; ab = |xy|.

(2) xy is the set of all injections from y into x; ab = |xy|.

(3) [x]y is the set of all subsets of x which have the same cardinality as y;

[a]b = |[x]y|.

(4) seq(x) =
⋃

n∈ω x
n; seq(a) = | seq(x)|.

(5) seq1-1(x) =
⋃

n∈ω x
n; seq1-1(a) = | seq1-1(x)|.

(6) fin(x) =
⋃

n∈ω[x]
n; fin(a) = | fin(x)|.
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Below we list some basic properties of these cardinals. We first note that

fin(a) 6∗ seq1-1(a) 6 seq(a).

Fact 2.3. For all cardinals a, seq1-1(a) 6 fin(fin(a)).

Proof. For every set x, the function f defined on seq1-1(x) given by f(t) =

{t[n] | n 6 dom(t)} is an injection from seq1-1(x) into fin(fin(x)). �

Lemma 2.4. For all non-zero cardinals a, seq(seq(a)) = seq(a).

Proof. Cf. [1, Lemma 2]. �

Lemma 2.5. For all non-zero cardinals a, seq(a) = ℵ0 · seq
1-1(a).

Proof. Cf. [4, Lemma 2.22]. �

Lemma 2.6. For all infinite cardinals a, ℵ0 · seq
1-1(a) 6∗ seq1-1(a).

Proof. Let x be an infinite set. Let p be a bijection from ω × ω onto ω

such that n 6 p(m,n) for any m,n ∈ ω. Let f be the function defined on

seq1-1(x) given by

f(t) = (m, t↾n),

where m,n ∈ ω are such that dom(t) = p(m,n). It is easy to see that f is

a surjection from seq1-1(x) onto ω × seq1-1(x). �

Proposition 2.7. For all infinite cardinals a,

seq1-1(a) =∗ fin(fin(a)) =∗ fin(fin(fin(a))) =∗ · · · =∗ seq(a).

Proof. Immediately follows from Fact 2.3 and Lemmata 2.4, 2.5 and 2.6. �

Corollary 2.8. For all infinite cardinals a,

2seq
1-1(a) = 2fin(fin(a)) = 2fin(fin(fin(a))) = · · · = 2seq(a).

Proof. Immediately follows from Proposition 2.7. �

The following lemma will be used in Section 4.

Lemma 2.9. For all cardinals a and all n ∈ ω, a2
n

6 fin(a)n+1.

Proof. Let x be an arbitrary set and let n ∈ ω. Let f be the function defined

on x℘(n) such that for all t ∈ x℘(n), f(t) is the function on n+ 1 given by

f(t)(k) =

{

{t(∅)}, if k = n;

{t(a) | a ⊆ n and k ∈ a}, otherwise.
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Clearly, ran(f) ⊆ fin(x)n+1. It is easy to verify that for all t ∈ x℘(n), t is the

function defined on ℘(n) given by

t(a) =

{

⋃

f(t)(n), if a = ∅;
⋃
(
⋂

k∈a f(t)(k) \
⋃

k∈n\a f(t)(k)
)

, otherwise.

Hence, f is an injection from x℘(n) into fin(x)n+1. �

3. The main theorem

In this section, we prove our main result which states that for all infinite

cardinals a and all natural numbers n,

2fin(a)
n

= 2[fin(a)]
n

.

The main idea of the proof is originally from [3].

Fix an arbitrary infinite set A and a non-zero natural number n. For a

finite sequence 〈x1, . . . , xn〉 of length n, we write ~x = 〈x1, . . . , xn〉 for short.

For finite sequences ~x = 〈x1, . . . , xn〉 and ~y = 〈y1, . . . , yn〉, we introduce the

following abbreviations: ~x ⊑ ~y means that xi ⊆ yi for any i = 1, . . . , n;

~x ⊏ ~y means that ~x ⊑ ~y but ~x 6= ~y; ~x ⊔ ~y denotes the finite sequence

〈x1∪y1, . . . , xn∪yn〉; ~x⊓~y denotes the finite sequence 〈x1∩y1, . . . , xn∩yn〉;

~∅ denotes the finite sequence 〈∅, . . . ,∅〉 of length n. For an operator H

and an m ∈ ω, we write H(m)(X) for H(H(· · ·H(X) · · · )) (m times), and

if m = 0 then H(0)(X) is X itself.

