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Regular Ultrapowers at Regular Cardinals

Juliette Kennedy, Saharon Shelah, and Jouko Väänänen

Abstract In earlier work by the first and second authors, the equivalence of a fi-
nite square principle �fin

�;D
with various model-theoretic properties of structures

of size � and regular ultrafilters was established. In this paper we investigate the
principle �fin

�;D
—and thereby the above model-theoretic properties—at a regular

cardinal. By Chang’s two-cardinal theorem, �fin
�;D

holds at regular cardinals for
all regular filters D if we assume the generalized continuum hypothesis (GCH).
In this paper we prove in ZFC that, for certain regular filters that we call doublyC

regular, �fin
�;D

holds at regular cardinals, with no assumption about GCH. Thus
we get new positive answers in ZFC to Open Problems 18 and 19 in Chang and
Keisler’s book Model Theory.

1 Introduction

In Kennedy and Shelah [7], [8] the equivalence of the following finite square prin-
ciple �fin

�;D
with various model-theoretic properties of regular reduced powers of

models was established:
�fin

�;D
: D is a filter on a cardinal �, and there exist finite sets C

�
˛ and integers n� for

each ˛ < �C and � < � such that for each �; ˛,
(i) C

�
˛ � ˛ C 1;

(ii) if B � �C is a finite set of ordinals and ˛ < �C is such that B � ˛ C 1,
then ¹� W B � C

�
˛ º 2 D;

(iii) ˇ 2 C
�
˛ implies C

�

ˇ
D C

�
˛ \ .ˇ C 1/;

(iv) jC
�
˛ j < n� .

The model-theoretic properties were the following. First, if D is an ultrafilter,
then �fin

�;D
is equivalent to M�=D being �CC-universal for each model M in a vo-

cabulary of size at most �. To formulate the second model-theoretic property, let us
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say that two models are EF˛-equivalent if the second player (i.e., the isomorphism
player) has a winning strategy in the Ehrenfeucht–Fraïssé game of length ˛ on the
two models.1 Now �fin

�;D
is equivalent to M�=D and N �=D being EF�C -equivalent

for any elementarily equivalent models M and N (without loss of generality of cardi-
nality at most �C) in a vocabulary of size at most �. The existence of such ultrafilters
and models is related to Open Problems 18 and 19 in Chang and Keisler’s book on
model theory [1].

The consistency of the failure of �fin
�;D

for a regular filter at a singular strong limit
cardinal � was proved in [8, Corollary 6] relative to the consistency of a supercom-
pact cardinal. In Kennedy, Shelah, and Väänänen [9, Corollary 8] this was improved
to the failure of �fin

�;D
for a regular (ultra)filter D at a singular strong limit cardinal

� relative to the consistency of a strongly compact cardinal. The failure of �fin
�;D

for
an ultrafilter implies the failure of �CC-universality of M�=D for some M, as well
as the failure of isomorphism of some regular ultrapowers M�=D and N �=D. Thus
[9] answered negatively the following problems listed in [1] modulo large cardinal
assumptions.

Problem 18 ([1]) Let jM j; jN j; jLj � ˛, and let D be a regular ultrafilter over ˛.
If M � N , then

Q
D M Š

Q
D N .

Problem 19 ([1]) If D is a regular ultrafilter of ˛, then for all infinite M,
Q

D M

is ˛CC-universal.

The use of large cardinals is justified by [7], [8], and [12] as the failure of �fin
�;D

, for
a singular strong limit � implies the failure of ��, which implies the consistency of
large cardinals.

In this paper we investigate the principle �fin
�;D

, and thereby the above model-
theoretic problems, at a regular cardinal. The following result is proved in Hyttinen
[4, Theorem 3.3]. Assume that � is regular and that �<� D �. Suppose that M

and N are structures for a finite vocabulary such that M and N are EF˛-equivalent
for each ˛ < �. Suppose that D is a filter on � � �, � � �, extending F 0 � F ,
where F 0 is a �-descendingly incomplete filter on � and F is a �-semigood filter
on � (the concept is defined in [4, Definition 3.2]). Then M�=D and N �=D are
EF�C -equivalent. For � D ! this, combined with the existence proof of semigood
filters in [4, Lemma 3.5], yields filters D with �fin

