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Improving a Bounding Result
That Constructs Models of High Scott Rank

Christina Goddard

Abstract Let T be a theory in a countable fragment of L!1;! whose exten-
sions in countable fragments have only countably many types. Sacks proves a
bounding theorem that generates models of high Scott rank. For this theorem, a
tree hierarchy is developed for T that enumerates these extensions.

In this paper, we effectively construct a predecessor function for formulas
defining types in this tree hierarchy as follows. Let T
 � Tı with T
 - and
Tı -theories on level 
 and ı, respectively. Then if ppq.Tı / is a formula that
defines a type for Tı , our predecessor function provides a formula for defining
its subtype in T
 .

By constructing this predecessor function, we weaken an assumption for
Sacks’s result.

1 Introduction

Vaught’s conjecture questions the number of models of a complete, countable theory
and is one of the questions that have shaped modern model theory. In Morley’s
groundbreaking paper [3], which gives a positive result toward Vaught’s conjecture,
he introduces the notion of scattered theories, defined below in Section 1.2. Sacks [4]
uses a generalization of these theories, called weakly scattered theories, to produce
further results. He introduces a tree hierarchy, called the raw hierarchy, detailed in
Section 1.2, that enumerates the models of a weakly scattered theory.

Within the raw hierarchy, we construct a predecessor function for formulas that
define types for theories in the tree. If T
 � Tı with T
 - and Tı -theories on level

 and ı, respectively, then if ppq.Tı/ is a formula that defines a type for Tı , the
predecessor function provides a formula for defining its subtype in T
 . Using this
predecessor function, we improve a bounding result in Sacks [4, Theorem 3.1] for
weakly scattered theories.
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In Section 1, we provide an outline of important results from [4] that we will
need for the predecessor function, including the small sets lemma and the iterated
bounding theorem. We define a weakly scattered theory and provide its related hier-
archy, the raw hierarchy. Then we recall the effective recovery theorem and outline
its important steps necessary for our construction.

In Section 2, we construct our predecessor function. We conclude, in Section 3,
by showing how this predecessor function improves the main bounding result in [4].

1.1 Small �0 sets Throughout this paper, L is a countable first-order language. We
work in L!1;! , usually within a countable fragment LA, where A is a countable
admissible set.

We use Barwise compactness extensively throughout, mostly in the form of the
small sets lemma (see [4]) given below in Theorem 1.1. Also, Theorem 1.3 is an
extremely useful result derived from uniformity hidden in the proof of the small sets
lemma.

These results, together with the iterated bounding theorem (Theorem 1.4), estab-
lish the †1-nature of the enumeration of models that drives the effective recovery
process (Theorem 1.7), and in a similar manner, our predecessor function given in
Section 2.

Theorem 1.1 (Small sets lemma [4, Theorem 3.1]) Let A be a countable admissi-
ble set, and let D.x; y/ be a �0-formula. For p; b 2 A, define

Sp;b D
®
x

ˇ̌
x � b and D.x; p/

¯
:

Then if Sp;b … A, the cardinality of Sp;b is 2! .

Proof Let the language L contain the 2 symbol, a constant ca for all a 2 A, and a
constant c distinct from the ca. We define the �A

1 set of sentences Z as follows:
1. the sets of sentences

¹ca 2 cb j if a 2 b for a; b 2 Aº and ¹ca … cb j if a … b for a; b 2 AºI

that is, the atomic diagram of A;
2. the sentences describing that the constant c is in Sp;b but not in A; that is,
.c � cb/, D.c; cp/, and .c ¤ ca/ for all a 2 A.

We claim that Z is consistent by contradiction. So suppose that Z is inconsistent in
LA. Then by Barwise compactness and completeness, there is some Z0 2 A such
that Z0 � Z and Z0 is inconsistent. So Z0 contains a subset of the atomic diagram,
the sentences .c � cb/ and D.c; cp/, and ¹.c ¤ ca/ j a 2 a0º for some a0 2 A. But
Z0 is inconsistent. So there is a proof in A that

.c � cb/ and D.c; cp/ �! c 2 a0: (1)

But then Sp;b � a0, that is, Sp;b 2 A, which is a contradiction.
We now claim that for each sentence  in LA, we have thatZ[ is not complete

for LA. Assume that there is some ' 2 LA such that Z [ ' is complete. Then for
each ca, there is a deduction Da 2 A from Z [ ' of either .ca 2 c/ or .ca … c/.
By the†1-admissibility of A, there is some deductionD 2 A that determines which
elements of cb are in c. But then there is some e 2 A such that .c D ce/ is deducible
from Z [ ', a contradiction since c is distinct from ce .
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Since Z [  is not complete for all  2 LA, by Barwise [1, Theorem 8.1], there
are 2! distinct LA-theories for models of Z. The argument uses a Henkin-style
approach where each stage Tn is enlarged to cause incompatible choices for c.

