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Internal Categoricity in Arithmetic and Set Theory
Jouko Vaananen and Tong Wang

Abstract  We show that the categoricity of second-order Peano axioms can be
proved from the comprehension axioms. We also show that the categoricity of
second-order Zermelo—Fraenkel axioms, given the order type of the ordinals, can
be proved from the comprehension axioms. Thus these well-known categoricity
results do not need the so-called “full” second-order logic, the Henkin second-
order logic is enough. We also address the question of “consistency” of these
axiom systems in the second-order sense, that is, the question of existence of
models for these systems. In both cases we give a consistency proof, but natu-
rally we have to assume more than the mere comprehension axioms.

1 The Set-Theory View and the Second-Order View

Second-order logic was originally considered an innocuous variant of first-order
logic. Godel’s completeness and incompleteness theorems revealed that the anal-
ogy with first-order logic does not do full justice to the character of second-order
logic. Second-order logic truly transcends first-order logic in terms of strength and
can be more appropriately compared with (first-order) set theory.

There is a debate between the “set-theory view” and the “second-order view” in
the foundations of mathematics (see, e.g., Vidndnen [5]). The set-theory view holds
that mathematics is best formalized using first-order set theory. The second-order
view holds that mathematics is best formalized in second-order logic.

Two important issues in this debate are completeness and categoricity. A clear
merit of the set-theory view is that first-order logic has a complete proof calculus,
while second-order logic does not. An equally clear merit of the second-order view is
that second-order theories of classical structures (e.g., (N, +,-,0,1), (R, +,-,0, 1))
are categorical, while the corresponding first-order theories allow nonstandard mod-
els. More precisely, for classical structures 2 there is a second-order sentence Oy
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that characterizes 2 uniquely in the following way:

A = Oy, ey
VBVE((B E by AC = bOy) > B = C). )

However, a closer inspection shows that the matter is more subtle than a sim-
ple trade-off between completeness and categoricity. First of all, the claim that the
second-order view is inferior to the set-theory view because it lacks completeness is
unwarranted. It is true that full second-order logic does not have a complete proof
calculus, but for many reasons it is more appropriate to use Henkin second-order
logic instead of full second-order logic in a foundational quest (see [5]). Henkin
second-order logic, introduced in Henkin [3], is the extension of the usual logical
axioms with the comprehension axioms:

CA: 3XVX(X(X) < ¢(X)) for any second-order formula ¢ not containing X
free.

A model of Henkin second-order logic, a Henkin model, consists of a pair (2, 9),
where 2l is a model in the usual first-order sense and § is a collection of relations,
functions, and subsets of A. The set § serves as the range of the second-order vari-
ables in (2,%). The schema CA asserts that all definable subsets of the model in
question are in §. Note that every full model ()¢, §) (i.e., model of full second-order
logic) is a Henkin model. We denote full Henkin models by (I, ). Therefore
Henkin second-order logic adds to full second-order logic the comprehension axiom,
and at the same time its semantics permits a broader class of models. Importantly,
Henkin second-order logic is complete with respect to this extended class of models.
Both the set-theory view and the second-order logic view have a complete underlying
logic, and they characterize classical structures to the same level of categoricity (see
[5D.

The aim of this paper is to synthesize completeness and categoricity in the second-
order view. We work within the framework of Henkin second-order logic. We want
to restore the idea that second-order logic should provide unique characterizations of
classical structures. We want something like (1) and (2) to be still true.

Our first innovation is the notion of internal categoricity. Internal categoricity is
a generalization of the notion of categoricity, and was proposed in [5]. We say that a
theory T is internally categorical if all models of T' within a common Henkin model
are witnessed to be isomorphic by the model. We will make this definition more
intelligible through examples in what follows. For a detailed account of internal
categoricity, and the motivation behind it, see [5].

In this paper we prove that second-order theories of arithmetic and set theory are
internally categorical, although they are not categorical in the classical sense. This
fact suggests that nonstandard models and categoricity can exist in harmony. This
restores (2).

