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The Axiom Scheme of Acyclic Comprehension

Zuhair Al-Johar, M. Randall Holmes, and Nathan Bowler

Abstract A “new” criterion for set existence is presented, namely, that a set
¹x j 'º should exist if the multigraph whose nodes are variables in ' and whose
edges are occurrences of atomic formulas in ' is acyclic. Formulas with acyclic
graphs are stratified in the sense of New Foundations, so consistency of the set
theory with weak extensionality and acyclic comprehension follows from the
consistency of Jensen’s system NFU. It is much less obvious, but turns out to
be the case, that this theory is equivalent to NFU: it appears at first blush that it
ought to be weaker. This paper verifies that acyclic comprehension and stratified
comprehension are equivalent by verifying that each axiom in a finite axiomati-
zation of stratified comprehension follows from acyclic comprehension.

The first author, who is a neurologist with an amateur interest in mathematical
logic, proposed the criterion of acyclic comprehension for existence of sets (origi-
nally under another name) as an approach to the historical paradoxes of set theory
and communicated this to the second author. The second author noted that stratified
comprehension implies acyclic comprehension, so the scheme of acyclic comprehen-
sion is certainly consistent relative to quite weak accepted theories (as the scheme of
stratified comprehension is a subtheory of NFU, which was shown to be consistent
by R. B. Jensen in [6]). The second author also conjectured that the scheme was
very weak (meaning not equivalent to full stratified comprehension). The first author
realized that one could attack this problem by attempting to prove all propositions in
a finite axiomatization of stratified comprehension. (That stratified comprehension
is finitely axiomatizable was originally shown by Hailperin in [4], though the axiom-
atization given there is very unpleasant to work with.) Undaunted by the skepticism
of the second author, he proceeded to prove that each of the axioms of the finite
axiomatization used in the second author’s work [5] (adapted to the Wiener ordered
pair of [9]) follows from acyclic comprehension: a précis of his proof can be seen at
[1]. That is not the proof given here: here we have given a proof based on the Kura-
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towski pair, though it is actually designed to be as much as possible independent of
the implementation of the ordered pair. The third author noticed the importance of
certain logical considerations having to do with the effect of definitional expansion
on acyclicity, which enabled us to prove a more comprehensive result.

The finite axiomatization used here is nowhere fully verified in the literature, as
it is the adaptation to the Kuratowski pair of a finite axiomatization fully verified
for the Quine pair in [5], and the change of pair involves some technical work. We
include the verification of this finite axiomatization by demonstrating that each of
Hailperin’s axioms in [4] follow from these axioms.

Definition Let ' be a formula in the language of set theory (first-order logic with
equality and membership as primitive relations). Let u and v be variables appear-
ing in ' (free or bound). We say that a finite sequence ¹siº1�i�n of variables is a
path from u to v in ' if and only if s1 D u, sn D v, and there is an auxiliary se-
quence ¹fiº1�i<n of atomic subformulas of ' such that for each appropriate index
i the atomic subformula fi contains exactly the variables si and siC1, and for each
appropriate index i , fi and fiC1 are distinct formulas. The parameter n is called the
length of the path.

We say that the formula ' is acyclic if and only if it satisfies the following condi-
tions.

(1) There is no more than one path from u to v in ' for any variables u and v
(including the case where u and v are the same variable, where of course
there is a trivial path of length 1; for example, the formula x 2 x is not
acyclic because there is a path of length 2 from x to x in this formula in
addition to the trivial path from x to x of length 1).

(2) For any variable x occurring in ', either all occurrences of x are free in '
or all occurrences of x are bound by the same occurrence of a quantifier.

(3) No atomic formula occurs more than once in '.

Note The third author pointed out that one does not want identifications between
paths to depend on spurious typographical identifications between variables which
are bound in different contexts (or one free and one bound); the second condition did
not occur in the original definition.

Definition Let ' be a formula in the language of set theory with the property that
for each variable x, either all occurrences of x are free or all occurrences of x are
bound by the same occurrence of a quantifier. We define an undirected multigraph
G' as follows: the vertices of this graph are the variables (free or bound) in ', and
an edge between variables u and v is an occurrence in ' of an atomic formula such
that the set of variables appearing in the atomic formula is ¹u; vº.

Observation A formula ' with the property stated under the previous heading is
acyclic if and only if G' is acyclic in the usual sense.

Notation for the underlying digraphs Since the formulas we shall be using are
long enough to be difficult to digest, we shall include some pictures of the underlying
acyclic digraphs to help the reader see the basic structure of the formulas we employ.
Pairs of variables in the same atomic formula will be linked by an arrow, such as
x y� � if the atomic formula is x 2 y, or x y if it is x D y. Thus, for
example, the underlying (cyclic) digraph of the formula expressing extensionality,
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8x:8y:.8z:z 2 x $ z 2 y/! x D y, is

x

O/

y

/�

z

It is important to note that while each variable can appear only once as a ver-
tex in the digraph for a formula, it is permissible for constants (names which have
been assigned a fixed reference) to appear more than once, for reasons that will be
explained.