Definition 3.1. For all natural numbers k1, . . . , kn and l1, . . . , ln such that

ki 6 li for any i = 1, . . . , n, we introduce the following three functions:

(1) F
n,~k,~l

is the function defined on ℘([A]k1 × · · · × [A]kn) given by

F
n,~k,~l

(X) =
{

~y ∈ [A]l1 × · · · × [A]ln
∣

∣ ~x ⊑ ~y for some ~x ∈ X
}

;

(2) G
n,~k,~l

is the function defined on ℘([A]k1 × · · · × [A]kn) given by

G
n,~k,~l

(X) =

{

~x ∈ [A]k1 × · · · × [A]kn
∣

∣

∣

∣

for all ~y ∈ [A]l1 × · · · × [A]ln

if ~x ⊑ ~y then ~y ∈ F
n,~k,~l

(X)

}

;

(3) Hn,~k,~l is the function defined on ℘([A]k1 × · · · × [A]kn) given by

H
n,~k,~l

(X) = G
n,~k,~l

(X) \X.

The proof of the following fact is easy and will be omitted.

Fact 3.2. Let k1, . . . , kn and l1, . . . , ln be natural numbers such that ki 6 li

for any i = 1, . . . , n.

(i) If X ⊆ Y ⊆ [A]k1 × · · · × [A]kn then F
n,~k,~l

(X) ⊆ F
n,~k,~l

(Y ).

(ii) If X ⊆ [A]k1 × · · · × [A]kn then X ⊆ G
n,~k,~l

(X).
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(iii) If X ⊆ Y ⊆ [A]k1 × · · · × [A]kn then Gn,~k,~l (X) ⊆ Gn,~k,~l (Y ).

(iv) If X ⊆ [A]k1 × · · · × [A]kn then G
n,~k,~l

(G
n,~k,~l

(X)) = G
n,~k,~l

(X).

(v) If X ⊆ [A]k1 × · · · × [A]kn then F
n,~k,~l

(G
n,~k,~l

(X)) = F
n,~k,~l

(X).

(vi) F
n,~k,~l

is injective on {X ⊆ [A]k1 × · · · × [A]kn | G
n,~k,~l

(X) = X}.

(vii) If X ⊆ [A]k1 × · · · × [A]kn and m ∈ ω then

H
(m)

n,~k,~l
(X) = G

n,~k,~l
(H

(m)

n,~k,~l
(X)) \H

(m+1)

n,~k,~l
(X).

(viii) Let l′1, . . . , l
′
n be natural numbers such that li 6 l′i for any i = 1, . . . , n.

If X ⊆ [A]k1 × · · · × [A]kn then Gn,~k,~l (X) ⊆ G
n,~k,~l′

(X), and hence

G
n,~k,~l′

(X) = X implies that G
n,~k,~l

(X) = X.

The key step of our proof is the following lemma.

Lemma 3.3. For all natural numbers k1, . . . , kn and l1, . . . , ln such that

ki 6 li for any i = 1, . . . , n, if X ⊆ [A]k1 × · · · × [A]kn then

H
(k1+···+kn+1)

n,~k,~l
(X) = ∅.

Before we prove Lemma 3.3, we use it to prove our main theorem.

Theorem 3.4. For all infinite cardinals a and all natural numbers n,

2fin(a)
n

= 2[fin(a)]
n

.

Proof. Let A be an infinite set such that |A| = a. The case n = 0 is obvious.

So assume that n is a non-zero natural number. For all natural numbers

k1, . . . , kn, m, let s(~k,m) be the finite sequence

〈pk11 · · · pknn p
m
n+1p

i
n+2〉16i6n

where pj is the j-th prime number, and let t(~k) = s(~k, k1 + · · ·+ kn).

For all X ⊆ fin(A)n and all natural numbers k1, . . . , kn, m, we define

X~k
= X ∩ ([A]k1 × · · · × [A]kn);

Y~k,m = G
n,~k,t(~k)(H

(m)

n,~k,t(~k)
(X~k

));

Z~k,m = Fn,~k,s(~k,m)(Y~k,m).

Notice that for any finite sequence ~x = 〈x1, . . . , xn〉, ran(~x) = {x1, . . . , xn}.

Now, let Φ be the function defined on ℘(fin(A)n) given by

Φ(X) =
{

ran(~y)
∣

∣ ∃k1, . . . , kn, m ∈ ω
(

m 6 k1 + · · ·+ kn and ~y ∈ Z~k,m

)}

.

We claim that Φ is an injection from ℘(fin(A)n) into ℘([fin(A)]n).

