SCE-Cell Decomposition and OCP in Weakly O-Minimal Structures

Jafar S. Eivazloo and Somayyeh Tari

Abstract Continuous extension (CE) cell decomposition in o-minimal structures was introduced by Simon Andrews to establish the open cell property (OCP) in those structures. Here, we define strong CE-cells in weakly o-minimal structures, and prove that every weakly o-minimal structure with strong cell decomposition has SCE-cell decomposition if and only if its canonical o-minimal extension has CE-cell decomposition. Then, we show that every weakly o-minimal structure with SCE-cell decomposition satisfies OCP. Our last result implies that every o-minimal structure in which every definable open set is a union of finitely many open CE-cells, has CE-cell decomposition.

1 Introduction and Preliminaries

A first-order expansion $\mathcal{M}=(M,<,\ldots)$ of a dense linear order without endpoints is said to be *o-minimal* (resp., *weakly o-minimal*) if every unary definable (with parameters from M) subset of M is a finite union of open intervals and points (resp., open convex subsets and points). Recall that intervals in the linearly ordered set (M,<) are defined as in $(\mathbb{R},<)$, and a subset C of M is said to be *convex* if for all a < b in C and any $c \in M$, a < c < b implies that $c \in C$. We use (a,b) to denote an open interval with endpoints a and b, but $\langle a,b \rangle$ denotes an ordered pair with components a and b. When we use $\overline{a} \in A$, we mean $\overline{a} \in A^n$ for some positive integer $n \in \mathbb{N}^+$. Here, we are concerned with interval topology on M for which the set of all open intervals constitutes a basis. Also, for any positive integer n, we equip M^n with the product topology. An open box in M^n is a product of n open intervals I_1, \ldots, I_n with endpoints in M. The set of all open boxes in M^n is a basis for the product topology on M^n . The topological closure of a set $X \subseteq M^n$ will be denoted by cl(X). Also, cl(X) denotes the frontier of X; that is, $cl(X) \setminus X$.

Received March 14, 2013; accepted May 13, 2014 First published online April 20, 2016

2010 Mathematics Subject Classification: Primary 03C64

Keywords: weakly o-minimal structure, open cell property, SCE-cell decomposition

© 2016 by University of Notre Dame 10.1215/00294527-3507270

Throughout the paper, π will denote a projection map which drops the last coordinate. Let $f: X \to M$ be a definable function, and let $a \in \operatorname{cl}(X)$. Then, we write $\lim_{t\to a} f(t) = b$, where $b \in M \cup \{\pm \infty\}$, if for every open neighborhood V of b there exists an open neighborhood U of a in M^n such that for all $x \in U \cap X$, $f(x) \in V$.

Let $\mathcal{M}=(M,<,\ldots)$ be a weakly o-minimal structure. For $C,D\subseteq M$, let C< D if and only if c< d for all $c\in C$ and $d\in D$. A pair $\langle C,D\rangle$ of nonempty subsets of M is called a (Dedekind) cut in (M,<) if $M=C\cup D, C< D$, and D has no lowest element. A cut $\langle C,D\rangle$ in (M,<) is said to be definable in \mathcal{M} if and only if the sets C,D are definable in \mathcal{M} . The set of all definable cuts of \mathcal{M} will be denoted by \overline{M} . For $\langle C_1,D_1\rangle,\langle C_2,D_2\rangle$ in \overline{M} , let $\langle C_1,D_1\rangle<\langle C_2,D_2\rangle$ if and only if $C_1\subset C_2$. With this relation, $(\overline{M},<)$ is a dense linear order without endpoints. By identifying any element $a\in M$ with the definable cut $\langle (-\infty,a],(a,+\infty)\rangle,(\overline{M},<)$ is an extension of (M,<), where M is dense in \overline{M} . A function $f:X\to \overline{M}$, where $X\subseteq M^m$ is a definable set in \mathcal{M} , is said to be definable in \mathcal{M} if and only if the set $A=\{\langle \overline{x},y\rangle\in X\times M:y< f(\overline{x})\}$ is definable in \mathcal{M} . The definable set A is called the defining set of A in A.

We will use some basic notions from (weak) o-minimality without giving the definitions, such as k-cell, cell decomposition, and so on. For further information about o-minimality, we refer the reader to van den Dries [4]; for weak o-minimality, see Macpherson, Marker, and Steinhorn [3] and Wencel [5].

Let $\mathcal{M}=(M,<,\ldots)$ be an o-minimal structure. The structure \mathcal{M} is said to have the *open cell property*, OCP, if every nonempty definable open subset of M^n , for any positive integer n, is a finite union of open cells. Wilkie has shown that if $\mathcal{M}=(M,<,+,\cdot,\ldots)$ is an o-minimal expansion of a real closed field, then every definable bounded open subset $S\subseteq M^n$ is a finite union of open cells (see [7]). It is easy to construct an open definable subset of M^2 that cannot be expressed as a finite union of definable open cells. Edmundo, Elefteriou, and Prelli in [2] extended the result of Wilkie for o-minimal expansions of an ordered group. Andrews in [1] introduced continuous extension cell decomposition (i.e., denoted by CE-cell decomposition) in o-minimal structures. Then, he proved that every o-minimal structure having CE-cell decomposition satisfies OCP.

In this article, we focus on OCP in weakly o-minimal structures. First, we combine CE-cell decomposition of [1] with strong cell decomposition of [5] to introduce strong continuous extension cell decomposition (SCE-cell decomposition) in weakly o-minimal structures. Wencel [5] showed that every weakly o-minimal structure $\mathcal{M} = (M, <, \ldots)$ with strong cell decomposition has a canonical o-minimal extension $\overline{\mathcal{M}} = (\overline{M}, <, \ldots)$. In Section 2, we show that \mathcal{M} has SCE-cell decomposition if and only if $\overline{\mathcal{M}}$ has CE-cell decomposition. We use this result to show that every weakly o-minimal structure with SCE-cell decomposition has OCP; that is, every nonempty definable open set is a finite union of open strong cells. Let $\mathcal{M} = (M, <, \ldots)$ be a weakly o-minimal structure with strong cell decomposition. In Section 3, we also prove that if every definable open set $X \subseteq M^n$, $n \in \mathbb{N}$, is a union of finitely many SCE-cells, then \mathcal{M} holds SCE-cell decomposition. This implies somehow a partial converse to [1, Theorem 2].

2 SCE-Cell Decomposition in Weakly O-Minimal Structures

Let $\mathcal{M}=(M,<,\ldots)$ be a weakly o-minimal expansion of a dense linear order (M,<). According to [5], strong cells in M^m and their completions in \overline{M}^m are simultaneously defined for any $m\in\mathbb{N}^+$. The completion of a strong cell $C\subseteq M^m$ will be denoted by \overline{C} .

