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Nested Sequents for Intuitionistic Logics

Melvin Fitting

Abstract Relatively recently nested sequent systems for modal logics have
come to be seen as an attractive deep-reasoning extension of familiar sequent
calculi. In an earlier paper I showed that there was a strong connection between
modal nested sequents and modal prefixed tableaux. In this paper I show that
the connection continues to intuitionistic logic, both standard and constant
domain, relating nested intuitionistic sequent calculi to intuitionistic prefixed
tableaux. Modal nested sequent machinery generalizes one-sided sequent calculi
—intuitionistic nested sequents similarly generalize two-sided sequents. It is
noteworthy that the resulting system for constant domain intuitionistic logic is
particularly simple. It amounts to a combination of intuitionistic propositional
rules and classical quantifier rules, a combination that is known to be inadequate
when conventional intuitionistic sequent systems are used.

1 Introduction

There has been much interest in deep-reasoning systems. Recently a simple variety of
such calculi has become rather popular. In 2009 Brünnler introduced nested sequent
systems (see [1], [2]), and at the same time Poggiolesi introduced tree hypersequents
(see [18]). While they use different syntax, they are essentially the same and are
independent reinventions of the nested sequents of Kashima [14] from 1994. These
are one-sided sequent systems in which sequents can appear nested within sequents,
and rules can be applied at any depth. Some modal logics that lack conventional
sequent calculi have natural nested sequent calculi. Strong connections have been
shown between nested sequents and prefixed tableaux (see [10]). Prefixed tableaux
themselves go back to 1972 (see [6]). Essentially, nested sequents are to prefixed
tableau systems as conventional sequents are to conventional tableau systems.
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The nesting paradigm has been extended to intuitionistic logic using two-sided
sequents rather than one-sided as in the modal case. A version was introduced for
propositional bi-intuitionistic logic, BiInt, in 2008 (see Goré, Postniece, and Tiu
[11]). BiInt is an extension of intuitionistic logic with a connective A excludes B ,
whose Kripke semantics involves the converse of the standard reflexive and transitive
accessibility relation of intuitionistic logic. This, of course, provides a nested sequent
calculus for propositional intuitionistic logic too. An explicit cut-elimination proce-
dure is given in [11], and issues of contraction are carefully considered. In 2009 these
ideas were further refined in Postniece [19], and an implementation was given (see
“Bi-intuitionistic logic: Theorem prover demo,” http://users.cecs.anu.edu.au/~linda
/BiInt.html).

In 1983 a prefixed tableau system for propositional intuitionistic logic was
sketched in [7, Chapter 9, Section 5]. This converts to nested sequents much as hap-
pens in the modal setting, and the resulting rules are essentially those of [19]. Here
we present both nested sequent rules and prefixed tableau rules, prove soundness
and completeness directly for prefixed tableaux, and derive it for the nested sequent
version via a translation procedure. Of course, this gives a nonconstructive proof of
cut elimination—as noted above, a constructive version has already been shown in
[11]—but the nonconstructive version is easy to follow and quite intuitive.

We build on this by adding quantifier rules. As it turns out, the simplest first-
order extension does not give intuitionistic logic proper but the constant domain
version of it. Constant domain intuitionistic logic was introduced by Grzegorczyk in
[13], axiomatized independently in Klemke [16] and in Görneman [12], and given
a rather complex sequent calculus formulation in Kashima and Shimura [15], with
further developments in Fiorentini and Miglioli [4]. Constant domain intuitionistic
logic is an interesting logic, and the proof procedures we give here are remarkably
simple and straightforward. The constant domain system, either in prefix tableau
form or in nested sequent form, is probably the main contribution of this paper. After
considering constant domain intuitionistic logic, we then sketch how to modify the
formalism to get standard first-order intuitionistic logic.

2 Syntax

The language of first-order intuitionistic logic is standard. Atomic formulas are re-
lation symbols applied to the appropriate number of variables—we do not allow
constant or function symbols here, though doing so would be straightforward. Then
formulas are built up using ^, _, :, �, 8, and 9 in the usual way. We do not take
? as primitive, though it would be simple to do so, making : defined. We begin our
treatment with propositional intuitionistic logic, where we ignore the role of quanti-
fiers.

Sequents, in the conventional sense, can be defined using sets, multisets, or se-
quences of formulas. Different choices depend on details of the intended applica-
tions. Simplicity appropriate to the present paper suggests the use of sets so that
structural rules are not needed, or considered. Then a sequent is � ! �, where �
and� are sets of formulas. (Actually this is a bit too informal, since putting an arrow
between sets of formulas is meaningless. Think of � ! � as an ordered pair of sets
of formulas, with the arrow denoting a pairing function.) But sequents are not quite
the subject here; instead it is the following generalization.

http://users.cecs.anu.edu.au/~linda/BiInt.html
http://users.cecs.anu.edu.au/~linda/BiInt.html
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Definition 2.1 Nested sequents are defined recursively. A nested sequent is
� ! �, where � is a set of formulas and� is a set of formulas and nested sequents.

Note that nesting is only on the right side of the arrow. Some special notation, com-
mon in the nested sequent community, will be useful here. If � ! � occurs within
another nested sequent, we will write it as Œ� ! �� and refer to it as a boxed sequent.
As is customary with sequents formulated using sets, the curly brackets for the set on
the left and the set on the right of the arrow will be omitted. Here is an example:

A!
�
B;
�
C ! D; ŒE ! F �

�
;
�
G ! H; ŒI ! J �

��
is a nested sequent, where the letters stand for formulas. Written entirely in standard
set notation (with the arrow as a pairing function), this is the following:

¹Aº !
®
B; ¹C º !

®
D; ¹Eº ! ¹F º

¯
; ¹Gº !

®
H; ¹I º ! ¹J º

¯¯
:

The set notation version is “official,” and a translation procedure in Section 7 will be
defined using it. The abbreviated notation with square brackets will be used when-
ever possible, in the interest of readability.

One final point—we do not allow the empty sequent, ; ! ;. It could be worked
in, but it does not correspond to any prefixed tableau configuration and so is best
omitted here.

There is an informal BHK (Brouwer–Heyting–Kolmogorov) style reading for
nested sequents. Let us say we have a proof of a nested sequent � ! � if we have
an algorithm that takes as input proofs of all members of � and outputs a proof
of some member of �. For example, a proof of A;B ! C; ŒD;E ! F � is an
algorithm that converts proofs of A and B either into a proof of C , or into a proof
of D;E ! F , which would be an algorithm that converts proofs of D and E into a
proof of F .