Subtleties The definition given above is sensitive to fine details of the way propo-
sitional connectives are handled. Here we officially take the view that the primi-
tive propositional connectives are negation and disjunction.1 We can use conjunction
p ^ q (defined as :.:p _ :q/) and implication p ! q (defined as :p _ q) freely,
as definitional expansion of these notions does not copy formulas. We must avoid
using the biconditional.

Copying of atomic formulas in the expansion of a definition obviously breaks
acyclicity. Copying of quantified formulas may break acyclicity in the strict form in
which it is defined here, even if we use renaming of bound variables to avoid literal
copying of atomic formulas. A formula which occurred in an earlier form of the con-
struction of the converse of a relation was .8z:z 22 x $ z 22 y/, where u 22 v is
defined as .9w:u 2 w ^ w 2 v/. The formula .8z:z 22 x $ z 22 y/ is equivalent
to .8z:.9w:z 2 w ^ w 2 x/ $ .9w0:z 2 w0 ^ w0 2 y//. This in turn expands to
.8z:..9w:z 2 w ^ w 2 x/ ! .9w0:z 2 w0 ^ w0 2 y// ^ ..9w00:z 2 w00 ^ w00 2

y/! .9w000:z 2 w000 ^ w000 2 x///, and this is not acyclic.2
The underlying digraph is

x _?

O/

w

O/

w0

/�

y� �

/ �

w000 _? z w00� �

We require that bound variables be diversified as far as possible in acyclic formulas
before considering paths, and copying of a quantified formula in which there is a path
between free variables with a bound variable on it will cause a failure of acyclicity
as here.

However, it is possible to copy a formula freely without impairing acyclicity if
it does not contain two distinct free variables connected by a path, by renaming all
bound variables in the formula.

Predicates may be introduced by definition (as with 22 above) and used in acyclic
formulas if the defining formula of a defined predicate is acyclic, occurrence of vari-
ables together in a superficially atomic formula involving a defined predicate is taken
to link them for purposes of acyclicity in the same way they would be linked by oc-
currence together in an atomic formula, and superficially atomic formulas involving
defined predicates with more than one argument will not appear more than once (just
as an atomic formula cannot). These conditions ensure that definitional expansion
of apparently acyclic formulas will in fact produce acyclic formulas when all defined
notions are eliminated.
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Axiom scheme of acyclic comprehension For each formula ' such that ' is
acyclic and A does not appear free in ', .9A:.8x:x 2 A$ '// is an axiom.

Observation If ' is a formula which is not acyclic, but the formula 'x obtained
by making each free occurrence in ' of a variable other than x a distinct variable is
acyclic, then .9A:.8x:x 2 A$ 'x// is an instance of acyclic comprehension from
which .9A:.8x:x 2 A$ '// follows (since variables free in an instance of compre-
hension are implicitly universally quantified). This observation allows us to ignore
identifications between occurrences of constants in judging whether a formula can be
used to define a set, because we can generalize a definition containing a constant by
replacing each occurrence of the constant with a different free variable. (By constant
we mean here a name which has been assigned a fixed reference; the same remark
applies to free variables generally but we use it in practice only for constants in this
sense.)

Observation The following axiom is almost always assumed in set theory, as it
seems to be part of the underlying concept of what a set is. We add it as an assump-
tion, as it makes the proof more convenient. It is known that stratified comprehension
alone interprets stratified comprehension plus weak extensionality, a result of Mar-
cel Crabbé in [2], and we will indicate briefly at the end of the paper how Crabbé’s
argument can be adapted to acyclic comprehension.

Axiom of weak extensionality We have .8xyz:z 2 x ^ .8w:w 2 x $ w 2

y/! x D y/: nonempty sets with the same elements are equal.

Definition Acyclic comprehension implies the existence of a set with no ele-
ments, as .8y::x D y/ is an acyclic formula which cannot be true of any x. We
select one memberless set and let ; represent the selected memberless set. (We may
suppose that ; is a new primitive constant with an additional axiom .8x:x … ;/,
though this is not strictly necessary.) We then define ¹x j 'º as the A which wit-
nesses .9A:.8x:x 2 A $ '//, if this formula is an instance of acyclic comprehen-
sion, and which is equal to ; if it has no elements. This is uniquely determined by
weak extensionality and the choice of ;.

Observation It is interesting to note that equality can be defined acyclically in
terms of membership thus: x D y is equivalent to .8z:x 2 z ! y 2 z/. We do not
advocate use of this definition.