- (i) Any singleton of M is a 0-strong cell in M and is equal to its completion.
- (ii) A nonempty open convex definable subset of M is a 1-strong cell in M. If $C \subseteq M$ is a 1-strong cell, then $\overline{C} := \{x \in \overline{M} \mid (\exists a, b \in C) (a < x < b)\}$. Let $m \in \mathbb{N}^+$, $k \leq m$, and suppose that we have already defined k-strong cells in M^m and their completions in \overline{M}^m .
- (iii) If $C \subseteq M^m$ is a k-strong cell in M^m and $f: C \to M$ is a definable continuous function which has a (necessarily unique) continuous extension $\overline{f}: \overline{C} \to \overline{M}$, then the graph of f, which is denoted by $\Gamma(f)$, is a k-strong cell in M^{m+1} and its completion in \overline{M}^{m+1} is defined as $\Gamma(\overline{f})$.
- (iv) Assume that $C\subseteq M^m$ is a k-strong cell in M^m and that $f,g:C\to \overline{M}\cup\{\pm\infty\}$ are definable continuous functions with continuous extensions $\overline{f},\overline{g}:\overline{C}\to \overline{M}\cup\{\pm\infty\}$, respectively, such that $\overline{f}(\overline{a})<\overline{g}(\overline{a})$ for all $\overline{a}\in\overline{C}$. Then, the set

$$(f,g)_C := \{ \langle \overline{a}, b \rangle \in C \times M : f(\overline{a}) < b < g(\overline{a}) \}$$

is a (k+1)-strong cell in M^{m+1} . The completion of $(f,g)_C$ in \overline{M}^{m+1} is the set

$$(\overline{f},\overline{g})_{\overline{C}}:=\big\{\langle\overline{a},b\rangle\in\overline{C}\times\overline{M}:\overline{f}(\overline{a})< b<\overline{g}(\overline{a})\big\}.$$

For a k-strong cell C, $\dim(C) = k$ is the topological dimension of C. A weakly o-minimal structure \mathcal{M} is said to have *strong cell decomposition* if for any positive integers m, k and any definable sets $X_1, \ldots, X_k \subseteq M^m$, there exists a decomposition of M^m into strong cells that partitions each of the sets $X_1, \ldots X_k$. (For the notions of decomposition and partitioning a set, see [4].)

For $X \subseteq M^m$, let $\operatorname{cl}_{\overline{M}}(X)$ denote the topological closure of X in the space \overline{M}^m . Using induction on m, one can see that if C is a strong cell, then $\overline{C} \subseteq \operatorname{cl}_{\overline{M}}(C)$. So, $\operatorname{cl}_{\overline{M}}(C) = \operatorname{cl}(\overline{C})$.

Let $C \subseteq M^m$ be a strong cell, and let $f: C \longrightarrow \overline{M}$ be a definable function. Then, f is said to be *strongly continuous* if and only if it has a (unique) continuous extension $\overline{f}: \overline{C} \longrightarrow \overline{M}$. A function which is identically equal $+\infty$ or $-\infty$, and whose domain is a strong cell will be also strongly continuous.

- In [1], continuous extension cells, CE-cells, are defined inductively in an ominimal structure $(M, <, \ldots)$. In M, CE-cells are exactly the points and open intervals. The cells $\Gamma(f)_C$ and $(g,h)_C$ are CE-cells if C is a CE-cell and there exist continuous extensions of f, g, and h on $\operatorname{cl}(C)$. An o-minimal structure is said to have the CE-cell decomposition property if any cell decomposition admits a refinement by CE-cells. Below, we define strong CE-cells (SCE-cells) in a weakly o-minimal structure $\mathcal M$ inductively.
 - (i) Every singleton of M is a 0-SCE-cell, and every definable open convex subset of M is a 1-SCE-cell.

- (ii) If $C \subseteq M^n$ is a k-SCE-cell, where $k \le n$, and $f: C \to M$ is a definable continuous function which has a continuous extension $\overline{f}: \operatorname{cl}_{\overline{M}}(C) \to \overline{M}$, then $\Gamma(f) = \{\langle \overline{x}, y \rangle \in C \times M \mid y = f(\overline{x}) \}$ is a k-SCE-cell.
- (iii) If $C \subseteq M^n$ is a k-SCE-cell and $f,g:C \to \overline{M}$ are definable continuous functions which have continuous extensions $\overline{f},\overline{g}:\operatorname{cl}_{\overline{M}}(C) \to \overline{M}$ such that $\overline{f}|_{\overline{C}} < \overline{g}|_{\overline{C}}$, then $(f,g)_C = \{\langle \overline{x},y \rangle \in C \times M \mid f(\overline{x}) < y < g(\overline{x})\}$ is a (k+1)-SCE-cell.

The dimension of a k-SCE-cell is k. As in the o-minimal case, one can see that for $0 \le k < m$ and every k-SCE-cell $C \subseteq M^m$ there exists a k-SCE-cell $D \subseteq M^{m-1}$ and a definable homeomorphism π_C from C onto D which has a definable continuous extension $\overline{\pi}_C$ from $\operatorname{cl}_{\overline{M}}(C)$ onto $\operatorname{cl}_{\overline{M}}(D)$. An SCE-cell decomposition for $\mathcal M$ is a strong cell decomposition of $\mathcal M$ in which any strong cell is an SCE-cell. Note that if $\mathcal C$ is an SCE-cell decomposition of M^{m+1} , then $\pi(\mathcal C) = \{\pi(C) \mid C \in \mathcal C\}$ is an SCE-cell decomposition of M^m .

In the following example, we give a weakly o-minimal structure with strong cell decomposition but without SCE-cell decomposition. We first recall the notion of nonvaluational (weakly) o-minimal structure. Let $\mathcal{M}=(M,<,+,\ldots)$ be a (weakly) o-minimal expansion of an ordered abelian group. A cut $\langle C,D\rangle$ of M is said to be *nonvaluational* if for any $\epsilon\in M^{>0}$, there exist $x\in C$ and $y\in D$ such that $|x-y|<\epsilon$. Then, M is called *nonvaluational* if every definable cut of M is nonvaluational. By Wencel [6, Theorem 2.11], every expansion of a nonvaluational weakly o-minimal structure M by a family of nonvaluational cuts of M is a nonvaluational weakly o-minimal structure, so it has the strong cell decomposition property by [5, Corollary 2.16].

Example 2.1 Let $\mathcal{M}=(M,<,+,\cdot,0,1,\ldots)$ be a weakly o-minimal nonvaluational expansion of a real closed field, for example, the ordered field of real algebraic numbers expanded by a unary predicate for the set of real algebraic numbers less than π . Then, \mathcal{M} has strong cell decomposition but does not have SCE-cell decomposition; as for the definable strongly continuous function $f:(0,+\infty)\to \overline{M}$, where $f(x)=\frac{1}{x}$, the definable strong cell $(-\infty,f)_{(0,+\infty)}$ cannot be a finite union of SCE-cells.