�;D
. The structure of the paper is

the following. In Section 2 we prove weaker versions of �fin
�;D

in the case where the
filter D extends the club filter on �. Naturally this case is in spirit quite far from
the case of regular D, which is our prime interest. However, this result is useful in
the sequel. Note that there are many regular (ultra)filters extending the club filter. In
Section 3 we define the concept of doublyC regular filter and show that such filters
D on regular � > @0 satisfy �fin

�;D
. Thus we get new positive answers in ZF C

to the above Problem 18 (with isomorphism replaced, in the absence of 2� D �C,
by EF�C -equivalence) and the above Problem 19. In Section 4 we prove results to
the effect that not all regular filters are doubly regular. In Section 5 we compare our
concept of double regularity to Keisler’s concept of goodness of a filter. In Section 6
we present some open questions.
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2 Filters Extending the Club Filter

We can get provable cases of a weaker form of �fin
�;D

, when D extends the club filter.
This will prove useful in the next section, where we will use Theorem 1 in the proof
of Theorem 5. The original �fin

�;D
is equivalent to reduced powers of elementarily

equivalent models of cardinality � being EF�C -equivalent. The weaker form (which
we prove below) will give the EF�C -equivalence of reduced powers of models of
power � that are not just elementarily equivalent but even EF�-equivalent.

Theorem 1 Suppose that
(a) � is regular > @0,
(b) D is a filter on �,
(c) D extends the club filter.

If M and N are EF�-equivalent, then M�=D and N �=D are EF�C -equivalent.

Proof If ˛ < �C, � regular, let ¹ui
˛ W i < �º be a continuously increasing sequence

of subsets of ˛ such that jui
˛j < � for all i < � and ˛ D

S
i<� ui

˛ . Let

D˛ D
®
i < � W 8ˇ 2 ui

˛.ui
ˇ D ui

˛ \ ˇ/
¯
: (1)

It is easy to see that D˛ is a club of � (recall that � is regular).
Now we can proceed, as in [7], to prove that if M and N are EF�-equivalent, then

M �=D and N �=D are EF�C -equivalent.
Let L be a finite vocabulary, and for each i < �, let Mi and Ni be EF�-equivalent

L-structures. We show that II has a winning strategy in the game EF�C on the
models M D

Q
D Mi and N D

Q
D Ni .

The crucial idea of the proof is the following: When the Ehrenfeucht–Fraïssé
game EF�C.M; N / is played, the players are actually playing � Ehrenfeucht–Fraïssé
games simultaneously, namely, the games EF�.Mi ; Ni /, i < �.

For each i < �, let �i be a winning strategy for II in the game EF� on the models
Mi and Ni . A good position is a sequence h.fˇ ; gˇ / W ˇ < ˛i for some ˛ < �C,
together with a club C � D˛ , such that for all ˇ < ˛ we have fˇ 2

Q
i Mi ,

gˇ 2
Q

i Ni , and if i 2 C , then˝�
f�.i/; g�.i/

�
W � 2 ui

˛

˛
is a play according to �i on the models Mi and Ni . In a good position the equiv-
alence classes of the functions fˇ and gˇ determine a partial isomorphism of the
reduced products. Suppose that ˛ rounds have been played and that we are in a good
position. Let ' .Œfˇ1

�; : : : ; Œfˇk
�/ be an atomic formula holding in

Q
i Mi =D, where

ˇ1 < � � � < ˇk < ˛, and let A D ¹i 2 D˛ W ¹ˇ1; : : : ; ˇkº � ui
˛º. By assumption,

A 2 D. Since also B D ¹i < � W Mi ˆ ' .fˇ1
.i/; : : : ; fˇk

.i//º 2 D, we have
A \ B 2 D. For i 2 A \ B , we have ˇ1; : : : ; ˇk 2 ui

˛; hence

ui
ˇj

D ui
˛ \ ˇj :

Since we are in a good position, h.f�.i/; g�.i// W � 2 ui
˛i is a play according to win-

ning strategy �i . Hence h.f�.�/; g�.�// W � 2 ui
˛i determines a partial isomorphism

of the structures Mi and Ni . Since this was the case for all i 2 A \ B 2 D, we getQ
� N�=D ˆ ' .Œgˇ1

�; : : : ; Œgˇk
�/.
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The strategy of II is to keep the position of the game good and thereby win the
game. So suppose ˇ rounds have been played and II has been able to keep the po-
sition good. Then for all  < ˇ there is a club C � D such that for i 2 C ,
h.f�.i/; g�.i// W � 2 ui

 i is a play according to �i .
Case 1: ˇ D

S
ˇ. Let C D

T
<ˇ C . Since � is regular, this is still a

club. We show that h.f ; g / W  < ˇi is good. Let i 2 C . Let us look at
h.f�.i/; g�.i// W � 2 ui

