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End Extensions of Models of Weak Arithmetic Theories

Costas Dimitracopoulos and Vasileios S. Paschalis

Abstract We give alternative proofs of results due to Paris and Wilkie con-
cerning the existence of end extensions of countable models of B†1, that is, the
theory of †1 collection.

1 Introduction

We work with subsystems of first-order Peano arithmetic (PA) in the first-order lan-
guage of arithmetic LA. As usual, for n 2 N, I†n denotes the induction schema for
†n formulas (plus the well-known base theory PA�), L†n denotes the least number
axiom schema for †n formulas (plus PA�), B†n denotes I�0 plus the collection
schema for †n formulas, and exp denotes the axiom expressing “exponentiation is
total” (recall that there is a �0 formula representing the graph of the function 2x).
Finally, h ; i denotes one of the usual pairing functions. (For details, the reader can
consult Hájek and Pudlák [10] or Kaye [12].)

Having proved his first incompleteness theorem, Gödel realized that the proof
could be formalized and thus he obtained his second incompleteness theorem. The
same fundamental insight works for other results, including Gödel’s completeness
theorem for the predicate calculus. This idea led to the so-called arithmetized com-
pleteness theorem (ACT), first formulated by Hilbert and Bernays [11, Section 4.2].

The ACT is undoubtedly an important result, as it can be applied to construct
arithmetical models and give alternative proofs of the incompleteness theorems (see,
e.g., [12]). Its statement has two forms, a syntactic and a semantic one. Since later
in this article we will be considering models of theories in LA, the semantic form
seems more appropriate (see, e.g., [12, Section 13.2]). In what follows, T will denote
a theory in LA.
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Theorem 1.1 (ACT-semantic form) LetM be a model of PA, and let T be a theory
definable in M . If M ˆ Con.T /, then there exists a model K of T such that K is
“strongly definable” in M .

Here, strong definability means, roughly speaking, that
(a) the universe of K may be taken to be the same as that of M , and
(b) the satisfaction relation for K is parametrically definable in M .
If the theory T contains PA, the relationship between M and K is much nicer;

indeed, one can prove the following.

Lemma 1.2 If M;K are models of PA and K is strongly definable in M , then M
is isomorphic to an initial segment of K.

By condition (b) of strong definability and the (well-known) fixed-point lemma, it
follows that M cannot be isomorphic to an elementary substructure of K. However,
the ACT can be applied in such a way that M is isomorphic to a †n elementary
substructure of K. Indeed, the following result, first stated explicitly by McAloon
[14, p. 256], refers to this fact.

Theorem 1.3 LetM be a model of PA, and let T be a theory definable inM such
that M ˆ Con.T C Tr.…n//, where Tr.…n/ denotes the set of (Gödel numbers of)
…n sentences true in M . Then there exists a model K of T such that

1. K is strongly definable in M (and, therefore),
2. M is isomorphic to a proper †n elementary initial segment of K.

As it was the case with other fundamental theorems that were known to hold for PA,
there were attempts to miniaturize the above results, that is, prove their counterparts
for fragments of PA. Such a result, described as “a mild refinement of the arithme-
tized completeness theorem,” was proved by Paris [15, p. 252] and is essentially the
following.

Theorem 1.4 LetM be a model of B†n, let n � 2, and let T � I�0 be a theory
�n�1 definable in M such that M ˆ Con.T /. Then there exists a model K of T
which is �n definable in M , and M is isomorphic to a proper initial segment of K.

By applying this result, the same author showed that (see [15, Theorems 2 and 5])
(i) every model of B†n, n � 2, has a proper end extension J ˆ B†n, and
(ii) every model of I†n, n � 2, has a proper end extension J ˆ I†n

(in fact, the author proved stronger results, but we are restricting our attention to
versions relevant to our work).

In the previous theorem, in order to obtainK having a nicer relationship toM we
need an extra assumption on M , as the following result shows (see Paris and Kirby
[17, p. 200]).

Theorem 1.5 For any countable model M of I�0 and n � 2,
(a) M ˆ B†n , there exists K ˆ I�0 such that M �n;e K, and
(b) if M has a proper †1 elementary end extension, then M ˆ B†2.