Observation Another way to see that certain constants cause no failures of
acyclicity if repeated in a formula (namely, ones definable as ¹x j 'º for an acyclic
formula ' with no free variables other than x) is to note that y D ¹x j '.x/º
can be expressed acyclically as .8z:z 2 y ! '.z// ^ .8w:'.w/ ! w 2 y/ ^

..8z::.'.z/// ! y D ;/: this can be converted by renaming of bound vari-
ables to an acyclic formula as long as there are no free variables in '.x/ other
than x itself. Then any formula  .¹x j '.x/º/ can be converted to the form
.9y: .y/ ^ y D ¹x j '.x/º/ (where y is new in the context), which can be made
acyclic by renaming bound variables if necessary, if  .y/ and '.x/ are acyclic.
Multiple occurrences of the same set abstract can be handled independently with no
overlap in variables used.

Definition A formula ' in the language of set theory is said to be stratified if
and only if there is a function � from variables to integers such that for each atomic
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subformula x D y of ' we have �.x/ D �.y/ and for each atomic subformula x 2 y
of ' we have �.x/C 1 D �.y/.
Observation Any acyclic formula is stratified. For we can choose any variable
x in an acyclic formula ' and assign it the value 0 under the stratification � to be
constructed. This will enable us to determine the value of � at each variable y for
which there is a path from x to y: acyclicity ensures that no attempts at multiple
assignments of values will be made. If any variables have not been assigned values
under � , choose one, set the value of � at that variable to 0, determine values of � at
all variables connected to it by paths, and repeat as necessary.
Axiom scheme of stratified comprehension For any stratified formula ' in which
A is not free, .9A:.8x:x 2 A$ '// is an axiom.
Observations If we assume weak extensionality as well, we can define ¹x j 'º
for each stratified formula ' as above, and if 'x (defined as above) is stratified, we
can show the existence of ¹x j 'xº and deduce the existence of ¹x j 'º as a special
case (i.e., we do not need to worry about relative types assigned to free variables in
¹x j 'º).
Main claim The main result of this paper, with whose proof we are occupied from
this point on, is that acyclic comprehension and stratified comprehension are equiva-
lent in the presence of weak extensionality. We will indicate briefly after the proof of
the main claim how the assumption of weak extensionality could be dispensed with.
Finite axiomatization of stratified comprehension We present a finite list of in-
stances of stratified comprehension which is equivalent to the full scheme. An indi-
cation of the proof is found in the second author’s [5]. (This is the version modified
for use of the Kuratowski ordered pair.) The theorem that stratified comprehension is
finitely axiomatizable is due to Hailperin in [4]; details of the implementation (which
is due to the second author) are inspired by the reduction of first-order logic to re-
lation algebra in Tarski and Givant [8]. A complete verification that the axioms of
Hailperin follow from the axioms given here is found below.

We state the finite axiomatization briefly: complete formal detail of the axioms
can be extracted from the verification that they hold in the proof of the main claim.
We take weak extensionality as an axiom. We assert the existence of the universal
set, which we call V , of a complement of each set (only V could have more than one;
we specify one complement ; of V to serve in the definition of set abstracts), and of
the Boolean union of any pair of sets: sets make up a Boolean algebra. For any set
A we assert the existence of the union

S
A. We assert the existence of singletons

¹aº: from the axioms given so far we can deduce the existence of Kuratowski ordered
pairs .a; b/ D ¹¹aº; ¹a; bºº for any objects a; b.

We assert the existence of Cartesian products. Note that for any set R we can
define the relation part of R as R\ .V �V /. We assert the existence of the converse
of any relation (i.e., of the relation part of any set), the relative product of any two
relations, the domain of any relation (and so the range since we also have converses
of relations), and for any relation R we assert the existence of its singleton image R�
defined as ¹.¹xº; ¹yº/ j .x; y/ 2 Rº.

We assert the existence of the equality relation, which we denote ŒD�, the projec-
tion relations, which take the forms

�1 D
®�
.x; y/; .x; x/

� ˇ̌
x; y 2 V

¯
D
®�
.x; y/;

®
¹xº

¯� ˇ̌
x; y 2 V

¯
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and

�2 D
®�
.x; y/; .y; y/

� ˇ̌
x; y 2 V

¯
D
®�
.x; y/;

®
¹yº

¯� ˇ̌
x; y 2 V

¯
(these forms are dictated by stratification considerations: the Kuratowski pair is two
types higher than its projections), and the inclusion relation Œ��.3

Proof of the main claim What remains is to show that each of the axioms in the
finite axiomatization given is a consequence of acyclic comprehension. We do this
with further strictures having to do with making our development as far as possible
independent of the choice of implementation of the ordered pair.

Universal set V D ¹x j .9y:x D y/º exists by acyclic comprehension and is the
universal set.

Complement ¹x j :x 2 aº exists by acyclic comprehension and is the comple-
ment of a. We write this ac .

Boolean union ¹x j x 2 a_x 2 bº exists by acyclic comprehension and is a[b;
a \ b can then be constructed as .ac [ bc/c .

Set union ¹x j .9y:x 2 y ^ y 2 a/º exists by acyclic comprehension and is
S
a.