ˇ
i. Since i 2 Dˇ , every initial segment of this play is a play

according to �i . Hence so is the entire play h.f ; g / W  < ˇi. We have shown that
II can maintain a good position.
Case 2: ˇ D ı C 1. Let C �

T
�ˇ C such that ı 2 ui

ˇ
for i 2 C . Now suppose

I plays fı . We show that II can play gı so that h.f ; g / W  < ˇi remains good.
Let i 2 C . Let us look at h.f�.i/; g�.i// W � 2 ui

ı
i. This is a play according

to the strategy �i . Since i 2 Dˇ and ı 2 ui
ˇ

, ui
ı

D ui
ˇ

\ ı, so after the moves
h.f�.i/; g�.i// W � 2 ui

ı
i II can play one more move in EF� on Mi and Ni with I

playing the element fı.i/. Let gı.i/ be the answer of II in this game according to
�i . The values gı.i/, i 2 C , constitute the function gı mod D. We have shown that
II can maintain a good position.

We do not know whether the conditions (a)–(c) of Theorem 1 are necessary for the
conclusion.

Remark 2 We point out some variants of Theorem 1.
1. We can define a version �

�;D
of �fin

�;D
which is equivalent to: “If M and N

are EF -equivalent, then M�=D and N �=D are EF�C -equivalent”:
�

�;D
: D is a filter on a cardinal �, and there exist finite sets C

�
˛ and ordinals

� <  for each ˛ < �C and � < � such that for each �; ˛

(i) C
�
˛ � ˛ C 1;

(ii) if B � �C is a set of ordinals with otp.B/ <  and ˛ < �C is
such that B � ˛ C 1, then ¹� W B � C

�
˛ º 2 D;

(iii) ˇ 2 C
�
˛ implies C

�

ˇ
D C

�
˛ \ .ˇ C 1/;

(iv) otp.C
�
˛ / < � .

If clauses (a), (b), and (c) of Theorem 1 are assumed, then ��
�;D

.
2. We can also define a version �<ı

�;D
of �fin

�;D
which is equivalent to: “If

M and N are EF -equivalent for all  < ı, then M�=D and N �=D are
EF�C -equivalent.” If clauses (a), (b), and (c)C of Theorem 1 are assumed,
then �<�

�;D
holds, where .c/C says that (c) holds and there are functions f˛ ,

˛ � �C, such that ˛ < ˇ � �C implies ¹i < � W f˛.i/ < fˇ .i/º 2 D. (For
D D the club filter, this is the so-called assumption of the existence of the
�Cth canonical function; see, e.g., Jech [5, p. 445].)

3. Note that
�fin

�;D ) �

�;D
) �<�

�;D ) ��
�;D

for  < �.
4. We get a variant of Theorem 1 also by showing, assuming (a), (b), and (c),

that
Q

D Mi and
Q

D Ni are EF�C -equivalent, if for all ˇ < �:
¹i < � W Mi and Ni are EFˇ -equivalentº 2 D:
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5. We can weaken clause (c) of the theorem to the assumption that D is un-
reasonable (see Shelah [14]) in the following sense: There is a partition
¹wi W i < �º of � such that

S
i2E wi 2 D for every club E of �.

3 Doubly Regular Filters

We define the concept of a doubly regular filter, give examples of such on regular
cardinals, and prove that �fin

�;D
holds for such filters. Recall that a family of sets is

a regular family if finite intersections of members of the family are nonempty, but
all infinite intersections are empty, a filter is called �-regular if it contains a regular
family of size �, and a filter on � is called regular if it is �-regular.

Definition 3 Suppose that D is a filter on a regular cardinal �.
1. D is called doubly regular if there are pairwise disjoint sets ui � �, i < �,

each of cardinality �, and regular filters Di on ui such that for all A � �:�
8

1i < �.A \ ui 2 Di /
�

) A 2 D

(“ 81i < �” means “for all but boundedly many i”).
2. The filter D is called doublyC regular if the above holds with “81i < �”

replaced by “for a club of i .”

Let us make some easy observations about doubly regular filters.