Concerning part (a) of Theorem 1.5, let us note that the proof of (() does not rely
on the countability of M , while the proof of the converse implication relies heavily
on this assumption. Despite attempts to show that any model M of B†n, n � 2,
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is extendable to a model K of I�0 such that M �n;e K, this question still remains
open (see, e.g., Clote [7]).

In view of Theorem 1.5, a natural question that arises is whether (a) holds for
n D 0; 1. Concerning the implication ((), it holds for both n D 0 and n D 1, by
the fact that B†0 , B†1 and the fact that if M �e K ˆ I�0, then M ˆ B†1.
Concerning the converse implication, it does not hold for n D 1, by part (b) of
Theorem 1.5 and the existence of models of the theory B†1 C:B†2 (which follows
by results in [17]). Therefore, the only remaining question is the following.

Problem 1.6 Is every countable model M of B†1 extendable to a model K of
I�0 such that M �0;e K?

Since for any structures M;K for LA, M �e K implies M �0 K, it follows that
Problem 1.6 is equivalent to the following.

Problem 1.7 Is every countable model M of B†1 extendable to a model K of
I�0 such that M �e K?

Problem 1.7 is considered one of the main problems concerning fragments of PA
(see Clote and Krajíček [8, “Fundamental problem F”]). This problem was examined
exhaustively by Wilkie and Paris in [19]. These authors introduced the notion of
�-fullness, � being a set of sentences, and showed that this problem has a positive
answer, provided that M is I�0-full; that is, they proved the following result.

Theorem 1.8 For any countable model M of B†1, if M is I�0-full, then there
exists K ˆ I�0 such that M �e K.

Moreover, Wilkie and Paris proved that certain natural conditions on M imply
I�0-fullness. In order to be able to state their result precisely, we need to recall the
definition of a notion and some notation.

Definition 1.9 LetM be a structure for LA. We say thatM is short…1-recursively
saturated if whenever ˆ D ¹x < a ^ 'i .x; Eb/ W i 2 Nº is a recursive set of …1

formulas (with parameters from M ) finitely satisfiable in M , then ˆ is satisfiable
in M .

Notation 1.10 I�0 ` :�0H stands for the hypothesis that the �0 hierarchy
provably collapses in I�0; that is, there is a fixed n such that for any formula � 2 �0,
there is a formula � 2 �0 in prenex normal form with at most n alternations of
bounded quantifiers such that I�0 ` � $ �.

Now we can state the result in [19, p. 145] which concerns sufficient conditions for a
model of B†1 to be I�0-full.

Theorem 1.11 For any countable nonstandard model M of B†1, each of the
following conditions implies that M is I�0-full:

(I) M is short …1-recursively saturated;
(II) M ˆ exp;

(III) I�0 ` :�0H and 9N < 
 2 M;M ˆ 8x9y.y D x
 /;
(IV) I�0 ` :�0H and 9a 2 M8b 2 M9n 2 N; b � an;
(V) I�0 ` :�0H and 9M �e K ˆ B†1.
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However interesting the notion of �-fullness may be, it is highly technical and, there-
fore, not very intuitive. For this reason, we found it worthwhile to look for an alterna-
tive approach, which would avoid the use of this notion and would be easier to grasp.
Actually, the answer lies in a remark in [19, Theorem 5(2), p. 154], made just after
the end of the proof, which reads as follows.

Remark A direct proof that any countable model of I�0 CB†1 which is closed
under exponentiation has a proper end extension to a model of I�0 may be obtained
by mimicking the proof of Theorem 4 but with “Semantic Tableau consistency of �”
in place of “�-full” and adding a new constant symbol � > M to ensure that the end
extension is proper.

Our paper is dedicated to showing how one can apply variants of the ACT to prove
in an alternative way that if a countable nonstandard model M of B†1 satisfies any
of the conditions (I)–(IV) of Theorem 1.11, then it is properly end extendable to a
model of I�0 (note that working with condition (V) makes no sense in our context,
as it presupposes the proper end extendability ofM ). Although we have obtained no
new results, we feel our undertaking is interesting from a methodological point of
view, as it connects Problem 1.7 with the approach suggested by the ACT.

It should be noted that work in the same spirit, that is, employing variants of the
ACT to study questions of end extendability of models of weak arithmetic theories,
was done in Adamowicz [1], [2]. Indeed, in those papers the author provided charac-
terizations of models that are properly end extendable to models of various theories
T � I�0. Although we use consistency statements of the same kind as the ones
in [1] and [2], our approach differs in that (most of) the models we consider satisfy
properties other than the ones considered therein.