It is worth noting that SCE-cell decomposition for weakly o-minimal structures does not imply the o-minimality. To illustrate that, let $\mathcal{M}=(M,<,+,\{\lambda\mid\lambda\in D\})$ be an ordered vector space over an ordered division ring D, and let $\{C_i\mid i\in I\}$ be a family of nonvaluational convex subsets of M. Then $\mathcal{M}_1=(M,<,+,\{\lambda\mid\lambda\in D\},\{C_i\mid i\in I\})$, which is a nonvaluational weakly o-minimal structure, has strong cell decomposition. In the following, we make the method of [4,(1.7.4)] compatible with weak o-minimality to show that \mathcal{M}_1 has indeed SCE-cell decomposition.

We say that a function $f: M^n \to \overline{M}$ is *pseudoaffine* if there exist $k \in \mathbb{N}$, $C_1, \ldots, C_k \in \{C_i \mid i \in I\}, \lambda_1, \ldots, \lambda_n, \gamma_1, \ldots, \gamma_k \in D$, and $\alpha \in M$ such that

$$f(x_1,\ldots,x_n)=\lambda_1x_1+\cdots+\lambda_nx_n+\alpha+\gamma_1C_1+\cdots+\gamma_kC_k.$$

Note that by $\gamma_i C_i$ in the above expression, we mean the least upper bound of the (proper) convex set $\gamma_i C_i$ in \overline{M} . If k=0, then f is an affine function. Also, a basic pseudo-semilinear set in M^n is a set of the form

$${x \in M^n \mid f_1(x) = \dots = f_p(x) = 0, g_1(x) > 0, \dots, g_q(x) > 0},$$

where the f_i 's are affine functions and the g_j 's are pseudoaffine functions. A pseudo-semilinear set in M^n is a finite Boolean combination of basic pseudo-semilinear sets. As in [4], one can show that \mathcal{M}_1 has a cell decomposition property for which all cell-defining functions are pseudoaffine. Thus, every cell here is an SCE-cell and so \mathcal{M}_1 has SCE-cell decomposition.

The proof of the following fact is completely routine.

Fact 2.2 Assume that $\mathcal{M}=(M,<,\ldots)$ is a weakly o-minimal structure with SCE-cell decomposition, m is a positive integer, X is a definable subset of M^m , and $f:X\to \overline{M}$ is a definable function. Then, there is an SCE-cell decomposition \mathcal{C} of M^m which partitions X, and for each $C\in\mathcal{C}$ with $C\subseteq X$, $f|_C$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$.

Refined strong cells are all those whose boundary functions (cell-defining functions) assume values in one of the sets: $\{-\infty\}$, $\{+\infty\}$, M, $\overline{M}\setminus M$. As mentioned in [5, Fact 2.5], it is easy to see that if M has strong cell decomposition, then every strong cell can be partitioned into finitely many refined strong cells; so every strong cell decomposition can be refined into a cell decomposition with refined strong cells.

Let $\mathcal{M}=(M,<,\ldots)$ be a weakly o-minimal structure with strong cell decomposition. By [5, Section 3], the structure $\overline{\mathcal{M}}=(\overline{M},<,\{\overline{C}\mid C\text{ is a refined strong cell in }\mathcal{M}\})$ is o-minimal. It is called the *canonical o-minimal extension* of \mathcal{M} . As noted in [5, comments before Fact 3.4], for every definable set $X\subseteq \overline{M}^n$ in $\overline{\mathcal{M}}, X\cap M^n$ is a definable set in \mathcal{M} .

In the following fact, which can be proved inductively on m, we compare cell types in \mathcal{M} and $\overline{\mathcal{M}}$.

- Fact 2.3 Let $\mathcal{M} = (\underline{M}, <, \ldots)$ be a weakly o-minimal structure with strong cell decomposition, and let $\overline{\mathcal{M}}$ be its canonical o-minimal extension. Then we have the following.
 - (i) If $C \subseteq M^m$ is a strong cell (resp., SCE-cell), then \overline{C} is a cell (resp., CE-cell) in $\overline{\mathcal{M}}$. If C is, in addition, open, then \overline{C} is open too.
 - (ii) If $S \subseteq \overline{M}^m$ is an open cell (resp., open CE-cell) in $\overline{\mathcal{M}}$, then $S \cap M^m$ is a strong open cell (resp., open SCE-cell) in \mathcal{M} whose completion is S.

Note that (ii) does not hold for nonopen cells. To see that, let $\mathcal{M}=(M,<,+,\cdot,0,1,P)$ be the ordered field of real algebraic numbers expanded by $P=(-\infty,\pi)$. We remarked in Example 2.1 that \mathcal{M} has strong cell decomposition. Let $S=\Gamma(f)$, where $f:(0,7)\to \overline{M}$ is a continuous definable function in $\overline{\mathcal{M}}$ such that f(x)=x for $x\in(0,\pi)$, $f(x)=\pi$ for $x\in[\pi,2\pi]$, and $f(x)=\frac{1}{2}x$ for $x\in(2\pi,7)$. Then, S is a CE-cell in $\overline{\mathcal{M}}$, but $S\cap M^2$ is a union of two disjoint SCE-cells in \mathcal{M} .

In the following, we make a link between the SCE-cell decomposition property of a weakly o-minimal structure \mathcal{M} having strong cell decomposition and the CE-cell decomposition property of the canonical o-minimal extension $\overline{\mathcal{M}}$ of \mathcal{M} . First, we provide some requirements in the following lemmas, where we fix an arbitrary weakly o-minimal structure $\mathcal{M} = (M, <, \ldots)$.

Lemma 2.4 Let $C \subseteq M^m$ be an open SCE-cell for some $m \in \mathbb{N}^+$, and let $a \in \operatorname{cl}_{\overline{M}}(C)$. Then, for every open box $B \subseteq M^m$ with $a \in \overline{B}$, there exists an open box $B_1 \subseteq B$ with $a \in \overline{B_1}$ such that $B_1 \cap C$ is an open SCE-cell.

Proof This is done by induction on m. It is clear for m=1. Assume that $C\subseteq M^{m+1}$ is an open SCE-cell, with $a\in \operatorname{cl}_{\overline{M}}(C)$. Then, $C=(f,g)_D$, where D is an open SCE-cell in M^m and f,g are definable continuous functions which have definable continuous extensions $\overline{f},\overline{g}:\operatorname{cl}_{\overline{M}}(D)\to \overline{M}$ such that $\overline{f}|_{\overline{D}}<\overline{g}|_{\overline{D}}$. Let $B=E\times I$ be an open box with $a=\langle \overline{a},a_{m+1}\rangle\in \overline{B}$. Since $a\in\operatorname{cl}_{\overline{M}}(C)$, $\lim_{t\to \overline{a}} f(t)\leq a_{m+1}\leq \lim_{t\to \overline{a}} g(t)$ and $\overline{a}\in\operatorname{cl}_{\overline{M}}(D)$. So, we have four cases as follows.

