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From Closure Games to Strong Kleene Truth
Stefan Wintein

Abstract  In this paper, we study the method of closure games, a game-theoretic
valuation method for languages of self-referential truth developed by the author.
‘We prove two theorems which jointly establish that the method of closure games
characterizes all 3- and 4-valued strong Kleene fixed points in a novel, informa-
tive manner. Among others, we also present closure games which induce the
minimal and maximal intrinsic fixed point of the strong Kleene schema.

1 Introduction

Take a language of self-referential truth L7, that is, a first-order language L with a
truth predicate symbol 7" added to it and in which Liar sentences and their ilk are
expressible. Which sentences of L are assertible? Which are deniable? These
questions are answered by a theory of truth, by which we mean
a theory that purports to explain for a first-order language L7 what sentences are
assertible [and deniable] in a [ground] model M. Gupta [2, p. 19]

The ground model M that Gupta is alluding to is a classical model for L, the truth-
free fragment of L. A ground model M equips the sentences of L with a classical
valuation €,y : Sen(L) — {a, d} which determines which sentences of L are assert-
ible and deniable and which is defined as usual.' A theory of truth extends € to
a valuation of L7 and exploits the extended valuation to specify which sentences of
L7 are assertible/deniable in M.

In his seminal paper on truth, Kripke [4] specified an inductive method which
allows one to define 3-valued fixed-point theories of truth. The valuations associated
with these theories, called 3-valued fixed points, satisfy the identity of truth.

For all o € Sen(LT): VM(T(I)) = Vjs(0), whenever ¢ denotes o in M .
Satisfying the identity of truth formally ensures that
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we are entitled to assert (or deny) of any sentence that it is true precisely under
the circumstances when we can assert (or deny) the sentence itself. Kripke [4,
p. 701]

Kripke showed how to define 3-valued fixed points for various 3-valued valuation
schemas, which differ in the way in which they evaluate logically complex sentences.
The fixed points associated with the strong Kleene (SK) schema, 3-valued SK fixed
points, have arguably attracted the most attention in the literature on truth. For both
philosophical and technical reasons, Visser [6] and Woodruff [11] have generalized
Kripke’s 3-valued SK fixed points to 4-valued ones. A 4-valued SK fixed point satis-
fies the identity of truth and evaluates logically complex sentences according to the
Dunn-Belnap (or extended SK) schema, which naturally generalizes the SK schema
to 4-valued logic.

In this paper, we present the method of closure games which allows us to construct
3- and 4-valued SK fixed points in a novel and informative manner. As suggested
by its name, the method of closure games is a game-theoretic framework in which
3- and 4-valued SK fixed points can be characterized and studied. A game-theoretic
approach to theories of truth is not completely novel. For instance, Martin [5] has
shown how the minimal (3-valued) SK fixed point over a ground model M, which
we denote as Kz, can be obtained as the outcome of a game, meaning a 2-player
perfect information game.> Martin shows the following.

Martin’s game for J s There is a game G, for the minimal SK fixed-point K s
over a ground model M so that player / has a winning strategy in G if and only if
K (o) = a; player /I has a winning strategy if and only if K (o) = d; if neither
player has a winning strategy, then K s (0) ¢ {a, d} and the game can be declared a
draw.

Welch [7] extends Martin’s work and shows how games can be used to induce the min-
imal fixed point associated with the supervaluation schema, and he also shows how
certain Herzbergian style revision sequences can be characterized via such games.
However, a systematic study of the relation between 2-player perfect information
games and (the class of all) 3- and 4-valued SK fixed points is lacking in the liter-
ature. In this paper, we will fill this lacuna.

Our closure games differ in some important aspects from the game considered by
Martin. Martin associates a single game G, with each sentence o of L7. Just as in
Hintikka’s game-theoretic semantics (cf. [3]), the players in Martin’s game® fulfill, at
each stage of the game, either the role of verifier or of falsifier. The game G, starts
with the sentence o and player / in the role of verifier (and so with II as falsifier)
and, as the game proceeds, the players list sentences of L7 in accordance with rules
that reflect the SK schema. Whose turn it is does not only depend on the last sentence
listed but also on who is, at that stage, the verifier (falsifier). For instance, if the last
sentence listed is y, Martin’s rules specify among others that

1. If y is @ v B, then the verifier must list « or list .
2. If y is o A B, then the falsifier must list & or list .
3. If yis T(¢) and ¢ denotes a sentence « of L, then the falsifier must list .

Role changes (between verifier and falsifier) only occur when negated sentences are
listed:*

1. If y is =, then the falsifier must list & and the players change roles.
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The roles of the players are important not only in the rules of Martin’s game, but also
in its winning conditions.

Winning conditions of Martin’s game  If y is an atomic sentence of L, then play
terminates; the player who is verifier wins if €j7(y) = a and loses if €7 (y) = d.
The verifier also loses (and play terminates) if y is 7'(¢) with ¢ denoting a nonsentence.
If play never terminates, then the game is a draw.

In sharp contrast, the rules and winning conditions of closure games do not involve
player roles. This gain in simplicity is achieved by associating rwo games with each
sentence o of Lr: the game G 4., where player [ tries to show that o is assertible and
the game G p,, where player I tries to show that o is deniable. Before we describe
how the closure games G 4, and G p,, jointly induce a valuation of o, we first describe
the rules, strategies, and winning conditions of our closure games.

Rules. The game G4, (Gp,, ) starts with the signed sentence A, (D) and, as a
closure game proceeds, the players produce a list of signed (with Assertible or Deni-
able) sentences of L. Whose turn it is only depends on the last (signed) sentence
X, that is listed: X, is either controlled by player I or by player /I. The moves that
are available to the player who controls X, are described by (assertoric) rules that
include:

1. If X, is Ayv g, then player I must list A, or list Ag.

If X, is Dgv g, then player /I must list D or list Dg.

If X, is Agnp, then player /I must list A, or list Ag.

If X, is Dy g, then player / must list Dy, or list Dg.

If X, is Ar(;) and 7 denotes a sentence « of L7, then player /I must list or.
6. If X, is D7) and ¢ denotes a sentence « of L, then player / must list o.

Dk

Negated sentences are not associated with role changes but rather with sign
changes:’

1. If X, is Ay, then player /I must list Dy,.
2. If X}, is D—q, then player / must list A,.

Although our signs can be interpreted as implicitly encoding the two-player roles®
of Martin’s game, we feel that doing so is only confusing. More importantly, our
(assertoric) rules have a clear rationale of their own. For instance, when one (i.e.,
player 7)) wants to show that a disjunction is assertible, one must be able to show that
one of the disjuncts (up to one’s choice) is assertible. When one (i.e., player /) wants
to show that a disjunction is deniable, one must be able to show that both disjuncts
are deniable; so no matter which disjunct is picked by player /1, player I must be able
to show that it is deniable. The other assertoric rules receive a similar justification.

Strategies. Another difference with Martin’s game concerns the notion of a strat-
egy. In Martin’s game, a strategy of a player is a function from the class of all histories
of the game to the set of sentences of L7, where a history is any finite sequence of
sentence—role pairs that can be generated via the game rules. A strategy is thus a quite
complicated object. However, it is not hard to show that for Martin’s game, a player
has a winning strategy just in case he has a memoryless strategy, that is, a strategy that
does not depend on the history of the game, but only on the last sentence—role pair of
the game. The method of closure games restricts itself from the outset to memoryless
strategies. That is, a strategy for a player of a closure game is a function from the set
of signed sentences that are in his control to the set of signed sentences. For instance,
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a strategy of player / maps A, to Ay or Ag and a strategy of player I/ maps D\ g
to Dy or Dg. Strategies in the method of closure games are thus, per definition, quite
simple objects. The results of this paper testify that (with respect to characterizing
SK fixed points) nothing is lost by our restriction to memoryless strategies.

Winning conditions. When, in a closure game Gy, players I and II pick their
strategies, they realize an expansion of X4, a sequence of signed sentences with X
as its first element and with a successor relation that is determined by the strategies
of the players. Expansions are classified into those that result in player / winning
the game in a ground model M (these expansions are called open in M) and into
those that do not (these expansions are called closed in M'). Such a bipartition of the
set of all expansions into those that are open and closed we call a closure condition.
Intuitively, a closure condition may be thought of as an assertoric norm: closed (open)
expansions contain assertoric actions that are forbidden (allowed). Player I has a
winning strategy in the closure game Gy, that is played under closure condition
in a ground model M just in case he can ensure that an expansion of X, is realized
that is open in M according to t. That is, a strategy f for player / is winning just in
case, no matter which strategy g is picked by player II; the expansion of X, that is
realized by f and g is open in M according to .