3 Propositional Intuitionistic Nested Sequent Rules

Quantifier rules are postponed until Section 8. The essence of the present work is
already apparent at the propositional level. In stating our formal system we use a
simple subscript convention: �2, �2, . . . are sets of formulas and boxed sequents,
and �1, �1, . . . are sets of formulas only—no boxed sequents. Thus set subscripts
are either 1 or 2, and 1 means no boxed sequents are present. Suppose that A is a
single formula or a boxed sequent, and suppose that† is a set of formulas and boxed
sequents. We write †;A as a more readable version of † [ ¹Aº. We do not assume
A … †—we are working with sets and do not track contraction applications here.

Axioms: An axiom is defined recursively, as follows. First, �1; X ! �2; X is
an axiom, where X is a formula. (It is enough to restrict X to being atomic.)
Second, �1 ! �2; ŒS� is an axiom if S is an axiom.

For example, A ! ŒB ! ŒC;D ! C;E�� is an axiom. Next are the rules of
inference. The intention is that these rules apply not only at the top level but also to
any nested sequent below the top level as well. We begin with the ordinary rules.
These are the same as classical, except for allowing the presence of boxed sequents
on the right of the arrows and, most importantly, being applicable at arbitrary nesting
depth. That is, they may be applied to any nested sequent no matter how deep the
nesting.
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Ordinary sequent rules:

L^
�1; A; B ! �2

�1; A ^ B ! �2

; R^
�1 ! �2; A �1 ! �2; B

�1 ! �2; A ^ B
;

L_
�1; A! �2 �1; B ! �2

�1; A _ B ! �2

; R_
�1 ! �2; A; B

�1 ! �2; A _ B
;

L:
�1 ! �2; A

�1;:A! �2

; L �
�1 ! �2; A �1; B ! �2

�1; A � B ! �2

:

Next we have the special rules, explicitly involving boxed sequents.

Special sequent rules:

R:
�1 ! �2; ŒA!�

�1 ! �2;:A
; R �

�1 ! �2; ŒA! B�

�1 ! �2; A � B
;

Lift
�1 ! �2; Œ�1; A! �2�

�1; A! �2; Œ�1 ! �2�
:

Some comments about the special rules. Given the intuitive BHK reading of proofs
for nested sequents, the R �-rule simply reflects the usual understanding of impli-
cation, and similarly for R:. Something related to the R �-rule occurs in Sambin,
Battilotti, and Faggian [20], where nested occurrences of ` are briefly considered.
A rule stated there infers � ` A � B from � ` .A ` B/, but this nesting is
not pursued further in the paper. In particular, nesting of nested occurrences is not
considered. A paper of Došen [3] considers nesting of the consequence relation to ar-
bitrary depths, but the exact relationship between this and nested sequents remains to
be determined. The R �-rule as we gave it appears in [19] modulo some differences
in notation.

The rule called Lift is somewhat akin to the s-m-n theorem. Suppose that the se-
quent above the line has been verified; that is, we have an algorithm, call it A, that
converts proofs of the members of �1 into a proof of some member of �2 or else into
a proof of �1; A ! �2. We modify that algorithm into one we call A0, to verify
the sequent below the line. Here is the description of A0. Suppose that we are given
proofs of the members of �1, along with a proof of A. Since we have proofs of the
members of �1, we can feed these to A. If the output is a proof of some member of
�2, that is taken to be the output of A0. Otherwise the output must be an algorithm
verifying �1; A! �2. Modify that algorithm by supplying it with the given proof
ofA, thus converting it into an algorithm that only needs as inputs proofs of the mem-
bers of �1. This algorithm verifies �1 ! �2 and is taken to be the output of A0.

Example 3.1 Here is a proof in this system, of the following formula:�
::A ^ ::.B ^D/

�
� :

�
:.A _ C/ _ :B

�
:

Reasons for each step are given within the displayed structure. Upper leaves are
axioms:
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!
�
!

�
::.B ^D/; ŒA! A; C �

��
!

�
!

�
::.B ^D/; ŒA! A_C �

�� R_

!
�
!

�
::.B ^D/;

�
:.A_C /; A!

��� L:

!
�
!

�
::.B ^D/;:.A_C /! ŒA!�

�� Lift

!
�
!

�
::.B ^D/;:.A_C /!:A

�� R:

!
�
!

�
::A;::.B ^D/;:.A_C /!

�� L:

!
�
!

�
::A! ŒB; D;:B ! B�

��
!

�
!

�
::A! ŒB ^D;:B ! B�

�� L^

!
�
!

�
::A! ŒB ^D;:B !�

�� L:

!
�
!

�
::A;:B ! ŒB ^D!�

�� Lift

!
�
!

�
::A;:B !:.B ^D/

�� R:

!
�
!

�
::A;::.B ^D/;:B !

�� L:

!
�
!

�
::A;::.B ^D/;:.A_C /_:B !

�� L_

!
�
!

�
::A^::.B ^D/;:.A_C /_:B !

�� L^

!
�
::A^::.B ^D/!

�
:.A_C /_:B !

�� Lift

!
�
::A^::.B ^D/!:

�
:.A_C /_:B

�� R:

!
�
::A^::.B ^D/

�
� :

�
:.A_C /_:B

� R �

4 Sequent Soundness

We assume that Kripke intuitionistic models are familiar items, and we do not give
a definition here. Soundness of the system with respect to Kripke models may be
shown as follows. Let us say that � ! � is true at a state of a Kripke model if one
of the members of � is not forced at that state, or one of the members of� is. Equiv-
alently, � ! � is true at a state provided that, if all members of � are forced there,
so is some member of �. And let us say that a boxed sequent, ŒS�, is true at a state
provided that the sequent S is true at that state and at every state accessible from it.

It is easy to check that each of the rules, regular and special, preserves not just
validity but truth at a state. Note that verifying this for Lift makes use of the fact that,
in a Kripke intuitionistic model, any formula forced at a state is also forced at all
accessible states. Since the axioms are valid sequents, it follows that only validities
are provable.

5 Propositional Prefixed Intuitionistic Tableaux

In [10] it was shown that, for a variety of modal logics, nested sequent systems and
prefixed tableaux are equivalent in the same way that Gentzen sequent systems and
standard tableau systems are equivalent—one is the other “upside down.” Nested
sequent modal systems are described in [1] and [2] and with different notation and
terminology in [18]. Prefixed tableaux for modal logics are discussed in [9]. There is
a similar relationship between the nested sequent system for intuitionistic logic given
above and a prefixed tableau system for intuitionistic logic. Such a prefixed tableau
system was never published in detail, but there is a brief sketch of it in [7, Chapter 9,
Section 5]. Since completeness for the tableau system is rather easy to show, we
describe the tableau version in some detail, sketch a completeness argument for it,
and show how this implies completeness for the nested sequent system.