Singletons ¹x j x D aº exists by acyclic comprehension and is ¹aº.

Numeral sets We define 1 as®
y
ˇ̌
.9x:x 2 y/ ^

�
9x0:.8z:z 2 y ! z D x0/

�¯
and note that this exists by acyclic comprehension. We define 2� as®

z
ˇ̌
.9x:x 2 z/ ^

�
9x0y0:.8u:u 2 z ! u D x0 _ u D y0/

�¯
:

The underlying digraphs of these formulas are
y _?

?�

x z _?

?�

x

z x0 and x0 u y0

So 1 is the set of singletons (the Frege numeral 1), and 2� is the set of all unordered
pairs (including the singletons, so it is not quite the Frege numeral 2).

It is useful to note that the existence of 1 follows from our finite axiomatization:
1 D dom..V � V /�/.

Iterated membership Define x 21 y as x 2 y. Define x 2kC1 y as .9z:x 2 z ^
z 2k y/.

Formulas to define projections and pairs We first discuss the pair in the abstract.
We suppose that we have acyclic formulas First.x; p/ and Proj.x; p/. The in-
tention is that the first formula captures the notion “p is a pair and x is the first
projection of the pair p,” and the second captures the notion “p is a pair and x is one
of the projections of the pair p.”

Subsequently, we will exhibit specific acyclic formulas implementing the projec-
tion and first projection notions for the usual Kuratowski pair (and separately for the
Wiener pair), which we will denote by first.x; p/ and proj.x; p/: the formulas
with lowercase names are concrete implementations of the abstract specification of
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First.x; p/ and Proj.x; p/. Formulas Pair(p) (p is a pair) and Second.x; p/
(x is the second projection of p) are defined below in terms of First.x; p/ and
Proj.x; p/; once specific formulas first.x; p/ and proj.x; p/ have been intro-
duced implementing First.x; p/ and Proj.x; p/ for the Kuratowski (or Wiener)
pair, we will have defined implementations pair and second for the Kuratowski
(or Wiener) pair of the abstractly specified formulas Pair and Second (the same
convention would apply to other notions defined ultimately in terms of First.x; p/
and Proj.x; p/, but in most of the argument we leave the choice of a specific im-
plementation of First.x; p/ and Proj.x; p/ open, so notions defined in terms of
projections are left abstract, and their names capitalized).

The conditions which must be satisfied for this to be a pair implementation are�
8zp:

�
First.z; p/! Proj.z; p/

�
^
�
Proj.z; p/!

�
9x:First.x; p/

���
(the first projection is a projection, and anything which has a projection [i.e., is a
pair] has a first projection),�

8xy:
�
9p:First.x; p/ ^

�
8z:Proj.z; p/$ z D x _ z D y

���
(for any x and y there is an object whose first projection is x and which has x; y as
its projections), and

.8p:
�
8xy:First.x; p/ ^ First.y; p/! x D y

�
W

first projections are uniquely determined. We have�
8p:

�
9xy:

�
8z:Proj.z; p/! z D x _ z D y

���
W

a pair has no more than two projections. This is enough for the second projection to
be uniquely determined (and of course the same as the first if the pair has just one
projection). We have�

8pq:
�
9x:First.x; p/ ^ First.x; q/

�
^
�
8y:Proj.y; p/$ Proj.y; q/

�
! p D q

�
:

Objects with the same first projection and the same projections are equal, that is,
pairs are unique. (It should be noted that this condition is not required for any of our
constructions of sets of pairs.) It follows from these conditions that for any x; y there
is a unique object p such that First.x; p/ and for each z, Proj.z; p/ if and only
if z D x or z D y: we call this object .x; y/. It should be clear that though this
interface for the pair construction is unusual it does capture precisely the standard
notion of an ordered pair.

We can define the notion Pair.p/ (p is an abstract pair) as .9z:Proj.z; p//.
In our pictorial notation for digraphs, we will use p F // x and p P // x to
denote the underlying digraphs of First.x; p/ and Proj.x; p/, respectively.

Diagonal We can define the equality relation ŒD� (the diagonal set) as®
p
ˇ̌
Pair.p/ ^

�
9x:

�
8z:Proj.z; p/! x D z

��¯
:

This set exists by acyclic comprehension.

Abstract definition of the second projection of a pair We define Second.y; p/
as�
9P:Proj.p; P / ^

�
8z:Proj.z; P /! Proj.y; z/

�
^
�
9q:q 2 ŒD� ^ Proj.q; P /

�
^ :

�
9x:

�
8u:Proj.u; P /! First.x; u/

���
:
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This formula asserts of p and y that there is a pair P such that P has p as one of
its projections and y as a projection of each of the projections of P (so y is one of
the projections of p), and P has a projection in [=] (which must be .y; y/), and the
two projections of P do not have the same first projection (so the other projection
of P must be of the form .z; y/ with z ¤ y). Now we see that y is the second
projection of both of the projections of P and so of p, so this formula implies that y
is the second projection of p. If y is the second projection of p (and x is the first),
then any P D ..z; y/; .y; y//, where z D x $ x ¤ y, will witness the truth of this
formula, so the formula says precisely that y is the second projection of p.