The paper is organized as follows. In the next section we give a more or less de-
tailed proof of [19, Remark]. The third section is used to sketch proofs of variants
of the Remark, obtained by replacing the condition that M is closed under exponen-
tiation by another natural condition considered by Wilkie and Paris; that is, one of
conditions (I), (III), (IV) in Theorem 1.11. The paper ends with a section containing
some remarks and problems.

Before we proceed to the main body of our work, let us note that, when one
works with strong theories like PA and B†n, n � 2, one can work with simple
consistency, while here one has to employ the weaker notion of “semantic tableau
consistency” (as is well known, the two notions are equivalent in models closed
under the superexponential function).

2 Totality of Exponentiation

To obtain the proof suggested by the Remark mentioned above, we will need some
auxiliary definitions and results, which we will give now. First, we need the (formal-
ized) notion of cut-free proof, for which the semantic tableau method seems most
appropriate, as discussed in Wilkie and Paris [18].

Definition 2.1 Let T be a set of sentences. We say that a sequence of sets of
formulas �0, �1; : : : ; �s is a tableau proof from T of a contradiction if the following
hold.

1. For all X 2 �s there is an atomic formula � such that � 2 X and :� 2 X .
2. If X 2 �0, then X � T [ ¹the logical equality axiomsº.
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3. For all X 2 �i with i < s one of the following holds:
(a) X 2 �iC1,
(b) X [ ¹�º 2 �iC1 for some ::� 2 X ,
(c) X [ ¹:�1º, X [ ¹�2º 2 �iC1 for some .�1 ! �2/ 2 X ,
(d) X [ ¹�1;:�2º 2 �iC1 for some :.�1 ! �2/ 2 X ,
(e) X [ ¹�.t/º 2 �iC1 for some 8x�.x/ 2 X and some term t which is

freely substitutable for x in �.x/,
(f) X [ ¹:�.y/º for some :8x�.x/ 2 X and some variable y which does

not occur in any formula in X .
4. For all Y 2 �iC1 with i < s there is an X 2 �i such that Y is obtained from
X by one of the rules 3(a)–(f).

Whenever �0; �1; : : : ; �s is a tableau proof of a contradiction from T , we say that s
is the depth of this proof.

As Wilkie and Paris [18, p. 295] note, for any theory T ,
(a) T is inconsistent in the usual sense just if there is a tableau proof from T of a

contradiction;
(b) tableau proofs are superior to usual proofs, since they contain only subformu-

las of the sentences in T , but they suffer from the disadvantage of being in
general iteratedly exponentially longer than Hilbert-style proofs.

For any suitable theory T in (a language extending) LA, using standard methods
of formalizing syntactic notions, we can obtain a �0 formula Tabinconpr.T; x/ ex-
pressing, in any model of I�0, that “x is a tableau proof from T of a contradiction.”
In what follows, Tabcon.T / will denote the …1 sentence :9x Tabinconpr.T; x/.

It is rather straightforward to formalize the proof of the so-called elimination
lemma (see, e.g., Bell and Machover [3, Chapter 2, Section 6]) to prove the following
result.

Lemma 2.2 For any model M of I�0 C exp, any theory T coded in M , and
any sentence � , if M ˆ :Tabcon.T C �/ and M ˆ :Tabcon.T C :�/, then
M ˆ :Tabcon.T /.

Another fact that is necessary for the sequel is a result of Lessan [13, p. 43] (see
also Paris and Dimitracopoulos [16, Theorem 2]), concerning the satisfaction of �0

formulas (in models of I�0).

Theorem 2.3 There exists a �0 formula Sat0.x; y; z/ such that, for any M ˆ

I�0, '.Ex/ 2 �0 and Ea; b 2 M ,

M ˆ b � 2.max.Ea/C2/p'q
!

�
'.Ea/ $ Sat0

�
b; hEai; p'.Ex/q

��
:

Remark 2.4

(a) Sat0 acts like a satisfaction relation, for formulas in the sense of M . For
example, for any d; e 2 M , if, in the sense of M , d is the Gödel number of
a �0 formula of the form 9y � x1 .y; Ex/ and e is the Gödel number of the
formula  .y; Ex/, then

M ˆ 8Ez8t�2.max.Ez/C2/d �
Sat0

�
t; hEzi; d

�
$9y�z1 Sat0

�
t; hy; Ezi; e

��
:

(b) The particular value of b is insignificant, as long as it exceeds 2.max.Ea/C2/p'q .
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Now we are ready to prove the main result of this section; that is, part (II) of Theo-
rem 1.11.