On the other hand there is the question of consistency, that is, existence of models.
There is a marked difference between the second-order consistency (i.e., existence of
a model) and the first-order consistency (i.e., nonexistence of a proof of contradic-
tion). By Godel’s completeness theorem, the nonexistence of a proof of contradiction
is equivalent to the existence of a model. In second-order set theory this means that
the formalized second-order theory (e.g., arithmetic) does not permit a proof of con-
tradiction if and only if there is a set—in the sense of (second-order) set theory—that
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is a model of the theory. Having relations that satisfy the axioms of arithmetic is not
enough for a construction of a set which is a model of arithmetic. But this is not our
concern here. We ask whether there are relations which satisfy the axioms of a given
theory, for example, arithmetic.

If we take second-order logic as a foundation, then the status of (1) is not clear
at first glance. What exactly does it mean that 2 |= Oy ? It is tempting to say that
the meaning of A = 6y is given by Tarski’s truth definition. However, Tarski’s
truth definition presupposes that we can read off the truth value of 2 |= 6Oy in the
metatheory—in this case set theory. It would undermine the second-order view if the
meaning of such basic notions relies on set theory. The second task of this paper is
thus to prove the existence of classical structures based on more logical grounds.

Suppose that 6(R;, ..., R,) is a potential second-order characterization of some
structure A = (4, R%. ..., R,%I). If we can prove under certain assumptions I' that
there exists a model of 8, and that 6 is internally categorical, then we have, at least
to some extent, restored (1) and (2):

CA+T F3R.....Ry0(Ry..... Ry), 3)
CAFVRy,....,R,VRy,....,Ry((O(Ry1....,Rx) NO(R].....R))) > A= A).
(4)

In this paper we work out two prime examples of this scheme: arithmetic and set
theory. We prove (3) and (4) for second-order arithmetic P? and second-order set
theory ZFC?, respectively. In Section 2 we prove internal categoricity of P2. In
Section 3 we prove, under the assumption that the underlying domain is infinite, that
there is a model of P2. In Section 4 we prove internal categoricity of ZFC2. In
Section 5, the most extensive part of this paper, we prove, under certain large domain
assumptions, that there exists a model of ZFC?.

2 Internal Categoricity of Arithmetic

The axiom system P?2 is the second-order version of Peano arithmetic (see Dedekind
[2]). For the purpose of this paper, we consider the relativized version of P2. Let
L = (N, §,0) be the language of arithmetic. Intuitively, N denotes the underlying
domain. The axioms of P2 consist of

PO: Vx(x e N — S(x) € N),

Pl: Vx e N=S(x) =0,

P2: Vx e NVy e N(S(x) =S(y) > x=y),

P3: VX((X(0) AVx € N(X(x)) = X(S(x)) = Vx(N(x) = X(x)).

It is well known that P2 characterizes N up to isomorphism in full second-order
logic. For Henkin second-order logic, this is no longer the case. A counterexample
can be provided by an application of the completeness theorem. Expand the language
with a new constant symbol ¢, and let ¥ be the theory P2 U {¢ > S"0 : n € N}.
Clearly ¥ is finitely satisfiable. Since Henkin second-order logic has a complete
proof system, it satisfies the compactness property. Hence X has a model (I, §),
which is a nonstandard model of P2. Note that (9, ) is a Henkin model but neces-
sarily not a full one: in particular the standard part is not in g, for otherwise it would
contradict the induction clause P3.
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Now we investigate the notion of internal categoricity. Let
L={N,S,0,N',S",0}

consist of two copies of the language of arithmetic. An essential feature of P? is
that it replaces the induction schema of first-order Peano axioms by a second-order
quantification over subsets. This renders P2 a finitely axiomatizable theory. Conse-
quently the interpretation of (N, S, 0) being a model of P2 can be written as a sen-
tence P2(N, S,0) in second-order logic. Similarly P2(N’, S’,0') has the intuitive
meaning that the interpretation of (N’, S’, 0') satisfies P2. That R is an isomorphism
from the interpretation of (N, S, 0) to the interpretation of (N’, S’,0") can also be
written as a second-order sentence ISO(R, (N, S,0), (N', S’,0')). We say that P2 is
internally categorical if whenever a Henkin model contains two copies of P2, that
is,

(M, 9) = P2(N,S,0) A P2(N',S",0),
this model “sees” that these two copies are isomorphic, that is,

(M, %) = 3R ISO(R, (N.S,0), (N, S',0)).