Inducing Lt valuations by closure games. We say that sentence o is assertible
(deniable) in ground model M according to closure condition T just in case player
I has a winning strategy for G4, (Gp, ) that is played in M under . So, relative to
a ground model M and closure condition }, the method of a closure game induces
a valuation function V;{,I that evaluates L7 sentences as assertible only, both assert-
ible and deniable, neither assertible nor deniable, or as deniable only. Depending
on {and M, VL is either a 2-, 3-, or 4-valued function with a range that is a sub-
set of {a, b, n, d}. Of course, not all closure conditions will induce SK fixed points.
One of the main results of this paper is a characterization of those closure condi-
tions that do. In some more detail, the main results of this paper are (organized) as
follows.

Structure of the paper Section 2 presents some general preliminaries.

Section 3 starts with a rigorous presentation of the method of closure games. Then,
in Section 3.3, we present two conditions—the world respecting constraint WRC and
the stable judgment constraint SIC—and show that whenever closure conditions sat-
isfy our conditions, they induce an SK fixed point (cf. Theorem 3.5 and Corollary 3.6).

In Section 3.4, we define some intuitively appealing closure conditions that satisfy
WRC and SJC and study the (3- and 4-valued) SK fixed points that they induce. In
particular, we will present closure conditions that induce two versions of the minimal
fixed point, having range {a, n, d} and {a, b, d}, respectively.

In Section 3.5 we show, conversely, that any SK fixed point can be induced from
closure conditions that satisfy WRC and SJC (cf. Theorem 3.14, Corollary 3.15).
To do so, we take an SK fixed point Vs and define closure conditions that satisfy
WRC and SJC in terms of V). To induce an SK fixed point in this way is, in some
sense, “cheating,” as we put “Vjs in to get Vs out.” In contrast, the closure condi-
tions presented in Section 3.4 are clear examples of “noncheating closure conditions.”
Section 4 will be, among others, devoted to finding noncheating closure conditions
for the maximal intrinsic SK fixed point (cf. [4]).
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In Section 4.1, we define a slight modification of the method of closure games,
which we call assertoric semantics. Whereas the method of closure games induces
Lt valuations by putting closure conditions on sequences of signed sentences (ex-
pansions), assertoric semantics does so by putting closure conditions on sets of signed
sentences.

In Section 4.2, we show how assertoric semantics induces the minimal SK fixed
point (with range {a, b, d}) and also how it induces Kripke’s 4-valued “modal theory
of truth” J*, which he defined (implicitly) in [4] by quantifying over all 3-valued
SK fixed points; for instance, according to K 4 the Liar is paradoxical as there is no
3-valued SK fixed point in which it is evaluated as a, and also there is no 3-valued
SK fixed point in which it is evaluated as d.

In Section 4.3 we show how our characterization of K* (via assertoric semantics)
allows us to define noncheating closure conditions that induce (via the method of
closure games) two versions of the maximal intrinsic SK fixed point, having range
{a,n,d} and {a, b, d}, respectively.

Section 5 is the conclusion.

2 Preliminaries

L7 will denote a first-order language with identity (), a truth predicate (T ) and with
a quotational name ([o]) for each sentence o of L. L will denote the language that
is exactly like L7, except for the fact that it does not contain the truth predicate 7'.
A ground model M = (D, ) is a classical model for L such that Sen(Lt) € D
and such that /([o]) = o for all 0 € Sen(Lr). A sentence may be denoted in
various ways; o will be used to denote any closed term, quotational name or not, that
denotes o in M. For each ground model M = (D, I'), we will (tacitly) expand our
language L7 to alanguage L7 + M which has, in addition to the vocabulary of L,
constant symbols available to refer to all the members of the domain of M. This (tacit,
we will always simply speak of L) expansion has the advantage that quantification
can be treated substitutionally, so that we do not need to be bothered with variable
assignments.

Observe that a ground model may, but need not, define self-referential sentences
such as the Liar; that is, a sentence that says, of itself that it is not true. It will turn
out to be convenient to fix some notation pertaining to some canonical self-referential
sentence such as the Liar and the Truthteller.

Definition 2.1 (Some notational conventions) In this paper, the nonquotational
constants A, t, 1, 6, and u will be used as follows, where [ is some interpretation
function.

1. I(A) = =T (X). We say that =T () is a Liar.
I(t) = T(t). We say that T'(7) is a Truthteller.
I(n) = T(n) v =T (n). We say that T'(n) v =T (n) is a Tautologyteller.
1(0) = T(0) AT (0). We say that T(0) A =T (0) is a Contradictionteller.
I() = T(cp), where, for each n, I(c,) = =T (cp+1). We say that T'(u) is
an Unstabilityteller.

SO

To be sure, the notational convention does not imply that every ground model con-
tains a Liar: given an interpretation function / a constant A satisfying /(1) = =T (1)
may not exist. Similar remarks apply to the Truthteller, Tautologyteller, Contradic-
tionteller, and Unstabilityteller.
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Given a ground model M, €,y : Sen(L) — {a,d} denotes the classical valuation
of L based on M and is defined as usual. A theory of truth T takes a ground model
M as input and outputs a valuation Ty of the sentences of L. That is, T outputs a
function Tys : Sen(Lt) — V, where V contains the (semantic) values recognized’
by T. We assume, without loss of generality, that when T is a theory of truth, a and d
are always among the semantic values recognized by T. Not any semantic valuation
of the sentences of L qualifies as the valuation of a theory of truth. In this paper, we
assume that for T to qualify as a theory of truth, T, should respect the world and the
identity of truth, as defined below. Besides these two familiar conditions we impose
one further arbitrary, but technically convenient, condition: every truth ascription to
an object that is not a sentence is to be evaluated as d by a theory of truth T.

Definition 2.2 (Theory of truth) Let T be a valuation method which, given a
ground model M = (D, 1), outputs a valuation function Tas : Sen(L7) — V.
We say that T is a theory of truth just in case, for every ground model M, we have

Vo € Sen(L) : €p(0) = Ty (o), e
Vo € Sen(Lt) : Ty (T(@)) = Ta (0). 2)
Tm (T(t)) = d whenever I(¢) ¢ Sen(LT). 3)

That is, Ty should (1) respect the world and (2) the identity of truth, while (3) all
truth ascriptions to nonsentences are evaluated as d.

We will be particularly interested in theories of truth that output SK valuations.
We distinguish between 2-valued, 3-valued, and 4-valued SK valuations, where a
2-valued SK valuation is just a classical valuation. In a 3-valued SK valuation, logi-
cally complex sentences are evaluated according to the SK schema and in a 4-valued
SK valuation, these are evaluated according to the extended SK (or Dunn—Belnap)
schema. It will be convenient to distinguish between two types of 3-valued SK val-
uations: those with range {a, n, d} and those with range {a,b,d}. SK valuations of
the first type we call 3n-valued SK valuations, and the second type we call 3b-valued
SK valuations.

Definition 2.3 (SK valuations) Let Vs : Sen(L7) — V be a valuation of Ly
in M such that V is {a,d}, {a,n,d}, {a,b,d}, or {a,b,n,d}. We say that Vjs is a
2-valued (3n-valued, 3b-valued, 4-valued) SK valuation just in case, with V< the
lattice associated with its range as in Figure 1, we have

1. — swaps a for d and vice versa and leaves other values unchanged.

2. A and V act, respectively, as meet and join on V<.

3. V and 3 act, respectively, as generalized meet and join on V<.

a a a
a
n b n b
d
d
d d

Figure 1 Hasse diagrams of lattices on {a, d}, {a,n,d}, {a,b,d}, and {a, b, n,d}.
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Observe that the notion of an SK valuation does not mention the semantic behavior
of the truth predicate or the relation with the valuation of L as induced by the ground
model M. It will turn out to be convenient to separate the notion of an SK valuation
from the notion of an SK fixed point, by which we mean an SK valuation that respects
the defining clauses of a theory of truth.

Definition 2.4 (SK fixed points, FP"(M) and FP"(M)) Let Vys : Sen(LT) > V
be an SK valuation of L7 in M. We say that V) is an SK fixed point over M just in
case V) satisfies clauses (1), (2), and (3) of Definition 2.2. We will use FP"(M) to
denote the set of all 2- and 3n-valued SK fixed points over M, whereas FPP (M) will
denote the set of all 2- and 3b-valued SK fixed points over M .

An SK theory of truth (SK theory) is a theory of truth that assigns an SK fixed point
to each ground model M .

Definition 2.5 (SK theory of truth) Let T be a theory of truth. We say that T is an
SK theory just in case, for every ground model M, Ty is an SK fixed point. An SK
theory that recognizes 3 or 4 semantic values is called an SK3 theory or SK 4 theory,
respectively.

Note that there are no SK theories that recognize only two semantic values, as is
attested to by a ground model M = (D, I) that contains a Liar =7 (1). On the
other hand, some ground models allow Lt to be valued by a 2-valued SK fixed point.
Also, note that the definition of an SK theory is quite liberal. A “genuine” SK theory
T must, arguably, consist of a systematic way in which an arbitrary ground model M
is converted into an SK fixed-point Ty, and the notion of a “systematic conversion”
does not appear in our definition. However, the definition as given is just fine for our
purposes.