Corollary 1.2 Let A be a countable admissible set. For p; b 2 A, we have that
Sp;b is countable if and only if Sp;b 2 A.

Theorem 1.3 There is a †ZF
1 -formula F .x; y; z/ such that for any countable

†1-admissible set A and any elements p; b; s 2 A, we have the following.
1. If Sp;b is countable, then A � 9zF .p; b; z/.
2. For all a 2 A, we have that A � F .p; b; a/ implies that a D Sp;b .

Proof We find F .x; y; z/ from the proof of the small sets lemma (Lemma 1.1).
The formula F .x; y; z/ says that there exists a w1 such that w1 is a subset of the
atomic diagram and there is a deduction of equation (1) from w1 such that

z D
®
s

ˇ̌
s 2 w0 and s � y and D.s; x/

¯
;

where w0 is given in equation (1).
Thus, by the small sets lemma (Lemma 1.1), Z is inconsistent if and only if Sp;b

is countable if and only if Sp;b 2 A. So if Sp;b is countable, then A � 9zF .p; b; z/.
And the second part also follows immediately.

We now recall an iterated bounding result for admissible sets, given in [4]. This
theorem is very useful in conjunction with the small sets lemma. Let B.x/ be a
�0-formula with parameter p0. We say that B.x/ is ˇ-bounded if

8a
�
B.a/ ” LŒˇ; p0I a� � B.a/

�
:

Thus if aˇ D a \ LŒˇ; p0I a�, then B.aˇ / ” B.a/.
Note that LŒˇ; p0I a� is the result of iterating first-order definability to the ˇth

stage over the transitive closure of the set p0 and also using the additional atomic
predicate x 2 a.

For all z, let HYPz be the least †1-admissible set containing z; that is,

HYPz D L
�
!z

1 ; tc.z/
�
:

Theorem 1.4 (Iterated bounding theorem [4, Theorem 7.1]) Let B.x/ be a
ˇ-bounded �0-formula with parameter p0. Let F .u; v/ be a †1-formula with
parameter p1, and let p D ¹p0; p1º.

Suppose that for all a, the following is true:

If B.a/ holds, then there is a unique ıp;ˇ;aˇ
2 HYP¹p;ˇ;aˇº

such that HYP¹p;ˇ;aˇº � F .aˇ ; ıp;ˇ;aˇ
/:

Then we have the following.
1. There exists a uniform bound ıp;ˇ 2 HYP¹p;ˇº such that for all a, we have

that if B.a/ holds, then ıp;ˇ;a � ıp;ˇ .
2. We obtain ıp;ˇ uniformly; that is, ıp;ˇ is determined by a partial function of
p and ˇ whose restriction to an admissible A has a uniform †A

1 definition.
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1.2 Weakly scattered theories and their corresponding raw tree hierarchy Weakly
scattered theories are a generalization of Morley’s notion of a scattered theory. Mor-
ley introduced scattered theories in [3] to give a positive result toward Vaught’s con-
jecture.

We first define scattered theories as given in [4], which is equivalent to Morley’s
original definition.

Definition 1.5 Let L be a countable first-order language, and let L0 be a count-
able fragment of L!1;! . Fix T � L0, a theory with a model. Let L0 be any arbitrary
countable fragment of L!1;! extending L0, and let T 0 � L0 be any finitarily consis-
tent, !-complete theory extending T (so that T 0 is complete and has a model). We
say that T is scattered if the following hold.

1. For all n and all T 0, the set of all n-types over T 0, denoted SnT
0, is countable.

2. For all L0, the set ¹T 0 j T 0 � L0º is countable.
We say that T is weakly scattered if only (1) holds.

We now introduce a tree hierarchy to enumerate all the models of a weakly scattered
theory. This notion is introduced in [4] and extends a similar tree hierarchy for scat-
tered theories. Since we are only interested in weakly scattered theories here, we do
not develop the scattered version first. Needless to say, the scattered tree hierarchy
is considerably more constructive and can be developed inside L.!1; T /. However,
surprisingly constructive results are obtained for the weakly scattered case.