Occurring in prefixed tableau proofs are prefixed, signed formulas. Prefixed for-
mulas originated in Fitch [5] for a natural deduction system. Think of a prefix as a
name for a possible world or state; the syntax of these names will provide us with a
representation of the accessibility relation for a Kripke intuitionistic model.

A prefix is a nonempty finite sequence of positive integers starting with 1, such as
1:3:2:1:4, which we write using periods as separators. If n is a positive integer and �
is a prefix, by �:nwe mean the result of adjoining n to the end of � . Think of prefixes
as representing possible stages in the work of a mathematician—an intuitionistic
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mathematician, say. Think of the actual world as 1, and think of �:n as a possible
next stage to � for the mathematician; it is one of the states that could immediately
succeed � , depending on what work the mathematician chooses to carry out.

A signed formula is T X or F X , whereX is a formula. Think of T X as asserting
that X has been proved, and think of F X as asserting that X has not yet been
proved—an intuitionistic version of truth. A prefixed signed formula is of the form
� T X or � F X , where � is a prefix and X is a formula. Think of � T X as saying
that X has been proved at state � , and think of � F X as saying that X has not been
proved at state � . Of course all of this is quite informal, but it will serve as a guide.
This intuition plays no direct role in the completeness argument of Section 6.

A tableau proof is a tree (written with the root at the top) meeting certain condi-
tions, in which each node is labeled with a prefixed signed formula. We give rules
for starting, continuing, and terminating a proof construction. The intuitive idea is
that to prove X we suppose that there is some state, call it 1, where X has not been
proved, we derive a contradiction, and we conclude X . Informally, if X is, in fact,
provable by an intuitionistically oriented mathematician, at some point a proof may
be discovered. Since we could take 1 to be that time point, we would have an impos-
sible situation.

Formally, a tableau proof of X begins with the trivial tree with only a root node,
labeled 1F X . Next we have the branch extension rules, for continuing the tableau
construction. Just as with nested sequents, these divide into ordinary and special
cases. The ordinary rules are as follows.

Ordinary tableau rules:

T^ � T A ^ B

� T A

� T B

; F^ � F A ^ B

� F A j � F B

;

T_ � T A _ B

� T A j � T B

; F_ � F A _ B

� F A

� F B

;

T: � T :A

� F A

; T � � T A � B

� F A j � T B

:

And then there are the special tableau rules.
Special tableau rules:

F: � F :A

�:n T A

�:n new

; F � � F A � B

�:n T A

�:nF B

�:n new

;

Lower � T A

�:n T A

�:n not new

:

A prefix �:n is new if it does not occur as an initial segment, proper or not, of any
prefix on the branch where the rule is being applied. Similarly, �:n is not new if it
does already occur on the branch. Intuitive motivation is quite direct. For example, if
F A � B is the case at the world named by � in a Kripke model, we understand that
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A � B is not forced at that world. Then by the usual workings of Kripke models there
must be a world accessible from that world, at which A is forced but B is not, that is,
at which we have T A and F B . We can assign this world a prefix name; �:n appro-
priately reflects the accessibility relation, but the name must be otherwise uncom-
mitted, hence the newness condition in the F �-rule. Similar considerations apply
to the other two special rules. Lower corresponds to Lift for the sequent system—it
embodies the idea that formulas forced at a state are forced at all accessible states.

A tableau branch is closed if it contains both � T X and � F X for some formula
X . A tableau is closed if each branch is closed. A closed tableau that starts with
1F X is a proof of X .
Example 5.1 Here is a proof in the tableau system, of the same formula as in
Example 3.1, .::A ^ ::.B ^D// � :.:.A _ C/ _ :B/:

1 F .::A ^ ::.B ^D// � :.:.A _ C/ _ :B/ h1i

1:1 T ::A ^ ::.B ^D/ h2i

1:1 F :.:.A _ C/ _ :B/ h3i

1:1:1 T :.A _ C/ _ :B h4i

1:1:1 T ::A ^ ::.B ^D/ h5i

1:1:1 T ::A h6i

1:1:1 T ::.B ^D/ h7i

l
l
l
l
ll

,
,

,
,

,,

1:1:1 T :.A _ C/ h8i

1:1:1 F :A h10i

1:1:1:1 T A h11i

1:1:1:1 T :.A _ C/ h12i

1:1:1:1 F A _ C h13i

1:1:1:1 F A h14i

1:1:1:1 F C h15i

1:1:1 T :B h9i

1:1:1 F :.B ^D/ h16i

1:1:1:1 T B ^D h17i

1:1:1:1 T :B h18i

1:1:1:1 F B h19i

1:1:1:1 T B h20i

1:1:1:1 T D h21i

Reasons for each step are as follows; formulas are numbered for this purpose: h2i
and h3i are from h1i byF � (note that 1.1 is new); h4i is from h3i by F:, again 1.1.1
is new; h5i is from h2i by Lower; h6i and h7i are from h5i by T^; h8i and h9i are
from h4i by T_; h10i is from h6i by T:; h11i is from h10i byF:; h12i is from h8i by
Lower; h13i is from h12i by T:; h14i and h15i are from h13i by F_; h16i is from h7i
by T:; h17i is from h16i byF:; h18i is from h9i by Lower; h19i is from h18i by T:;
h20i and h21i are from h17i by T^. Closure is by h11i and h14i and by h19i and h20i.
There are some important restrictions that can be placed on rule usage, without com-
promising completeness.
Definition 5.2 A tableau branch is atomically closed if it contains � T A and
� F A, where A is atomic; a tableau is atomically closed if each branch is.

A tableau is single-usage if no F:- or F �-rule is applied to a prefixed, signed
formula occurrence more than once on a tableau branch.
It is the F:- and F �- rules that introduce new prefixes, so requiring single-usage
is a restriction on prefix introduction. Imposing atomic closure and single-usage re-
strictions does not change the class of theorems; the completeness proof in Section 6
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will be shown with these restrictions in place, soundness whether or not they are in
place.

6 Propositional Tableau Soundness and Completeness

Soundness of the tableau system is by an argument that is standard for tableaux. We
briefly sketch the ideas.

Call a set S of prefixed signed formulas satisfiable if there is a Kripke intuition-
istic model M and a mapping p from prefixes occurring in S to states in the model,
meeting the following conditions. (1) If � and �:n both occur in S , then p.�:n/ is
accessible from p.�/. (2) If � T X 2 S , then X is forced at the state p.�/. (3) If
� F X 2 S , then X is not forced at the state p.�/.