Observation 4

1. A doubly regular filter is necessarily regular. Let ¹A˛
i W ˛ < �º be a regular

family in Di . Let
B˛

D

[
i<�

A˛
i :

Then ¹B˛ W ˛ < �º is a regular family in D. We will show in Theorem 7
below that the converse need not be true.

2. A doublyC regular filter is always doubly regular.
3. It is easy to construct doubly .C/ regular filters. Indeed, if the sets ui � �,

i < �, are disjoint, each of cardinality �, � D
S

i ui , and we have regular fil-
ters Di on ui , then the set ¹A � � W 81i < �.A\ui 2 Di /º is a doubly reg-
ular filter on �, and the larger set ¹A � � W for a club of i < �.A\ui 2 Di /º

is a doublyC regular filter on �. Both double regularity and doubleC regular-
ity are closed under extensions of the filter, so we get also ultrafilter examples
of both.

Here is the main point of doublyC regular filters, at least from the point of view of
this paper.

Theorem 5 If D is a doublyC regular filter on a regular cardinal � > @0, then
�fin

�;D
holds.

Proof Let the sets ui and the filters Di be as in Definition 3. Let D� be the club
filter of �, and let

D0
D

®
A � � W ¹i < � W A \ ui 2 Di º 2 D�

¯
:

We prove �fin
�;D0 . From this �fin

�;D
follows, as D0 � D. It suffices to prove that if

M˛ and N˛ , ˛ < �, are elementarily equivalent, with a vocabulary of size at most
�, then M D

Q
D0 M˛ and N D

Q
D0 N˛ are EF�C -equivalent. Note that
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(a) M Š
Q

i<� Mi =D�, where Mi D
Q

˛2ui
M˛=Di ;

(b) N Š
Q

i<� N i =D�, where N i D
Q

˛2ui
N˛=Di .

Since each Di is �-regular, the models Mi and N i are EF�-equivalent by
Shelah [13, Theorem VI.1.8]. By Theorem 1 the models M and N are now
EF�C -equivalent.

4 On Regular But Nondoubly Regular Filters

Nonregular uniform filters do not necessarily exist. If there is a nonregular uniform
ultrafilter on !1, then V ¤ L by Prikry [11], 0# exists by Ketonen [10], and in fact
!2 is a limit of measurable cardinals in the Dodd–Jensen core model by Deiser and
Donder [2]. We show that we can always construct a regular but nondoubly regular
filter. In this sense, double regularity is easier to avoid than regularity.

If E is an equivalence relation on �, we denote the set of all E-classes by �=E,
and the E-class of i by i=E.

First we give an equivalent condition for double regularity, one that better fits our
present purpose.

Lemma 6 A filter D is doubly regular if and only if there is an equivalence rela-
tion E of � and Nu D hu˛ W ˛ 2 �i such that
(DR-a) ¹u� W � �E iº is a regular family of subsets of i=E for each i < �;
(DR-b) if S � � and jS j < �, then

S
¹i=E W i 2 Sº D ; mod D;

(DR-c) ji=Ej D � for all i < �;
(DR-d) if f is a function such that dom.f / D �=E and f .i=E/ �E i for all

i 2 �=E, then
S

i2�=E uf .i/ … D.

The proof is easy.

Theorem 7 If 2� D �C, then there is a regular ultrafilter on � which is not doubly
regular.

Proof Let ¹B˛ W ˛ 2 �Cº list P .�/. Let ¹.E˛; Nu˛/ W ˛ < �Cº list potential candi-
dates for double regularity; that is, E and Nu D hu� W � < �i such that ¹u� W � < i=Eº

is a regular family on i=E for each i < �. This is only place where we use 2� D �C.
We construct by induction sets D˛ , ˛ < �C, such that the following conditions

will hold:
(C-a) D˛ � P .�/ is �-continuously increasing;
(C-b) jD˛j D �;
(C-c) D˛ is closed under finite intersections (we use Fil.D˛/ to denote the filter

D˛ generates);
(C-d) D0 contains a regular family (so necessarily, u 2 Œ��<� implies u D ;

mod D);
(C-e) if ˛ D 2ˇ C 1, then Bˇ 2 D˛ or .� n Bˇ / 2 D˛;
(C-f) if ˛ D 2ˇ C 2, then either there is S 2 Œ��<� such that