Two interesting and well-known SK 3 theories are Kripke’s minimal fixed-point
theory and his maximal intrinsic fixed-point theory. In line with Definition 2.3, we
distinguish a 3n-valued and a 3b-valued version of both theories. In order to define
the 3n-valued versions of those theories, we define the following partial order on
FP"(M). With Vs, V,, € FP"(M), we let

Vm < Vy < Vo € Sen(Lt) : Vi(o) =a = Vy(0) =a.

When Vi <V, and Vi # V;,, wewrite Vg < V. We say that Vi is maximal
just in case for no V;, do we have Vyy < V},, minimal just in case for no V;, do we
have V,, < Vjr. We say that Vys and V;, are compatible just in case there exists a
Vs € FP*(M) which extends them both: Vas < Vj; and V;, < V. Vi is called
intrinsic just in case it is compatible with every other fixed point in FP"(M). For any
ground model M, we let I"(M) be the set of all intrinsic fixed points over M. As
[4] observes, I" (M) has a maximum element and FP" (M) has a least element with
respect to the relation <. The 3n-valued minimal fixed-point K and the 3n-valued
maximal intrinsic fixed-point Xt can now be defined as follows.

Definition 2.6 (X and X ) Let M be a ground model. According to the theory
J, the valuation of L7 in M is given by Ky : Sen(L1) — {a,n,d}, where Ky is
the minimum of FP®(M). According to the theory KX, the valuation of L in M is
given by JC;, : Sen(LT) — {a,n,d}, where JCA_; is the maximum of I"(M).
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The 3b-valued versions of the minimal and maximal intrinsic fixed point will be de-

7 7 . . . ..
noted as KX and K , respectively. For sake of definiteness, their definitions are as
follows.

Definitio_n 2.7 (X and R_'_) Let M be a grotEd model. According to the
theory KX, the valuation of Ly in M is given by Ky : Sen(L7) — {a,b.d},
where K pr(0) = b if and only if Kp(0) = n and Ky (o) = Ky (o) oth-
erwise. According to the theory fﬁ the valuation of L7 in M is given by
Ky : Sen(Lt) — {a.b.d}, where X p;(6) = b if and only if Xj;(c) = n
and f}; (0) = JC;; (o) otherwise.

3 The Method of Closure Games

3.1 Defining the method of closure games In the Introduction we sketched the
method of closure games and its central notions such as assertoric rules, strategies,
expansions, and closure conditions. In this section, we turn the previous sketches
into precise definitions.

Some preliminary notions. A signed (with A or D) sentence of L will be called
an AD sentence. X denotes the set of all AD sentences:

X ={Xo | X €{A,D}.0 € Sen(Lt)}.

With Ar(L), we denote the set of atomic sentences of L. These sentences are assumed
to receive their (classical) valuation from the ground model M and can be thought of
as the “nonsemantic facts.” We will treat (atomic) truth ascriptions to nonsentential
objects on a par with members of A¢#(L). Hence, it is convenient to define, with
M = (D, I), the set Ay, (L) as follows:

Aty (L) = Al(L) U{T(t) | 1(r) ¢ Sen(L7)}.

Assertoric rules. In a closure game the two players produce a list of AD sentences.
Whose turn it is only depends on the last AD sentence X, that is listed and is deter-
mined by assertoric rules that include:

1. If X, is Aqvg, then player I must list A, or list Ag.
2. If X}, is Dy g, then player /I must list Dy, or list Dg.

To present all assertoric rules in a uniform manner, it is convenient to first introduce
some notation. We will say that player I controls Aqvg and that player II controls
Dyvp. More generally, each AD sentence X, is controlled by one of the players.
With respect to an AD sentence X, that is in his control, a player always has to list
a single element of the set I1(X, ), consisting of all immediate AD subsentences of
X,. Thus, IT(Agvg) = {A«, Ag} and I1(Dgvg) = {Dy, Dg}. The general form of
an assertoric rule can then be depicted as follows:
Xy
(Xy)
Thus, (4) states that player J controls X, and so, with respect to X,,, player J
has to pick an AD sentence in I1(X,). By exploiting the notation just introduced,
Figure 2 below states the assertoric rules.® With respect to Figure 2, observe that it
does not matter which player, I or 11, controls (signed) negations, truth ascriptions,
and elements of Ar},(L). The actual allotment of player control to those sentences
was chosen for sake of symmetry only: if player / controls A, player II controls

J (where J € {1,1I}). “)
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A_qy D_q
- 11 1
{Da} {Ax}
A
v (@vB) Davp) |,
{AO(aAﬂ} {DO(’D,B}
N Awr) D nrp)
{AouAﬁ} {DOHDIS}
3 AElxw(x) I DEwa(x) I
{Apix/r) | t € CTerm(LT)} {Dyx/1y | t € CTerm(LT)}
v Awa(X) i Dvxowx) I
{Aw(x/t) | t € CTerm(LT)} {D(p(x/t) ‘ t e CTerm(LT)}
Ar@) Dr@)
T 11
{A4s} {Do}
Ao D
o €Ay, (L 11 I
m (@) Ao} Do}

Figure 2 The assertoric rules.

D¢, and vice versa. The reason that there are also (trivial) assertoric rules pertaining
to elements of Az, (L) will be explained below, where we define the notion of an
expansion.

Strategies. A player’s strategy determines the moves that the player will make at
any stage of the game. As was announced in the Introduction, the method of closure
games restricts itself to memoryless strategies. This means that the moves of a player
do not depend on the history of the game—that is, on the list of AD sentences that
has been produced thus far—but only on the last element of the list. In other words,
a strategy of a player in a closure game is a function that maps each AD sentence X
that is in his control to an element of TT(X).

Definition 3.1 (Strategies and strategy sets) A strategy for player I is a function
f that maps each X that is controlled by / to an element of T1(X,). The set of all
strategies of player / is denoted by ¥ .

A strategy for player II is a function g that maps each X, that is controlled by I/
to an element of IT(Xy). The set of all strategies of player /I is denoted by §.

Expansions. Let X, be an AD sentence. A pair of strategies f (for player /) and
g (for player II) realizes an expansion of X, that is, a sequence of AD sentences
that has X, as its first term and with a successor relation that is determined by f
and g. As an example, consider the AD sentence Ap(c,)aP(c,)>» Where P(cq) and
P(cy) are atomic sentences of L. A strategy g of player /I according to which
8(AP()AP(c2)) = AP(c,) (combined with any strategy f for player /) realizes the
following expansion of A pc;)AP(co):

AP(Cl)/\P(Cz)»AP(Cl)vAP(Cl)vAP(Cl)v'-" (5)

Indeed, due to the (trivial) assertoric rules pertaining to elements of At*M (L), an
expansion is an infinite sequence of AD sentences.
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Definition 3.2 (Expansions and the set EXP ) With f € ¥,g € §and X, € X,
exp(Xo, f, g) denotes the expansion of Xy by f and g. The set of all expansions in
M is’ denoted by EXP .

Closure conditions. A closure game Gy, starts with AD sentence X, and, when
the players pick their respective strategies f and g, results in the expansion
exp(Xo, f, g). A closure game is always played in, or relative to, a ground model
M . In a closure game G 4,,, player [ tries to show that o is assertible in M, whereas
in the game Gp,, player I tries to show that o is deniable in M. Player / succeeds
in showing the assertibility (deniability) of o in M just in case he has a winning
strategy in G 4, (Gp, ), where a strategy f for player I in G4, (Gp,) is winning
just in case f ensures that an expansion of A, (D) is realized that is open in M.
Which expansions are open in M (and which are closed, i.e., not open) depends on
the closure condition under which a game is played. Intuitively, a closure condition
may be thought of as describing an assertoric norm. Formally, a closure condition is
defined as follows.

Definition 3.3 (Closure conditions) A closure condition T = {0T ,C;l} is a

bipartition of EXP,, into the sets OL # @, consisting of the openy expansions in
M, and C IL # @, containing the closed; expansions' in M.

Let Gx, be a closure game played in ground model M under closure condition
= {OJr , CL}. When player / has a winning strategy in Gy, , we write OL (Xo):
01, (Xo) & 3f e FVg €9 :exp(Xs, f.8) € O

We also let
Cl(Xs) & not O, (Xy).

Inducing LT valuations. Given a ground model M and closure condition T, the
method of closure games induces vi , a valuation of L7 in M, as follows:

0};(45) and C} (Do),
0};(45) and O} (D),
C1y(Aq) and Cy (D),
., Cl(4y)and O}, (D).

Vi (o) =

e s oTs

3.2 Defining closure conditions: Classifying expansions The method of closure
games induces L valuations by closure conditions, that is, by declaring expansions
open or closed. This section introduces some classifications of expansions which
facilitate the definition of closure conditions later on.