Definition 1.6 Let L be a countable first-order theory, and let L0 be a count-
able fragment of L!1;! . Let T � L0 be a weakly scattered theory with a model.
Following the notation in [4], define

ı� D

´
ı � 1 if ı is a successor ordinal,
ı otherwise.

We define the raw hierarchy for T , denoted RH .T /, as follows.
Level 0. Include every T0 such that T � T0 and T0 is a finitarily consistent,

!-complete theory of L0. We define L0.T0�/ to be L0.
Level ı C 1. We first define LıC1.Tı/. Assume that Tı extends a unique pre-

decessor Tı� on level ı� and that Lı.Tı�/ is countable. If Tı is an atomic theory,
then LıC1.Tı/ is undefined and Tı has no extensions on level ı C 1. Otherwise,
let LıC1.Tı/ be the least fragment of L!1;! extending Lı.Tı�/ and containing the
conjunctions ^®

'.Ex/
ˇ̌
'.Ex/ 2 p.Ex/

¯
for each nonprincipal type p.Ex/ of Tı . Note that since T is weakly scattered, Tı is
too, and so LıC1.Tı/ is countable. Now for level ı C 1 of the tree, include every
TıC1 that extends Tı and is a finitarily consistent, !-complete theory of LıC1.Tı/.

Limit level �. We include the theory T� on level � if there exists a sequence
hTı j ı < �i such that the following hold:

1. Tı is a theory on level ı;
2. Tı1

� Tı2
for ı1 < ı2 < �; and

3. T� D
S

¹Tı j ı < �º.
Then L�.T�/ is

S
¹Lı.Tı�/ j ı < �º.
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We then define the raw tree rank of a model A as

rtr.A/ D .least ı/ŒA is the atomic model of some Tı �:

It is clear from the definitions that A is a countable model of T if and only if there
exists some countable ı such that A is the atomic model of Tı .

For a given model A of T , we can analyze its path through the raw hierarchy.
Thus, following the notation in [4], we define the raw tree analysis of A to be the
following:

1. LT .0;A/ D L0;
2. T .0;A/ D the L0-theory of A;
3. LT .ıC1;A/ D LıC1.T .ı;A//, as given in Definition 1.6;
4. T .ı C 1;A/ D the LT .ıC1;A/-theory of A;
5. LT .�;A/ D

S
¹LT .ı;A/ j ı < �º for � a limit;

6. T .�;A/ D
S

¹T .ı;A/ j ı < �º.

1.3 Effective recovery of the raw hierarchy Since a weakly scattered theory could
potentially have continuum many extensions on a given level of the raw hierarchy,
it is not generally possible for the raw hierarchy of a given theory T to exist inside
L.˛; T / when ˛ � !1 and L.˛; T / is †1-admissible. However, it is surprising how
much information on the raw hierarchy can be expressed inside L.˛; T /.

Theorem 1.7 (Effective recovery process [4, p. 22]) Let L be a countable first-
order language, and let L0 be a countable fragment of L!1;! . Let T � L0 be a
weakly scattered theory. Assume, for convenience, that L0 and L are effectively
recoverable from T .

Let ˛ be an ordinal such that ˛ � !1 and L.˛; T / is †1 admissible. Let ı < ˛,
and define Aı to be the set of all theories Tı on level ı of RH .T /. Then there
exists a ˇ such that Aı is defined by a ˇ-bounded �ZF

0 -formula, denoted pAıq, and
pAıq 2 L.˛; T /.

The proof can be found in [4, pp. 22–24]. We list some important properties obtained
from the proof here to use them for our construction.

1. Ordinals �ı are found so that Lı.Tı�/ is uniformly constructible from Tı�

by using �ı for all Tı� 2 Aı�.
2. Both pAıq and �ı are constructed simultaneously by a†L.˛;T /

1 -recursion that
is uniform in ˛.

3. Let STı denote the set of all n-types of Tı in Lı.Tı�/ for n � 0. Let 
Tı
be

the least 
 such that STı 2 L.
; Tı/.
Then there exists a 
ı < ˛ such that for all Tı 2 Aı we have:

(a) 
Tı
� 
ı ;

(b) STı 2 L.
ı ; Tı/;
(c) 
ı is a uniform †1 function of ı using the parameters from pAıq and

the parameters from the uniform †1 definition of 
Tı
.