Let X ⊆ fin(A)n. For all ~y = 〈y1, . . . , yn〉 ∈ Z~k,m, it is easy to see that

|yi| = pk11 · · · pknn p
m
n+1p

i
n+2 for any i = 1, . . . , n, and thus |y1| < · · · < |yn|,

which implies that ran(~y) ∈ [fin(A)]n. Hence Φ(X) ⊆ [fin(A)]n. Moreover,

X is uniquely determined by Φ(X) in the following way:
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First, for all natural numbers k1, . . . , kn, m such that m 6 k1 + · · ·+ kn,

Z~k,m
is uniquely determined by Φ(X):

Z~k,m =
{

~y ∈ [A]l1 × · · · × [A]ln
∣

∣ ran(~y) ∈ Φ(X)
}

,

where li = pk11 · · · pknn p
m
n+1p

i
n+2 for any i = 1, . . . , n.

Then, for all natural numbers k1, . . . , kn, m such that m 6 k1 + · · ·+ kn,

by Fact 3.2(iv)(vi)(viii), Y~k,m is the unique subset of [A]k1 ×· · ·× [A]kn such

that Gn,~k,t(~k) (Y~k,m) = Y~k,m and Fn,~k,s(~k,m)(Y~k,m) = Z~k,m, which implies that

Y~k,m is uniquely determined by Φ(X).

Now, for all natural numbers k1, . . . , kn, it follows from Fact 3.2(vii) and

Lemma 3.3 that

X~k
= Y~k,0 \ (Y~k,1 \ (· · · (Y~k,k1+···+kn−1 \ Y~k,k1+···+kn

) · · · )),

and thus X~k
is uniquely determined by Φ(X).

Finally, since

X =
⋃

k1,...,kn∈ω

X~k
,

it follows that X is also uniquely determined by Φ(X).

Hence, Φ is an injection from ℘(fin(A)n) into ℘([fin(A)]n), and thus

2fin(a)
n

6 2[fin(a)]
n

. Since [fin(a)]n 6∗ fin(a)n, it follows that 2[fin(a)]
n

6 2fin(a)
n

,

and thus 2fin(a)
n

= 2[fin(a)]
n

follows from the Cantor–Bernstein theorem. �

We still have to prove Lemma 3.3. To this end, we need the following

version of Ramsey’s theorem, whose proof will be omitted.

Lemma 3.5. Let n be a non-zero natural number. There exists a function R

defined on ωn×(ω\{0})×ω such that for all natural numbers j1, . . . , jn, c, r

with c > 0 and all finite sets S1, . . . , Sn, Y1, . . . , Yc, if |Si| > R(j1, . . . , jn, c, r)

for any i = 1, . . . , n and

[S1]
j1 × · · · × [Sn]

jn = Y1 ∪ · · · ∪ Yc,

then for each i = 1, . . . , n there exist a Ti ∈ [Si]
r such that

[T1]
j1 × · · · × [Tn]

jn ⊆ Yd

for some d = 1, . . . , c.

Proof of Lemma 3.3. Let A be an arbitrary infinite set and n a non-zero

natural number. Let k1, . . . , kn and l1, . . . , ln be natural numbers such that

ki 6 li for any i = 1, . . . , n. Since in this proof the natural numbers

n, k1, . . . , kn, l1, . . . , ln are fixed, we shall omit the subscripts in F
n,~k,~l

, G
n,~k,~l

and H
n,~k,~l

for convenience.



A CHOICE-FREE CARDINAL EQUALITY 7

Consider the following two formulae:

φ(X,~x, ~y): X ⊆ [A]k1 ×· · ·× [A]kn and ~x, ~y ∈ fin(A)n are such that |xi| 6 ki

for any i = 1, . . . , n, such that ~x ⊓ ~y = ~∅, and such that ~x ⊔ ~z ∈ X

for any ~z ∈ [y1]
k1−|x1| × · · · × [yn]

kn−|xn|.

ψ(X,~x): For all r ∈ ω there exists a ~y ∈ ([A]r)n such that φ(X,~x, ~y).

We claim that for all X ⊆ [A]k1 × · · · × [A]kn and all ~x ∈ fin(A)n,

if ψ(H(X), ~x) then ψ(X,~u) for some ~u ⊏ ~x. (2)

Once we prove (2), we finish the proof of Lemma 3.3 as follows. Assume

towards a contradiction that X ⊆ [A]k1 × · · · × [A]kn and there exists an

~x ∈ H(k1+···+kn+1)(X). It is obvious that ψ(H(k1+···+kn+1)(X), ~x). Now, by

repeatedly applying (2), we get a descending sequence

~x ⊐ ~u1 ⊐ · · · ⊐ ~uk1+···+kn+1,

which is absurd, since ~x ∈ [A]k1 × · · · × [A]kn .