Here are six examples of expansions, which will be used to illustrate our classifi-
cations of expansions. The examples involve P(c), an atomic sentence of L, and a
Liar, a Truthteller, and an Unstabilityteller as defined in Definition 2.1. They are:

Apeyvt), APy AP(c)s -« -

A-pe), Dpc), DP(c)s-- >

ApEyvT@) AT, AT(0)s AT(0)> - - - »

D7), D12y, D1(2)5 - - - »

AT)s AT (o) A=T (1) PT(er)s P-T(c2): AT(c2)s - - -
Aty A=), D0y, D=0y, AT(3)> - - -

AR e
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First, observe that every expansion is either stable4, stablep, or unstable. The
formal definition of these notions is clear from the remark that expansions 1 and 3
are stable 4, 2 and 4 are stablep, and 5 and 6 are unstable. Next, observe that every
expansion is either grounded or ungrounded, where an expansion is grounded just
in case it contains, for some o € Ay, (L), Xo; we say that X, is the ground of
the expansion. Grounded expansions are either correct in M or incorrect in M. An
expansion is correct in M just in case its ground is contained in the world w s, which
is defined as follows:

wy = {AU | Cy(o) =a,0 € At(L)} U {D(r | Cy(o)=d,0 € At(L)}

U{Drq) | 1(t) ¢ Sen(L1)}.

The definition of wjys reveals that, in line with Definition 2.2, we assume that
(atomic) sentences that ascribe truth to nonsentential objects always have to be de-
nied. Now, when we assume a ground model M in which €37 (P (c)) = a, expansion
1 is grounded and correct (as Ap(;) € wyr), whereas expansion 2 is grounded and
incorrect (as Ap() ¢ wam). Expansions 3, 4, 5, and 6 are ungrounded. An (un-
grounded) expansion is vicious just in case it contains a vicious cycle, or in other
words, an expansion {y, }nen is vicious just in case

JoVnam,m' > n: ym = Ay and yp = Dy

Indeed, expansion 6 is vicious. We now introduce the following abbreviations for
subsets of EXP ;.

Definition 3.4 (Classifying expansions) = We define the following subsets of
EXPys:

G s the set of all grounded expansions,

Uy the set of all ungrounded expansions,

G4y the set of all grounded and correct expansions,
Gj(,‘f: the set of all grounded and incorrect expansions,
U,¥: the set of all (ungrounded) vicious expansions,
U}y the set of all ungrounded nonvicious expansions,
Us 1“‘1,,: the set of all ungrounded stable 4 expansions,
USAD,I: the set of all ungrounded stablep expansions,
UU py: the set of all (ungrounded) unstable expansions.

0P NNk L=

3.3 The first stable judgment theorem In this section, we prove our first stable judg-
ment theorem, which states that if closure conditions satisfy what we call the stable
Jjudgment constraint (SJC), they induce an SK valuation that respects the identity
of truth. We further show that if, in addition, closure conditions satisfy the world
respecting constraint (WRC), they induce an SK fixed point.

For any expansion exp, we let exp’ denote the successor expansion of exp, by
which we mean the expansion that is obtained by removing the first term of exp.
A closure condition ¥ = {OJr ,C L} satisfies the SJC, just in case, for every expan-
sion exp € EXPy, we have

SJC:exp € C}L & exp € CIL.
Note that, equivalently, SJC can be formulated in terms of openness:

SJC:exp € OL & exp € OL.
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Below, we prove the first stable judgement theorem, in which we refer to the set of
all AD subsentences of X, denoted TI(X,). Formally, TT(X,) is defined by taking
the transitive closure of the binary relation induced by the set of all immediate AD
subsentences of X :

1. TI(, ) is defined by [1(Xs, Yy) < Yy € [I(Xo).

2. E( ) is defined as the transitive closure of I1(:, ).

3. TI(-) is defined by T1(Xy) = {Yy | I( X, Yo)}.
Theorem 3.5 (First stable judgment theorem) Let M = (D, 1) be a ground
model, let T = {OJr ,C;,I} be a closure condition that satisfies SJC, and let VL
be the valuation function induced by . We have:

1. 'VL is a 2-, 3n-, 3b, or 4-valued SK valuation (see Definition 2.3).

2. For each o € Sen(LT1) we have V;,, (T(0)) = 'V;,I (0). That is 'V;{,I respects
the identity of truth.

Proof Let{ = {OJr ,C IL} be a closure condition that satisfies SJC. Notice that,

to show that "VL is an SK valuation that respects the identity of truth, it suffices to
show that for every AD sentence X :

player I controls X, = (OL(XU) & Y, € I(Xy) : OL(YO,)),
player /I controls X, = (OL(XG) & VY, e lI(Xy) : OL(YQ)).

We illustrate for A4 g. Other cases are similar and left to the reader.

= Suppose that OL (Aqnp). This means that there is a strategy f € ¥ such
that for all g € §, exp(Aang, /. g) is openy. Now Ay g is controlled by player /1,
and the strategies of player /I can be bipartitioned into strategies of type g, which
have g(Aqng) = A and strategies of type gg, which have g(Aqgng) = Ag. As
f results in an open expansion, no matter whether player II plays a strategy of type
8q Or gg, it follows, as t satisfies SJC, that f is such that for all g € § we have
exp(Aq, f,g) € O}, and that exp(Ag, f, ) € O},. Hence, O}, (Ay) and O}, (Ap).

< Suppose that OL (Ag) and OL (Ap). This means that there exists a strategy
Jfa € F such that for all g € § we have exp(Ay, fu, &) € OL and that there exists a

strategy fg € F such that for all g € § we have exp(Ag, f3.8) € OL. Let f € ¥
be any strategy that satisfies:
1. Xy € TI(Ag). player I controls Xy = f(Xo) = fu(Xs).
2. X, € (ﬁ(Aﬂ) —TI(Ag)), player I controls Xy = f(X,) = f8(Xo).
From the fact that T satisfies SJC, it follows that the constructed f is such that for
all g € § we have exp(Agng, [, &) € OL. O

Thus, picking a closure condition that satisfies SJC ensures that we induce an SK valu-
ation that respects the identity of truth. As such, a closure condition that satisfies SJC
does not guarantee that we induce an SK fixed point (as defined by Definition 2.4).
However, by posing the following additional constraint on closure conditions, we en-
sure that they induce fixed-point valuations. Let ¥ = {0T ,C IL} be any closure
condition. We say that { satisfies the WRC, just in case

WRC : Gy € O}, and Gl < C}.
We get the following corollary to Theorem 3.5.
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Corollary 3.6 (First stable judgment corollary)  Let ¥ = {OJr , C;\Tl} be a closure

condition that satisfies WRC and SJC. Then 'VL is an (2-, 3-, or 4-valued) SK fixed
point over M (cf. Definition 2.4).

Proof In light of Theorem 3.5, it suffices to show that if | satisfies WRC, then 'VL
satisfies clauses (1) and (3) of Definition 2.2. A proof can be given by induction on
the complexity of sentences of L, accounting for the nonsentential truth ascriptions
in a straightforward way. O

3.4 Putting the first stable judgment theorem to work In this section, we put the
first stable judgment theorem to work; we define closure conditions that satisfy SJC
and WRC and that, accordingly, induce SK fixed points. Among others, we present
closure conditions that induce the 3n- and 3b-valued version of the minimal SK fixed
point.

Consider the following closure conditions:

gr(oundedness) closure conditions: Oﬁg = Gy
¢ closure conditions: 01\‘/1 =Gy uu 1'(}" .

It is easily seen that those closure conditions satisfy SJC and WRC. Hence, by the
first stable judgment theorem, V8" and V¢ are SK theories of truth. In fact, we have
the following.

Proposition 3.7 V& = K, whereas V* is an SK4 theory.
Proof In[8] we showed that V¢ = K. The fact that 'V* is an SK4 theory follows

from the observation (that the 4 closure conditions satisfy SJC and WRC and) that
V¢ (=T (1)) = n while V¥ (T(1)) =b. O

It is instructive to explain, in terms of the method of closure games, why Vi, is
3-valued, whereas Vﬂf, is 4-valued.'" To do so, we will prove a useful lemma which

requires the following definition of the inverses of AD sentences and (sets of) expan-
sions.

Definition 3.8 (Inverses) For each AD sentence X, we define its inverse X 1 by
stipulating that A;! = D, and D! = A,.
For each expansion exp = {y,}nen, We define its inverse expansion exp™! =
{zn}nen by letting, for any n € N,
Zn = Xo & Vn :X;l.
We define the inverse S ™! of a set of expansions S by stipulating that S™! = {exp™! |
exp € S}.