Theorem 2.5 IfM is a countable model ofB†1Cexp, then there existsK ˆ I�0

such that M �e K.

Proof With M satisfying the hypothesis, let LA� be the language obtained
from LA by adding a new constant symbol c and a set of new constant symbols
¹ca W a 2 M º. For T a (suitable) theory in LA�, T C � C c>M denotes the
theory obtained if we add to T the diagram � of M and the set of sentences
¹c>ca W a 2 M º.

The proof of the theorem relies on a couple of lemmas, the first of which is a
variant of [18, Lemma 8.10].

Lemma 2.6 We have M ˆ Tabcon.I�0 C�C c>M/.

Proof of Lemma 2.6. Suppose this fails. Then there exist a 2 M and a tableau
proof �0; �1; : : : ; �s (in M ) of a contradiction from hypotheses:

� the first a axioms of I�0,
� certain elements of �, with all constants having indices at most a,
� ¹c>c0; : : : ; c>caº.

In what follows, we will be using the formula Sat0 for formulas with Gödel num-
ber < e, where e 2 M is larger than the Gödel number of any formula occurring in
any �i and for values of free variables less than b D 2f e , where f D .aC 2/2

sC1 .
For all i < s and X 2 �i we define, by recursion on i in M , a function Fi;X

with domain the set of variables and constants occurring in formulas in X and range
bounded by b, as follows.

� If i D 0, Fi;X is empty.
� For x a variable in (some formula in) Y 2 �iC1 pick X 2 �i such that Y is

derived from X by one of the tableau rules.
– If x appears in X , set FiC1;Y .x/ D Fi;X .x/.
– If Y D X[¹:�.x; x1; : : : ; xp; c; Ec/º, where Ec denotes c0; : : : ; ca and

:8x�.x; x1; : : : ; xp; c; Ec/2X , set

FiC1;Y .x/

D

8̂<̂
:

the least d < b such that if such d
Mˆ Sat0.b; hd; Fi;X .x1/; : : : ; Fi;X .xp/; aC1; Eai; p�q/; exists;
0; otherwise;

with Ea denoting 0; : : : ; a.
– In all other cases, set FiC1;Y .x/ D 0.

Using the fact that M ˆ I�0 C exp, one can check that the above definition can
be carried out and prove (by induction) that, for each i � s, the following hold.

(a) For all X 2 �i , Range.Fi;X / � ¹m2M j M ˆ m<.aC 2/2
iC1

º.
(b) There is an X 2 �i such that for all formulas �.x1; : : : ; xp; c; Ec/ in X which

are either †1 or …1,

M ˆ Sat0
�
b;

˝
Fi;X .x1/; : : : ; Fi;X .xp/; aC1; Ea

˛
; p�q

�
:
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Let X 2 �s satisfying (b) above. By (1) of Definition 2.1, X must contain �
and :� , for some atomic formula � . But this clearly leads to a contradiction, which
completes the proof of the lemma.

We now proceed to the second lemma needed to prove the main theorem.

Lemma 2.7 If �.y; c; Ec/ is a formula of LA�, a 2 M and T is a finite extension
of I�0 such that M ˆ Tabcon.T C�C c>M/, then either

M ˆ Tabcon
�
T C�C c>M C :9y�ca�.y; c; Ec/

�
or there exists b�Ma such that

M ˆ Tabcon
�
T C�C c>M C �.cb; c; Ec/

�
:

Proof of Lemma 2.7. Suppose, toward a contradiction, that T is a finite extension
of I�0 such that

M ˆ Tabcon.T C�C c>M/; (1)
M ˆ :Tabcon

�
T C�C c>M C :9y�ca�.y; c; Ec/

�
; (2)

for all b�
Ma; M ˆ :Tabcon

�
T C�C c>M C �.cb; c; Ec/

�
: (3)

Using the fact that M satisfies B†1, we can deduce from (3) that there exists
q 2 M such that