Now, let us prove (2). Let X ⊆ [A]k1 ×· · ·× [A]kn and let ~x ∈ fin(A)n be

such that ψ(H(X), ~x). It suffices to prove that

∀r > l1 + · · ·+ ln ∃~u ⊏ ~x ∃~y ∈ ([A]r)n φ(X,~u, ~y), (3)

since then there must be a ~u ⊏ ~x such that for infinitely many r ∈ ω there

exists a ~y ∈ ([A]r)n such that φ(X,~u, ~y), and for this ~u we have ψ(X,~u).

We prove (3) as follows. Let r > l1 + · · · + ln. Let R be the function

whose existence is asserted by Lemma 3.5. We define

r′ = max{R(j1, . . . , jn, 2, r) | ji 6 ki for any i = 1, . . . , n};

r′′ = R(l1 − |x1|, . . . , ln − |xn|, 2
|x1|+···+|xn|, r′).

Since ψ(H(X), ~x), we can find an ~S = 〈S1, . . . , Sn〉 ∈ ([A]r
′′

)n such that

φ(H(X), ~x, ~S). Notice that ~x ⊓ ~S = ~∅. For each ~u ⊑ ~x, let

Y~u =
{

~w ∈ [S1]
l1−|x1| × · · · × [Sn]

ln−|xn|
∣

∣ ~u ⊔ ~v ∈ X for some ~v ⊑ ~w
}

.

We claim that

[S1]
l1−|x1| × · · · × [Sn]

ln−|xn| =
⋃

{Y~u | ~u ⊑ ~x}. (4)

Let ~w ∈ [S1]
l1−|x1| × · · ·× [Sn]

ln−|xn|. Take a ~z ∈ [S1]
k1−|x1|× · · ·× [Sn]

kn−|xn|

such that ~z ⊑ ~w. Then it follows from φ(H(X), ~x, ~S) that ~x ⊔ ~z ∈ H(X),

and thus ~x ⊔ ~z ∈ G(X). Since ~x ⊔ ~z ⊑ ~x ⊔ ~w ∈ [A]l1 × · · · × [A]ln , it follows

that ~x ⊔ ~w ∈ F (X), and hence ~a ⊑ ~x ⊔ ~w for some ~a ∈ X. Now, if we take

~u = ~a ⊓ ~x and ~v = ~a ⊓ ~w, then we have ~u ⊔ ~v = ~a ∈ X and hence ~w ∈ Y~u.
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By (4) and Lemma 3.5, we can find a ~u = 〈u1, . . . , un〉 ⊑ ~x such that for

each i = 1, . . . , n there exist a Ti ∈ [Si]
r′ such that

[T1]
l1−|x1| × · · · × [Tn]

ln−|xn| ⊆ Y~u. (5)

Let

Z =
{

~v ∈ [T1]
k1−|u1| × · · · × [Tn]

kn−|un|
∣

∣ ~u ⊔ ~v ∈ X
}

.

Since |Ti| = r′ > R(k1−|u1|, . . . , kn−|un|, 2, r) for any i = 1, . . . , n, it follows

from Lemma 3.5 that we can find a ~y = 〈y1, . . . , yn〉 such that yi ∈ [Ti]
r for

any i = 1, . . . , n, and such that either

[y1]
k1−|u1| × · · · × [yn]

kn−|un| ⊆ Z (6)

or

([y1]
k1−|u1| × · · · × [yn]

kn−|un|) ∩ Z = ∅. (7)

We claim that (7) is impossible. Since |yi| = r > li > li − |xi| for any

i = 1, . . . , n, there is a ~w ∈ [y1]
l1−|x1| × · · · × [yn]

ln−|xn|, and thus it follows

from (5) that ~w ∈ Y~u, which implies that ~u ⊔ ~v ∈ X for some ~v ⊑ ~w and

such a ~v is in ([y1]
k1−|u1| × · · · × [yn]

kn−|un|) ∩ Z. Therefore (6) must hold,

from which φ(X,~u, ~y) follows.