- (i) $\lim_{t\to \overline{a}} f(t) < a_{m+1} < \lim_{t\to \overline{a}} g(t)$. Let J = (c,d) be an open subinterval of I where $\lim_{t\to \overline{a}} f(t) < c < a_{m+1} < d < \lim_{t\to \overline{a}} g(t)$. Then, there exists an open box $E'\subseteq E$ with $\overline{a}\in \overline{E'}$ such that $\overline{f}(\overline{E'}\cap\operatorname{cl}_{\overline{M}}(D)) < c$ and $\overline{g}(\overline{E'}\cap\operatorname{cl}_{\overline{M}}(D)) > d$. By the induction hypothesis, there is an open box $E''\subseteq E'$ containing \overline{a} in $\overline{E''}$ such that $E''\cap D$ is an open SCE-cell with $\overline{E''\cap D}\subseteq \overline{D}$. Then, $E''\times J$ is the desired open box. Note that $(E''\times J)\cap C=(h_1,h_2)_{E''\cap D}$, where h_1 and h_2 are the definable constant functions with values c and d, respectively.
- (ii) $\lim_{t\to \overline{a}} f(t) < a_{m+1} = \lim_{t\to \overline{a}} g(t)$. In this case, we take an open subinterval $J \subseteq I$ as (c,d) where $\lim_{t\to \overline{a}} f(t) < c < a_{m+1} < d$. Now, similarly to the case (i), there exists an open box E'' with $\overline{a} \in E''$ such that $E'' \cap D$ is an open SCE-cell with $\overline{E'' \cap D} \subseteq \overline{D}$. Then, $(E'' \times J) \cap C = (h,g)_{E'' \cap D}$ is the desired open box in which h is the constant function c.
- (iii) $\lim_{t\to \overline{a}} f(t) = a_{m+1} < \lim_{t\to \overline{a}} g(t)$. This case is completely similar to the case before.
- (iv) $\lim_{t\to \overline{a}} f(t) = a_{m+1} = \lim_{t\to \overline{a}} g(t)$. In this case, we take $E' \subseteq E$ as an open box with $a \in \overline{E'}$ such that for every $x \in E' \cap \operatorname{cl}_{\overline{M}}(D)$, $\overline{f}(x)$, $\overline{g}(x) \in I$. By the induction hypothesis, there is an open box $E'' \subseteq E'$ containing \overline{a} in $\overline{E''}$ such that $E'' \cap D$ is an open SCE-cell with $\overline{E'' \cap D} \subseteq \overline{D}$. Then, we have $(E'' \times I) \cap C = (f, g)_{E'' \cap D}$.

Lemma 2.5 Let $C \subseteq M^m$ be an open SCE-cell for some $m \in \mathbb{N}^+$, $a \in \operatorname{cl}_{\overline{M}}(C)$, and let C be an SCE-cell decomposition that partitions C. Assume that C_1, \ldots, C_n are all elements of C such that $C_i \subseteq C$ and $a \in \operatorname{cl}_{\overline{M}}(C_i)$ for every $1 \leq i \leq n$. Then, there exists an open box B with $a \in \overline{B}$ such that $B \cap C = \bigcup_{1 \leq i \leq n} (B \cap C_i)$.

Proof This is done by induction on m. It is clear for m=1. Let $C=(f,g)_D\subseteq M^{m+1}$ be an open SCE-cell, let $a=\langle \overline{a},a_{m+1}\rangle\in \operatorname{cl}_{\overline{M}}(C)$, and let $\mathcal C$ be an SCE-cell decomposition of M^{m+1} that partitions C. Let $\mathcal C'=\{C_1,\ldots,C_n\}$ be the set of all elements of $\mathcal C$ such that $C_i\subseteq C$ and $a\in\operatorname{cl}_{\overline{M}}(C_i)$ for every $1\leq i\leq n$. Then, for every $E\in\pi(\mathcal C')$, we have $(f,g)_E=\bigcup_{0\leq i\leq k_E}(h_i,h_{i+1})_E\cup\bigcup\{\Gamma(h_i|_E)\mid 1\leq i\leq k_E \text{ and }\Gamma(h_i|_E)\in\mathcal C\}$ for some $k_E\geq 0$, where $h_0=f,h_{k_E+1}=g$, and any h_i is a definable continuous function which has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(E)$. Let $\mathcal C_E=\{(h_i,h_{i+1})_E\mid 0\leq i\leq k_E\}$. Since $a=\langle \overline{a},a_{m+1}\rangle\in\operatorname{cl}_{\overline{M}}(C), \overline{a}\in\operatorname{cl}_{\overline{M}}(D)$ and $\lim_{t\to \overline{a}}f(t)\leq a_{m+1}\leq \lim_{t\to \overline{a}}g(t)$. So, $\pi(C_1),\ldots,\pi(C_n)$ are all $\pi(X)\in\pi(\mathcal C)$ for which $\overline{a}\in\operatorname{cl}_{\overline{M}}(\pi(X))$ and $\pi(X)\subseteq D$. By the induction hypothesis, there exists an open box B_1 with $\overline{a}\in\overline{B_1}$ such that $B_1\cap D=\bigcup_{1\leq i\leq n}(B_1\cap\pi(C_i))$. For every $E\in\pi(\mathcal C')$, let

$$l_E = \min\{h_i \mid 0 \le i \le k_E \text{ and } (h_i, h_{i+1})_E \in \mathcal{C}_E\},\$$

$$h_E = \max\{h_{i+1} \mid 0 \le i \le k_E \text{ and } (h_i, h_{i+1})_E \in \mathcal{C}_E\}.$$

Then, it is easy to see that l_E and h_E hold the following conditions:

- (i) l_E and h_E are definable continuous functions on E which have definable continuous extensions $\overline{l_E}$ and $\overline{h_E}$ on $\operatorname{cl}_{\overline{M}}(E)$, and $\overline{l_E} < \overline{h_E}$ on \overline{E} ;
- (ii) $\lim_{t\to \overline{a}} l_E(t) \le a_{m+1} \le \lim_{t\to \overline{a}} h_E(t)$;
- (iii) if $\lim_{t\to \overline{a}} l_E(t) = a_{m+1}$, then $l_E = f|_E$; also, $h_E = g|_E$ if $\lim_{t\to \overline{a}} h_E(t) = a_{m+1}$.

There exist elements c, d in M such that $c < a_{m+1} < d$ and

- (i) $\lim_{t \to \overline{a}} l_E(t) < c$ for every $E \in \pi(\mathcal{C}')$ which $\lim_{t \to \overline{a}} l_E(t) < a_{m+1}$,
- (ii) $d < \lim_{t \to \overline{a}} h_E(t)$ for every $E \in \pi(\mathcal{C}')$ which $a_{m+1} < \lim_{t \to \overline{a}} h_E(t)$.