Here is the announced lemma.
Lemma3.9 3JfVgexp(Xo, f,g) €S & gV [ exp(X;!, f.g) e S™L

Proof  For each strategy f of player I, there is a mirror strategy for player 11, call
it g r, that is defined as follows:

gr(Xa) =Yp & f(X; ) =Yg
Similarly, for each strategy g of player /I, there is a mirror strategy for player /

which may be called f,. The lemma readily follows from an in inspection of the
notion of a mirror strategy. O
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To explain the 3-valuedness of Vﬁ; in terms of the method of closure games, observe
that, as the set of expansions G§; is the inverse of G}'(,’f , it follows from Lemma 3.9
that

AfVg exp(Xo. f.8) € Gyf < gV [ exp(X; . f.8) € Gif. (6)
From (6) it immediately follows that
05 (Xo) = Cyp(X:h). (7

And from (7) it directly follows that V& can never evaluate a sentence as b and so
(as there clearly are sentences that are evaluated as n by V8") V8" is a 3-valued theory
of truth.

The principle that is underlying the 3-valuedness of V&', that is, (7), breaks down
for V¢, We have

O (Xq) % CHX. ®)
The reason for this is that the set of expansions U 1’(,}” , which is openy, is its own
inverse. Hence, the fact that player / can force an expansion of Ay to end up in U}’
implies that player /I can force the expansion of Dy to end up in (U X,}’i)_l = Uy
But the fact that player /I can force the expansion of D, to end up in U 1"',1” does not
preclude the possibility that player / may as well be able to force D, to end up in
Ujy'. Hence, A, and D may both be openg. The previous remarks are illustrated
by considering the following two expansions of the Truthteller:
A1), AT(x), AT ()5 - - - D7), D1(x), D12, - - - -

The gr(oundedness) closure conditions thus induce KX, the 3n-valued version of
the minimal fixed point. By invoking Lemma 3.9 and a further lemma (Lemma 3.10)
we will show that the gF(oundedness) closure conditions induce X, the 3b-valued
version of the minimal fixed point:

gr(oundedness) closure conditions: Cg = G;'(}I" .

Lemma 3.10  If T satisfies SJC, then C;(,, (X5) © gV f exp(Xs, f,8) € C;L,.

Proof The < direction is trivial. To prove the = direction, observe that, per defi-
nition,
Chy(Xo) = ¥ f3g exp(Xo. f.8) € C}y. ©)

Now let Q be the set of all expansions of X, that end up in C ]L and let

Q' = {Y, | Yy occurs on some exp € Q and is controlled by player II}.

Now define, for each Y, € Q’, the set Suc(Yy) as

Suc(Yy) = {Zg | Yy is succeeded by Zg on some exp € Q}.

Let & be a (choice) function that maps each Y, € Q’ to an element of Suc(Y,). Fix
an arbitrary strategy g’ for player /1. We define a strategy g for player /I as follows:
h(Ya), Yoc€ Q'
g'Ya), You ¢ Q.

From (9) and the fact that { satisfies SJC, it readily follows that the constructed
strategy g is such that V f exp(Xy, f, g) € CX/r O

gYy) = {

Proposition 3.11 V& = K.
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Proof Let M be a ground model. Observe that, as V8" = K, it suffices to show
that for any o € Sen(LT):

(i) Vij(0) =a & Vi(o) =a,

(i) Viy(0) =d & Vi (o) =d.

(i) = Suppose that V§;(0) = a, that is, that O§;(As) and Cj;(Dgy). As
O3y € 0%, 03/, (Ay) implies that O3, (Ay). Further, OF (A5) means that player
I has a strategy that ensures that the expansion of A, will end up in G§;". As the
inverse of G is G, this implies, via Lemma 3.9, that 'player II has a strategy
g that ensures that the expansion of D, will end up in Gj;. But this means that
player / does not have a strategy that ensures that the expansion of D, will end up
in EXPy — G = 03,. Thus, Cj;(Dg). Together with the already established
037 (As), we thus have ng‘,;ia) =a. B B

(i) < Suppose that V5 (0) = a, that is, that O%,(Ay) and that Cj (Dq).
As O3y € 03, Cir (Do) implies that Cip (D). Further, from Cjy(Ds) and as
the gr(oundedness) closure condition satisfies SJC, it follows from Lemma 3.10
that player 11 has a strategy g that ensures that the expansion of Dy will end up
in C5, = G¥¢. This implies, via Lemma 3.9 and as G4} is the inverse of G%Y,
that player / has a strategy f that ensures that the expansion of A, will end up in
G4y . Hence O (A). Together with the already established C; (D) we thus have

Vi(o) = a.
(ii). Just like 7. O]

To get a better grip on the role of SJC in the construction of SK theories, it is instruc-
tive to compare the ¢ closure conditions with the ¢y closure conditions, which are
defined below. Before we define the ¢) closure conditions, observe that the ¢ closure
conditions allow for the following, equivalent, definition:

¢ closure conditions: C¢ = G U Uy,

This reformulation is convenient as it clearly lays bare the distinction in the ¢
closure conditions:

¢ closure conditions: C?, = G U {exp | 3o € Sen(L1) : As, Do on exp}.

So the only difference between the ¢ closure conditions and the ) closure con-
ditions is that the former classifies all expansions that contain A, and Dy in a cycle
as closed, whereas the latter does away with the condition of cyclicality: whenever
an expansion contains an “AD clash” it is closed, whether or not this clash occurs
in a cycle. To illustrate the difference between the 4 and the <) closure conditions,
we consider the following expansion of a denial of the Tautologyteller (cf. Defini-
tion 2.1):

Drmyv-1m)> D=1@m). AT()s AT()v=T(n)> AT(m)s AT)V=T ()5 - - - - (10)

This expansion is open according to the 4 closure conditions—as the “AD clash”
does not occur in a cycle—while it is closed according to the ) closure conditions.
The successor expansion of (10), however, is open according to the {) closure condi-
tions, which establishes that these closure conditions do not satisfy SJC.
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VO defines a 4-valued theory of truth, which can be shown'” not to be an SK4
theory. This raises the question whether satisfying SJC is, besides a sufficient condi-
tion, also a necessary condition for closure conditions to induce an SK valuation that
respects the identity of truth. The answer to that question is “no,” as attested to by
the following proposition.

Proposition 3.12 Violating SJC and inducing an SK 3 theory.

Proof The * closure conditions, stated below, violate SJC while they define a
3-valued SK theory of truth. In the definition of the x closure conditions, ¢ is an
arbitrary nonquotational constant of Lr:

Oy =Gy U {exp | AT(c)v=T(c) Of D1(c) onexp and I(c) = T(c)}. (11)

The * closure conditions are a (minimal) modification of the (gr)oundedness clo-
sure conditions. According to the x closure conditions, the expansions in G§;" are
open and, besides those, all (and only) the expansions that contain Ar)v—1(c) Or
D for some ¢, such that I(c) = T(c), are open. A little reflection shows that
this ensures that V;l is just like 4% apart from a valuation of Truthtellers—that is,
sentences of the form 7' (c¢) such that /(c¢) = T (c¢)—and compounds of Truthtellers.
In particular, with 7' () a Truthteller, we have:

Vi (T(@) =d, Vi (T(x)v-T()) = a.

Being a minimal modification of V]g‘;, 'V} is an SK 3 theory. However, the  clo-
sure conditions violate SJC, which is easily seen by inspecting the following expan-
sion:

Ar@yv-T) AT(0): AT(0)- AT(7) - - - -

Indeed, this expansion is open according to * closure conditions as it contains
Ar(@)v-T(r) and as I(t) = T'(r). Its successor expansion, which does not contain
AT(z)v=T(z) Of DT(1), is closed and so the x closure conditions violate SJC while
they induce an SK 5 theory. O

Thus, Proposition 3.12 testifies that the first stable judgment theorem cannot be read
in the converse direction. However, our second stable judgment theorem comes close
to a converse reading of the first stable judgment theorem.

3.5 The second stable judgment theorem In this section, we present the second sta-
ble judgment theorem, which states that any SK valuation that respects the identity of
truth can be induced from a closure condition that satisfies SJC. A corollary of the
second stable judgment theorem states that any SK fixed point can be induced from
a closure condition that satisfies SJC and WRC.

Before we state the second stable judgment theorem and its corollary, we define
the notion of the correctness of an AD sentence with respect to a (2-, 3-, or 4- valued)
valuation'? V.

Definition 3.13 (Vps correctness) Let Vas be a (2-, 3-, or 4-valued) valuation
for L7 whose range V is such that {a,d} € V C {a,b,n,d}. The notion of Vs
correctness, applicable to AD sentences, is defined as follows:

Xo is Vi correct < (X = A, V(o) € {a,b}) or (X = D, V(o) € {d,b}).

Intuitively, an AD sentence X is Vs correctif and only if its judgment (Assertible
or Deniable) with respect to o is correct from the standpoint of Vjy.
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Theorem 3.14 (Second stable judgment theorem)  Let M be a ground model, and
let Vg be a 2-, 3-, or 4-valued SK valuation of Lt that respects the identity of truth.