Note that the formula is acyclic. The underlying digraph is

ŒD�

?�

P

P
~~

P
��

P
��

P // p

q z

P
��

u

F
��

y x

We will use p S // y to denote the underlying digraph of Second.y; p/.

Observation An implementation of the ordered pair in terms of the first and sec-
ond projection operators would be greatly to be preferred, but this is not possible.
Consider, for example, the ordered pair .x; y/0 D .x; ¹yº/, where .�;�/ is the usual
Kuratowski pair. There are stratified (indeed acyclic) formulas implementing First
and Second for this pair, so if there were an acyclic definition of Proj in terms of
First and Second, then there would be a stratified implementation of Proj for
the pair .�;�/0, and so the diagonal ¹.x; ¹xº/ j x 2 V º, which is the graph of the
function x 7! ¹xº, would be definable as a set in NFU, which is well known to be
impossible.

Implementation of the Kuratowski pair Suppose that p is the Kuratowski pair
¹¹xº; ¹x; yºº. Note that a set is a Kuratowski pair if and only if it is an unordered
pair, it has a singleton as an element, all of its elements are unordered pairs, and there
is an object which belongs to each of its elements. So we define pair.p/ as

p 2 2� ^ .9q:q 2 p ^ q 2 1/ ^ .8q0:q0 2 p ! q0 2 2�/

^
�
9u:.8q00:q00 2 p ! u 2 q00/

�
:

Note that this is acyclic. The underlying digraph is

1

?�

2�

?�

2�

?�

q p� � _?

?�

q0

q00 _? u
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Note further that if p D ¹¹xº; ¹x; yºº, then the first projection x of p is the unique
object which belongs to all elements of p. We define first.x; p/ as

pair.p/ ^ .8q:q 2 p ! x 2 q/:

Note that this is acyclic.
Note further that the projections of a pair p D ¹¹xº; ¹x; yºº are exactly the ele-

ments of the elements of p; so we can define proj.z; p/ as

pair.p/ ^ z 22 p:

It should be clear that this is an implementation of the ordered pair in the terms
given above and that it is essentially the familiar implementation of the ordered pair
due to Kuratowski.

An aside: Implementation of the Wiener pair The ordered pair .x; y/was defined
by Wiener in [9] as ¹¹¹xº;;º; ¹¹yººº; this is the oldest set-theoretic definition of the
ordered pair.

A set p is a Wiener pair if and only if it is an unordered pair, it contains a dou-
ble singleton, and it contains an unordered pair of a singleton and the empty set;
pair.p/ would then be defined as

p 2 2� ^
�
9q:q 2 p ^ q 2 2� ^ ; 2 q ^ .9r:r 2 q ^ r 2 1/

�
^
�
9s:s 2 p ^ s 2 1 ^ .9t:t 2 s ^ t 2 1/

�
:

The underlying (acyclic) digraph is

2�

?�

1

O/

p

?� O/

2�

?�

1

O/

s

?�

q

?� O/

1

?�

t ; r

first.x; p/ would be definable as

pair.p/ ^ .9q:; 2 q ^ q 2 p ^ x 22 q/I

proj.z; p/ would be definable as

pair.p/ ^ z 23 p:

This completes our interface for the Wiener pair, but it is further worth noting that
second.y; p/ would admit the very simple definition

pair.p/ ^ .9q:q 2 1 ^ q 2 p ^ y 22 q/W

the Wiener pair is friendlier to an acyclic treatment if one is willing to use imple-
mentation dependent features of the pair. We have a “native” definition of the second
projection for the Kuratowski pair, which we have omitted for reasons of space; it is
not much if any simpler than the abstract definition of the second projection.
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Note that the verification of the adequacy of our finite axiomatization below de-
pends on the pair being the usual Kuratowski pair, but all other results are indifferent
to the choice of pair.

Domains ¹x j .9p:p 2 a ^ First.x; p//º exists by acyclic comprehension and
is the domain of (the relation part of) a.