By the continuity of $\overline{l_E}$ and $\overline{h_E}$, there exists an open box $B_2 \subseteq B_1$ with $\overline{a} \in \overline{B_2}$, such that $\overline{l_E}(\overline{B_2} \cap \operatorname{cl}_{\overline{M}}(E)) < c$ or $c < \overline{l_E}(\overline{B_2} \cap \operatorname{cl}_{\overline{M}}(E)) < d$, and $c < \overline{h_E}(B_2 \cap \operatorname{cl}_{\overline{M}}(E)) < d$ or $d < \overline{h_E}(\overline{B_2} \cap \operatorname{cl}_{\overline{M}}(E))$ for every $E \in \pi(\mathcal{C}')$. Then, for $B = B_2 \times (c, d)$, we have $B \cap C = \bigcup_{1 \le i \le n} (B \cap C_i)$.

Lemma 2.6 Let $C \subseteq M^m$ be an open SCE-cell, and let $f: C \to \overline{M}$ be a definable strongly continuous function. Assume that C is an SCE-cell decomposition partitioning C such that for all $D \in C$, $f|_D$ has a definable continuous extension to $\operatorname{cl}_{\overline{M}}(D)$. Then, f has a definable continuous extension to $\operatorname{cl}_{\overline{M}}(C)$.

It is sufficient to show that for every $D_1, D_2 \in \mathcal{C}$ and $a \in \operatorname{cl}_{\overline{M}}(D_1) \cap$ $\operatorname{cl}_{\overline{M}}(D_2)$, $\lim_{t\to a} f|_{D_1}(t) = \lim_{t\to a} f|_{D_2}(t)$. It is true for every $a\in \overline{C}$, since f is strongly continuous. So, fix an element $a \in \operatorname{fr}(\overline{C})$, and let D_1, \ldots, D_n be all elements of \mathcal{C} such that $D_i \subseteq C$ and $a \in \operatorname{cl}_{\overline{M}}(D_i)$ for every $1 \leq i \leq n$. If the claim does not hold, then there are elements $b_1 < b_2 < \cdots < b_k$ in \overline{M} , where k > 1, such that for every $1 \le i \le n$, $\lim_{t \to a} f|_{D_i}(t) = b_i$ for some $1 \le j \le k$. By Lemma 2.5, there exists an open box B_1 with $a \in \overline{B_1}$ such that $B_1 \cap C = \bigcup_{1 \le i \le n} (B_1 \cap D_i)$. For every $1 \le j \le k$, let I_j be an open interval $(c_j, d_j) \subset M$ where $c_j < b_j < d_j < c_{j+1}$. We may assume, without loss of generality, that $\forall t \in (B_1 \cap D_i), f|_{D_i}(t) \in I_j$ for all $1 \le i \le n$ and $1 \le j \le k$ such that $\lim_{t\to a} f|_{D_i}(t) = b_j$. By Lemma 2.4, there exists an open box $B_2 \subseteq B_1$ with $a \in \overline{B_2}$ such that $B_2 \cap C$ is an open SCE-cell and $\overline{B_2 \cap C} \subseteq \overline{C}$. Since $(-\infty, f)_C$ is a strong cell with completion $(-\infty, \overline{f})_{\overline{C}}, \overline{f} : \overline{C} \subseteq \overline{M}^n) \to \overline{M}$ is a continuous definable function in the o-minimal structure $\overline{\mathcal{M}}$. Then, $\overline{f}(\overline{B_2 \cap C})$ is a definably connected set in \overline{M} , as $\overline{B_2 \cap C}$ is a cell in $\overline{\mathcal{M}}$ and hence definably connected. This is a contradiction, because of $B_2 \cap C = \bigcup_{1 \leq i \leq n} (B_1 \cap D_i)$ and $\forall t \in (B_2 \cap D_i), f|_{D_i}(t) \in I_j$ whenever $\lim_{t \to a} f|_{D_i}(t) = b_j$.

Theorem 2.7 Let $\mathcal{M}=(M,<,\ldots)$ be a weakly o-minimal structure with SCE-cell decomposition. Then every definable strongly continuous function $f:C\to \overline{M}$, where $C\subseteq M^n$ is an open SCE-cell in \mathcal{M} , has a definable continuous extension to $\operatorname{cl}_{\overline{M}}(C)$.

Proof Let $C \subseteq M^n$ be an open SCE-cell in \mathcal{M} , and let $f: C \to \overline{M}$ be a definable strongly continuous function. By Fact 2.2, there is an SCE-cell decomposition \mathcal{C} of M^n that partitions C into SCE-cells on each of which f has a continuous extension on its topological closure in \overline{M}^n . By Lemma 2.6, f has a definable continuous extension to $\operatorname{cl}_{\overline{M}}(C)$.

Corollary 2.8 Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure with SCE-cell decomposition. Then every open strong cell $C \subseteq M^m$ is a finite union $C_1 \cup \cdots \cup C_n$, for some $n \ge 1$, of open SCE-cells such that $\overline{C_i} \subseteq \overline{C}$ for $1 \le i \le n$.

Proof This is done by induction on m. It is clear for m=1. Let $C=(f,g)_D\subseteq M^{m+1}$ be an open strong cell. By the induction assumption, D is a finite union $D_1\cup\cdots\cup D_n$ of open SCE-cells such that $\overline{D_i}\subseteq \overline{D}$ for $1\le i\le n$. By Theorem 2.7, for any $1\le i\le n$, the definable strongly continuous functions $f|_{D_i},g|_{D_i}$ have definable continuous extensions on $\operatorname{cl}_{\overline{M}}(D_i)$. Hence, $(f,g)_{D_1},\ldots,(f,g)_{D_n}$ are all SCE-cells. As $C=(f,g)_{D_1}\cup\cdots\cup(f,g)_{D_n}$ and $\overline{(f,g)_{D_i}}=\overline{(f,\overline{g})_{\overline{D_i}}}\subseteq \overline{C}$ for any $1\le i\le n$, we are done.

Theorem 2.9 Let $\mathcal{M} = (M, <, \ldots)$ be a weakly o-minimal structure with strong cell decomposition. Then, \mathcal{M} has SCE-cell decomposition if and only if the canonical o-minimal extension $\overline{\mathcal{M}}$ of \mathcal{M} has CE-cell decomposition.