4. A special set of first-order ZF definitions is assembled on level 
ı of L.˛; T /
that construct all types in all STı , given a theory Tı .

First, let ®
p'j q.Tı/

ˇ̌
j 2 Jı

¯
(2)



64 Christina Goddard

be the set of all first-order ZF definitions over L.
; T / for all 
 < 
ı with
parameter Tı . Let p'j q.Tı/ represent the set constructed from the defini-
tion p'j q.Tı/ when the set Tı is substituted for the parameter Tı . Thus
p'j q.Tı/ 2 L.
ı ; Tı/.

Let Wı denote the natural well-ordering of the set in equation (2), where
each definition p'j q.Tı/ is first ordered by the level 
 < 
ı in which it is
constructed and then by its Gödel number e < !. Let pdıq.Tı/ denote the
default type for Tı and be defined by the following:

j.Tı/ D .Wı -least j /
�
p'j q.Tı/ is an n-type of Tı for some n

�
I

pdıq.Tı/ D p'j.Tı/q.Tı/:

The first-order ZF definitions of the types are then tweaked. Let ppj q.Tı/

be the first-order ZF definition with parameter Tı defined by

ppj q.Tı/ D

´
p'j q.Tı/ if p'j q.Tı/ is an n-type of Tı for some n;
pdıq.Tı/ the default type of Tı , otherwise.

(3)

Let Pı D ¹ppj q.Tı/ j j 2 Jıº, assembled on level 
ı C 1 in L.˛; T /. Note
that we have the following.
(a) For all Tı 2 Aı and all p.Ex/ 2 STı , there exists a j 2 Jı such that

ppj q.Tı/ defines the type p.Ex/ on level 
ı C 1 of L.˛; T /.
(b) For all Tı 2 Aı and all j 2 Jı , we have that ppj q.Tı/ 2 STı .
(c) It is possible that for some Tı 2 Aı and some j; k 2 Jı that j ¤ k but

ppj q.Tı/ D ppkq.Tı/.

2 Predecessor Function for the Raw Hierarchy

In property 4 of the effective recovery process (Theorem 1.7), first-order ZF defini-
tions are assembled on level 
ı of L.˛; T / that construct all types in all STı given a
theory Tı . We call these formulas type definitions.

We add to the†L.˛;T /
1 definitions of �ı and pAıq in the effective recovery process

to recursively define a predecessor function

f Œppq; ı� D
®
f

�
ppq.Tı/; 


�
.T
 /

ˇ̌

 < ı

¯
for type definitions ppq at stage ı. The predecessor function is a partial function
such that if ppq.Tı/ defines an actual type for a given theory Tı on level ı, then
f .ppq; 
/.T
 / defines an actual type on level 
 < ı that is an actual subtype of the
type defined by ppq.Tı/ � ST
 .

To do this, we must alter the type definitions given in the effective recovery pro-
cess (Theorem 1.7) so that the default type definitions are not used. As such, the type
definitions are not necessarily defined for all theories on the type’s level anymore;
they have a partial domain. However, these new type definitions will be enough to
improve the result in the next section.

Note that each stage ı in our construction of type definitions and the predecessor
function corresponds to one level higher in the effective recovery process in Theo-
rem 1.7. That is, to construct LıC1.Tı/ and TıC1, we need to construct STı .
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2.1 Stage 0 Develop the type definitions as in equation (3) of the effective recovery
process (Theorem 1.7), except omit the default type clause. That is, let

P0 D
®
ppj0

q.T0/
ˇ̌
j0 2 J0

¯
D

®
p'j0

q.T0/ and also asserts that
p'j0

q.T0/ is an n-type of T0 for some n
ˇ̌
j0 2 J0

¯
:

So that if defined, ppj0
q.T0/ is the definition of a type in ST0 for at least one (and

not necessarily all) T0 2 A0.
Then let

f .ppj0
q; 0/.T0/ D ppj0

q.T0/ for all ppj0
q.T0/ 2 P0:

2.2 Stage ı C1 Assume that we have ¹�i j i � ıC1º and ¹pAi q j i � ıC1º. Using
these sequences, we reconstruct the set of definitions from the previous stage ı:

Pı D
®
ppkı

q.Tı/
ˇ̌
kı 2 Kı

¯
:

Here Kı is the index set of type definitions developed here at level ı, and Jı is
reserved for the original type definitions developed like J0 on Level 0.