Call a tableau branch satisfiable if the set of prefixed signed formulas on it is
satisfiable, and call a tableau satisfiable if one of its branches is. It is not hard to
show that if a tableau rule is applied to a satisfiable tableau, the result is another
satisfiable tableau.

Now, suppose thatX is not valid. It follows that ¹1F Xº is a satisfiable set, so any
attempt to prove X begins with a satisfiable tableau. Then all subsequent tableaux
must be satisfiable. Since a satisfiable tableau cannot be closed, X does not have a
proof. The tableau system is sound.

Completeness is more interesting. This can be shown using a systematic proof
search method, which also yields propositional decidability. Instead we use a Lin-
denbaum/Henkin construction, which is easier to describe. It is along the lines of a
similar completeness argument for prefixed modal tableaux in [9].

We now allow tableaux to start with a finite set of prefixed signed formulas instead
of with a single one. Call a set S of prefixed signed formulas consistent if no tableau
for any finite subset of S is closed, where closure must be atomic and tableau con-
struction is single-usage. Call S prefix complete provided that first, � F A � B 2 S
implies that �:k T A; �:k F B 2 S for some integer k and second, � F :A 2 S
implies that �:k T A 2 S for some integer k. (Prefix completeness is analogous to
the existence of Henkin witnesses for existential statements in the common proof
of completeness for first-order classical logic.) Every finite consistent set S of pre-
fixed signed formulas can be extended to a set that is maximally consistent and prefix
complete. This is the outcome of the following construction.

Propositional extension construction: Suppose that S is a finite consistent set of
prefixed signed formulas. Enumerate the (countably many) prefixed signed
formulas of the language, �1 X1, �2 X2; : : : , and define the following se-
quence of sets; �n:k new means that the prefix does not occur in Sn:

S0 D S;

SnC1 D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Sn [ ¹�n Xnº if Sn [ ¹�n Xnº is consistent and
Xn is not F A � B or F :A;

Sn [ ¹�n Xn; �n:k T A; �n:k F Bº if Sn [ ¹�n Xnº is consistent,
Xn is F A � B , and �n:k is new;

Sn [ ¹�n Xn; �n:k T Aº if Sn [ ¹�n Xnº is consistent,
Xn is F :A, and �n:k is new;

Sn otherwise:
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Informally, the construction really amounts to this: if �n Xn is consistent with
Sn, add it, and throw in whatever else is required for prefix completeness; otherwise
�n Xn is not consistent with Sn, so do not add it.

In the second and third cases of this construction some integer k is chosen so that
�n:k does not occur in Sn. If S is finite, then each Sn will also be finite, and hence
the “newness” requirements can always be met. In the first and fourth cases it is
obvious that SnC1 is consistent if Sn is, but this is not so clear with the second and
third cases. We now verify it for the third case; the second case is similar.

Suppose that Sn [ ¹�n F :A; �n:k T Aº is not consistent, where �n:k does not
occur in Sn. We show that Sn [ ¹�n F :Aº is also not consistent, so the third case
does not apply. By assumption there is an atomically closed single-usage tableau
T for Sn [ ¹�n F :A; �n:k T Aº. Even though the set we are starting with already
includes �n:k T A, the F: rule still might have been applied to �n F :A on one
or more branches in tableau T . Suppose that on some branch the rule was applied,
to add �n:m T A, where �n:m was new at this point of the tableau construction. In
�n:m T A and in its descendants, replace occurrences of �n:m with occurrences of
�n:k (this introduces an extra copy of �n:k T A which can be eliminated). It is not
hard to show that the resulting tableau is still correctly constructed. In a similar way,
substitute away any other applications of the F: rule to �n F :A until none are left.

We now have an atomically closed tableau for the set Sn [ ¹�n F :A, �n:k T Aº

in which no tableau rule is applied to �n F :A; let us call the tableau T 0. We use
it to construct a new tableau for the set Sn [ ¹�n F :Aº. Begin the tableau with
these formulas, then use the F: rule to add �n:k T A, and then continue exactly
as in tableau T 0. Since no rule was applied to �n F :A in T , in the new tableau
exactly one rule application is made to it. And otherwise the single-usage restriction
is met in the new tableau as well, since it was in T . We now have an atomically closed
tableau for Sn[¹�n F :Aº, meeting the single-usage restriction, thus demonstrating
inconsistency.

LetM D
S

n Sn. It is straightforward thatM is maximally consistent and prefix
complete. This ends the discussion of the propositional extension construction.

A maximally consistent and prefix complete set satisfies what we might call down-
ward saturation properties. As one instance, ifM is such a set and � T X _Y 2M ,
then either � T X 2 M or � T Y 2 M . Here is a sketch of the proof. Suppose
� T X _ Y 2 M but � T X … M and � T Y … M . Using maximal consistency,
there must be finite subsetsM1;M2 ofM so thatM1 [ ¹� T Xº andM2 [ ¹� T Y º

are inconsistent. LetM0 DM1[M2[¹� T X_Y º �M . Then bothM0[¹� T Xº

andM0[¹� T Y º are inconsistent, and so have closed tableaux. We use this to show
M0 has a closed tableau and henceM is inconsistent. Start a tableau withM0. Since
M0 contains � T X_Y , immediately branch to � T X and � T Y . On the branch con-
taining � T X carry out the steps of the closed tableau forM0[¹� T Xº, and on the
branch containing � T Y carry out the steps of the closed tableau forM0 [ ¹� T Y º.
In this way we get a closed tableau forM0, contradicting the consistency ofM .

By arguments like this one can show the following.

Lemma 6.1 (Downward saturation) LetM be a maximally consistent and prefix
complete set. The following hold:

1. � T X ^ Y 2M ) � T X 2M and � T Y 2M
2. � F X ^ Y 2M ) � F X 2M or � F Y 2M
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3. � T X _ Y 2M ) � T X 2M or � T Y 2M
4. � F X _ Y 2M ) � F X 2M and � F Y 2M
5. � T X � Y 2M ) � F X 2M or � T Y 2M
6. � F X � Y 2M ) �:k T X 2M and �:k F Y 2M for some k
7. � T :X 2M ) � F X 2M

8. � F :X 2M ) �:k T X 2M for some k
9. � T X 2M ) �:n T X 2M for every �:n occurring inM

Now suppose that X is not provable using the prefixed intuitionistic tableau rules,
requiring atomic closure and single-usage. Then there is no closed tableau beginning
with 1F X, so ¹1F Xº is consistent, and obviously finite. Extend it to a maximally
consistent, prefix complete set, M, using the propositional extension construction
above. We construct a Kripke intuitionistic model from M. Let the set of states be
the set of prefixes that occur inM. For the accessibility relation, suppose that � and �
are states. These are also prefixes, and we set �R� if � is an initial segment of � , not
necessarily proper. For an atomic formula P, let P be true at state � if � T P 2 M.
This gives us a Kripke intuitionistic model; let us call it M.