Proof Assume that \mathcal{M} has SCE-cell decomposition. We show that if $S \subseteq \overline{M}^n$ is a k-CE-cell in $\overline{\mathcal{M}}$ and $f: S \to \overline{M}$ is a definable continuous function, then f has a continuous extension on $\operatorname{cl}(S)$. It is clear for k=0. For $k\geq 1$, we prove it by induction on n. If $S\subseteq \overline{M}$ is a 1-cell in $\overline{\mathcal{M}}$, then $S=\overline{C}$ for some open SCE-cell C in \mathcal{M} . Then, $\operatorname{cl}(S)=\operatorname{cl}_{\overline{M}}(C)$ and $f|_C:C\to \overline{M}$ is a definable strongly continuous function in \mathcal{M} . Hence by Theorem 2.7, $\lim_{t\to a} f(t)$ exists in \overline{M} for any element $a\in\operatorname{cl}(S)$.

Now, let $S\subseteq \overline{M}^{n+1}$ be a k-CE-cell in $\overline{\mathcal{M}}$, let $f:S\to \overline{M}$ be a definable continuous function, and let $a\in \operatorname{cl}(S)$. If S is open, then by Fact 2.3(ii), $S=\overline{C}$ for some open SCE-cell in \mathcal{M} , and so $\operatorname{cl}(S)=\operatorname{cl}_{\overline{M}}(C)$. Thus by Theorem 2.7, $\lim_{t\to a}f(t)$ exists in \overline{M} for any $a\in\operatorname{cl}(S)$. Now, assume that S is not open. In this case, there exists a k-CE-cell $U\subseteq \overline{M}^n$ and a definable homeomorphism π_S from S onto claim S onto S onto S onto claim S onto S onto claim S onto claim S onto S onto claim S onto claim

Conversely, assume that $\overline{\mathcal{M}}$ has CE-cell decomposition. Since \mathcal{M} has strong cell decomposition, the following assertions, which can be easily proved by using simultaneous induction on m, follow the SCE-cell decomposition of \mathcal{M} .

- (a)_m. If C_1, \ldots, C_k are strong cells in M^m , then there exists an SCE-cell decomposition \mathcal{C} of M^m that partitions each of the sets C_1, \ldots, C_k .
- (b)_m. If C_1, \ldots, C_k are strong cells in M^m and $f_1: C_1 \to \overline{M}, \ldots, f_k: C_k \to \overline{M}$ are definable strongly continuous functions, then there exists an SCE-cell decomposition \mathcal{C} of M^m that partitions each of the sets C_1, \ldots, C_k , and for every $D \in \mathcal{C}$ such that $D \subseteq C_i$, $f_i|_D$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(D)$.
- (a)₁ is clear. For (b)₁, there exists a CE-cell decomposition \mathcal{D} of \overline{M} that partitions each of the sets $\overline{C_1}, \ldots, \overline{C_k}$, and for every $D \in \mathcal{D}$ such that $D \subseteq \overline{C_i}$, $\overline{f_i}|_D$ has a definable continuous extension on $\operatorname{cl}(D)$. Then, $\mathcal{C} = \{D \cap M \mid D \in \mathcal{D}\}$ is a desired SCE-cell decomposition of M.
- For $(a)_{m+1}$, let C_1, \ldots, C_k be strong cells in M^{m+1} . There exists a strong cell decomposition \mathcal{C} that partitions each of the sets C_1, \ldots, C_k . Now, by using $(b)_m$ for all cell-defining functions of \mathcal{C} , we get a desired SCE-cell decomposition of M^{m+1} .

For (b)_{m+1}, let C_1, \ldots, C_k be strong cells in M^{m+1} , and let $f_1: C_1 \to \overline{M}, \ldots, \underline{f_k}: C_k \to \overline{M}$ be definable strongly continuous functions. By Fact 2.3, the functions $\overline{f_1}: \overline{C_1} \to \overline{M}, \ldots, \overline{f_k}: \overline{C_k} \to \overline{M}$ are definable in $\overline{\mathcal{M}}$. There exists a CE-cell decomposition \mathcal{D} of \overline{M}^{m+1} that partitions each of the sets $\overline{C_1}, \ldots, \overline{C_k}$, and for every $D \in \mathcal{D}$ such that $D \subseteq \overline{C_i}, \overline{f_i}|_D$ has a definable continuous extension on $\operatorname{cl}(D)$. By the assumption, there exists a strong cell decomposition \mathcal{C}_1 that partitions every set of $\{D \cap M^{m+1} \mid D \in \mathcal{D}\}$. Now, using $(a)_{m+1}$ on members of \mathcal{C}_1 gives a desired SCE-cell decomposition of M^{m+1} .

From Theorem 2.9, and [5, Corollary 2.16], we have the following.

Corollary 2.10 Let $\mathcal{M} = (M, <, +, \ldots)$ be a weakly o-minimal nonvaluational expansion of an ordered abelian group. If \mathcal{M} has SCE-cell decomposition, then the canonical o-minimal extension $\overline{\mathcal{M}}$ of \mathcal{M} has OCP.

It is worth noting that if $\mathcal D$ is a CE-cell decomposition of \overline{M}^m in the structure $\overline{\mathcal M}$, then $\mathcal D\cap M^m=\{D\cap M^m\mid D\in \mathcal D\}$ is not necessarily an SCE-cell decomposition for M^m in the structure $\mathcal M$. For example, we consider the structure $\mathcal M=(\mathbb Q,<,+,\{r\mid r\in \mathbb Q\},P)$ as an ordered vector space over $\mathbb Q$ expanded by $P=(-\infty,\sqrt{2})$. As we saw above, $\mathcal M$ has SCE-cell decomposition. Let $f:(0,4)\to \overline{M}$ be a continuous definable function in $\overline{\mathcal M}$ such that f(x)=x for $x\in(0,\sqrt{2})$, $f(x)=\sqrt{2}$ for $x\in[\sqrt{2},2\sqrt{2}]$, and $f(x)=\frac{1}{2}x$ for $x\in(2\sqrt{2},4)$. Then,

$$\mathcal{D} = \left\{ (-\infty, 0) \times \overline{M}, \{0\} \times \overline{M}, (-\infty, f)_{(0,4)}, \right.$$
$$\Gamma(f), (f, +\infty)_{(0,4)}, \{4\} \times \overline{M}, (4, +\infty) \times \overline{M} \right\}$$

is a CE-cell decomposition of \overline{M}^2 , while $\mathcal{D}\cap M^2$ is not even a strong cell decomposition.

3 OCP in Weakly O-Minimal Structures

We say that a weakly o-minimal structure $\mathcal{M}=(M,<,\ldots)$ has the *open cell property*, OCP, if every definable open set $X\subseteq M^m$, for each $m\in\mathbb{N}^+$, is a finite union of open strong cells. In this section, we show that weakly o-minimal structures with SCE-cell decomposition have OCP. We also provide a partial converse of that result, which implies a partial converse for Theorem 2 of [1].

Lemma 3.1 Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure with SCE-cell decomposition. Then, for every definable open set $X \subseteq M^m$, $m \in \mathbb{N}^+$, there exists an open set $Y \subseteq \overline{M}^m$ definable in \overline{M} such that $X = Y \cap M^m$.