We prove that P2 is internally categorical under this definition. We emphasize that
we do not assume any a priori connection between (N, S, 0) and (N’, S’,0") below,
apart from the comprehension axioms, just that they both satisfy P2.

Theorem 1 Let L consist of two copies of the language of arithmetic, that is,
L ={N,S,0,N’, S, 0'}. Let CA denote the comprehension axioms in this language.
Then

CA (P*(N,S,0) A P*(N',S’,0)) = 3R ISO(R, (N, S,0), (N, S",0)).

Proof  Suppose that (I, §) = CA and that
() (M, 9) | P*(N.S.0),
2 (M, 9) E P2(N',S',0),
(3) N,S,N',§" €%.
We want to show that there is an R € & such that R : (N, S,0) = (N’, S’,0). Let

R=(){Pe®:P0.0)AYxeNVyecN(P(x.y) > P(S(x).S'(»))}
Note that R is a definable subset of M, so R € §. For any ¢,d € M we have
R(c.,d) &VP((P(0,0) AVx € N¥y € N'(P(x,y) = P(S(x),5'(»))))
— P(C,d)).

By the comprehension axiom, R € §. It is easy to verify that R(0,0’) and that
Vx € NVy € N'(R(x,y) — R(S(x),S’(»))). From these we prove that R is an
isomorphism from (N, S,0) to (N, S§’,0').

We claim that R is total. By the definition of R, 0 € dom(R) and Vx € N(x €
dom(R) — S(x) € dom(R)). Hence by P3, dom(R) = N. Surjectivity is proved
similarly. Next we show that R is functional. Let X = {x € N : 3!y R(x,y)}. We
prove X = N by induction. For the base case, suppose R(0,a) for a # 0'. Now
we define R” = R — {(0,a)}. Note that R’ also satisfies R’(0,0') A Vx € NVy €
N'(R'(x,y) = R'(S(x),S’(»))), contradicting the minimality of R. The induction
case is similar. Injectivity is proved similarly. Finally, the homomorphism property
of R follows directly from the definition of R. O
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For a recent investigation of the reverse mathematical status of second-order cate-
goricity of arithmetic, see Simpson and Yokoyama [4].

Note that if (IR, §) and (M, €") are two nonisomorphic models of the compre-
hension axioms CA, there is no reason to believe that (N, S, 0) which satisfies P2in
(M, €) would be isomorphic to any (N’, S’, 0') which satisfies P2 in (', §’). The
two models (N, S, 0) and (N’, S’,0’) are not models of P2 in the same sense. The
first is a model of P? in the sense of (I, §), the second in the sense of (I, &’).
Categoricity holds only with respect to structures that are models of P2 in the
same sense. The true sense of being a model of P? is captured by the full mod-
els (M, Grn). If (N, S, 0) satisfies P2 in a full model, then (N, S, 0) is isomorphic
to the standard model of arithmetic. In particular, all such are isomorphic to each
other by the transitivity of isomorphism. Internal categoricity says that it is not only
the models of P2 in the full models that are isomorphic but even all models of P2 in
any fixed—full or not—model of CA.

3 Model Existence for Arithmetic

Our next concern is the second-order consistency of P2, that is, the existence of re-
lations that satisfy the axioms of P2. CA alone cannot prove that there is a model
of arithmetic: in particular, all finite full models are models of CA, but they cannot
contain models of P2. Therefore we make the additional assumption that the un-
derlying domain of our model of CA is infinite. More precisely, we assume that the
model contains a nonsurjective injective mapping F.

Theorem 2 Let (I, §) be a Henkin model. Suppose
om,9) = HFEIZ(VxVy(F(x) =F(y) > x= y) ANz ¢ ran(F)).

Then
(M, %) = IN3STw P%(N, S, w).

Proof Choose F € §, a € M such that F is injective and a is not in the range
of F. We take the closure of @ under F. Let

N =X cM:X@AVx(X(x) > X(F(x)))}.