Also when defining LıC1.Tı/, we want to use the type definitions uniformly to
avoid the language having a domain too. To do so, we alter the type definitions
slightly. Let

prj q.Tı/ D

´
ppj q.Tı/ if ppj q.Tı/ is an n-type of Tı I

x D x otherwise.

Then
LıC1.Tı/ D Lı.Tı�/ [

®^
prj q.Tı/

ˇ̌
j 2 Kı

¯
and closed under finitary operations.

As in the effective recovery process without default types, we assemble the set

QıC1 D
®
ppj q.TıC1/

ˇ̌
j 2 JıC1

¯
D

®
p'j q.TıC1/ and also asserts that

p'j q.TıC1/ is an n-type of TıC1 for some n
ˇ̌
j 2 JıC1

¯
of first-order definitions at level 
ıC1 of L.˛; T / by using the small sets lemma and
the iterated bounding theorem. Also, QıC1 has a natural well-ordering WıC1 (as
given in the effective recovery process), which is also definable at level 
ıC1.

In what follows, we note that given a theory TıC1 on level ıC1, we can effectively
reconstruct its immediate predecessor Tı by using the inductive hypotheses. Thus,
for a given fixed kı 2 Kı and for each jıC1 2 JıC1, let

ppkı ;jıC1
q.TıC1/ be ppjıC1

q.TıC1/ 2 QıC1 and also assert that
ppjıC1

q.TıC1/ is an m-type of TıC1 and
ppjıC1

q.TıC1/ � ppkı
q.Tı/; an m-type of Tı for some m.

Let PıC1;kı
be the collection all such type definitions extending the fixed definition

ppkı
q.Tı/, and let

PıC1 D
®
ppkı ;jıC1

q.TıC1/
ˇ̌
kı 2 Kı and jıC1 2 JıC1

¯
:

Thus, PıC1 is the union of all such PıC1;kı
as these indices range over Kı .
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We have to check that PıC1 is in L.˛; T /. First, for a given kı and TıC1, we
show that

PıC1;kı
.TıC1/ 2 L

�

; T I hkı ; TıC1i

�
for some 
 < ˛:

But this is true from †1-replacement since we can effectively construct

Tı ; TıC1;QıC1;Pı 2 L.!
TıC1

1 ; TıC1/

by using the inductive hypotheses.
Let


.kı ; TıC1/ D .least 
/
�
PıC1;kı

.TıC1/ 2 L
�

; hkı ; TıC1i

��
:

By Theorem 1.3, we have that 
.kı ; TıC1/ as a function of kı and TıC1 is uniformly
†1. So by the iterated bounding theorem (Theorem 1.4), there is a uniform bound

ıC1 of all these 
 ’s, and 
ıC1 has a uniform †1 definition from ı C 1 and its
parameters.

Thus, we have that
S

kı2Kı
PıC1;kı

D PıC1 2 L.
ıC1 C 1; T /, and 
ıC1 < ˛.
Also, since we have just added repetitions of definitions, we still have that

1. for each TıC1 2 AıC1 and p.Ex/ 2 STıC1, there is a k 2 KıC1 such that
ppkq.TıC1/ defines p.Ex/ at level 
ıC1 C 1 of L.˛; T /, and

2. for all k 2 KıC1, we have that, if defined, ppkq.TıC1/ 2 STıC1 for at least
one TıC1 2 AıC1.

Since we have kept track of indices of the immediate predecessors, simply define

f .ppkı ;jıC1
q; 
/.TıC1/ D

´
ppkı

q.Tı/ for 
 D ıI

f .ppkı
q; 
/.T
 / for 
 < ı:

Finally, let �ıC1 < ˛ be just large enough to develop the sequence h�i j i � ıi

and the ordinal 
ıC1 C 1 needed to construct PıC1.

2.3 Limit stage We introduce a rank, called the type definition rank (TD rank), that
is based on the Cantor–Bendixson rank (CB rank). We use certain isolating-formula
definitions derived from TD rank to index the type definitions at the �th stage of the
construction, for � a limit ordinal.

