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The Distributivity on Bi-Approximation Semantics

Tomoyuki Suzuki

Abstract In this paper, we give a possible characterization of the distributivity
on bi-approximation semantics. To this end, we introduce new notions of spe-
cial elements on polarities and show that the distributivity is first-order definable
on bi-approximation semantics. In addition, we investigate the dual representa-
tion of those structures and compare them with bi-approximation semantics for
intuitionistic logic. We also discuss that two different methods to validate the
distributivity—by the splitters and by the adjointness—can be explicated with
the help of the axiom of choice as well.

1 Introduction

Bi-approximation semantics is a universal relational-type semantics for substructural
and lattice-based logics, not necessarily including distributive substructural logics
such as orthonormal logic or lattice-based modal logics (see Suzuki [11]). Unlike
other relational semantics for nondistributive lattice-based logics (see, e.g., Gold-
blatt [7], Hartonas [8], Hartonas and Dunn [9], Gehrke [5]; see also Restall [10]), the
novelty of bi-approximation semantics is to reason not only about formulas but also
sequents, that is, logical consequences, based on polarities. As bi-approximation
semantics was introduced to explicate Ghilardi and Meloni’s [6] canonicity method-
ology via relational-type structures, we can enjoy the canonicity results of lattice-
based logics in Suzuki [12] (cf. residuated frames in Galatos and Jipsen [3]). In
other words, we may say that bi-approximation semantics is a canonicity-friendly
relational semantics for lattice-based logics. In addition, a Sahlqvist-type first-order
definability for substructural logic was already shown in Suzuki [14]. Therefore, this
completes the so-called Sahlqvist theorem for substructural and lattice-based logics.
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However, while the notion of consistent variable occurrence in [12] successfully
characterizes many canonical and first-order definable sequents as a natural exten-
sion of the original Sahlqvist theorem for modal logic, there are still interesting se-
quents which do not have consistent variable occurrence in our setting. One of the
remarkable examples is the main topic of the current paper, that is, the distributivity:
� ^ . _ �/ Z) .� ^  / _ .� ^ �/. In fact, it is known that the distributivity is
canonical but does not have consistent variable occurrence. Then, it is natural to
ask how the distributivity can be characterized on bi-approximation semantics, and
whether it is first-order definable. If the distributivity is not first-order definable, our
Sahlqvist-type theorem would not be very attractive anymore, because it would mean
that we can apply our theorem only on nondistributive lattice-based logics. The main
aim of this paper is to give positive answers to these questions.

To study the distributivity on bi-approximation semantics, we will introduce dis-
tributive polarity frames by means of special elements in polarity, named splitters.
Then we will investigate how to validate the distributivity on distributive polarity
frames and how splitters essentially work on distributive polarity frames. We will
also consider the prime skeletons of distributive polarity frames as well. To this end,
we find a connection to generalized Kripke frames over distributive lattices (see [5]).

Furthermore, we think about bi-approximation semantics for intuitionistic logic.
There are two reasons that we focus on intuitionistic logic. One is that intuitionistic
logic is a well-known logic that can derive distributivity. Another reason is that intu-
itionistic logic can be seen as a substructural logic extended only with sequents that
have consistent variable occurrence: weakening and contraction. Hence, by apply-
ing the Sahlqvist theorem in [14], we can describe bi-approximation semantics for
intuitionistic logic by first-order sentences. So, in this paper, we also study how to
validate the distributivity on bi-approximation semantics and compare the underlying
polarity frames with distributive polarity frames. Interestingly, the polarity frames
for intuitionistic logic do not, at least explicitly, mention anything about splitters.
Also different is how the distributivity on bi-approximation semantics for intuition-
istic logic is validated compared with distributive polarity frames. More precisely,
bi-approximation semantics for intuitionistic logic validates by means of the adjoint-
ness of fusion and residuals, instead of splitters. However, with the help of the axiom
of choice, we can claim that bi-approximation semantics for intuitionistic logic are
also based on distributive polarity frames as well.

We outline the structure of the this paper as follows. In Section 2, we briefly recall
the idea of bi-approximation semantics, that is, how to reason about sequents on po-
larity frames, and we review fundamental properties of bi-approximation semantics.
We also see morphisms and invariance of sequents here. In Section 3, we introduce
the pivotal notions for our purpose, that is, splitters, splitting counterparts, and split-
ting pairs. By means of the splitting pairs, we give a possible characterization of
distributive polarity frames and show how it works on distributive polarity frames.
In addition, we prove a dual representation of distributive lattices and distributive po-
larity frames. Unlike what happens in the setting of the dual representation of lattices
and polarity frames, the axiom of choice is necessary here. To investigate how split-
ters essentially work on distributive polarity frames, in Section 4, we consider the
prime skeletons and prove the characteristic properties. In Section 5, we compare bi-
approximation semantics for intuitionistic logic, which is obtained by the Sahlqvist



Distributivity on Bi-Approximation Semantics 413

theorem for substructural logic with distributive polarity frames. Finally, we give
concluding remarks in Section 6.