By the same reasoning as in the proof of Theorem 1, N is definable, so the compre-
hension axiom implies N € §. It is easy to see that (I, §) = P2(N, F,a). O

The assumption of a one-one function which is not onto is very natural for construct-
ing a model of arithmetic, because it directly gives the successor function. One can
start with any other second-order assumption and try to use the comprehension ax-
ioms and, when needed, axioms of choice (see AC below), to derive the existence
of a model of arithmetic. Possible candidates for such second-order assumptions
are “There is a linear order without a last element,” “There is a dense linear order,”
“There is an onto map from a proper subset of the universe onto the universe,” “There
is a linear order which is not isomorphic to its inverse order,” and so on. Probably
the investigation of such assumptions would closely resemble elementary set theory
even if it is carried out entirely in second-order logic.
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4 Internal Categoricity of Set Theory

In the same fashion as P2, we have the second-order counterpart ZFC? of the ZFC
axioms of set theory. Consider the second-order language of set theory consisting of
a single nonlogical symbol €. ZFC? has the same axioms for extensionality, union,
pair, power set, infinity, regularity, and choice as ZFC. As for separation and replace-
ment, ZFC? replaces the axiom schemata with second-order versions. Separation and
replacement then read as follows:'

Sep: YXVx3y(Vz(z € y < (z € x A X(2)))),

Rep: Vx(VuVzVz'(u e x AXu,2) AX(u,z')) > z=2) > AyVz(z €y <

u(u € x A X(u, 2)))).

It is not reasonable to suggest internal categoricity for ZFC? as it is. Zermelo
proved that the (full) models of ZFC? are—up to isomorphism—the structures’ Vj
for k an inaccessible cardinal (see Zermelo [6]). For two different inaccessibles x and
A, Vi and V), are not isomorphic. However, if we assume that two models of ZFC?
are “of the same height,” that is, there is an isomorphism between the ordinals in the
first model and the ordinals in second model, we can prove that they are isomorphic.

Below we use E to denote the e-relation of set theory and V' to denote the universe
of set theory. By ZEC?(V, E) we mean the relativization of ZFC? to the predicate V
with E as the e-relation.

Theorem 3 Let L = {V,E, V', E'} consist of two copies of the language of set
theory. Let (I, §) be a Henkin model in the vocabulary L. Suppose

(1) (M, 9) = ZFC*(V, E),

(2) (M. 9) | ZFC*(V', E),

(3) V,V.E,E' €8,

(4) M, %) E 37 ISO(r, Ord, Ord’), where Ord and Ord’ denote order types

of the ordinals in (V, E) and (V', E’), respectively.

Then (M, 9) = 3R ISO(R, (V, E),(V', E")).

Proof Choose an isomorphism 7 € § : Ord = Ord’. We use a back-and-forth
criterion to define an isomorphism between V and V'. Let

R=(|{Pe§:mCPVxeVVyeV
((VzEx3uE'yP(z,u) AVuE'y3zExP(z,u)) — P(x,y))}.

We may think of R as the minimal extension of 7 respecting E and E’. By construc-
tion R is in ¥. Moreover, R satisfies

(a) m C R,

(b) Vx € VVy € V'(VzExJuE'yR(z,u) A YuE'y3azExR(z,u)) <

R(x,y)).

The forward direction in (b) follows from the definition of R. The converse follows
from the minimality of R. The property (b) gives us a general criterion to decide
whether R(x, y) holds. We proceed to prove that R is an isomorphism.

Claim 1 The relation R, when defined, is an isomorphism onto its image.

First we prove that R is functional. Let x € V be an E-minimal element such that
there are y, y’ € V' with y # y’, R(x, y), and R(x, y’). By extensionality, without
loss of generality there is u € V' such that uE’y, —uE’y’. Since we have R(x, y),
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by property (b) above there is zE x such that R(z, u). Similarly, there is u’E’y’ such
that R(z,u’). Since =uE’'y, u # u’. Now we have R(z,u) and R(z,u’) for zEx,
contradicting the minimality of x.

By exchanging the role of V and V' in the above argument we can prove that R is
injective. That R respects the relations E and E’ is clear. Hence R is an isomorphism
onto its image when it is defined.