Define type definition rank for a type definition ppq.T�/ 2 ST� as follows.
1. TDR.ppq.T�// D 0 if there exists a formula definition p'q.T�/ 2 L.T�/

such that the formula p'q.T�/ isolates ppq.T�/ in ST�.
2. TDR.ppq.T�// D ˇ if there exists a formula definition p'q.T�/ 2 L.T�/

such that the formula p'q.T�/ isolates

ppq.T�/ 2 ST� �
®
q 2 ST�

ˇ̌
TDR.q/ < ˇ

¯
:

Thus, ppq.T�/ is the unique type containing

p'q.T�/ 2 ST� �
®
q

ˇ̌
TDR.q/ < ˇ

¯
:

We define the type definitions at level � by recursion. At each stage ˇ, we repeat
the type definitions ppq.T�/ and assert that ppq.T�/ is a type definition of TD rank
ˇ, and index it by its isolating-formula definition.

As in the effective recovery process (Theorem 1.7), we develop the initial set of
type definitions ¹ppj q.T�/ j j 2 J�º.
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Stage 0. Define the type definitions of TD rank 0:

P�;0 D
®
pp';0q.T�/

ˇ̌
pp';0q.T�/ is type definition ppj q.T�/ for some j 2 J�

and also asserts p'q.T�/ 2 L.T�/ and isolates ppj q.T�/ in ST�

¯
:

Then for pp';0q.T�/ 2 P�;0, since p'q.T�/ 2 L�.T�/, there is some ı < � such
that p'q.Tı/ 2 LıC1.Tı/. Thus, p'q.T�/ isolates pp';0q.T�/ � T
 for all 
 � ı.

For 
 � ı, let j.p'q.T�/; 
/ 2 J
 be the least index j in the sense of W
 such
that p'q.T�/ 2 ppj q.T
 /, a member of P
 .

The predecessors of pp';0q.T�/ are then

f
�
pp';0q.T�/; 


�
.T�/ D

´
ppj.p'q.T�/;
/q.T
 / if 
 � ı;

f .ppj.p'q.T�/;ı/q.Tı/; 
/ if 
 < ı:

We now show that the set of rank 0 types is in LŒ˛; T IT�� uniformly for use in
the next step.

Let R�;0 denote the set of rank 0 types of T� on level �; that is,

R�;0 D
®
x

ˇ̌
x � T� and 9' 2 L�.T�/8 2 L.T�/

�
 2 x , .' !  / 2 T�

�
and x is complete, finitarily consistent, and !-complete

¯
:

By the small sets lemma (Theorem 1.1), we have that R�;0 2 L.!
T�

1 ; T�/. But then
by the iterated bounding theorem (Theorem 1.4), there exists a 
�;0 < !

T�

1 such that
R�;0 2 L.
�;0; T�/ for all T� 2 A�. Alter 
�;0 so that it is large enough to develop
all of stage 0 (but still less than ˛).

Stage ˇ > 0. Assume that the recursion has produced the sequence of ordinals
¹
�;ı j ı < ˇº, and construct the set of type definitions for T� of TD rank less than
ˇ; that is,

R�;<ˇ D

[
ı<ˇ

R�;ı 2 L.˛; T�/:

We first develop an intermediate set of type definitions of TD rank ˇ, denoted
Q�;ˇ , where

Q�;ˇ D
®
pp';ˇ q.T�/

ˇ̌
pp';ˇ q.T�/ is a type defn ppj q.T�/ for some j 2 J�

and also asserts p'q.T�/ 2 L�.T�/

and pp';ˇ q.T�/ 2 ST� �R�;<ˇ

and 8pqq.T�/ 2 ST�

�
p'q.T�/ 2 pqq.T�/

!
�
pqq.T�/ $ pp';ˇ q.T�/ _ pqq.T�/ 2 R�;<ˇ

��¯
:

In other words, pp';ˇ q.T�/ is a definition of the unique type isolated by the formula
p'q.T�/ in ST� � R�;<ˇ .T�/. By the small sets lemma and iterated bounding,
Q�;ˇ 2 L.
�;ˇ ; T�/ for some 
�;ˇ < !

T�

1 for all T� 2 A�.
We now look at a given type definition pp';ˇ q.T�/ and p'q.T�/ its isolating-

formula definition. We claim that for a given T�, there exists a bound ı < � such
that all realized type definitions pqq.T�/ 2 ST� containing p'q.T�/ that have TD
rank less than ˇ have an isolating-formula definition below stage ı.