Now a truth lemma is straightforward to prove using the downward saturation
Lemma 6.1—details are omitted here. It says that for every formula X, the following
are true:

� T X 2M H) X is forced at world � in the model M;

� F X 2M H) X is not forced at world � in the model M:

Once we have this, completeness is immediate. M extends ¹1F Xº, and so X is
false at world 1 of the model M.

7 Prefixed Tableaux to Nested Sequents

Tableau completeness has been proved, or at least sketched. Now completeness for
the intuitionistic propositional nested sequent system follows once it has been shown
that every tableau proof converts to a nested sequent proof. (Conversion in the other
direction is also possible, but it is harder to describe and we omit it here.) For the
conversion details we adapt the machinery of [10], where a similar result for modal
logics was shown. The ideas are simple. Formulas signed with T go on the left
of an arrow; formulas signed with F go on the right. Signed formulas with the
same prefix go together in a single nested sequent. Signed formulas prefixed with 1
become members of the “top level” nested sequent. Otherwise, the nested sequent of
formulas that were originally prefixed with �:n should appear as a boxed subsequent
of the nested sequent of formulas that were originally prefixed with � . In the formal
statement of the translation, we allow the empty prefix and identify a signed formula
having an empty prefix with the signed formula itself. In our tableau proofs, all
prefixed signed formulas have prefixes that start with 1, something that is assumed in
the overall translation process, but during the course of the translation prefixes that
start with something other than 1 are allowed. In the following we write X for an
arbitrary signed formula.

Definition 7.1 Let S be a finite set of prefixed signed formulas allowing the
empty prefix and prefixes starting with an integer that is not 1.

1. For each positive integer n, let Sn D ¹� X j n:� X 2 Sº, where n:� is the
prefix � with n added at the beginning.
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2. Let Sı be the sequent ¹X j T X 2 Sº ! ¹Y j F Y 2 Sº[¹.Sn/ı j Sn ¤ ;º.
(The condition T X 2 S implies that T X has the empty prefix; similarly for
F Y 2 S .)

Now let S be a set of prefixed signed formulas where no prefix is empty and all
prefixes start with 1. The nested sequent translate of S is N .S/ Ddf .S

1/ı.

Note that in item 2 of the translation, on the left of the arrow only formulas appear,
while on the right there are formulas and also sets of the form .Sn/ı. These sets are
themselves nested sequents, so all nesting is thus on the right of the arrow.

Example 7.2 We show the conversion of the following set of prefixed signed for-
mulas into a nested sequent:

S D ¹1 T A; 1F B; 1:1 T C; 1:1 F D; 1:1:1 T E; 1:1:1 F F;

1:2 T G; 1:2 F H; 1:2:1 T I; 1:2:1 F J º:

The conversion is as follows:

S1
D ¹T A;F B; 1 T C; 1F D; 1:1 T E; 1:1 F F;

2 T G; 2F H; 2:1 T I; 2:1 F J º;

.S1/ı D ¹Aº !
®
B; ¹T C;F D; 1 T E; 1F F ºı;

¹T G;F H; 1 T I; 1 F J ºı
¯
;

¹T C;F D; 1 T E; 1F F ºı D ¹C º !
®
D; ¹T E;F F ºı

¯
D ¹C º !

®
D; ¹Eº ! ¹F º

¯
;

¹T G;F H; 1 T I; 1 F J ºı D ¹Gº !
®
H; ¹T I; F J ºı

¯
;

D ¹Gº !
®
H; ¹I º ! ¹J º

¯
;

and so

N .S/ D .S1/ı D ¹Aº !
®
B; ¹C º !

®
D; ¹Eº ! ¹F º

¯
;

¹Gº !
®
H; ¹I º ! ¹J º

¯¯
:

Written using boxed sequent notation, N .S/ is the following:

A! B;
�
C ! D; ŒE ! F �

�
;
�
G ! H; ŒI ! J �

�
:

This is the example nested sequent given in Section 2.

We have shown how to convert a finite set of prefixed signed formulas into a nested
sequent. If we identify a tableau branch with the set of prefixed signed formulas on
it, then a tableau branch converts to a nested sequent. If we identify a tableau with
the set of its branches, an entire tableau converts to a set of nested sequents. Going
further, if we think of the process of constructing a tableau proof as the creation of
a succession of tableaux, until we arrive at one that is closed, then such a succession
of tableaux converts into a succession of sets of nested sequents. It is easy to see
that a closed tableau branch converts to a nested sequent that is an axiom; hence a
closed tableau converts to a set of nested sequent axioms. Finally, if a succession
of nested sequents arising from the construction of a tableau proof is “turned over,”
then the result will be a proof in the nested sequent intuitionistic calculus. Once this
is checked, completeness of the nested sequent intuitionistic system follows from the
completeness of the prefixed tableau calculus, which was shown in Section 6.
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Basically, it is enough to show that each one of the tableau rules turns into a nested
sequent rule under the convert-and-turn-over process described above. We show this
for two representative rules and omit the rest, and our discussion for these cases is,
essentially, just a sketch. We have chosen the two implication rules.

Representative case, T �: The tableau rule is

� T A � B

� F A j � T B

:

All signed formulas mentioned in the rule have the same prefix, so under the
tableau translation described above they all map to the same nested context.
Suppose that we translate the tableau branch before the rule is applied and just
consider the nested sequent corresponding to formulas whose prefix begins
with (or is) � . We will get something of the form �1; A � B ! �2, where
�1 consists of formulas and �2 consists of formulas and nested sequents.
Likewise, the translates of the branches after the tableau rule has been applied
are �1; A � B ! �2; A and �1; A � B;B ! �2. When the rule application
is “turned over,” this becomes rule L �, one of the ordinary sequent rules.
(Recall that we discussed earlier that a formula like A � B is allowed to be a
member of �1, so displaying it as we have here, or not displaying it as we did
when stating the rule makes no significant difference.)

Representative case, F �: The tableau rule is

� F A � B

�:n T A

�:nF B

�:n new

As in the previous case, we translate the tableau branch before the rule is ap-
plied and consider only the nested sequent corresponding to formulas whose
prefix begins with � . We get something of the form �1 ! �2; A � B . When
translating the tableau branch after the rule is applied, recall that formulas
prefixed with �:n will appear in a boxed sequent nested inside the sequent
corresponding to formulas prefixed with � . Further, since �:n was required
to be new only A and B can occur in the nested boxed subsequent. Carrying
out the translation we get �1 ! �2; A � B; ŒA ! B�. Now, reversing the
roles of rule premise and rule conclusion we get

�1 ! �2; A � B; ŒA! B�

�1 ! �2; A � B
;

and this is special sequent rule R � (understanding A � B to be a member
of �2).