Then there is a closure condition t that satisfies SJC and such that "VL = Vuy.

Proof Let Vs be a 2-, 3-, or 4-valued SK valuation of L7 that respects the iden-
tity of truth. Using the notion of Vs correctness, we define a closure condition
t = {0}, C}}, and we will show that 1 satisfies SJC and is such that Vi, = V.
Let exp = {yn }nen be an arbitrary expansion in EXP,s. We let

exp € OL & dnVm > n : y, is Vy correct. (12)

It is clear from the “limit behavior definition” of { that T satisfies SJC. Note that
to show that V}LI = Vyu, it suffices to show that

Xois Vg correct & 3f € FVg e § 1 exp(Xy, f,8) € OL.

= Suppose that X is Vs correct. Observe that from the fact that V3, is SK and
respects the identity of truth, we have:

X, is controlled by player I = 3Y,, € T1(Xy) : Yy is Vs correct;
X is controlled by player II = VY, € I[1(Xy) : Yy is Vs correct.

From these two observations, it readily follows that if we start from an X, that is
Vi correct, player [ has a strategy, say f, that ensures that, for every g € §, all the
terms of exp(Xy, f, g) are Vi correct. Hence, player I can ensure that the expansion
of X ends up in OL.

< Suppose that X is Vjs incorrect. Observe that from the fact that Vs is SK
and respects the identity of truth, we have:

X, is controlled by player I = VY, € [1(Xy) : Yy is Vi incorrect;
X is controlled by player /I = 3Y, € I1(Xy) : Yy is Vs incorrect.

From these two observations, it readily follows that if we start from an X, that
is Vi incorrect, player II has a strategy, say g, that ensures that, for every f € ¥,
all the terms of exp(Xy, f, g) are Vs incorrect. Hence, player I can ensure that the
expansion of X, ends up in C)\L/p from which it follows that player I cannot ensure

that the expansion of X, ends up in OL. O

Corollary 3.15 (Second stable judgment corollary)  Let M be a ground model,
and let Vg be an SK fixed point over M. Then there is a closure condition T that
satisfies SJC and WRC and such that Vi = V.

Proof As an SK fixed point is an SK valuation that respects the identity of truth
and the world, the closure condition T that is defined in the proof of the second stable
judgment theorem satisfies SJC and WRC and is such that Vi o= V. O

So, to induce, say, Kripke’s SK maximal intrinsic fixed-point K *, via the method of
closure games, we may define closure conditions, via (12), in terms of J(;} correct-
ness. Closure conditions for K that are defined as such are parasitic on Kripke’s
framework for truth in a way that the gr(oundedness), gr(oundedness), ¢, and ¢ clo-
sure conditions are not. We say that closure conditions for KX T that are defined via
(12) are cheating closure conditions, whereas the gr(oundedness), gr(oundedness),
¢. and ¢ are species of noncheating closure conditions. As KV is an interesting
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theory of truth, it would be bad news for the method of closure games, as a frame-
work for truth, if it had to rely, for the definition of X * . on notions that are borrowed
from an alternative framework. Luckily, the method of closure games does have ac-
cess to K T via notions that are not borrowed from an alternative framework. In the
next section, we see how this works out.

4 Assertoric semantics

4.1 Defining assertoric semantics In this section we present assertoric semantics,"

which is a slight modification of the method of closure games. Whereas the method
of closure games induces L7 valuations by putting closure conditions on sequences
of signed sentences (expansions), assertoric semantics does so by putting closure
conditions on branches, which are sets of signed sentences that are defined in terms
of expansions.

For any expansion exp, [exp] will denote the set of terms of exp. For any AD
sentence X, and strategy f of player I, B r(X,) denotes the set of terms that occur
on some expansion of X, relative to f'. We will call B ¢ (X,) the branch of X, that
is induced by f. To be sure, B r(X,) is defined as follows:

B (Xo) = | J[exp(Xo, £,0)].

geyg

We will use Branchys to denote'® the set of all branches relative to ground
model M. The (assertoric) tree of X, ’Sg, is the set of all its branches:'°

Ty ={Bs(Xo) | f € F}.
Branches are judged to be open or closed relative to closure conditions that are

applicable to branches; a branch closure condition i = {Oi ,C ;f,,} is a bipartition
of Branchys. An assertoric tree T§ is said to be openy in M just in case it con-

tains a branch that is open; in M, that is, just in case By (Xs) € 0}‘:,1 for some
Br(Xs) € TH. We write OL(XU) justin case T§ is openy in M, and C}f,, (Xy) if
not 01%4 (X5 ). In this sense, branch closure conditions induce closure conditions for

AD sentences. These closure conditions can be used to define an L valuation VL
in the expected manner. That is:

0} (45) and (Do),
0},(4,) and O}, (D,),
Cj;(Ag) and Cf; (D),
Cl(Ao) and O}, (Dy).

vt (o) = (13)

[=TH— B — ]

4.2 Inducing familiar theories of truth via assertoric semantics In this paper, we will
only be concerned with two closure conditions for branches: the tolerant and strict
closure condition. A branch B is tolerantly closed in M, that is, contained in C ol
just in case

B contains X, with X, € Ar), and X5 ¢ wp.

A branch B is strictly closed in M, that is, contained in C j{f{i"’ , just in case B is
tolerantly closed in M or

B contains both A, and D, .
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The tolerant closure condition induces a familiar theory of truth.
Proposition 4.1 The following holds: V"' = X.

Proof Let M be a ground model. Clearly, it suffices to show that for each AD
sentence X,

BeTL:BeOy «AfcFVge§ exp(Xo, f.8) €05, (14)
Now (14) follows immediately from a comparison of the tolerant closure condition

for branches with the gr(oundedness) closure condition for expansions and from the
fact that V& = K. O

Verict | the theory of truth that is induced by the strict closure condition for branches,
is also a, albeit less, familiar theory of truth. As we will show next, V“I(,;ic’ is equiv-
alent to Kripke’s “modal fixed-point valuation” JC?M, which he defined implicitly by
quantifying over FP"(M): for instance, Kripke classified the Liar as a paradoxical
sentence as there is no fixed point in which it evaluates as a and there is no fixed point
in which it evaluates as d. More generally, Kripke used these quantifications (cf. [4,
pp. 708-709]) over FP"(M) to draw distinctions between the Liar, the Truthteller,
the Tautologyteller, and the Contradictionteller (cf. Definition 2.1). These distinc-
tions are captured by K4 . which is defined by quantifying over FP"(M) as follows:

1. ‘K?V[(O) =a < forsome Vy : Viy(o) = aand forno Vi : V(o) = d;

2. JC;I (0) = b & forsome Vs : Vi (o) = a and for some Vyy : Vi (0) = d;

3. JC?W(O') =n < forno Vi : Viy(o) = aand forno Vi : Viy(o) = d;

4. J(;‘M(G) =d & forno Vs : V(o) = a and for some Vyy : Vi (o) = d.
Although K}‘u respects the ground model M and the identity of truth, JC}‘VI is not an
SK 4 valuation, which is attested to by the following observations:

K (T(0)) = K3 (=T(v)) = b, K (T(x) v =T(r)) = a.
To prove that ystriet — g4, we need some definitions, which are all modifications
of notions defined, among others, in Fitting [1].
Definition 4.2 (Saturated sets, upward closure) Let S be a set of AD sentences.
We say that S is downward saturated just in case:
player I controls Xy = (X5 € S = H(Xs) NS # 0):
player II controls X5 = (X, € § = II(X,) € S).

This notion of an upward saturated set is defined dually. That is, S is upward
saturated just in case:

player I controls X, = (XU eS<lXg)NS # 0);
player II controls X, = (XU eSS < Il(Xy) C S).

Every set of AD sentences S has an upward closure S T that is, a smallest set of
AD sentences which extends S and which is upward saturated.'”

Definition 4.3 (FP"(M) sets and associated valuations) Let S be a set of AD
sentences. We say that S is an FP™ (M) set just in case:

1. Vo € Sen(L1): Ag € S = Dy ¢ S.

2. S is downward and upward saturated.

3. wyy € S.
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An FP"(M) set S is a notational variant of the associated fixed-point valuation,
Vi Sen(L7) — {a,n,d}:
(i) 4o € S & V(o) =a.
(i) Dy €S & Vi (0) =d.
(ili) {46. Do} NS =0 & V(o) =n.
On the other hand, every fixed-point valuation Vs € FP"(M) corresponds via (i),
(i), and (iii) to an FP"(M) set S.