S
�2S �=Eˇ ¤ ;

mod Fil.D˛/, or, letting Nuˇ D huˇ;� W � < �i, there is f such
that dom.f / D �=Eˇ , f .i=Eˇ / �Eˇ

i for all i 2 �=Eˇ , andS
i2�=Eˇ

uˇ;f .i/ 2 Da.
Here is the construction.
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Case 1: ˛ D 0. Let E be a regular family on �. (We can construct a regular fam-
ily on � in the standard way. Let J be the set of finite subsets of �. The family
¹¹X 2 J W ˇ 2 Xº W ˇ < �º is a regular family on J and hence gives rise to one
on �.) We extend E to D0 by closing under finite intersections.
Case 2: ˛ D 2ˇ C 1. We make a choice between Bˇ 2 D˛ and .� n Bˇ / 2 D˛ so
that ; … Fil.D˛/.
Case 3: ˛ D 2ˇ C 2. Let ¹C ˛

l
W l < �º list D2ˇC1. If there is S 2 Œ��<� such thatS

�2S �=Eˇ ¤ ; mod Fil.D2ˇC1/, we let D2ˇC2 D D2ˇC1. So let us assume the
following.

(?) For all S 2 Œ��<� we have
S

�2S �=Eˇ D ; mod Fil.D2ˇC1/.
We prove the following auxiliary.

Subclaim There are .�i ; i /; i < � such that
(a) �i 2 � n ¹�j W j < iº,
(b) i �Eˇ

�i ,
(c) uˇ;i

« C ˛
i \ �i =Eˇ .

Let us first suppose that the subclaim is true and that we have such a sequence
.�i ; i /; i < �. Choose f by letting f .�i / D i . So

S
i2�=Eˇ

uˇ;f .i/ is a subset
of �, which includes no element of D2ˇC1. So we let

D˛ D D2ˇC1 [

°
A n

[
i2�=Eˇ

uˇ;f .i/ W A 2 D2ˇC1

±
:

This is clearly closed under finite intersections and does not contain ;, and every set
in D˛ has cardinality �.

Let us then prove the subclaim. Let i < �, and let

W1 D

[
j <i

�j =Eˇ :

By our assumption (?), W1 D ; mod Fil.D2ˇC1/. Choose �i from the nonempty
set .� n W1/ \ C˛;i . Then pick �i so that �i �Eˇ

�i . Finally, let

W2 D ¹ < � W  �Eˇ
�i and �i 2 uˇ; º:

Since Aˇ is a regular family, the set W2 is finite. So there is i 2 uˇ;�i
n W2. This

ends the construction of the sequence .�i ; i /; i < �, and thereby finishes the proof
of the subclaim.

Finishing the proof Now that we have constructed the sequence D˛; ˛ < �C, we
can let

D D

[
˛<�C

D˛:

This is an ultrafilter on �. It is regular by (C-d). Now we can easily see that D is not
doubly regular. Suppose Eˇ and Nuˇ witnesses that D is doubly regular. Let us look
at the construction of D2ˇC2. In the first case we assumed that there is S 2 Œ��<�

with
S

�2S �=Eˇ ¤ ; mod Fil.D2ˇC1/. So
S

�2S �=Eˇ ¤ ; mod D, and
(DR-b) is violated. In the second case we found f such that

S
i2�=Eˇ

uˇ;f .i/ D ;

mod Fil.D˛/. Hence
S

i2�=Eˇ
uˇ;f .i/ D ; mod D, and (DR-d) is violated.
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Note that doubleC regularity of D implies �fin
�;D

on a regular cardinal � > @0 (see
Theorem 5), but in light of Theorem 7, not conversely, as GCH implies �fin

�;D
for

regular D and regular � (see [7, Lemma 4]).
Theorem 7 has the assumption that 2� D �C, which may fail for all �. We present

next a slightly different construction under a different assumption, one that is always
satisfied by a multitude of cardinals �.

Theorem 8 Assume the following two conditions.
(A1) cof.�/ > @0 or � > 2@0 .
(A2) There is A � P .�/ of cardinality 2� such that j¹A \ i W A 2 Aºj � � for all

i < �.
Then there is a regular but not doubly regular filter on �.

Note that a family A, as in (A2), always exists if � D 2<�. Hence condition (A2)
can be replaced by � D Æ˛ , ˛ limit.

Proof Let h.Eˇ ; Nuˇ / W ˇ < 2�i list all pairs where Eˇ is an equivalence relation
on � and Nui

ˇ
D huˇ;� W � �Eˇ

ii is a regular family of subsets of i=Eˇ for each
i < �. Let ¹B˛ W ˛ < 2�º list P .�/.