Each tableau rule converts to a sequent rule; hence tableau proofs convert to se-
quent proofs, and we have completeness of the sequent calculus. As an illustration,
the tableau proof in Example 5.1 converts into the sequent proof in Example 3.1.
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8 Adding Quantifiers and Constant Domains

We have been discussing proof systems for propositional intuitionistic logic. Adding
quantifiers to this is easy and can be done so that two different logics result. Be-
fore getting into details, we note that we follow a common convention and extend
the language for the purpose of creating proofs. More specifically, when proving a
first-order formula X we extend the language by adding an infinite set of new free
variables, called parameters, which do not appear quantified. Parameters occur in
proofs, but not in what is being proved. This avoids annoying problems with inad-
vertent capture of variables by quantifiers during an instantiation.

We begin, not with first-order intuitionistic logic but with constant domain
intuitionistic logic, which is captured quite easily using the present machinery.
Semantically this logic is characterized by Kripke first-order intuitionistic mod-
els in which the domain of quantification is constant across all possible worlds.
The logic was introduced by Grzegorczyk in [13]. It is axiomatized by adding
to a standard axiomatization of intuitionistic first-order logic the axiom schema
.8x/.A_B.x// � .A_ .8x/B.x//, where x does not occur free in A. This axiom-
atization was proved complete independently in [16] and in [12]. There is a sequent
calculus for the logic in [15], but it is somewhat complex (see also [4]). Producing a
simple sequent calculus or a tableau calculus for the logic has been a mildly nagging
problem for some time. See [8] for some personal history concerning this point.

If we take a standard sequent calculus for propositional intuitionistic logic, say,
the one of Beth, and add classical quantifier rules, we get a system that is sound for
constant domain intuitionistic logic. But it is not complete, or, putting it differently,
cut elimination does not hold. As a simple example, .8x/.A _ B.x// � .A _ .C �
.8x/B.x/// is valid in all constant domain models, but a simple examination of all
cases shows that it will not be provable in an intuitionistic propositional + classical
quantifier sequent calculus.

Rather remarkably, adding classical quantifier rules to either our prefixed tableau
or our nested sequent system for propositional intuitionistic logic produces a calculus
that is sound and complete with respect to constant domain semantics. We begin with
the prefixed tableau version. The following quantifier rules should be added to the
propositional tableau rules given in Section 5. In stating the rules, a is a parameter,
and it is called new if it does not occur on the tableau branch on which the rule is
being applied.

Tableau constant domain quantifier rules:

T 9 � T .9x/'.x/

� T '.a/

a new

; F 9 � F .9x/'.x/

� F '.a/

any a

;

T8 � T .8x/'.x/

� T '.a/

any a

; F8 � F .8x/'.x/

� F '.a/

a new

:

Next we have the nested sequent version, extending the propositional system of
Section 3. As in the propositional case, these rules apply to nested sequents and not
just at the top level. In the rules, a is a parameter, and it is said not to occur in the
conclusion of a rule application if it does not appear in any formula of the conclusion.
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But keep in mind that the rules as stated are abbreviated. The premise and conclusion
explicitly shown may occur nested within a larger sequent—that is, they may appear
in a context. It is the entire conclusion that must be taken into account, the context
as well, and not just the portion shown in the statement of the rule.

Nested sequent constant domain quantifier rules:

L9 �1; '.a/! �2

�1; .9x/'.x/! �2

a not in conclusion

; R9 �1 ! �2; '.a/

�1 ! �2; .9x/'.x/

any a

;

L8 �1; '.a/! �2

�1; .8x/'.x/! �2

any a

; R8 �1 ! �2; '.a/

�1 ! �2; .8x/'.x/

a not in conclusion

:

It should be clear that the sequent rules are the tableau rules inverted, as described
in Section 7. Soundness for both tableaux and nested sequents is easy to show, and
we say no more about it. Tableau completeness can be shown by adding “quantifier
witness” cases to the propositional extension construction from Section 6. Now the
construction should read as follows. In it, parameter a is new if it does not occur in
Sn or in �n Xn.

Constant domain extension construction:

S0 D S;

SnC1 D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

Sn [ ¹�n Xnº if Sn [ ¹�n Xnº is consistent and
Xn is not F A � B or F :AI

Sn [ ¹�n Xn; �n:k T A; �n:k F Bº if Sn [ ¹�n Xnº is consistent,
Xn is F A � B , and �n:k is newI

Sn [ ¹�n Xn; �n:k T Aº if Sn [ ¹�n Xnº is consistent,
Xn is F :A, and �n:k is newI

Sn [ ¹�n Xn; �n T A.a/º if Sn [ ¹�n Xnº is consistent,
Xn is T .9x/A.x/, and a is newI

Sn [ ¹�n Xn; �n F A.a/º if Sn [ ¹�n Xnº is consistent,
Xn is F .8x/A.x/, and a is newI

Sn otherwise.

As in the propositional case, one can show by this construction that any finite
consistent set of prefixed formulas can be extended to one that is maximally con-
sistent, prefix complete, and E-complete, that is, it contains a witness for every true
existential or false universal formula. Indeed, in the definition of consistency we can
restrict rule applications of T 9 and F8 to be single-usage, along the lines of Defini-
tion 5.2. One then constructs a model from a maximally consistent, prefix complete,
E-complete set, in which the quantifier domain is the collection of all parameters
and the possible worlds are the prefixes, as before. The details are straightforward
and are omitted here, but a similar construction for modal logics is discussed in [9].
Completeness for the nested sequent calculus then follows by translation, just as in
the propositional setting.

Here are some parallel examples: proofs in both systems of the formula
.8x/.A _ B.x// � .A _ .C � .8x/B.x///.



Nested Sequents for Intuitionistic Logics 55

Example 8.1 A tableau proof of .8x/.A _ B.x// � .A _ .C � .8x/B.x///.
Items h2i and h3i are from h1i by F �; h4i and h5i are from h3i by F_; h6i and h7i
are from h5i by F �; h8i is from h7i by F8, a is new to the branch at this point; h9i
is from h2i by T8, which allows any parameter; h10i and h11i are from h9i by T_;
h12i is from h11i by Lower:

1 F .8x/.A _ B.x// � .A _ .C � .8x/B.x/// h1i

1:1 T .8x/.A _ B.x// h2i

1:1 F A _ .C � .8x/B.x// h3i

1:1 F A h4i

1:1 F C � .8x/B.x/ h5i

1:1:1 T C h6i

1:1:1 F .8x/B.x/ h7i

1:1:1 F B.a/ h8i

1:1 T A _ B.a/ h9i

l
l
l
l
ll

,
,

,
,

,,

1:1 T A h10i
1:1 T B.a/ h11i

1:1:1 T B.a/ h12i

Next is a nested sequent example, giving the tableau proof from Example 8.1 as
converted to the sequent system. Note that in the application of the R8 rule,
the parameter a does not occur in the conclusion. That is, it does not occur in
! Œ.8x/.A _ B.x//! A; ŒC ! .8x/B.x/��. It is not sufficient that a not occur in
C ! .8x/B.x/; the entire conclusion must be taken into account.