M ˆ 8z�a9r�q “r is the Gödel number of a tableau proof of a contradiction
from T C�C c>M C �.cz ; c; Ec/:”

Now we use �0 induction and the fact that M is closed under exponentiation, to
show that

M ˆ 8z�a9r�q2z “r is the Gödel number of a tableau proof of a contradiction
from T C�C c>M C 9y�cz�.y; c; Ec/:” (4)

The case z D 0 clearly holds, by (3) above. For the inductive step, suppose that
b�Ma and r1 2 M such that

M ˆ r1�q2b

^ “r1 is the Gödel number of a tableau proof of a contradiction
from T C�C c>M C 9y�cb�.y; c; Ec/:”

By (3), there exists r2 2 M such that

M ˆ r2�q ^ “r2 is the Gödel number of a tableau proof of a contradiction
from T C�C c>M C �.cbC1; c; Ec/:”

Recalling that the implication y�cbC1 ! y�cb _ yDcbC1 is provable from I�0,
one sees that, by combining proofs, it is possible to obtain r 2 M such that

M ˆ “r is the Gödel number of a tableau proof of a contradiction
from T C�C c>M C 9y�cbC1�.y; c; Ec/:”

An easy calculation shows thatM ˆ r�q2bC1 , and so the proof of the inductive step
is complete.
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Setting z D a in (2), we deduce that

M ˆ 9r�q2a “r is the Gödel number of a tableau proof of a contradiction
from T C�C c>M C 9y�ca�.y; c; Ec/,”

and so
M ˆ :Tabcon

�
T C�C c>M C 9y�ca�.y; c; Ec/

�
:

But then, by (2) and Lemma 2.2, it follows that M ˆ :Tabcon.T C � C c>M/,
which contradicts (1).

Now we return to the proof of Theorem 2.5. Using Lemma 2.6 and Lemma 2.7, one
can construct a sequence T0 � T1 � � � � � Tn � � � � of theories in LA� such that

(a) M ˆ Tabcon.Tn C�C c>M/, for any n 2 N,
(b) T1 D

S
n2N Tn is a complete theory in LA�, containing the diagram of M

and all sentences of the form c>ca; a 2 M ,
(c) whenever 9y � ca�.y; c; Ec/ 2 T1, then there exists b � a in M such that

�.cb; c; Ec/ 2 T1.
By applying the omitting types theorem now, we obtain a model K� of T1 in which
the interpretations of the constant symbols ¹ca W a 2 M º form an initial segment.
Let now K be the reduct of K� to LA. Clearly, K is a model of I�0. Using the
fact that T1 contains the diagram ofM , it follows thatM is isomorphic to an initial
segment of K (via the identification of each a 2 M with the interpretation of ca

in K). Since c>ca 2 T1, for each a 2 M , M is actually (isomorphic to) a proper
initial segment of K. Therefore, K has all the required properties.

3 Other Conditions

Our aim in this section is to show that Theorem 2.5 holds, if we replace the as-
sumption that M is closed under exponentiation by each of conditions (I), (III),
(IV) of Theorem 1.11. Note that conditions (III)–(IV) contain the assumption that
I�0 ` :�0H , which may well be false. However, following [19], we consider it
worthwhile to study how it affects Problem 2.

The argument when we adopt one of conditions (I), (III), (IV) is basically similar
to that employed when M ˆ exp. The main difference between the approach in
Section 2 and the one taken in this section is that here we have to pay more attention
to the behavior of the satisfaction formula Sat0, so that we can keep on working with
(modifications of) it even when M satisfies properties other than being a model of
exp. In fact, assuming either one of conditions (III) and (IV), Sat0 works with b
significantly smaller than in Theorem 2.3; this is due to the following result from
[16, p. 320].

Theorem 3.1 Assuming I�0 ` :�0H , the bound 2.max.Ea/C2/p'q in Theorem 2.3
can be replaced by .max.Ea/C 2/p'q.

Remarks 3.2 The assumption I�0 ` :�0H is necessary only if we need to be
able to talk about the satisfiability of all standard formulas. So, if we need to talk
about the satisfiability of formulas with Gödel number < k, k 2 N, it suffices to
know that .max.Ea/C 2/k exists, which is guaranteed in any model of I�0.
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Independently of which condition we will be assuming, we have to work with a
restricted form of the formula Tabcon.T /. Indeed, we will be using k-Tabcon.T /,
which denotes the formula expressing “there is no tableau proof of a contradiction
from T , using only substitution instances of formulas with Gödel number � k”; note
that this is strongly reminiscent of the formula Con.X; k/, which was introduced and
used extensively in [18].