Cartesian product a�b can be constructed as ¹p j .9x:First.x; p/ ^ x 2 a/ ^
.9y:Second.y; p/ ^ y 2 b/º. The underlying digraph is

a

?�

p

F
��

S
��

b

?�

x y

Projections ¹..x; y/; .x; x// j x 2 V ^ y 2 V º, the first projection map �1, is
constructed as®

p
ˇ̌
p 2 .V � V / � ŒD� ^

�
9z:
�
8w:Proj.w; p/! First.z; w/

��¯
:

Notice that if the pair is taken to be the Kuratowski pair,
�1 D

®�
.x; y/;

®
¹xº

¯� ˇ̌
x 2 V ^ y 2 V

¯
:

¹..x; y/; .y; y// j x 2 V ^ y 2 V º, the second projection map �2, is constructed
as ®

p
ˇ̌
p 2 .V � V / � ŒD� ^

�
9z:
�
8w:Proj.w; p/! Second.z; w/

��¯
:

Notice that if the pair is taken to be the Kuratowski pair,
�2 D

®�
.x; y/;

®
¹yº

¯� ˇ̌
x 2 V ^ y 2 V

¯
:

A convenient abbreviation We define FProj.x; p; F / as�
9qr:Pair.q/ ^ First.p; q/ ^ Second.r; q/ ^ Proj.x; r/ ^ q 2 F

�
W

the point is that FProj.x; p; �1/ is equivalent to First.x; p/ and FProj.y;
p; �2/ is equivalent to Second.y; p/. Pictorially, we will represent FProj.x;
p; F / by p F // x:

Converses Let R be a set (usually a set relation, i.e., a set of ordered pairs). We
can construct

R�1 D
®
.y; x/

ˇ̌
.x; y/ 2 R

¯
as ®

p
ˇ̌ �
9q:q 2 R ^

�
8F:F D �1 _ F D �2 !

�
9G:.F D �1 ! G D �2/

^ .F D �2 ! G D �1/ ^
�
9x:FProj.x; q; F / ^ FProj.x; p;G/

����¯
:

The underlying (acyclic) digraph is
�1

F //

�1 �1

Gooq x p

�2 �2 �2
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R�1 is the converse of the relation part of R.

Abstract image-of-a-relation construction We show that for any relation R and
acyclic formula Rel.a; b/ we can construct

RRel
D
®
.u; v/

ˇ̌ �
9xy:.x; y/ 2 R ^ Rel.x; u/ ^ Rel.y; v/

�¯
:

This can be constructed as®
p
ˇ̌ �
9q:q 2 R ^

�
8F:F D �1 _ F D �2

!
�
9G:.F D �1 ! G D �1/ ^ .F D �2 ! G D �2/

^
�
9uv:FProj.u; q; F / ^ FProj.v; p;G/ ^ Rel.u; v/

����¯
:

If we denote Rel.u; v/ by u R v, the underlying (acyclic) digraph is

�1

F //

�1 �1

Gooq u R v p

�2 �2 �2

Singleton image (of a relation) We define

R� D
®�
¹xº; ¹yº

� ˇ̌
.x; y/ 2 R

¯
:

This can be constructed as RRel1 , where Rel1.a; b/ is taken to be

b 2 1 ^ a 2 b

(i.e., b D ¹aº).

Relative products We define a helper set

D D
®�
.x; z/; .y; z/

� ˇ̌
x; y; z 2 V

¯
W

this can be constructed using the abstract image-of-a-relation construction as
ŒD�Rel2 , where Rel2.a; b/ is defined as Second.a; b/.

Then R j S is constructed as .D \ .R � S�1//Rel3 , where Rel3.p; x/ is defined
as First.x; p/.

Inclusion Construct the set K of all pairs ..x; y/; .¹aº; ¹aº// such that a 2 x as®
p
ˇ̌
p 2 .V � V / �

�
ŒD� \ .1 � 1/

�
^
�
9a:
�
8qr:Proj.q; p/ ^ First.r; q/! a 2 r

��¯
and the set L of all pairs ..x; y/; .¹aº; ¹aº// such that a 2 y as®

p
ˇ̌
p 2 .V � V / �

�
ŒD� \ .1 � 1/

�
^
�
9a:
�
8qr:Proj.q; p/ ^ Second.r; q/! a 2 r

��¯
:

The existence of the sets K and L follows from acyclic comprehension.
Then Œ�� D .dom.K \ Lc//c \ .V � V /.

Verification of our finite axiomatization We show that each of the axioms in
Hailperin’s original finite axiomatization follows from ours and so from acyclic com-
prehension:
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(P1): .8uv:.9ˇ:.8x:.x 2 ˇ $ x 2 u # x 2 v////: this asserts the existence
of ¹x j x 2 u # x 2 vº, where # is the Sheffer stroke (written # instead of j
to avoid confusion with the notation for relative product), that is, .u \ v/c ;

(P2): .8˛:.9ˇ:.8xy:..¹xº; ¹yº/ 2 ˇ $ .x; y/ 2 ˛////: this asserts the exis-
tence of singleton images of relations, provided by our axiomatization;

(P3): .8˛:.9ˇ:.8xyz:.x; y; z/ 2 ˇ $ .x; y/ 2 ˛///, where .x; y; z/ is de-
fined as .¹¹xºº; .y; z//; define ˛�2 as .˛�/�; for each choice of ˛, the corre-
sponding ˇ is ˛�2 j .�1 j ��11 /;