Example 8.2 We have a nested sequent proof of .8x/.A _ B.x// � .A _ .C �
.8x/B.x///:

!
�
A! A;

�
C ! B.a/

�� ! �
! A;

�
B.a/; C ! B.a/

��
!
�
B.a/! A;

�
C ! B.a/

�� Lift

!
�
A _ B.a/! A;

�
C ! B.a/

�� L_

!
�
.8x/

�
A _ B.x/

�
! A;

�
C ! B.a/

�� L8
!
�
.8x/

�
A _ B.x/

�
! A;

�
C ! .8x/B.x/

�� R8
!
�
.8x/

�
A _ B.x/

�
! A;C � .8x/B.x/

� R �

!
�
.8x/

�
A _ B.x/

�
!
�
A _

�
C � .8x/B.x/

��� R_
! .8x/

�
A _ B.x/

�
�
�
A _

�
C � .8x/B.x/

�� R �

9 Intuitionistic Logic Proper

As we have seen, constant domain intuitionistic logic has a simple and natural for-
mulation using prefixed tableaux or nested sequents. Similar formulations of intu-
itionistic logic proper, using this machinery, are a bit more complex. Of course,
intuitionistic logic has familiar conventional tableau and sequent systems of long
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standing. Still, formulating intuitionistic logic using nesting or prefixes is of some
independent interest, and so we present it now.

There are, in fact, two different ways (at least) that intuitionistic first-order logic
can be formalized using present machinery. Both have their merits and detriments.
We treat them in separate subsections.

9.1 Adding an existence predicate This approach simply embeds first-order intu-
itionistic logic into the constant domain version of Section 8. Suppose that we set
aside a one-place predicate symbol, say, E.x/, and understand it as an existence
predicate in the sense of Scott [21]. For a formula X , let XE be X with quanti-
fiers relativized to E.x/; that is, Œ.8x/'�E is .8x/.E.x/ � 'E / and Œ.9x/'�E is
.9x/.E.x/ ^ 'E /. Then, essentially, to prove X intuitionistically, we prove XE in
one of the constant domain systems of Section 8.

There is, however, one minor complication. We still need to ensure that the do-
main of each possible world is nonempty. Models constructed during the course
of a completeness proof have a tree structure, so by monotonicity it is enough to
have the root world’s domain be nonempty. This leads us to the following official
version.

Intuitionistic first-order prefixed E -tableaux: An intuitionistic proof of X

is a closed constant domain tableau beginning with the two formulas
1 T .9x/E.x/ and 1F XE .

Intuitionistic first-order E -nested sequents: An intuitionistic proof of X is a
constant domain nested sequent proof of the sequent .9x/E.x/! XE .

Completeness is quite straightforward to show. Essentially, if X is not provable,
then there is a constant domain countermodel for XE . Convert this to a standard
intuitionistic model by setting the domain of each possible world to be the set of
things to whichE applies at that world. The rules Lift for nested sequents and Lower
for prefixed tableaux give us the monotonicity property for domains that intuitionistic
semantics requires. And we have directly built in the requirement that domains be
nonempty. We omit details.

The formula .A_ .8x/B.x// � .8x/.A_B.x// is provable when relativized to
E.x/ and using the constant domain rules. It is illustrative to carry out proofs of the
relativized version in both the tableau and the sequent systems.

9.2 Restricting instantiation Instead of introducing an existence predicate, one can
work with formulas as given, but one must complicate the universal instantiation
rules from Section 8 a bit.

Definition 9.1 Let S be a set of prefixed signed formulas. Call a parameter a
available for prefix � in S if a occurs in the formula part of some member of S
whose prefix is an initial segment of � (the initial segment need not be proper). Also
a is new in S if it does not occur in the formula part of any member of S .

For a tableau branch, parameter a is available for � on the branch if it is available
for � in the set of prefixed signed formulas appearing on the branch—and similarly
for a being new on a branch.

Now, here are the tableau quantifier rules. The terms available and new refer to the
branch on which the rule is applied.
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Direct intuitionistic tableau quantifier rules:

T 9 � T .9x/'.x/

� T '.a/

a new

; F 9 � F .9x/'.x/

� F '.a/

a available for �
or a new

;

T8 � T .8x/'.x/

� T '.a/

a available for �
or a new

; F8 � F .8x/'.x/

�:nF '.a/

a new
and �:n new

:

Direct intuitionistic first-order prefixed tableaux: A direct intuitionistic proof
of X is a closed prefixed tableau beginning with 1F X , using the direct
intuitionistic tableau quantifier rules given above and the propositional rules
from Section 5.

Example 9.2 First, we note that Example 8.1 is not a correct tableau under the
present direct rules because the step introducing item (9) is no longer allowed. At
this point in the tableau construction, the parameter a is not new since it occurs in
item (8), and a is not available at parameter 1.1 since it only occurs in a signed
formula with prefix 1.1.1, which is not an initial segment of 1.1.

Second, here is an example of a tableau proof using the direct quantifier rules. It
is a proof of .8x/A.x/ � :.9x/:A.x/:

1 F .8x/A.x/ � :.9x/:A.x/ h1i

1:1 T .8x/A.x/ h2i

1:1 F :.9x/:A.x/ h3i

1:1:1 T .9x/:A.x/ h4i

1:1:1 T :A.a/ h5i

1:1:1 F A.a/ h6i

1:1:1 T .8x/A.x/ h7i

1:1:1 T A.a/ h8i

Items h2i and h3i are from h1i by T �; h4i is from h3i by F:; h5i is from h4i by
T 9 (a is new at this point); h6i is from h5i by T:. At this point we cannot apply the
direct rule T8 to item h2i to add 1:1 T A.a/, since a is not an available parameter at
prefix 1.1, but we can use Lower on h2i to add h7i. Then since a is available at 1.1.1,
we can use T8 on h7i to add h8i. Closure is by h6i and h8i.