2 Bi-Approximation Semantics: Reasoning with Logical Consequences on Polarities

Bi-approximation semantics is a universal relational-style semantics for lattice-based
logics. A novelty of our semantics is to evaluate not only formulas but also logical
consequences, that is, sequents, based on polarities. Here we briefly recall funda-
mental results for polarities (see, e.g., Davey and Priestley [2] for a polarity, and [11]
for bi-approximation semantics).

A polarity is a triple F D hX; Y;Bi of two nonempty sets X and Y , which are
not necessarily disjoint,1 and a binary relation B between them, that is, B � X � Y .
Given a polarity F D hX; Y;Bi, the binary relation B can be naturally extended to a
preorder �B on X [ Y as follows: for all x; x1; x2 2 X and y; y1; y2 2 Y , we let

1. x1 �B x2 ” for each y0 2 Y , if x2By0, then x1By0;
2. y1 �B y2 ” for each x0 2 X , if x0By1, then x0By2;
3. x �B y ” xBy;
4. y �B x ” for all x0 2 X and y0 2 Y , if x0By and xBy0, then x0By0.

Hence we may sometimes refer to the triple F D hX; Y;�Bi, instead of hX; Y;Bi,
as a polarity. Also, we may sometimes omit the subscript _B for �B , that is, �.

For the time being, until Section 5, we consider formulas constructed simply by
propositional variables p; q; : : : and two logical connectives: conjunction ^ and dis-
junction _ only. We denote by ˆ the set of propositional variables and by ƒ the set
of formulas. A sequent (logical consequence) is a pair of formulas � and  , denoted
by � Z)  .

To reason about sequents on polarities, it is necessary to introduce appropriate
valuations. Let F D hX; Y;�i be a polarity, let }.X/ be the poset of the powerset of
X and the set-theoretical inclusion �, and let }.Y /@ be the poset of the powerset of
Y and the reverse set-theoretical inclusion�. A pair V D .V #; V"/ of two functions
V #Wˆ ! }.X/ and V"Wˆ ! }.Y /@ is a doppelgänger valuation on F, if the pair
of two functions satisfy

1. V #.p/ D ¹x 2 X j 8y 2 V".p/: x � yº,
2. V".p/ D ¹y 2 Y j 8x 2 V #.p/: x � yº,

for each propositional variable p 2 ˆ. We denote by DV the set of all doppel-
gänger valuations on F. Intuitively speaking, doppelgänger valuations make, for each
propositional variable p, the sequent p Z) p valid on polarities. Also, we mention a
connection to the Dedekind–MacNeille completion as well. We can define a Galois
connection � a � between }.X/ and }.Y /@ as follows:

1. �W}.X/! }.Y /@ with �.X/ WD ¹y 2 Y j 8x 2 X: x � yº for X 2 }.X/;
2. �W}.Y /@ ! }.X/with �.Y/ WD ¹x 2 X j 8y 2 Y: x � yº for Y 2 }.Y /@.

Since � and � form a Galois connection, the images �Œ}.X/� and �Œ}.Y /@� are
isomorphic. In fact, these images are the (generalized) Dedekind–MacNeille com-
pletions of F, and the elements in �Œ}.X/� and �Œ}.Y /@� are the so-called Dedekind
cuts. By doppelgänger valuations, we assign each propositional variable to the cor-
responding points on these images �Œ}.X/� and �Œ}.Y /@�. Note that the order in the
(generalized) Dedekind–MacNeille completion reflects the extended preorder �B .



414 Tomoyuki Suzuki

Remark 2.1 Each function f Wˆ! }.X[Y / can be extended to a doppelgänger
valuation Vf by first-order sentences. Conversely, all doppelgänger valuations are
first-order definable from some functions (see [14]; cf. also Ciabattoni, Galatos, and
Terui [1], Galatos and Jipsen [3]).