We construct a sequence .I˛; D˛/; ˛ < 2� such that
1. jI˛j � j˛j, I˛ � P .�/, .I˛/ is continuously increasing;
2. D˛ is the filter D ŒI˛� D ¹A � � W 9J 2 ŒI˛�<@09S 2 Œ��<�.

T
J � A[S/º;

3. D2ˇC1 D D2ˇ [ ¹Bˇ º or D2ˇC1 D D2ˇ [ ¹� n Bˇ º;
4. D2ˇC2 satisfies:

(a) there is some W 2 Œ��<� such that
S

i2W i=Eˇ ¤ ; mod D2ˇC1, or
(b) there is an f such that f .i=Eˇ / 2 i=Eˇ for all i and � n

S
¹uˇ;f .x/ W

x 2 �=Eˇ º 2 Iˇ , or
(c) j¹X 2 �=Eˇ W jX \ Bj D �ºj < � for some B 2 D2ˇC1.

The construction now follows. Let us look at the case ˛ D 2ˇ C 2. If we cannot
form D˛ as required, then

(N1) if W 2 Œ��<�, then
S

i2W i=Eˇ D ; mod D2ˇC1;
(N2) if f is a function such that dom.f / D �=Eˇ and f .i=Eˇ / �Eˇ

i for all
i < �, and

Aˇ;f D

[
¹uˇ;f .x/ W x 2 �=Eˇ º;

then ; 2 D.I2ˇC1 [ ¹� n Aˇ;f º/;
(N3) for B 2 D2ˇC1, j¹X 2 �=Eˇ W jX \ Bj D �ºj D �.

We derive a contradiction. This will ensure that D˛ can be found. Let
hxˇ;i W i < �i list �=Eˇ . By our choice of A, there are one-one functions
bi W ¹A \ i W A 2 Aº ! xˇ;i for each i < �. If s � �, let gs be a function such that
dom.gs/ D �=Eˇ and

gs.xˇ;i / D bi .s \ i/

so that gs.xˇ;i / 2 xˇ;i . By (N2) there are

Jˇ;s 2 ŒI2ˇC1�<@0 ; Wˇ;s 2 Œ��<�

such that \
B2Jˇ;s

B � Aˇ;gs
[ Wˇ;s :
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Since jAj D 2�, there are J� 2 ŒI2ˇC1�<@0 and � < � such that if

A1 D
®
s 2 A W Jˇ;s D J�; jWˇ;sj D �

¯
;

then jA1j D 2�. Let B� D
T

J� 2 D2ˇC1. By (N3),ˇ̌®
j < � W jxˇ;j \ B�j D �

¯ˇ̌
D �: (2)

Claim There are sn 2 A1, n < !, and i < ! such that sn \ i ¤ sm \ i for all
n < m < !.

Case 1: cof.�/ > @0. Pick distinct sn 2 A1, n < !. Since cof.�/ > @0, there is
i < � such that sn \ i ¤ sm \ i for all n < m < !.
Case 2: cof.�/ D @0, � > 2@0 . Pick distinct s� 2 A1, � < .2@0/C. Let C � � be
cofinal, jC j D @0. Let � W Œ.2@0/C�2 ! C be defined by �.¹�; �º/ D min¹c 2 C W

s� \ c ¤ s� \ cº. By the Erdős–Rado theorem .2@0/C ! .@1/2
@0

, there is i 2 C and
an uncountable H � .2@0/C such that � � ŒH �2 has constant value i .

The claim is proved. By (2), there is j > i such that jB� \ xˇ;j j D �. With the
notation of (N2),

Aˇ;gsn
\ xˇ;j D uˇ;bj .sn\j /

and the sets uˇ;bj .sn\j / are distinct because bj is one-one. By regularity,\
n

uˇ;bj .sn\j / D ;: (3)

Let W D
S

¹Wˇ;sn
W n < !º. Clearly, jW j D �. Now

B� \ xˇ;j � uˇ;bj .sn\j / [ W:

This contradicts jB� \ xˇ;j j D �, since jW j D � and (3) gives

B� \ xˇ;j �

\
n

.uˇ;bj .sn\j / [ W / D W:

If we start with a model of GCH, we can use Easton forcing (see [3]) to obtain a
model in which 2� is—for all regular �—anything not ruled out by the conditions
� � � ) 2� � 2� and cof.2�/ > �. In the arising forcing extension V ŒG� the tree
.<�2/V , � regular, has cardinality � and 2� branches. Hence we have in V ŒG� a set
A� of cardinality 2�—for all regular �—such that 8i < �.j¹A\ i W A 2 A�ºj � �/,
which is exactly the assumption (A2) of Theorem 8.