We sketch an argument for tableau soundness. The argument for propositional sound-
ness in Section 6 must be enhanced in order to take the quantificational machinery
into account. Recall that Kripke first-order intuitionistic models associate a domain
with each state, and add the requirement of monotonicity: if state w2 is accessible
from state w1, then the domain associated with w1 is a subset of that associated
with w2. Quantification at each state is with respect to the domain associated with
that state.

The definition of tableau satisfiability from Section 6 is modified as follows. Now
call a set S of prefixed signed formulas satisfiable if there is a Kripke first-order
intuitionistic model M, a mapping p from prefixes occurring in S to states in the
model, and a mapping d from parameters occurring in S to members occurring in
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domains of the model, all meeting the following conditions. (1) If � and �:n both
occur in S , then p.�:n/ is accessible from p.�/. (2) If � X is in S and parameter a
occurs in X, then d.a/ is in the quantifier domain the model associates with p.�/.
(3) If � T X 2 S , then X is forced at the state p.�/. (4) If � F X 2 S , then X is
not forced at the state p.�/. As before, call a tableau branch satisfiable if the set of
prefixed signed formulas on it is satisfiable, and call a tableau satisfiable if one of its
branches is. It must be shown that if a tableau rule is applied to a satisfiable tableau,
the result is another satisfiable tableau. We verify one rule, T 8; the rest are similar
or easier.

Suppose that a tableau branch is satisfiable and that � T .8x/A.x/ occurs on the
branch. We show that the branch is still satisfiable after adding � T A.a/, where a is
available at � on the branch and also where a is new to the branch. Since the original
branch is satisfiable, there is a Kripke model and mappings p and d meeting the
conditions outlined above. Suppose first that a is available at � on the branch. Then
there is some prefixed signed formula � X already on the branch, with a occurring
in X and with � being an initial segment of � . Then d.a/ is in the domain associated
with state p.�/. Since � is an initial segment of � , in the model p.�/ is accessible
from p.�/ and hence by monotonicity d.a/ is also in the domain associated with
p.�/. Since � T .8x/A.x/ is on the branch, .8x/A.x/ is forced at state p.�/. It
now follows that A.a/ is also forced at state p.�/, and hence the branch extended
with � T A.a/ is satisfiable. The second case, where a is new, is simpler. We can
simply extend d by mapping a to any member of the domain associated with p.�/.
We omit details.

Next we turn to completeness. The proof is much like the one sketched in Sec-
tion 8. We want to extend a consistent set to one that is maximally consistent, prefix
complete, and E-complete, as before, but there are two changes. First the defini-
tion of consistency, while still apparently reading the same, has changed its meaning.
A set is consistent if no tableau for a finite subset closes, but the tableau now must
be constructed in accordance with the direct intuitionistic quantifier rules—in partic-
ular, availability conditions are imposed. The second issue is that, if we construct a
sequence of sets Sn as before, starting with a finite consistent set, as work continues
more parameters can become available for a given prefix, so more applications of
T 8 and F 9 become possible. This must be taken into account.

We use the definition of the Sn-sequence as given in Section 8, understanding that
consistency has a revised meaning. But we make an alteration.

Definition 9.3 For a set P of prefixed signed formulas, by the universal satura-
tion of P we mean the result of: (1) adding to P all signed formulas � T A.a/ such
that � T .8x/A.x/ is in P and a is a parameter that is available for � in P , and
(2) adding to P all signed formulas � F A.a/ such that � F .9x/A.x/ is in P and a
is a parameter that is available for � in P .

The definition of the Sn-sequence from Section 8 is modified so that, at each stage,
SnC1 is enlarged to its universal saturation.

Let us writeM for
S

n Sn and think of it as the limit of the Sn-sequence. A first-
order intuitionistic model can be constructed from M , and then a truth lemma can
be proved. Here are the significant points. As usual, the states are the prefixes, and
accessibility corresponds to initial-segment-of. For each prefix/state � , the domain
associated with that state consists of all parameters that are available for � in M .
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Parameters designate themselves, as usual. This is familiar ground, and we leave the
remaining details to the reader.

Next, we convert these notions and rules to the nested sequent setting. We omit
all discussion of soundness and completeness.

Definition 9.4 Let �1 ! �2 be a nested sequent. Any parameter a that occurs in
some formula of �1 or �2 is said to be available in this sequent and in all its boxed
subsequents (no matter how deeply nested).

For instance, consider the sequent A ! B.a/; ŒC ! D.b/; ŒE ! F ��. The
parameter a is available in the entire sequent and in the nested subsequents
C ! D.b/; ŒE ! F �, and E ! F . The parameter b is available in C ! D.b/;

ŒE ! F �, and in E ! F .
Direct intuitionistic nested sequent quantifier rules:

L9 �1; '.a/! �2

�1; .9x/'.x/! �2

a not in conclusion

; R9 �1 ! �2; '.a/

�1 ! �2; .9x/'.x/

a available in conclusion
or a not in conclusion

;

L8 �1; '.a/! �2

�1; .8x/'.x/! �2

a available in conclusion
or a not in conclusion

; R8 �1 ! �2; Œ! '.a/�

�1 ! �2; .8x/'.x/

a not in conclusion

:

Direct intuitionistic first-order nested sequents: An intuitionistic proof of X is
a nested sequent proof of the sequent ! X using the direct intuitionistic
nested sequent quantifier rules given above.

Example 9.5 Here is an intuitionistic nested sequent, using the direct quantifier
rules, of .8x/A.x/ � :.9x/:A.x/. It is translated from the tableau proof in Exam-
ple 9.2:

!
�
!
�
A.a/! A.a/

��
!
�
!
�
.8x/A.x/! A.a/

�� L8
!
�
.8x/A.x/!

�
! A.a/

�� Lift

!
�
.8x/A.x/!

�
:A.a/!

�� L:
!
�
.8x/A.x/!

�
.9x/:A.x/!

�� L9
!
�
.8x/A.x/! :.9x/:A.x/

� R:

! .8x/A.x/ � :.9x/:A.x/
R �

10 Conclusion

The family of logics having nested sequent systems is under much current investi-
gation. Constant domain intuitionistic logic is now seen to be in this family. The
nested sequent system is of a simple nature and, rather surprisingly, amounts to a
propositional intuitionistic nested sequent system, plus classical quantifier rules, a
combination known not to work for conventional sequent systems. The connection
between prefixed tableaux and nested sequents, known from modal logic, extends to
the intuitionistic case too.
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For many years the status of interpolation for constant domain intuitionistic logic
was an open problem. It has recently been established that it does not hold (seeMints,
Olkhovikov, and Urquhart [17]). It has long been known to hold for intuitionistic
logic itself. It would be interesting to see if the proof systems of this paper can help
shed some light on this difference.
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