It is not difficult to check that Lemma 2.2 holds for the restricted form of the
formula expressing the tableau consistency of a theory; that is, we can prove the
following result.

Lemma 3.3 For any modelM of I�0 and i 2 M , any theory T coded inM , and
any sentence � , if M ˆ :i -Tabcon.T C �/ and M ˆ :i -Tabcon.T C :�/, then
M ˆ :i -Tabcon.T /.

Now we can proceed to proving the following variant of Theorem 2.5.

Theorem 3.4 If M is a countable model of B†1 satisfying one of conditions (I),
(III), (IV) of Theorem 1.11, then there exists K ˆ I�0 such that M �e K.

Proof Letting M be as in the hypothesis, we use the same notation as in the proof
of Theorem 2.5. Clearly, what we have to prove is modifications of Lemma 2.6 and
Lemma 2.7.

Lemma 3.5

(a) If M satisfies condition (I) or (IV), then, for all k 2 N,

M ˆ k-Tabcon.I�0 C�C c>M/:

(b) If M satisfies condition (III), then there exists j 2 M � N such that

M ˆ j -Tabcon.I�0 C�C c>M/:

Proof of Lemma 3.5. (a) We essentially repeat the proof of Lemma 2.6, noting that
the formula Sat0 is still at our disposal, in view of the remark just after Theorem 3.1.

(b) In this case, we can do better than when M satisfies condition (I) or (IV).
Indeed, one can mimic the proof of Lemma 2.6, working with j -tableau proofs, for
any nonstandard j much smaller than the 
 of condition (III).

Let us now proceed to the counterpart of Lemma 2.7.

Lemma 3.6 (a) AssumeM satisfies condition (I) or (IV). If �.y; c; Ec/ is a formula
of LA�, a 2 M and T is a finite extension of I�0 such that

M ˆ k-Tabcon.T C�C c>M/; for all k 2 N;

then either

M ˆ k-Tabcon
�
T C�C c>M C :9y�ca�.y; c; Ec/

�
; for all k 2 N;

or there exists b�Ma such that

M ˆ k-Tabcon
�
T C�C c>M C �.cb; c; Ec/

�
; for all k 2 N:

(b) Assume M satisfies condition (III). If �.y; c; Ec/ is a formula of LA�, a 2 M

and T is a finite extension of I�0 such that

M ˆ j -Tabcon.T C�C c>M/; for some j 2 M � N;
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then either

M ˆ j -Tabcon
�
T C�C c>M C :9y�ca�.y; c; Ec/

�
; for some j 2 M � N;

or there exists b�Ma such that

M ˆ j -Tabcon
�
T C�C c>M C �.cb; c; Ec/

�
; for some j 2 M � N:

Proof of Lemma 3.6. (a) First, we note that, as shown in [19], if M satisfies con-
dition (IV), then it satisfies condition (I). Hence it suffices to work withM satisfying
condition (I).

So let us assume M is short …1-recursively saturated and T is a finite extension
of I�0 such that

M ˆ k-Tabcon.T C�C c>M/; for all k 2 N; (5)
M ˆ :k0-Tabcon

�
T C�C c>M C :9y�ca�.y; c; Ec/

�
;

for some k0 2 N: (6)

We will show that there exists b �M a such that

M ˆ k-Tabcon
�
T C�C c>M C �.cb; c; Ec/

�
; for all k 2 N: (7)

Observe that the set

Z D
®
z � a ^ k-Tabcon

�
T C�C c>M C �.cb; c; Ec/

� ˇ̌
k 2 N

¯
is a recursive set of …1 formulas. We claim that Z is finitely satisfiable in M .
Supposing not, there would be some k1; : : : ; km 2 N such that

M ˆ :9z � a
^

1�i�m

ki -Tabcon
�
T C�C c>M C �.cz ; c; Ec/

�
:

Letting K D max¹k1; : : : ; kmº, we see that

M ˆ 8z � a9t:K-Tabcon
�
T C�t C c>t C �.cz ; c; Ec/

�
;

where�t denotes the restriction of the diagram to sentences involving constants with
index less than t .