We find it by using Barwise compactness. Let Z be the set of axioms with pa-
rameters p; ', and ˇ all in L.!T�

1 ; T�/:
1. q 2 ST�; q ¤ p; ' 2 q;
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2.  does not isolate q in ST� �R�;<
 , for all  2 Lı.Tı�/, all ı < �, and all

 < ˇ;

3. the structure of L.!T�

1 ; T�/ (so we have an end extension).

Then Z is †1 in L.!T�

1 ; T�/ thanks to the ordinals we have constructed along the
way in the recursion.

If Z is consistent, then ' would have two extensions in ST� of rank at least ˇ.
But p is the unique such extension, so Z is inconsistent. By Barwise compactness,
there is a z0 2 L.!

T�

1 ; T�/ and z0 � Z that is inconsistent. Let ı < !
T�

1 bound the
ordinals mentioned in z0 of axiom type (2). Then the axioms (3) and (1) in z0 imply
that there exists an isolating formula in Lı for any such q. Let � be the †1-function
(uniform in T�) that takes .p; '; ˇ/ to ı.

We now have enough information to define the set of type definitions of rank ˇ:

P�;ˇ D

°
pp';ˇ q.T�/ 2 Q�;ˇ and also asserts

p'q.T�/ is
^�

pp';ˇ q.T�/ � Tı

�
2 LıC1.Tı/

for ı D �.pp';ˇ q; p'q; ˇ/
±
:

This definition is effective since we can reconstruct all the Tı .ı < �/ from T� and
� is bounded †1.

We claim that for a given T�, such a p'q.T�/ (given in P�;ˇ ) always isolates
pp';ˇ q.T�/ in ST�. If not, then it splits to say ppq.T�/ .D pp';ˇ q.T�// and
pqq.T�/ 2 ST�. We then have that pqq.T�/ is an extension of p'q.T�/ and differ-
ent to ppq.T�/, so it must have TD rank less than ˇ. Thus pqq.T�/ is itself isolated
(in ST� � R�;<ˇ .T�/) by a formula p q.T�/ 2 LıC1.Tı/ by construction (where
ı D �.ppq; p'q; ˇ/). But .:p q.T�// 2 ppq.T�/ � Tı otherwise ppq D pqq, and
p'q D

V
.ppq.T�/ � Tı/ 2 pqq.T�/ would mean that p q.T�/ is inconsistent with

pqq.T�/, which is a contradiction.
For each pp';ˇ q.T�/ 2 P�;ˇ , let ı D �.pp';ˇ q; p'q; ˇ/. For 
 � ı,

let j.p'q.T�/; 
/ 2 J
 be the least index j in the sense of W
 such that
p'q.T�/ 2 ppj q.T
 /, a member of P
 . Then as in stage 0, the predecessors
of pp';ˇ q.T�/ are

f
�
pp';ˇ q.T�/; 


�
D

´
ppj.p'q.T�/;
/q.T
 / if 
 � ı;

f .ppj.p'q.T�/;ı/q.Tı/; 
/ if 
 < ı:

To complete stage ˇ, we just need to include the set of types of TD rank ˇ for the
following stages in the recursion. Let

R�;ˇ D
®
x

ˇ̌
x � T� and x … R�;<ˇ and

9' 2 L�.T�/8q 2 ST�

�
' 2 q !

�
q D x _ q 2 R�;<ˇ

��
and x is complete, finitarily consistent, and !-complete

¯
:

Since the parameters L�.T�/, ST�, and R�;<ˇ are all in L.!T�

1 ; T�/, then by the
small sets lemma, R�;ˇ 2 L.!

T�

1 ; T�/. And then by iterated bounding, there is a

 < !

T�

1 such that R�;ˇ 2 L.
; T�/ for all T� 2 A�. Expand 
�;ˇ to include 
 , if
necessary.
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We now have to show that this recursion is bounded within L.˛; T / so that we
can construct stage �C1, and continue the effective recovery process. First note that
the definition of TD rank is †1 and that the domain of the rank is ST� 2 L.˛; T�/.
Therefore, by †1-replacement, the range is also bounded in L.˛; T�/. Let


T�
D .least 
/

�
8q 2 ST�

�
TDR.q/ < 


��
:

So by iterated bounding, there is a 
� that bounds all the 
T�
and has a uniform †1

definition. We only need to recurse through the TD ranks less than 
�. This recursion
is †1 at worst with bounded input, and so let �� < ˛ be the least such ordinal such
that LŒ��;L0IT�� constructs it all.