Below V, refers to the cumulative hierarchy in the sense of (V, E); similarly V,
refers to the cumulative hierarchy in the sense of (V/, E’). The power-set operation
in the sense of (V, E) is denoted by £, and in the sense of (V', E’) it is denoted by
P’

Claim 2 Foreacho € Ord, R : V,, — V;(a) is an isomorphism.

For the base case R : @ — @' this is trivially true. For the successor case,
suppose that R : V, — Vy; @ is an isomorphism; we aim to show that so is
R:Vyy1 — V}; (@+1)° Thanks to (i) it suffices to prove that R is defined on V,+; and
that R | V41 is onto V:;(a+1)' Pick an arbitrary y € P (Vy), that is, Ext(y) C V,
where Ext(x) = {y € M : yEx}, the “extension” of x. By induction hypothe-
sis R(Ext(y)) C Vz(). Let ZEﬂj/(Vj;(a)) be such that Ext(z) = R(Ext(y)). Itis
straightforward to see by property (b) that R(y, z). Since y is arbitrary, R is defined
on V1. Symmetrically we can prove that R | V4 is onto V!
The limit case is straightforward.

(a+1)"

Claim 3 The relation R : V — V' is an isomorphism.

Step (ii) implies that R : V' — V' is an embedding. Since 7 is an isomorphism
between the ordinals in V and in V’, the dual argument using 771 shows that R~ is
also an embedding. Therefore R is an isomorphism from V to V". O

A special case of the internal categoricity, given the order type of the ordinals, of

ZFC? is that ZFC? in the sense of any full Henkin model is categorical, given the

(inaccessible) order type of the ordinals. In particular the continuum hypothesis (CH)
Mo = R,

is famously decided by ZFC? as a full second-order theory. In other words, if a full
Henkin model has any models of ZFC?, they all agree about CH. However, it is an
immediate consequence of the classical results of Paul Cohen on CH that if there is
a Henkin model with a model for ZFC?, then there are Henkin models (901, §;) and
(M5, G>) such that

(1) (M1, %) F “ZFC? = CH",
(2) (M5, 8) E “ZFC? = ~CH”.
We can add to this list. Every full Henkin model (%, &) satisfies
(3) M, Gry) = “ZFC? = CH” v “ZFC? = —CH”.
By the truth definition, full Henkin models divide into two classes:
Ky = {M, Guan) : (M, ) E “ZFC? = CH™Y,
K&y = {M, Gran) : (M, ) = “ZFC? = —~CH”}.

We know that exactly one of these classes is nonempty, but we do not know which.
By (1) and (2) above we know that the class of all Henkin models divides into two
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classes:
K' = {(Em,ﬁ) c (M, 9) = “ZFC? = CH}
K* = {(M., %) : (M, 9) | “ZFC? | ~CH"},
and both classes are nonempty. Of course,
Kgy C K7, Kiy C K.

Thus ZFC? decides CH, but which way it decides depends on our understanding of
second-order logic. If we relegate decisions about second-order logic to set theory,
we essentially enhance the comprehension axioms with new axioms which arise from
contemplation in set theory. Unfortunately the discussion in set theory about CH is
still open, so no clue comes from there. One day we may know which of K}, and
K2, is nonempty. Most probably this is a result of enhancing the comprehension
axioms, reflecting developments in set theory, with new axioms so that the concept
of a Henkin model becomes sufficiently narrow to render one of K! or K? empty,
and that is the reason why we can in that situation decide which of Kf{ﬂl and Kf2u1] is
empty.

5 Model Existence for Set Theory

In this section we seek to establish the second-order consistency—that is, model
existence—of ZFC? under certain large domain assumptions, just as we proved the
consistency (model existence) for second-order arithmetic from the assumption of a
one-one function which is not onto. The key ingredient here is a power-set operation
which generates the set-theoretic structure by iteration.