It remains to show that ~u 6= ~x. Since φ(H(X), ~x, ~S) and ~y ⊑ ~S, it

follows that φ(H(X), ~x, ~y). If ~u = ~x, then we also have φ(X,~x, ~y), which is

impossible: Since |yi| = r > li > ki > ki − |xi| for any i = 1, . . . , n, there

is a ~z ∈ [y1]
k1−|x1| × · · · × [yn]

kn−|xn|, and for such a ~z, we cannot have both

~x ⊔ ~z ∈ H(X) and ~x ⊔ ~z ∈ X. �

4. Consistency results

In this section, we establish some consistency results by the method of

permutation models. Permutation models are not models of ZF; they are

models of ZFA (the Zermelo-Fraenkel set theory with atoms). Nevertheless,

they indirectly give, via the Jech–Sochor theorem (cf. [2, Theorem 17.2]),

models of ZF.

For our purpose, we only consider the basic Fraenkel model VF (cf. [2,

pp. 195–196]). The set A of atoms of VF is denumerable, and x ∈ VF if and

only if x ⊆ VF and x has a finite support, that is, a set B ∈ fin(A) such that

every permutation of A fixing B pointwise also fixes x.

Lemma 4.1. Let A be the set of atoms of VF and let a = |A|. In VF,

2fin(a) < 2fin(a)
2

< 2fin(a)
3

< · · · < 2fin(fin(a)).
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Proof. Let n ∈ ω. We claim that in VF,

2a
2n


 2fin(a)
n

. (8)

Assume towards a contradiction that there exists an injection f ∈ VF from

℘(A2n) into ℘(fin(A)n). Let B be a finite support of f . Take an arbitrary

C ∈ [A \ B]2
n+1 and a u ∈ C2n . We say that a permutation π of A is even

(odd) if π moves only elements of C and can be written as a product of an

even (odd) number of transpositions. It is well-known that a permutation

of A cannot be both even and odd. Now, let

E = {π(u) | π is an even permutation of A},

and let

O = {σ(u) | σ is an odd permutation of A}.

Clearly, {E ,O} is a partition of C2n, for all even permutations π of A we

have π(E) = E , and for all odd permutations σ of A we have σ(E) = O.

Now, let us consider f(E). For each t ∈ f(E), let ∼t be the equivalence

relation on C such that for all a, b ∈ C,

a ∼t b if and only if ∀k < n
(

a ∈ t(k) ↔ b ∈ t(k)
)

.

For all even permutations π of A, since B is a finite support of f , it follows

that π(f) = f , and thus π(f(E)) = f(E). For all odd permutations σ of A

and all t ∈ f(E), since |C/∼t| 6 2n and |C| = 2n + 1, there are a, b ∈ C

such that a 6= b and a ∼t b, and therefore the transposition τ that swaps a

and b fixes t, which implies that σ(t) = (σ ◦ τ)(t) ∈ f(E) since σ ◦ τ is even.

Hence, for all odd permutations σ of A, σ(f(E)) = f(E), which implies that

f(O) = f(σ(E)) = σ(f(E)) = f(E), contradicting the injectivity of f .

Now, it follows from Lemma 2.9 that a
2n 6 fin(a)n+1, and therefore

2a
2n

6 2fin(a)
n+1

, which implies that 2fin(a)
n

< 2fin(a)
n+1

by (8). It follows from

Theorem 3.4 that 2fin(a)
n

= 2[fin(a)]
n

6 2fin(fin(a)). Hence

2fin(a) < 2fin(a)
2

< 2fin(a)
3

< · · · < 2fin(fin(a)). �

Now the following proposition immediately follows from Lemma 4.1 and

the Jech–Sochor theorem.

Proposition 4.2. The following statement is consistent with ZF: there is

an infinite cardinal a such that

2fin(a) < 2fin(a)
2

< 2fin(a)
3

< · · · < 2fin(fin(a)).

It is natural to wonder whether the conclusion of Theorem 3.4 can be

strengthened to fin(a)n 6∗ [fin(a)]n. We shall give a negative answer to this

question. The case n = 1 of the following lemma is proved in [5].
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Lemma 4.3. Let A be the set of atoms of VF. In VF, for every n ∈ ω,

fin(A)n is dually Dedekind finite; that is, every surjection from fin(A)n onto

fin(A)n is injective.

Proof. Let n ∈ ω. Take an arbitrary surjection f ∈ VF from fin(A)n onto

fin(A)n. In order to prove the injectivity of f , it suffices to show that

for all t ∈ fin(A)n there is an m > 0 such that f (m)(t) = t. (9)

Let B be a finite support of f . For each t ∈ fin(A)n, let ∼t be the equivalence

relation on A \B such that for all a, b ∈ A \B,

a ∼t b if and only if ∀k < n
(

a ∈ t(k) ↔ b ∈ t(k)
)

.