(P4): .8˛:.9ˇ:.8xyz:.x; z; y/ 2 ˇ $ .x; y/ 2 ˛///, where .x; y; z/ is
defined as .¹¹xºº; .y; z//; for each choice of ˛, the corresponding ˇ is
˛�

2
j .�2 j �

�1
2 /;

(P5): .8˛:.9ˇ:.8xy:.y; x/ 2 ˇ $ x 2 ˛///: for each ˛, the corresponding ˇ
is V � ˛;

(P6): .8˛:.9ˇ:.8x:x 2 ˇ $ .8u:.u; ¹xº/ 2 ˛////: the ˇ corresponding to a
given ˛ is

S
..rng.˛c//c \ 1/;

(P7): .8˛:.9ˇ:.8xy:.y; x/ 2 ˇ $ .x; y/ 2 ˛///: this axiom asserts the ex-
istence of converses of relations, which is also provided directly by our ax-
ioms;

(P8): .9ˇ:.8x:x 2 ˇ $ .9y:x D ¹yº///: this asserts the existence of 1; we
remind the reader that 1 D dom..V � V /�/;

(P9): .9ˇ:.8xy:.¹xº; y/ 2 ˇ $ x 2 y//; a set witnessing this axiom under
our axiomatization is Œ�� \ .1 � V /.

Conclusion The proof of the main claim is now complete.

On the dispensability of weak extensionality Marcel Crabbé showed in [2] that
the theory SF whose only axiom scheme is stratified comprehension interprets NFU,
that is, stratified comprehension plus weak extensionality. We give an indication
of his approach and how it can be adapted to acyclic comprehension. We obtain a
model of NFU from a model of SF as follows: the domains of the two models are
the same; the equality relation of the model of NFU is the coextensionality relation
of SF (we define x DNFU y as .8z:z 2 x $ z 2 y/); the membership relation of the
model of NFU is the membership relation of SF with its range restricted to those sets
which are unions of equivalence classes under coextensionality (x 2NFU y is defined
as x 2 y ^ .8zw:z DNFU w ! .z 2 y $ w 2 y//). For details of the proof that
this works, see his paper; it is not difficult. What we need to adapt the same result to
acyclic comprehension is a verification that the existence of the interpreted equality
and membership relations follows from acyclic comprehension: the proof will then
go the same way as in [2]. Note that the definition of inclusion in the proof of the
main claim is readily modified to give the definition of the converse of inclusion, and
the intersection of an inclusion relation and a converse inclusion relation will be a co-
extensionality relation (“a” rather than “the” because no extensionality is assumed).
It must be observed that neither singletons nor Kuratowski pairs are uniquely deter-
mined objects in the absence of weak extensionality, but nonetheless, the definition
of inclusion relations, and so of coextensionality relations, works correctly. (In fact,
none of the constructions of sets of pairs given in the proof of the main claim depends
on pairs being unique. Write “x is coextensional with y” as x � y: this is equivalent
to the acyclic formula .9p:First.x; p/ ^ Second.y; p/ ^ p 2 Coext/,
where Coext is a fixed set implementing the coextensionality relation. We
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can also construct a set relation Inorout implementing the union of inclu-
sion and the disjointness relation on sets (the latter being defined by the formula
Pair.p/ ^ :.9x:.8y:Proj.y; p/ ! x 2 y//): we write this relation x ‹ y, de-
fined by the acyclic formula .9p:First.x; p/ ^ Second.y; p/ ^ p 2 Inorout/.
We can then show that there is a set† of all y which are unions of equivalence classes
under coextensionality, namely, ¹y j .8z:.9u:.8w:w 2 z ! w � u// ! z ‹ y/º:
we can then define the membership relation x 2� y of the interpretation as
x 2 y ^ y 2 †. The outline of the rest of the proof is that it is obvious that
the interpreted equality and membership relations satisfy weak extensionality; that
they satisfy comprehension follows from the fact that replacing equality and mem-
bership with the interpreted equality and membership in an acyclic formula still
gives an acyclic formula; and that replacing an object with something coextensional
with it in atomic formulas of the interpreted language does not affect truth values,
so the same holds for any substitution of coextensional objects in formulas of the
interpreted language, so sets witnessing instances of acyclic comprehension express-
ible in the interpreted language respect coextensionality, which is what is needed for
acyclic comprehension to hold in the interpretation.

Final observation The criterion for comprehension presented here is no less a
“syntactical trick” than the original stratification criterion of New Foundations (the
original system of Quine in [7]) or NFU, but it is an interestingly different trick and
might possibly find some formal application. A specific suggestion is that acyclic
comprehension might have interesting properties from the standpoint of proof theory.
We spell out issues related to weak extensionality because in the context of stratified
set theory Marcel Crabbé has proved cut elimination for SF (see [3]), but no one has
proved cut elimination for NFU.