Since M satisfies B†1, there exists b 2 M such that

M ˆ 8z � a9t � b:K-Tabcon
�
T C�t C c>t C �.cz ; c; Ec/

�
:

But now note that the size of a K-tableau proof from T C �t C c>t C �.cz ; c; Ec/

of a contradiction cannot exceed max.a; b/L, for some natural number L depend-
ing on K. Therefore, by an inductive argument similar to that used in the proof of
Lemma 2.6, we can show that

M ˆ :K-Tabcon
�
T C�C c>M C 9y�ca�.y; c; Ec/

�
:

But then, by (6) and Lemma 3.3, it follows that

M ˆ :L-Tabcon.T C�C c>M/;

with L D max.k0; K/, which contradicts (5).
It follows that Z is finitely satisfiable in M and so it is satisfied in M , by the

saturation hypothesis about M . Therefore, there exists b �M a such that (7) holds,
as required.
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(b) Suppose that M satisfies condition (III) and T is a finite extension of I�0

such that
M ˆ j0-Tabcon.T C�C c>M/; for some j0 2 M � N; (8)
M ˆ :j -Tabcon

�
T C�C c>M C :9y�ca�.y; c; Ec/

�
;

for all j 2 M � N; (9)

for all b �
M a; M ˆ :j -Tabcon

�
T C�C c>M C �.cb; c; Ec/

�
;

for all j 2 M � N: (10)
Clearly, (10) implies that

M ˆ 8z � a9t:j0-Tabcon
�
T C�t C c>t C �.cz ; c; Ec/

�
:

Since M satisfies B†1, there exists b 2 M such that
M ˆ 8z � a9t � b:j0-Tabcon

�
T C�t C c>t C �.cz ; c; Ec/

�
:

As in the first part of the proof, we observe that the size of a j0-tableau proof of a
contradiction from TC�t Cc>tC�.cz ; c; Ec/ cannot exceed max.a; b/j0 . Therefore,
one can use induction on z to prove that

M ˆ :j0-Tabcon
�
T C�C c>M C 9y�ca�.y; c; Ec/

�
: (11)

But now, combining (11) with (9) and Lemma 3.3, it follows that
M ˆ :j0-Tabcon.T C�C c>M/;

which contradicts (8).

Returning to the proof of Theorem 3.4, we see that Lemma 3.5 and Lemma 3.6 enable
us to construct a sequence of theories in LA� satisfying conditions (a)–(c) at the end
of the proof of Theorem 2.5, the only difference being that the formula Tabcon.� � � /
has to be replaced by its restricted version. Then we can apply the omitting types
theorem as before to obtain a proper end extension K ˆ I�0 of M .

4 Concluding Remarks

Whether or not one prefers to use the notion of fullness or the approach suggested by
the ACT, several end extendability problems arise naturally, some of which we will
discuss in what follows.

Some variants of Problem 2 concern the possibility of proving Theorem 2.5, if
M satisfies an axiom weaker than exp. A particularly interesting case is when exp is
replaced by �1, that is, the axiom expressing “the function xjxj is total,” where jxj

denotes the length of x.

Problem 4.1 Is every countable model M of B†1 C �1 extendable to a model
K of I�0 such that M �e K?

It is well known (see, e.g., [10]) that the strength of B†1 C�1 lies strictly between
that of B†1 and B†1 C exp, so attacking Problem 4.1 seems worthwhile.

Another direction of further work concerns the issue of cardinality of the model
M , whose end extendability is studied. Indeed, in view of Theorem 1.4 and the fact
that every model of OI (open induction) is properly end extendable to a model of OI,
which was proved by Boughattas [4, p. 714], it is natural to ask what happens for
arbitrary M ; that is, consider the following problems.
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Problem 4.2 Is every model M of B†1 C exp extendable to a model K of I�0

such that M �e K?

Problem 4.3 Is every model M of B†1 C �1 extendable to a model K of I�0

such that M �e K?

Finally, we may consider variants of Problem 4.1, which regard the end extendabil-
ity of models of theories weaker than B†1 C �1. For example, one can replace
B†1 C �1 by T i

2 C B†b
i , where, as usual, T i

2 denotes the theory of †b
i -induction

and B†b
i the theory of †b

i -collection, as defined by Buss in [5] and [6].
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