Let ⊑ be the preorder on fin(A)n, such that for all t, u ∈ fin(A)n,

t ⊑ u if and only if ∼u ⊆ ∼t.

Claim 4.4. There is an l ∈ ω such that every ⊑-chain without repetition

must have length less than l.

Proof of Claim 4.4. We first prove that for all u ∈ fin(A)n,

∣

∣

{

t ∈ fin(A)n
∣

∣ ∼t = ∼u

}
∣

∣ 6 2(|B|+2n)·n. (10)

Let u ∈ fin(A)n. Let g be the function defined on fin(A)n such that for all

t ∈ fin(A)n, g(t) is the function on n given by

g(t)(k) =
(

t(k) ∩ B,
{

w ∈ (A \B)/∼u

∣

∣ w ⊆ t(k)
})

.

Clearly, ran(g) ⊆
(

℘(B) × ℘((A \ B)/∼u)
)n

. It is also easy to see that

g↾{t ∈ fin(A)n | ∼t = ∼u} is injective. Since |(A \B)/∼u| 6 2n, we have

∣

∣

{

t ∈ fin(A)n
∣

∣ ∼t = ∼u

}∣

∣ 6
∣

∣

(

℘(B)× ℘((A \B)/∼u)
)n∣
∣ 6 2(|B|+2n)·n.

For each t ∈ fin(A)n, let kt = |(A \B)/∼t|. Clearly, for all t, u ∈ fin(A)n

such that t ⊑ u, we have 0 < kt 6 ku 6 2n, and if kt = ku then ∼t = ∼u.

Thus, by (10), every ⊑-chain without repetition must have length less than

or equal to 2(|B|+2n)·n · 2n. Now, it suffices to take l = 2(|B|+2n+1)·n + 1. �

Claim 4.5. For all u ∈ fin(A)n we have f(u) ⊑ u.

Proof of Claim 4.5. Assume towards a contradiction that ∼u * ∼f(u) for

some u ∈ fin(A)n. Let a, b ∈ A \ B be such that a ∼u b but not a ∼f(u) b.

Clearly a 6= b. Let τ be the transposition that swaps a and b. Then τ(u) = u

but τ(f(u)) 6= f(u), contradicting that B is a finite support of f . �
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We prove (9) as follows. Let t ∈ fin(A)n. By Claim 4.4, there is an l ∈ ω

such that every ⊑-chain without repetition must have length less than l.

Let h be a function from l into fin(A)n, such that h(0) = t and for all i < l

if i + 1 < l then h(i) = f(h(i + 1)). Such an h exists since f is surjective.

Clearly, for all i < l, f (i)(h(i)) = t. By Claim 4.5, h is a ⊑-chain, and since

the length of h is l, we can find i, j < l such that i < j and h(i) = h(j).

Now, if we take m = j − i, then we have m > 0 and

f (m)(t) = f (j−i)(t) = f (j−i)(f (i)(h(i))) = f (j)(h(j)) = t. �

Now the following proposition immediately follows from Lemma 4.3 and

the Jech–Sochor theorem.

Proposition 4.6. The following statement is consistent with ZF: there is

an infinite set A such that fin(A)n is dually Dedekind finite for any n ∈ ω.

Corollary 4.7. The following statement is consistent with ZF: there exists

an infinite cardinal a such that fin(a)n 
∗ [fin(a)]n for any n > 2.

Proof. Notice that for all infinite sets A and all natural numbers n > 2,

there exists a non-injective surjection from fin(A)n onto [fin(A)]n. Hence,

this corollary follows from Proposition 4.6. �

We conclude this paper with two open problems.

Question 4.8. Is it provable in ZF that 22
fin(a)

= 22
fin(fin(a))

for any infinite

cardinal a?

Notice that Proposition 4.2 shows that 2fin(a) = 2fin(fin(a)) cannot be

proved in ZF for an arbitrary infinite cardinal a.

Question 4.9. Does ZF prove that 22
a

= 22
a+1

for any infinite cardinal a?

Notice that for all Dedekind finite cardinals a we have a < a + 1, and

for all power Dedekind finite cardinals a (i.e., cardinals a such that 2a is

Dedekind finite) we have 2a < 2a+1.

Question 4.9 is asked in [3] (cf. also [2, p. 132]). Notice that, in [3],

Läuchli proves in ZF that for all infinite cardinals a,

22
a

= 22
a+1.
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