Before we prove that V¥ = K#, it is instructive to comment on our proof strategy,
which is a modification of the soundness and completeness proofs for signed tableaux
systems. Consider the assertoric rules for A and — for a propositional language £ p
under the usual closure conditions: a branch'® is closed just in case it contains, for
some sentence o of &£ p, both A, and D, and a tableau for X, is closed just in case
all its branches are closed. This specifies a sound and complete signed tableau proof
system with respect to the classical semantics of &£ p: a sentence o of £ p is true in
every £ p-valuation just in case D, has a closed tableau. Soundness is proved by
observing that if D, has a closed tableau, there is no &£ p-valuation in which o is
false. Completeness is proved by showing that if D, does not have a closed tableau,
we can take an open branch and transform it into an £ p-valuation which renders o
false.

We use our branches and assertoric trees to induce semantic valuations; our strict
closure conditions are defined relative to a ground model M. The role that is played
by the classical valuation in the &£ p-case is, in our case, played by a fixed point of
FP"(M). If all the branches of T are strictly closed, there is no fixed point in which
o is evaluated as a. Similarly, if all the branches of ?g are strictly closed, there is
no fixed point in which o is evaluated as d. On the other hand, if T has a strictly
open branch, we can convert this branch into a fixed point which evaluates o as a.
Similarly for the case when T} has a strictly open branch. Let us now turn to the
proof that makes these remarks precise.

Theorem 4.4 The following holds: V¢! = K4,

Proof Let M be a ground model. Let B be a branch of A, that is strictly open in
M . Then, (B U wM)ﬂ, that is, the upward closure of B U wjyy, is an FP™(M) set that
contains A,. From this, it follows that

O3 (A%) = AV € FP" (M) : Vi (0) = a.
And, similarly, we get that
O3 (D) = IV € FP*(M) : Vi (0) = d.

On the other hand, let 0 € Sen(Lr), and let V3 € FP"(M) be such that
Vu (o) = a. Let S be the FP" (M) set associated with V. By definition, A, € S.
Let f be any strategy for player / such that, for every X, € S that is controlled by
player I, f(X,) € S. It follows that B r(Ag) is strictly open in M. Similar remarks
apply to Vas(0) = d and D,. Hence, we get

IVy € FPY (M) : V(o) = a = O3 (A”),
Iy € FPY(M) : V(o) = d = 037 (D°).

From the four established equations, it follows that V“‘I(,;""’ = JCL. O
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Although V*"! is not defined via the method of closure games, it is clearly defined
by using only notions that “belong” to the method of closure games. In the next

. . i . 7
subsection, we will use V¥’ to define closure conditions that define X+ and X .
In doing so, we obtain a definition of X * that is, in an important sense, not parasitic
on Kripke’s framework for truth.

4.3 Using V¥ to define X+ and K We will prove that X+ can be induced from
closure conditions that are defined in terms of V*’ | To do so, we define the notion of
strong correctness in terms of Vj’,}m . We say that X, is strongly correct (in a ground
model M) just in case

(X = Aand V}/“(0) = a) or (X = D and Vi (0) = d).

We use the strong correctness to define the + closure condition (for expansions)
which, as we will eventually prove, induces K . With exp = {y, }nen, we let

exp € 0;} & dnVm > n : y,, is strongly correct. (15)

We will show that the valuation function induced by the strong closure condition,
that is, 'V;I, is equal to JCA‘; Before we do so, however, we first sketch the rationale
of the definition of X 1\+4 in terms of strong V37 correctness.

For sure, if we have JCA‘; (0) = a, we have V§/“(0) = a. For, if JCA‘; (o) = a,
there is a (3-valued SK) fixed point that evaluates o as a and also there is no fixed
point that evaluates o as d. Similarly, JCAZ (0) = d implies that V{7 (0) = d. The
converses of these implications do not hold, however. For instance, we have

Vi (=T (A) v T(1)) = a, K (=T(A) v T(x)) =n,
Vi (-T@ AT(@) =d, Ky (-T@) AT(@®) =n.

Although A-7)vr(r) and D-ryaT(r) are strongly correct, none of their imme-
diate AD subsentences is strongly correct. This ensures, as is readily noticed, that
'V;, =TA)VvT() = VA‘; (=T (t) A T(r)) = n, mimicking the judgment of JCA‘;
with respect to these sentences. More generally, the definition of 'V;; ensures that, for
AD sentences that are “unstable” strongly correct—that is, ultimately, they depend on
a combination of AD sentences that are not strongly correct—player I does not have
a strategy that ensures that his expansion ends up in 0;,',. To prove that V;, = X ;,',
we will evoke the following three lemmas.

Lemma 4.5 (Strict-openness is preserved downward in assertoric trees) By the

phrase “strict-openness is preserved downward in assertoric trees,” we mean that
player I controls Xo = (037" (Xo) = ¥y € I(Xo) : O3 (Ya)):
player II controls Xo = (037" (Xo) = VYo € II(Xy) : 037 (Ya)).

Proof  This follows immediately from an inspection of the strict closure conditions

and the observation that the branches that constitute the tree of an immediate AD
subsentence of X are subsets of the branches that constitute the tree of X. O]

Lemma 4.6 VA'; :Sen(L1) — {a,n,d} is an SK 3 theory.

Proof It is clear that the strong closure conditions satisfy SJC and WRC, and so
by the (corollary to the) first stable judgment theorem, they define an SK theory. The
point of this lemma then is to show that V;} is 3-valued. To do so, we proceed as in
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the proof of Lemma 3.9. Suppose that OAJCI (As), and let f be a strategy of player /
that ensures that the expansion of A, ends up in 0;4. The mirror strategy of f, g7
(see Lemma 3.9) testifies that CA'; (Dy). ]

Our proof of the fact that V* = KT will exploit a further lemma, which invokes
the notion of a totally strongly correct expansion. An expansion is said to be totally
strongly correct just in case all its terms are strongly correct. Here is the lemma.

Lemma 4.7 Vg € § : exp(Xg, f,8) € 0;1 & Vg €8 exp(Xy, f/,8) is
totally strongly correct.

Proof  The right-to-left direction is trivial. For the converse direction, let f’ be a
strategy testifying that 0;2 (Xy); that is,

Vg e g :exp(Xo, £/, 8) € OF.

Let g’ € §. We have to show that exp’ = exp(Xy, f7, g’) is totally strongly
correct. As exp’ € O, exp’ contains a first strongly correct term (after which all
other terms are strongly correct). We will prove by contraposition that this first term
is equal to X,. Thus, assume that exp’ contains a first strongly correct term and that
this term has a predecessor on exp’ that is not strongly correct. We assume, without
loss of generality, that the first strongly correct term has form Ag, the case where its
form is D,, being similar. The predecessor of A, on exp has one of the following six
forms:

Dy, Aavﬂ s Aa/\ﬁ s A‘v’xw(x)» AEIx(p(x)v AT(&)‘
We only prove the claim for the cases where the predecessor of Ag is Agvg Or Agag,
as the other four cases are either trivial or similar to the two cases that we will discuss.

Predecessor of Ay is Aqvg. As Ay is strongly correct, we have Vi (a) = a.
Hence, there is a (3-valued SK) fixed point in which « is evaluated as a and no fixed
point in which « is evaluated as d. In the fixed point in which « is evaluated as a, o Vv 8
is also evaluated as a. Thus, V§7“(a v B) € {a,b}. Suppose that Vi (a v B) = a.
This gives a contradiction with the assumption that A, is the first strong Vj’,}’“ correct
element on exp’. Thus, suppose that V37 (e v f) = b. By definition of V7,
we get 037/ (Dgyp). From Lemma 4.5, we get that O37/(Dg) and O35/ (Dg).
From 0}'{}“” (Dy) it follows, by Theorem 4.4, that there is a fixed point in which « is
evaluated as d. This gives a contradiction with the strong correctness of A4, .