Proof Let $X\subseteq M^m$, where $m\in\mathbb{N}^+$, be a definable open set in \mathcal{M} . By [5, Fact 2.5], there exists a strong cell decomposition \mathcal{C} of M^m that partitions X into refined strong cells C_1,\ldots,C_p , that is, strong cells with cell-defining functions taking value only in one of the sets $M,\overline{M}\setminus M$, or $\{-\infty,+\infty\}$. Assume that f_1,\ldots,f_q are all cell-defining functions of C_1,\ldots,C_p that take value in $\overline{M}\setminus M$ (if they exist). For $1\leq j\leq q$, let $\overline{f_j}:\overline{\pi(C_i)}\to\overline{M}$ be the strongly continuous extension of $f_j:\pi(C_i)\to\overline{M}\setminus M$ for some $1\leq i\leq p$. Now, set $Z=(\bigcup_{1\leq i\leq p}\overline{C_i})\cup(\bigcup_{1\leq j\leq q}\Gamma(\overline{f_j}))$ and $Y=\mathrm{int}(Z)$, the interior of Z in \overline{M}^m . It

is clear that Y is definable in \overline{M} . We show that $Y \cap M^m = X$. Since $Z \cap M^m = X$, $Y \cap M^m \subseteq X$. For the converse, we show that for every $a \in X$ there exists an open box $B \subseteq \overline{M}^m$ containing a such that $B \subseteq Z$.

By the assumption and Theorem 2.9, there exists a CE-cell decomposition \mathcal{D} of \overline{M}^m that partitions the definable set Z. By refining \mathfrak{D} , we may assume that for all $E, F \in \pi(\mathfrak{D}), E \subseteq \operatorname{cl}(F)$ whenever $E \cap \operatorname{cl}(F) \neq \emptyset$. Assume that $Z = \bigcup_{1 \leq l \leq k} D_l$, where $D_1, \ldots, D_k \in \mathcal{D}$. Let $a = (\overline{a}, a_m) \in X$, and let D be a CE-cell from $\{D_1,\ldots,D_k\}$ containing a. Since the assertion of the lemma clearly holds for m=1, we may assume that m>1. If D is open, then we are done. Assume that D is not open. Let & be the set of all $E \in \pi(\mathfrak{D})$ such that $\operatorname{cl}(E) \cap \pi(D) \neq \emptyset$. Also, let \mathcal{F} denote the set of all cell-defining functions of \mathcal{D} . Now, for every $E \in \mathcal{E}$, let $l_E = \min\{f \in \mathcal{F} \mid \text{dom}(f) = E \text{ and } a_m < \lim_{t \to \pi(a)} f(t)\}$ and $h_E = \max\{f \in \mathcal{F} \mid \operatorname{dom}(f) = E \text{ and } \lim_{t \to \pi(a)} f(t) < a_m\}$. Then, $(l_E, h_E)_E \subseteq Z$, because X is open in M^m and $a = (\overline{a}, a_m) \in X$. Also, $a \in \operatorname{cl}((l_E, h_E)_E)$. If $\pi(D)$ is open, then for $E = \pi(D)$, the open CE-cell $(l_E, h_E)_E$ contains the desired open box. Otherwise, let $U = \bigcup_{E \in \mathcal{E}} E$. Then, U is a connected open set and $\pi(a) \in U$. For every $E \in \mathcal{E}$, there are $b_E, c_E \in M$ such that $\lim_{t \to \pi(a)} l_E(t) < b_E < a_m < c_E < \lim_{t \to \pi(a)} h_E(t)$. Then, there exists an open box B_E containing $\pi(a)$ such that $h_E(B_E \cap E) > c_E$ and $l_E(B_E \cap E) < b_E$. Then, for $B_1 = \bigcap_{E \in \mathcal{E}} B_E$ and $I = \bigcap_{E \in \mathcal{E}} (b_E, c_E)$, $B = B_1 \times I$ is an open box such that $a \in B \subseteq Z$.

Theorem 3.2 Assume that $\mathcal{M} = (M, <, ...)$ is a weakly o-minimal structure with SCE-cell decomposition. Then, \mathcal{M} has OCP.

Proof Let $X \subseteq M^m$ be a definable open set. By Lemma 3.1, there is an open set $Y \subseteq \overline{M}^m$ definable in $\overline{\mathcal{M}}$ such that $X = Y \cap M^m$. By Theorem 2.9 and [1, Theorem 2], there are open cells $C_1, \ldots, C_n \subseteq \overline{M}^m$ such that $Y = \bigcup_{1 \le i \le n} C_i$. Then, $X = \bigcup_{1 \le i \le n} (C_i \cap M^m)$, where each $(C_i \cap M^m)$ is an open strong cell in \mathcal{M} by Fact 2.3(ii).

From Corollary 2.8 and Theorem 3.2, we have the following result.

Corollary 3.3 Let $\mathcal{M} = (M, <, ...)$ be a weakly o-minimal structure with SCE-cell decomposition. Then, every definable open set $X \subseteq M^m$ is a union of finitely many open SCE-cells.

The following theorem is a partial converse to the above result.

Theorem 3.4 Assume that $\mathcal{M} = (M, <, ...)$ is a weakly o-minimal structure with strong cell decomposition and that every open definable set $X \subseteq M^m$, $m \in \mathbb{N}^+$, is a finite union of open SCE-cells. Then, \mathcal{M} has SCE-cell decomposition.

Proof By simultaneous induction on m, we prove the assertions $(a)_m$, $(b)_m$, and $(c)_m$ below for any m > 0.

- (a)_m If C_1, \ldots, C_k are strong cells in M^m , then there exists an SCE-cell decomposition \mathcal{C} of M^m that partitions each of the sets C_1, \ldots, C_k .
- (b)_m If C_1, \ldots, C_k are strong cells in M^m and $f_1: C_1 \to \overline{M}, \ldots, f_k: C_k \to \overline{M}$ are definable functions, then there exists an SCE-cell decomposition \mathcal{C} of M^m that partitions each of the sets C_1, \ldots, C_k , and for every $1 \le i \le k$ and $D \in \mathcal{C}$ such that $D \subseteq C_i$, $f_i|_D$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(D)$.

(c)_m If $C \subseteq M^m$ is an SCE-cell and $f: C \to \overline{M}$ is a definable strongly continuous function, then f has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$.

Since $\mathcal M$ has strong cell decomposition, the above assertions imply that $\mathcal M$ has SCE-cell decomposition.