Notes

1. We note that it is possible to reduce the primitives to the Sheffer stroke (which we write
# to avoid confusion with the notation for relative product), but strictures about copying
formulas make this complicated. Define a proposition t as .8x:.9y:x D y// with the ad-
ditional remark that in all occurrences of t , we rename the bound variables to be different
on definitional expansion. Then we can define :p as p # t and p _ q as .:p/ # .:q/.

2. The use of the biconditional as a primitive was considered by the first author, and the
second author considered abandoning restrictions on copying atomic formulas altogether,
but the third author convinced us with examples of this sort that extreme care in copying
formulas was appropriate in any case, and with some work we were able to complete the
proof using the most stringent conditions.

3. We define Œ�� here simply as ¹.x; y/ j .8z:z 2 x ! z 2 y/º, whereas in [5] the
urelements are excluded from the domain and range of Œ��: to see that this is harmless it
is sufficient to note that we can define the class of urelements as U D .dom.Œ��c//c�¹;º,
and then the restricted subset relation is realized as Œ�� \ .U c � U c/.

References

[1] Al-Johar, Z., and M. R. Holmes, “Acyclic comprehension is equal to stratified compre-
hension,” preprint, 2011. 11



24 Al-Johar, Holmes, and Bowler

[2] Crabbé, M., “On NFU,” Notre Dame Journal of Formal Logic, vol. 33 (1992), pp. 112–19.
Zbl 0766.03031. MR 1149961. DOI 10.1305/ndjfl/1093636013. 14, 22

[3] Crabbé, M., “The Hauptsatz for stratified comprehension: A semantic proof,” Mathe-
matical Logic Quarterly, vol. 40 (1994), pp. 481–89. Zbl 0808.03037. MR 1301941.
DOI 10.1002/malq.19940400406. 23

[4] Hailperin, T., “A set of axioms for logic,” Journal of Symbolic Logic, vol. 9 (1944), pp.
1–19. Zbl 0060.02201. MR 0009753. 11, 12, 15

[5] Holmes, M. R., Elementary Set Theory with a Universal Set, vol. 10 of Cahiers du Centre
de logique, Université Catholique de Louvain, Département de Philosophie, Louvain-
la-Neuve, Belgium, 1998; by permission of the publishers, a version correcting various
errata is found at http://math.boisestate.edu/~holmes/holmes/head.ps. Zbl 0959.03001.
MR 1759289. 11, 12, 15, 23

[6] Jensen, R. B., “On the consistency of a slight(?) modification of Quine’s NF,” Synthese,
vol. 19 (1968), pp. 250–63. 11

[7] Quine, W. V., “New Foundations for mathematical logic,” American Mathematical
Monthly, vol. 44 (1937), pp. 70–80. MR 1523848. DOI 10.2307/2300564. 23

[8] Tarski, A., and S. Givant, A Formalization of Set Theory without Variables, vol. 41 of
American Mathematical Society Colloquium Publications, American Mathematical Soci-
ety, Providence, 1987. Zbl 0654.03036. MR 0920815. 15

[9] Wiener, N., “A simplification of the logic of relations,” pp. 224–27 in From Frege to
Gödel: A Sourcebook in Mathematical Logic, 1879–1931, edited by J. van Heijenoort,
Harvard University Press, Cambridge, Mass., 1967. Zbl 45.0122.16. 11, 19

Al-Johar
Specialist of Neurology
College of Medicine
Baghdad University
Baghdad
Iraq
zaljohar@yahoo.com

Holmes
Department of Mathematics
Boise State University
1910 University Drive
Boise, Idaho 83725
USA
holmes@math.boisestate.edu
http://math.boisestate.edu/~holmes

Bowler
Department of Mathematics
Universität Hamburg
20146 Hamburg
Germany
n.bowler1729@gmail.com

http://www.emis.de/cgi-bin/MATH-item?0766.03031
http://www.ams.org/mathscinet-getitem?mr=1149961
http://dx.doi.org/10.1305/ndjfl/1093636013
http://www.emis.de/cgi-bin/MATH-item?0808.03037
http://www.ams.org/mathscinet-getitem?mr=1301941
http://dx.doi.org/10.1002/malq.19940400406
http://www.emis.de/cgi-bin/MATH-item?0060.02201
http://www.ams.org/mathscinet-getitem?mr=0009753
http://math.boisestate.edu/~holmes/holmes/head.ps
http://www.emis.de/cgi-bin/MATH-item?0959.03001
http://www.ams.org/mathscinet-getitem?mr=1759289
http://www.ams.org/mathscinet-getitem?mr=1523848
http://dx.doi.org/10.2307/2300564
http://www.emis.de/cgi-bin/MATH-item?0654.03036
http://www.ams.org/mathscinet-getitem?mr=0920815
http://www.emis.de/cgi-bin/MATH-item?45.0122.16
mailto:zaljohar@yahoo.com
mailto:holmes@math.boisestate.edu
http://math.boisestate.edu/~holmes
mailto:n.bowler1729@gmail.com

	Notes
	References
	Author's addresses