Hereinafter, we call a polarity F a polarity frame, and we call a pairM D hF; V i of
a polarity frame F and a doppelgänger valuation V on F a bi-approximation model.
On a bi-approximation model M D hF; V i, we inductively define two satisfaction
relations for formulas, that is, one for premises on X and the other for conclusions
on Y , as follows. For all formulas � and  , each x 2 X and each y 2 Y , we let

X-1: M jjxHH p ” x 2 V #.p/ for each propositional variable p 2 ˆ;

X-2: M jjxHH � _  ” for each y0 2 Y , if M jjHH
y0
� _  , then x � y0;

X-3: M jjxHH � ^  ” M jjxHH � and M jjxHH  ;
Y-1: M jjHH

y
p ” y 2 V".p/ for each propositional variable p 2 ˆ;

Y-2: M jjHH
y
� _  ” M jjHH

y
� and M jjHH

y
 ;

Y-3: M jjHH
y
� ^  ” for each x0 2 X , if M jjx0

HH � ^  , then x0 � y.

On these satisfaction relations, we also introduce a satisfaction relation for logical
consequences as follows:

S-1: M jjxHH
y
� Z)  ” if M jjxHH � and M jjHH

y
 , then x � y;

S-2: M jjHH � Z)  ” for all x 2 X and y 2 Y , M jjxHH
y
� Z)  ;

S-3: F jjHH � Z)  ” for each V 2DV , hF; V i jjHH � Z)  .
On bi-approximation semantics, these satisfaction relations are interpreted as fol-
lows:

1. M jjxHH �: a formula � is assumed at x in M;
2. M jjHH

y
 : a formula  is concluded at y in M;

3. M jjxHH
y
� Z)  : a sequent � Z)  is true at .x; y/ in M;

4. M jjHH � Z)  : a sequent � Z)  is universally true in M;
5. F jjHH � Z)  : a sequent � Z)  is valid on F.

Proposition 2.2 (Hereditary) For all x; x0 2 X and y; y0 2 Y ,
1. if x0 � x and M jjxHH �, then M jjx0

HH �;
2. if y � y0 and M jjHH

y
�, then M jjHH

y0
�.

Proposition 2.3 (Extension of doppelgänger valuations) For all x 2 X and
y 2 Y ,

1. M jjxHH � ” for each y0 2 Y , if M jjHH
y0
�, then x � y0;

2. M jjHH
y
� ” for each x0 2 X , if M jjx0

HH �, then x0 � y.

Remark 2.4 Note that each doppelgänger valuation is naturally extended from
ˆ to ƒ. It means that, for each formula � 2 ƒ, the sequent � Z) � is valid on
polarity frames. Therefore, on the dual algebras, doppelgänger valuations become
homomorphisms from ƒ.
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Initial sequents: � Z) � Cut rule:
� Z) � � Z)  

(cut)
� Z)  

Rules for logical connectives:
� Z) �  Z) �

(_ Z))
� _ Z) �

� Z) �
(Z)_1)

� Z) � _ 

� Z)  
( Z)_2)

� Z) � _ 

� Z) �
(^1 Z))

� ^ Z) �

 Z) �
(^2 Z))

� ^ Z) �

� Z) � � Z)  
(Z)^)

� Z) � ^ 

Figure 1 The sequent calculus of the lattice logic.

Theorem 2.5 (Soundness and completeness) The lattice logic, the collection of
provable sequents in Figure 1, is sound and complete with respect to the class of all
polarity frames.

Remark 2.6 In Figure 1, the distributivity �^. _�/ Z) .�^ /_.�^�/ is not
provable. Also, on polarity frames, since M jjxHH � _  is not the same as M jjxHH �

or M jjxHH  (dually, M jjHH
y
� ^  is not the same as M jjHH

y
� or M jjHH

y
 ), the

distributivity is not valid in general.

Dedekind-cut-preserving morphisms Next we briefly summarize morphisms for bi-
approximation semantics (see [13]).

Definition 2.7 (Dedekind-cut-preserving morphism) Given two polarity frames
F D hX1; Y1;�1i and G D hX2; Y2;�2i, a pair h� j�i of two functions � WX1 ! X2
and � WY1 ! Y2 forms a Dedekind-cut-preserving morphism from F to ‹, a
d-morphism for short and denoted by h� j�iWF! G, if

1. for all x 2 X1 and y 2 Y1, if �.x/ �2 �.y/, then x �1 y;
2. for all x 2 X1 and y0 2 Y2, if, for each y 2 Y1, y0 �2 �.y/ implies x �1 y,

then �.x/ �2 y0;
3. for all x0 2 X2 and y 2 Y1, if, for each x 2 X1, �.x/ �2 x0 implies x �1 y,

then x0 �2 �.y/.
In addition, a d-morphism h� j�iWF ! G is called d-embedding, d-separating, and
d-reflecting, if it also satisfies the following item 4, item 5, and both items 4 and 5,
respectively:

4. for all x 2 X1 and y 2 Y1, if x �1 y, then �.x/ �2 �.y/;
5. for all x0 2 X2 and y0 2 Y2, if, for all x 2 X1 and y 2 Y1, �.x/ �2 y0 and
x0 �2 �.y/ imply x �1 y, then x0 �2 y0.