3 A Bound for Weakly Scattered Theories

3.1 Partial domains We now improve the main bounding theorem in [4] by weak-
ening its effective k-splitting hypothesis assumption. We redefine the effective
k-splitting hypothesis so that type definitions have partial domains, and also include
our predecessor function from Section 2, so that the predecessor property assumption
can be removed. With these changes, the proof remains essentially the same.

Let L be a countable first-order language, and let L0 be a countable fragment of
L!1;! . Let T � L0 be a weakly scattered theory with a model. Finally, let L.˛; T /
be †1-admissible.

In the effective recovery process, develop our improved set of type definitions Pı

at level 
ı of L.˛; T /, as given in Section 2. So

Pı D
®
ppj q.Tı/

ˇ̌
j 2 Jı

¯
for the improved index set Jı .

We define a �L.˛;T /
1 predicate that determines the domain of a type definition,

that is, whether a definition is an actual type for a given theory on a given level of
the hierarchy:

dom
�
ppj q.Tı/; Tı ; ı

�
iff ppj q.Tı/ 2 STı and Tı is a theory on level ı:

This definition is clearly �L.˛;T /
1 from the effective recovery process and Section 2.

We now define a †L.˛;T /
1 set of sentences B˛ whose models have a node on level

˛ of RH .T /. The set B˛ consists of the following sentences.
1. T � T0 and T0 is an !-complete, finitarily consistent theory of L0.
2. Tı � TıC1 and TıC1 is an !-complete, finitarily consistent theory of

LıC1.Tı/ for all ı < ˛.
3. T� D

S
¹Tı j ı < �º for all limit ordinals � < ˛.

4. For all ı < ˛, we have that Tı has a nonprincipal n-type for some n.
The definition of B˛ is the same as [4] because our language is not dependent on
the type domains. Note that B˛ is �L.˛;T /

1 because we construct Lı.Tı�/ via the
ordinal �ı , as defined in the †L.˛;T /

1 recursion in Section 2.
Using our improved type definitions and index sets Pı and Jı in Section 2, we

say that ppq is on level ı if _
j 2Jı

�
ppq D ppj q.Tı/

�
:
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The crucial definition to be changed is splitting types. We define a split
hppq; prq; pr 0qi.TıC1/ at level ı to be the sentence

dom.ppq; Tı ; ı/ ^ dom.prq; TıC1; ı C 1/ ^ dom.pr 0q; TıC1; ı C 1/ ^ prq
¤ pr 0q ^ pr 0q; prq extend ppq:

We then define hppq; prq; pr 0qi.TıC1/ to be a k-split if hppq; prq; pr 0qi.TıC1/

splits at level ı and ppq.Tı/ has arity k. Let K be a set of k-splits. Then we say that
K is unbounded if 8ˇ < ˛ 9ı > ˇ ŒK has a k-split on level ı�:

Let ppj q.Tı/ be a type definition at stage ı, and let f be the †L.˛;T /
1 predecessor

function, as given in Section 2. We say that ppj q.Tı/ is K-unbounded if the set of
all 
 such that

9hpqq; prq; pr 0qi�
hpqq; prq; pr 0qi 2 K ^ pqq is on level 
 ^ f .pqq; ı/ D ppj q.Tı/

�
is unbounded in ˛. Note that if K is �L.˛;T /

1 , then since f is †L.˛;T /
1 and “ppq is

on level 
” is a bounded sentence in L.˛; T /, we have that K-unboundedness is a
…

L.˛;T /
2 property.
We say that the effective k-splitting hypothesis holds for T at ˛ if there exists an

unbounded �L.˛;T /
1 set K of k-splits such that B˛ and K are consistent if B˛ is.

Theorem 3.1 (Improved from [4]) Let L.˛; T / be a countable †2-admissible set.
Let T be a weakly scattered theory such that for each ˇ < ˛, we have that T has a
model of Scott rank at least ˇ. If there exists a k such that the effective k-splitting
hypothesis holds for T at ˛, then T has a countable model A such that both

!A
1 D ˛ and sr.A/ D ˛ C 1:

The proof from [4] now goes through with only a trivial change and can be seen in
full in [2].
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