5 Good Ultrafilters

Keisler [6] introduced the concept of �-goodness of ultrafilters and proved that if
2� D �C and if D is a �C-good (i.e., good) countably incomplete ultrafilter on
�, then

Q
D Mi Š

Q
D Ni for any models Mi � Ni of cardinality at most �C in

a vocabulary of cardinality at most �. This raises the question whether there is a
connection between goodness and double regularity. It turns out that these concepts
are independent of each other.

Proposition 9 Suppose that � > @0. There is a doubly regular ultrafilter on �

which is not good. If 2� D �C, then there is a good countably incomplete ultrafilter
on � which is not doubly regular.
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Proof For the first claim, let D1 be a doubly regular ultrafilter on � (exists by
Observation 4), and let D2 be a countably incomplete ultrafilter of ! which is not
@2-good (exists by [6, Theorem 5.1]). Let D D D1 � D2. This is an ultrafilter on
the set � � ! of size �. Since D2 is not �C-good, neither is D (see [13, Chapter VI,
Lemma 3.7]). Double regularity is inherited from D1 as follows. Suppose that we
have pairwise disjoint sets ui , i < �, on �, each of cardinality �, and regular filters
Fi on ui such that for all A � �:�

8
1i < �.A \ ui 2 Fi /

�
! A 2 D1:

Let Gi � Fi be a regular family on ui . Let u�
i D ui �! and G�

i D ¹A�! W A 2 Gi º.
Let F �

i be the filter on u�
i generated by ¹A�! W A 2 Fi º. Now G�

i is a regular family
� F �

i , and if A � � � !, then�
8

1i < �.A \ u�
i 2 F �

i /
�

! A 2 D1 � D2:

This ends the proof that D is doubly regular.
For the second claim we use a combination of the construction of the proof of

Theorem 7 and Keisler’s construction of a good ultrafilter in [6, Theorem 4.4]. The
construction of Keisler as presented in [1, Chapter 6, p. 387] proceeds in stages,
generating a continuously increasing sequence F˛ , ˛ < 2�, of filters such that the
following condition holds (for unexplained terminology we refer to [1, Chapter 6,
p. 387]). For the first (in a fixed well-ordering) monotone f W Œ��<@0 ! F˛ for
which there is no additive extension Œ��<@0 ! F˛ , there is an additive extension
g W Œ��<@0 ! F˛C1. To make sure that such g and F˛C1 always exist, an auxiliary
sequence is simultaneously defined, namely, a descending sequence …˛ , ˛ < 2�,
of partitions of �, starting from a carefully chosen initial set …0 with j…0j D 2�.
There is no problem in interleaving the inductive construction of the filters F˛ into
the construction in the proof of Theorem 7. The resulting ultrafilter is good but not
doubly regular.

6 Concluding Remarks

We proved that �fin
�;D

holds if � is a regular cardinal and D is a doubly regular filter.
This naturally raises the question whether �fin

�;D
can fail at a regular cardinal for

some regular, but not doubly regular, filter. We know that it can fail at a singular
cardinal (see [8]).

Conjecture 1 Consistently, �fin
�;D

fails for some regular � > ! and some regular
filter � generated by � sets.

Conjecture 2 If D is a regular ultrafilter on @1 such that :�fin
@1;D , then for any

increasing continuous h˛i W i < !1i with ˛i < !1, there is A 2 D such that
A \ Œ˛i ; ˛iC1/ is finite for all i < !1.

Note that if
D D

®
A � !1 W 8

1i < �
�
A \ Œ˛i ; ˛iC1/ 2 Di

�¯
;

Di ultrafilter on Œ˛i ; ˛iC1/, then the answer to Conjecture 2 is positive. This may
indicate that looking for counterexamples for �fin

@1;D can be hard.
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Note

1. The usual elementary equivalence in a finite relational vocabulary is thus EFn-
equivalence for all n < !, and L1! -equivalence is the same as EF! -equivalence.
For models of cardinality at most �, EF� -equivalence is equivalent to isomorphism.
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