(a)₁ holds because strong cells in M are SCE-cells. For (b)₁, let C_1,\ldots,C_k be strong cells in M, and let $f_1:C_1\to\overline{M},\ldots,f_k:C_k\to\overline{M}$ be definable functions. By [5, Fact 2.5], there exists a strong cell decomposition $\mathcal C$ that partitions each of the sets C_1,\ldots,C_k , and for every $C\in\mathcal C$ with $C\subseteq C_i$, $f_i|_C$ is strongly continuous. By [5, Lemma 1.3], $\lim_{t\to a}f_i|_C(t)$ exists in $\overline{M}\cup \{-\infty,+\infty\}$ for every $a\in\operatorname{cl}_{\overline{M}}(C)$. Assume that $\lim_{t\to a}f_i(t)=b\in\{-\infty,+\infty\}$, where $a\in\{\sup C,\inf C\}$. In the case $b=+\infty$ and $a=\sup C$, the definable open set $(-\infty,f_i)_C\cup [a,+\infty)\times M$ cannot be a finite union of open SCE-cells. This contradicts our assumption. Similarly, three other cases conclude a contradiction. So $f_i|_C$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$. (c)₁ is clear for C a singleton. If $C\subseteq M$ is a definable convex set and $f:C\to\overline{M}$ is a definable strongly continuous function, then as we saw in (b)₁, $\lim_{t\to a}f(t)$ exists in \overline{M} for every $a\in\operatorname{cl}_{\overline{M}}(C)$. So, f has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$.

Now suppose that $(a)_i$, $(b)_i$, and $(c)_i$ hold for each $i \leq m$. For $(a)_{m+1}$, let C_1, \ldots, C_k be strong cells in M^{m+1} . There exists a strong cell decomposition $\mathcal C$ that partitions each of C_1, \ldots, C_k . Now, by applying $(b)_m$ for all cell-defining functions of $\mathcal C$, we get an SCE-cell decomposition of M^{m+1} that partitions each of the sets C_1, \ldots, C_k .

For $(b)_{m+1}$, let C_1, \ldots, C_k be strong cells in M^{m+1} , and let $f_1: C_1 \to \overline{M}, \ldots$, $f_k: C_k \to M$ be definable functions. There exists a strong cell decomposition \mathcal{C} that partitions each of the sets C_1, \ldots, C_k , and for every $C \in \mathcal{C}$ with $C \subseteq C_i, f_i|_C$ is strongly continuous. By (a)_{m+1}, we may assume that \mathcal{C} is an SCE-cell decomposition. Let $C \in \mathcal{C}$ be such that $C \subseteq C_i$ for some $1 \le i \le k$. We show that $f_i|_C$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$. For that, we consider two cases. We first assume that C is nonopen. Then, there exists an SCE-cell $D \subseteq M^m$ and a definable homeomorphism π_C from C onto D which has a definable continuous extension $\overline{\pi}_C$ from $\operatorname{cl}_{\overline{M}}(C)$ onto $\operatorname{cl}_{\overline{M}}(D)$. By $(\operatorname{c})_m$, the definable strongly continuous function $f_i|_C \circ \pi_C^{-1}: D \to \overline{M}$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(D)$. Therefore, $f_i|_C$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$. For the other case, assume that C is open. Then, $(-\infty, f_i|_C)_C$ is a strong cell and, by the hypothesis of the theorem, is a finite union of open SCE-cells, say, U_1, \ldots, U_n . Then for any $1 \le j \le n$, $f_i|_{\pi(U_j)}$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(\pi(U_j))$. By using (a)_{m+1} for SCE-cells $\pi(U_1), \ldots, \pi(U_n)$, we get an SCE-cell decomposition \mathcal{D} that partitions each of the SCE-cells $\pi(U_1), \ldots, \pi(U_n)$. Hence, for every $D \in \mathcal{D}$ contained in some $\pi(U_i)$, $f_i|_D$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(D)$. By Lemma 2.6, $f_i|_C$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$.

For $(c)_{m+1}$, let $C \subseteq M^{m+1}$ be an SCE-cell, and let $f: C \to \overline{M}$ be a definable strongly continuous function. If C is nonopen, then, after using a projection map, we use $(c)_m$. If C is open, then by $(b)_{m+1}$ there exists an SCE-cell decomposition $\mathcal D$ of M^{m+1} that partitions C, and for every $D \in \mathcal D$ such that $D \subseteq C$, $f|_D$ has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(D)$. Then, by Lemma 2.6, f has a definable continuous extension on $\operatorname{cl}_{\overline{M}}(C)$.

From Theorem 3.4 and Corollary 3.3, we have the following result, which somehow contains a partial converse to [1, Theorem 2].

Corollary 3.5 Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure. Then, \mathcal{M} has CE-cell decomposition if and only if every definable open set $X \subseteq M^m$, $m \in \mathbb{N}^+$, is a union of finitely many open CE-cells.

References

- [1] Andrews, S., "Definable open sets as finite unions of definable open cells," *Notre Dame Journal of Formal Logic*, vol. 51 (2010), pp. 247–51. Zbl 1208.03041. MR 2667935.
 DOI 10.1215/00294527-2010-015. 400, 401, 407, 408, 410
- [2] Edmundo, M. J., P. E. Elefteriou, and L. Prelli, "Coverings by open cells," Archive for Mathematical Logic, vol. 53 (2014), pp. 307–25. Zbl pre06294141. MR 3194667. DOI 10.1007/s00153-014-0367-x. 400
- [3] Macpherson, D., D. Marker, and C. Steinhorn, "Weakly o-minimal structures and real closed fields," *Transactions of the American Mathematical Society*, vol. 352 (2000), pp. 5435–83. Zbl 0982.03021. MR 1781273. DOI 10.1090/S0002-9947-00-02633-7. 400
- [4] van den Dries, L., Tame Topology and O-Minimal Structures, vol. 248 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1998. Zbl 0953.03045. MR 1633348. DOI 10.1017/CBO9780511525919. 400, 401, 402, 403
- [5] Wencel, R., "Weakly o-minimal nonvaluational structures," *Annals of Pure and Applied Logic*, vol. 154 (2008), pp. 139–62. Zbl 1208.03041. MR 2428068. DOI 10.1016/j.apal.2008.01.009. 400, 401, 402, 403, 407, 409
- [6] Wencel, R., "On expansions of weakly o-minimal non-valuational structures by convex predicates," *Fundamenta Mathematicae*, vol. 202 (2009), pp. 147–59. Zbl 1730-6329. MR 2506191. DOI 10.4064/fm202-2-3. 402
- [7] Wilkie, A. J., "Covering definable open sets by open cells," pp. 32–36 in *Proceedings of the RAAG Summer School, Lisbon 2003: O-minimal Structures*, edited by M. Edmundo, D. Richardson, and A. J. Wilkie, RAAG, Lisbon, 2005. 400

Acknowledgment

The authors thank the anonymous referee, whose useful comments helped to improve the paper.

Eivazloo
Department of Mathematics
University of Tabriz
Tabriz
Iran
eivazloo@tabrizu.ac.ir

Tari
Department of Mathematics
University of Tabriz
Tabriz
Iran
s tari@tabrizu.ac.ir