Let (I, ) be a Henkin model. To cope with the relevant set-theoretical termi-
nology, in this section we refer to elements x of M as “sets” and subsets X of M in
9 as “classes.” Let (X ) be the formula saying that X is of smaller cardinality than
the universe or, in brief, “X is small”:

(X)) =ger —-EIF(“F is injective” A Vx X(F(x))).
Let n(X, Y, E) be the formula saying that Y behaves like the power set of X, with £
taken to be the intended membership relation:
N(X,Y, E) =¢t YxVy(xEy = (X(x) A Y()))

AVx,y€Y((Vz e X(zEx < zEy)) »> x =)

AVYZ C X3y € YVZ(Z(Z) < ZEy).
Then the following sentence says that every small class has a power set:

VX(u(X) —3Y. E (u(Y) An(X,Y, E))). (5)

We can also express that the cardinality of the universe is inaccessible, namely, that
the union of a family of small sets indexed by a small set is always small:

VXVR(u(X) AVx) € Xpu(R(x,—)) = pn(R(X)), (6)
where R(x,—) denotes the image of x under R, and R(X) denotes the image of the
class X under R. Note that R(X) = J,cx R(x,—).

The models of ZEC? are of the form V, for k an inaccessible cardinal. For such

k& we have |V, | = k. Condition (5) implies that the cardinality of the universe is a
strong limit cardinal; condition (6) implies that the cardinality of the universe is a
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regular cardinal. Quite naturally, our first guess is that (5) and (6) together would
imply that there is a model of ZFC?:

(5) + (6) - 3M, E ZFC*(M, E)?

Tempting as it is, a moment’s reflection shows that this plan does not work. It is
not enough to postulate that there is a power set for each small set, but we also need
these power sets to be compatible with each other, in order to glue them together and
generate the set-theoretic structure. For example, suppose X C Y. Ideally we would
have #(X) C £ (Y), but this is not a priori a consequence of (5) and (6). In order
to remedy this defect, we will impose a compatibility assumption on the power set
operation. The price we pay is that the resulting postulate amounts to assuming the
existence of a third-order object. However, this is in harmony with Gédel’s second
incompleteness theorem, which suggests that one has to go to a higher type to prove
the consistency of a formal system.

Our postulates, stronger than (5) and (6) above, are as follows. We use a semantic
formulation.

Definition 1 Suppose that (M, ) is a Henkin model in a vocabulary with
second-order function symbols P and &. Let I consist of the following axioms,
involving P and &. For all small X,Y (letting Ex denote &(X)) we have the
following.
(a) The class P(X) is small. Moreover,
(1) n(X, P(X), Ex), with 7 as defined in Section 4;
(i) X CY - P(X)C P(Y);
(iii)) XCY >Vye PX){lue X :uExy}={ueY :uEyy}).
(b) The cardinality of the universe is 1regular;3 that is,

VXVR(u(X) AVx € Xp(R(x,—)) = n(R(X))).
(c) Each Eyx is well founded;* that is,
VY(Ele(x) — EIx(Y(x) A VZ(Y(Z) — —-ZEXy))).
(d) There is a small transitive class X such that it is infinite; that is, there is an
injective function into a proper subclass. A class X is transitive, if
Vx(X(x) - Vy(AY(yEyx) — X(1))).

If we allowed third-order quantification, we could existentially quantify P and &
in I'. Then I" would become a higher-order axiom in the empty vocabulary.

We also assume the following formulation of the axiom of choice (AC) in second-
order logic in addition to the comprehension axioms:

AC: VR(Vx3yR(x,y) — AFVxR(x, F(x))).

The main result of this section is the following.
Theorem 4 We have CA + AC+ T +3IM, E ZFCz(M, E).

The proof extends over several lemmas and propositions. For any small X and
y € P(X), define the extension of y in X to be Exty(y) = {u € X : uExy}.
Requirement (a.iii) says that whenever Y is a superset of X and y is a member of
P(X) (and hence by (a.ii) a member of P(Y)), Exty (y) is equal to Exty (x). Upon
reflection this is indeed what is the case in the real set-theoretic universe. For any set
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x there corresponds a power set & (x), and this J (x) will not change as we regard x
as the subset of varying supersets.

Postulate (d) guarantees that the model we construct contains an infinite object.
Without this assumption, the structure we end up with could very well be V,,, satis-
fying every axiom of ZFC? except the axiom of infinity.

We now construct a model of ZFC? in much the same way as we did for P2. We
choose a witness C for postulate (d). We define V' to be the closure of C under the
power set operation P:

V=)Ne¥g:CCNVXCNuX)— PX)CN)}

and we let the binary relation E be the union of the local relations:

E=|J{Ex: X CcV.u(X)}.