Predecessor of Ay is Aqng. As Ay is strongly correct, we have V“I(,}ic’ (¢) = a.
Further, strategy f’ (by considering the mirror strategy of f’ as in the proof of
Lemma 4.6) testifies that "V;; (xnp)= 'V;} () = 'V;; (B) = a. From the fact that
V;, (¢ A B) = a, it follows that there is a 3-valued fixed point (e.g., Vj,}) in which
a AP is valuated as a. Hence, from Theorem 4.4, it follows that V}’f"’ (xnpB) € {a,b}.
Suppose that V§7“ (e A ) = a. This gives a contradiction with the assumption that
Ay is the first strongly correct element on exp’. Thus, suppose that VSI{,;"” (xnB) =b.
From Lemma 4.5, we get that O35/ (Ag). Further, from V57 («) = a it follows, by
definition, that C;7"(Dy). Similarly, from V§7“(ex A B) = b we get, by definition,
that 037/ (Dgng). From O3/ (Dgap) and Cjy* (Dg) it follows that O37'(Dpg)
and so V§7“(B) = b. Hence Ag is not strongly correct. Now, let g” € § be the
strategy that is defined just like g’ except for the fact that g'(Ayrg) = Ao, Whereas
8" (Aqnp) = Ap. Let exp” = exp(Xy, f”, g") be the expansion of X, induced by
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/' and g, and note that A,,g occurs on exp”. Let Y,, be the first element controlled
by player I that occurs on exp” after Agag such that |II(Y;)| > 1. If there is no
such element, it follows from Lemma 4.5 that for every element Z4 on exp”, we have
V47 (Zg) = b. Observe that this contradicts the assumption that strategy f” guar-
antees that for every g, exp(Xy, f7, g) ends up in O;f,. Thus, let ), be as indicated.
From Lemma 4.5, it follows that T1(Y,) contains at least one element, say Y, such
that 037 (Y5). Moreover, from the definition of f”, it follows that f’ has to pick a
Ys € T1(Y,) such that O35 (Ys). For suppose not, that is, suppose that f”(Y,) = Yy
such that C37/(Ys/). According to Theorem 4.4, this means that there is no 3-valued
fixed point that contains Ys,. On the other hand, from the definition of f’ and the
assumption that f/(Y,) = Yy, it follows that there is a 3-valued fixed point (e.g.,
'V;I) that contains Yg/. Thus, f/(Y,) = Y5 for some Y5 such that Oiﬁl”'c’ (Ys). From
Lemma 4.5, the fact that V§7/(« A f) = b and the fact that Yy, is the first element
on exp” after A, ,p for which player I has to make a genuine choice, it follows that
(o (Ys_l). Hence, we have V{7’ (§) = b, and so Y is not strongly correct. We are
now back were we started, with § playing the role of 8. We can repeat the argument
by looking at the first element that occurs on exp” after Y, for which player I has
to make a genuine choice. By a similar argument, f’ cannot allot a strongly correct
element to it. Hence, f’ does not guarantee that for every g, exp(X,, f”, g) ends up
in 0. O

Before we (finally) show that VT = KT, we first recall the definition of K ;f, in terms
of the K closure conditions that are associated with the second stable judgment
theorem. With exp = {y, },en, these closure conditions are defined as follows:

exp € OﬁJr & InVm > n : yy is Ky correct.
Theorem 4.8  The following holds: V* = K.

Proof Let M be a ground model. It suffices to show that for every AD sentence
X, we have

0X" (Xy) & 0F;(X,).

The left to right direction is immediate from the definition of OﬁJr and 0;2.
Thus, assume that 01\—; (X5). This means that there exists an f € ¥ such that for
every g € 9, exp(Xo, f,8) € 0;4. By Lemma 4.7, this means that every term that
occurs on an expansion of X, that is induced by f, is strongly correct. Hence, all
elements of B s (X ), the branch of X, as induced by f', are strongly correct. From
this, it follows that the (3-valued SK) fixed-point valuation induced by B (XHT,
that is, by the upward closure of B r(X,), is compatible (see Section 2) with every
fixed-point valuation over M ; hence it is an intrinsic fixed-point valuation, that is,
a member of I"(M) (see Definition 2.6). With S the FP"(M) set corresponding to
J(;}, we get that B ¢ (XU)Tr C S, as JC;CI is maximal intrinsic. From By (Xs) € S,

it follows that OZ,,CJF (Xo). O

We end this section by defining a closure condition that induces K , the 3b-version
of the maximal intrinsic fixed point. To do so, we first define the notion of an AD
sentence being strongly incorrect. We say that X is strongly incorrect (in a ground
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model M) just in case
(X = Aand Vij(0) = d) or (X = D and V(o) = a).

The + closure conditions are defined in terms of the notion of strong incorrectness
as follows:

exp € CAI,, < dnVm > n : yp, is strongly incorrect.
Proposition 4.9  The following holds: V* = X .
Proof Let M be a ground model. Observe that, as YVt = KT, it suffices to show
that for any o € Sen(LT):

(i) Vi;(0) =a & V(o) =a,
(ii) Vi;(0) =d & Vi (o) =d.
To prove (i) and (ii), proceed just as in the proof of Proposition 3.11: observe that

O;, C 0;} and that the inverse of 01]; isequal to C + and use these observations,
together with Lemma 3.9 and Lemma 3.10, to obtain the desired result. O

5 Concluding remarks

We presented the method of closure games, a novel game-theoretic valuation method
for languages of self-referential truth. We illustrated how our two stable judgment
theorems (and their corollaries) allow us to study and define 3- and 4-valued SK
theories of truth in a uniform manner. By doing so, the method of closure games sheds
new light on SK fixed points. In particular, the method gives us a great understanding
of the interrelatedness of the various SK fixed points, which is attested to, among
others, by our characterization of the 3n- and 3b-valued versions of the minimal and
maximal intrinsic fixed point by means of closure games.

In future work, we hope to show that the method of closure games is also a fruitful
framework to shed light on fixed points associated with valuation schemas other than
the SK one (or on “nonfixed point” theories of truth). Can we also use (a modified
version of) the method of closure games to characterize the fixed points of the weak
Kleene schema or the supervaluation schema? Although Welch [7] characterized the
minimal fixed point of the supervaluation schema by game-theoretic means, the last
question—which is about the class of all supervaluation fixed points—is still open.

Finally, our (intuitive) assertoric interpretation of the constituent notions of the
method of closure games—closure conditions as assertoric norms, game rules as as-
sertoric rules—stems from certain philosophical intuitions concerning the notions of
assertion and denial. To spell out these intuitions in any detail is far beyond the scope
of this paper but to do so rigorously is ongoing work.

Notes

1. Modulo our symbolism which reflects that we interpret the semantic values (directly) in
assertoric terms.

2. A game is one of perfect information when a player who is about to make his move in
the game can see all the moves that have been made before.
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11.

12.

13.

14.
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For simplicity, Martin describes his game for a first-order language whose connectives
are—besides a truth predicate—V, —, and 3. For such a language, there is no need to
incorporate the roles of verifier and falsifier in the game. However, Martin remarks that
when the language contains, in addition, A and V, the games become more complicated.
In a footnote, Martin indicates how the rules and winning conditions of his game have to
be modified for such languages. We state the game which Martin describes in this foot-
note with one terminological difference: Martin speaks of a player “being responsible for
a sentence” which is interchangeable with a player being the verifier of that sentence. We
have chosen to use the verifier/falsifier terminology as this terminology is well known
from Hintikka’s influential work on game-theoretic semantics.

. The fact that the falsifier has to list a sentence when y is T'(¢) and ¢ denotes a sentence

of L7 or when y is — is arbitrary: we could also let the verifier do the listing.

. The actual assignment of player control to A—q, D—qa, AT(s), and D ;) was chosen

for the sake of symmetry only: for those sentences it does not matter whether they are
controlled by player / or by player /1.

The sign A can be taken to indicate that player / is the verifier, D that player /I is the
verifier.

The range of T s may depend on M ; that is, for some M, the range of Tps may be a
strict subset of V.

In the rules for T, 0 € CTerm(LT) is a closed term (quotational constant or not) that
denotes o in M. In the rules for the quantifiers, ¢(x/¢) denotes the result of the uniform
replacement of variable x by constant ¢ in ¢(x). As attested to by, among others, the
rules for the truth predicate 7', the assertoric rules depend on the details of sentential
reference and are, accordingly, defined relative to a ground model M.

The assertoric rules for truth testify that the set of all expansions depends on the ground
model under consideration.

The condition that CL and OL are nonempty rules ensures that we do not have to
consider the possibility that 'VL valuates all L7 sentences as n (OL = @)orash

C IL = ), ensuring that VL is at least 2-valued. This feature will be convenient for the
formulation of theorems that follow.

In fact, one can show that Vﬁ; is 3-valued for every ground model M, whereas 'VA’J is,
depending on the ground model, either 3- or 4-valued.

The reader may verify this by considering the sentence /(c) = —T(c) Vv T(t), where
T (7) is the Truthteller.

Note: Vs does not need to be SK.
A version of assertoric semantics that is closely related to the present one was defined

in [10] and further studied in [9]. However, none of these papers mentions the close
relation between assertoric semantics and the method of closure games.
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18.
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Stefan Wintein
The definition of Branch ps depends on M for the same reasons as EXP 34 does.
Note: 1‘5‘( is not a tree in the mathematical sense of this notion.

The notions of downward and upward saturation are closely related to the notions of
downward and upward saturation as defined by Fitting [1]. However, an important (and
the only) difference between Fitting’s notions and ours is that Fitting’s notions are de-
fined with respect to the assertoric rules for L only; that is, in his definition Fitting does
not treat the rules for truth not on par with the other rules. Likewise, the other notions
defined in this section are inspired by [1] and differ from Fitting’s notions only in the
aspect just indicated. For a proof of the claim that every set of AD sentences has an
upward closure, see [1].

The notion of a branch in this setting is slightly different from our definition of a branch.
In fact, we use ‘branch’ to denote what is more commonly called ‘completed branch.’
Likewise, the notion of an assertoric tree differs from that of a tableau.
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