The comprehension axiom implies that V, E € §.

Now we set out to prove that (V, E) = ZFC?, by which we mean (I, %) =
ZFC?(V, E). Below we usually mean by a formula its relativization to V unless
otherwise specified.

First several lemmas. By the definition of E as the union of the classes Ex, we
have Ext(y) = (Jy Extx (y). The following lemma shows that it suffices to consider
one such X.

Lemma 1 Forany y and any X suchthat y € P(X), Ext(y) = Exty(y). Equiv-
alently, for any u, uEy if and only ifuEx y.

Proof By definition uEyy implies uEy. Now we prove the other direction.
Suppose uEy; then uE%y for some X’'. Suppose also that u is not in X.
Consider the set X U X’. By postulate (b) on regularity, the union of two
small sets is small; hence P is defined on X U X’. By postulate (a.iii) we
have Exty(y) = Extyyux/(y) = Extx/(y). But this is a contradiction, since
u € Exty/(y) yetu ¢ Exty(y). O

Lemma 2 (Comprehension) We have (V, E) E VX(u(X) — 3y Ext(y) = X).

Proof Choose y € P(X) such that Extyx(y) = X. This is guaranteed by (a.i). By
Lemma 1, X = Exty(y) = Ext(y). O

We refer to this lemma henceforth as the comprehension lemma. Together with CA,
this lemma tells us that for any class X, if it is definable and small, then there is a set
x with extension X . This will be our key apparatus for proving existential claims in
the ZFC?-axioms.

Lemma 3 (Every set is small) We have (V, E) E Vxu(Ext(x)).

Proof  We distinguish two cases. First suppose x ¢ C. Recall that C is a fixed
witness for postulate (d). Suppose that Ext(x) is not small. Then x ¢ P(X) for
all small X, for otherwise Ext(x) = Exty(x) C X and hence is small. Now we
consider the model V' = V — {x}. V' is also closed under P, since x is not in any
P(X). Moreover, V' still contains C for x ¢ C. This contradicts the construction of
V as the minimal such class. On the other hand if x € C, by the transitivity of C we
have that Ext(x) C C, and hence Ext(x) is small. O

We can now verify the axioms of set theory.
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Proposition 1 (Extensionality) We have (V,E) E VxVy(Vz(zEx < zEy) —
X =Yy).

Proof  Suppose Ext(x) = Ext(y) = Z. By Lemma 1, Ext(x) = Exty(x) for
some small X, and Ext(y) = Exty (y) for some small Y. Consider the set X U Y.
We have Extxyy (x) = Exty(x) = Ext(x) = Ext(y) = Exty(y) = Extxyy (y).
We know that extensionality holds locally by (a.i); hence x = y. O

Proposition 2 (Power set) We have (V,E) = Vx3yVz(zEy < Vu(uEz —
uEx)).

Proof The power-set axiom becomes 3y (Vz(zEy <> X(z))), where X is defined
by Vz(X(z) <> Yw(wEz — wEx)). For any z € X, Ext(z) C Ext(x); therefore
z € P(Ext(x)). Since z is arbitrary, we have X C P(Ext(x)), and hence X is small.
By the comprehension lemma there is a y such that Ext(y) = X. O

The pairing, separation, and replacement axioms follow from the comprehension
lemma. In each case, it is rather straightforward to verify that the set we desire is
small.

Proposition 3 (Pair) We have (V, E) = VxVy3zVw(wEz < (w = xVw = y)).

Proposition 4 (Separation) We have (V,E) E YXVx3Ay(Vz(zEy < (zEx A
X(2)))).

Proposition 5 (Replacement) If a class F is a function, then for every set x, F(x)
is a set.

Proof  Suppose that x is a set and that F is a functional class. Let
Y = {y evV: EIZ(ZEx A F(z) = y)}

By the axiom of choice of second-order logic there is a functional class G that asso-
ciates to each y € Y one of its preimages, that is, F(G(y)) = y. By the functionality
of F, G is an injective mapping from Y into Ext(x). Since Ext(x) is small, Y is also
small. Therefore by the comprehension lemma there is a set y with extension Y.
This is the set we desired. O

The axiom of union requires the postulate on regularity.
Proposition 6 (Union) We have (V, E) E Vx3AyVz(zEx < Jw(wEx A zEw)).

Proof By the regularity postulate (b), the class | J,, 5, Ext(w) is small, and hence
it is a set by the comprehension lemma. O

The proof of the axiom of regularity is based on postulate (c).
Proposition 7 (Regularity) (V, E) | “Every set has an E-minimal element.”

Proof Choose an arbitrary element x, and suppose that Ext(x) does not have
a minimal element. Then there is an infinite descending chain ---x, Ex,_y---
x2 Exy1 Exg in Ext(x). Let Z = {x¢, X1,...,Xp,...}. Now for each x,, in Z (n > 0)
there is a small set Yy, such that x, Ey,, x,—1. Take ¥ = U,ez Yz. Z is a subset
of Ext(x) and hence is small; therefore by regularity Y is also small. Moreover,
Ey, C Ey forall x, € Z. Thus the sets x, have become an infinite descending
chain in the relation Ey, contradicting postulate (c). Note that we have relied here
on the axiom of choice. O
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Now we can tackle the axiom of infinity.
Proposition 8 (Infinity) We have (V, E) = “There exists an infinite set.”

Proof  Consider the witness C for postulate (d). Postulate (d) asserts that (I, §)
thinks that C is transitive. Since “X is transitive” is equivalent to the universal
formula

VXVyVY ((X(x) A yEyx) — X()).

it is preserved downward to the submodel V' of M. Therefore V' also thinks C is
transitive. Since C is infinite, there is an injective class function F from C to its
proper subset. Define the class X as follows:

Vx(X(y,Z) <~ F(y) = Z).

The class X has cardinality less than or equal to C x C, and hence is small by
regularity. Let f be the set the extension of which is X, and let ¢ be the set the
extension of which is C. Then f is an injective function in the sense of (V, E) from
¢ to its proper subset; therefore ¢ is an infinite setin V. O

Finally, we prove the axiom of choice. Note that we assume in second order logic
the axiom of choice AC in addition to the comprehension axioms. However, what
we will prove is the internalized version of AC, that is, in the sense of the model
(V, E). This is similar in spirit to the proof of the axiom of infinity: we assume
the existence of an infinite object in the sense of second-order logic, and the proof
consists of internalizing the infinite object into (V, E).

Proposition 9 (Choice) We have (V, E) |= “For any set x, if the empty set is not
a member of x, then there is a choice function on x.”

Proof  Suppose that for each y € Ext(x) there is z € Ext(y). By AC there is a
class function F such that for all y € Ext(x), F(y) € Ext(y), thatis, F(y)Ey.
Similarly to the proof of the axiom of infinity, let f be the set the extension of which
is F. This f is a choice function on x. O

We have checked all the axioms. This ends the proof of Theorem 4. [

The question arises to what extent the assumption I' in Theorem 4 is really any-
thing but another way of saying that some classes constitute a model of set theory.
Let us then discuss the axiom I". The point of I' is that it uses second-order logic
to say that there are an inaccessible number of elements in the universe, an obvious
prerequisite to building a model of ZFC?. To say that the cardinality of the universe
is an uncountable regular cardinal is easy enough. Likewise, to say that the number
of elements in the universe is a strong limit cardinal is straightforward. This does not,
however, seem to suffice. So we have to assume that the power sets, which demon-
strate that the number of elements of the universe is a strong limit cardinal, cohere.
But that is all we need.

In retrospect, what we have done is similar in spirit to what Burgess establishes in
[1]. Burgess proves the consistency (model existence) of ZFC? under the following
two assumptions.

(a) There are just as many individuals as small classes.
(b) There are indescribably many individuals.
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Assumption (a) is essentially what we have achieved with Lemmas 2 and 3: to each
small class there corresponds a set (i.e., an individual), and the extension of each set
is a small class. The connection between (b) and our approach remains a topic for

further investigation.

Notes

1. Note that ZFC? is a finite set of axioms.
2. More exactly (V, €).
3. In the sense of the model, not necessarily in the “real” V.

4. In the sense of the model, not necessarily in the “real” V.
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