For every doppelgänger valuation U on F and every doppelgänger valuation V on G,
a d-morphism h� j�iWF! G is a Dedekind-cut-preserving morphism from hF; U i to
hG; V i, a d-morphism for short, and denoted by h� j�iW hF; U i ! hG; V i, if h� j�i
also satisfies

6. x 2 U #.p/ ” �.x/ 2 V #.p/;
7. y 2 U".p/ ” �.y/ 2 V".p/,

for each propositional variable p 2 ˆ as well.

Based on d-morphisms, we can obtain the so-called p-morphism lemma as in the case
of modal logic and invariance of validity of sequents for bi-approximation semantics.
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Lemma 2.8 (For formulas) Let M1 and M2 be bi-approximation models, and let
h� j�iWM1 !M2. For all �; 2 ƒ, x 2 X1, and y 2 Y1,

1. M1 jj
x
HH � ” M2 jj

�.x/
HHHH �;

2. M1 jjHH
y
 ” M2 jjHHHH

�.y/
 .

Lemma 2.9 (For sequents) Let M1 and M2 be bi-approximation models, and let
h� j�iWM1 !M2. For every sequent � Z)  ,

M1 jjHH � Z)  ” for all x 2 X1; y 2 Y1;M2 jj
�.x/
HHHH
�.y/

� Z)  :

Theorem 2.10 Let F and G be polarity frames, and let h� j�iWF! G. For every
sequent � Z)  ,

1. if h� j�i is d-embedding, then G jjHH � Z)  implies F jjHH � Z)  ;
2. if h� j�i is d-separating, then F jjHH � Z)  implies G jjHH � Z)  ;
3. if h� j�i is d-reflecting, then F jjHH � Z)  if and only if G jjHH � Z)  .

3 Distributive Polarity Frames

On lattice-based logics, we have already shown that sequents which have consis-
tent variable occurrence are canonical (see [12]) and first-order definable on bi-
approximation semantics (see [14]). While the property “consistent variable occur-
rence” successfully accounts for many canonical and first-order definable sequents
on bi-approximation semantics, there are also some interesting sequents which can-
not be explicated by it. The distributivity � ^ . _ �/ Z) .� ^  / _ .� ^ �/ is,
in fact, a remarkable example of a canonical sequent which does not have consistent
variable occurrence. In this section, we will propose a possible characterization of
the distributivity on polarity frames.

First, we consider special elements in X and in Y to handle the distributivity on
a polarity frame F D hX; Y;�i. An element x 2 X is a splitter if there exists a
splitting counterpart yx 2 Y of x such that x — yx and, for each y 2 Y , if x — y,
then y � yx . Analogously, an element y 2 Y is a splitter if there exists a splitting
counterpart xy 2 X of y such that xy — y and, for each x 2 X , if x — y, then
xy � x.

Proposition 3.1 Let F D hX; Y;�i be a polarity frame. For all x 2 X and y 2 Y ,
1. if x is a splitter, then every splitting counterpart yx of x is also a splitter

which has x as a splitting counterpart;
2. if y is a splitter, then every splitting counterpart xy of y is also a splitter

which has y as a splitting counterpart.
Furthermore, for each splitter, the splitting counterparts are unique up to �-equiva-
lence; that is, if yx and y0x (xy and x0y) are splitting counterparts of x (y), then
yx � y

0
x and y0x � yx (xy � x0y and x0y � xy) hold.

Proof It suffices to show that, for each x0 2 X , if x0 — yx , then x � x0, for each
y0 2 Y , if y0 — xy , then y0 � y and the uniqueness up to �-equivalence.

Recall the definition of �; that is, x � x0 ” for each y00 2 Y , if x0 � y00,
then x � y00. For arbitrary x0 2 X and y00 2 Y , if x0 — yx and x0 � y00, by the
definition of � on Y , we obtain that y00 — yx . Since yx is a splitting counterpart of
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x, we have that, for each y0 2 Y , if x — y0, then y0 � yx . By contraposition, we get
x � y00, which concludes x � x0.

Analogously, for arbitrary x00 2 X and y0 2 Y , if xy — y0 and x00 � y0, by the
definition of � on X , we have xy — x00. As xy is a splitting counterpart of y, we
obtain x00 � y. Hence y0 � y.

Let yx and y0x be splitting counterparts of x. By definition, we have x — yx and
x — y0x . Since yx and y0x are splitting counterparts of x, for every y0 2 Y , if x — y0,
then we have y0 � yx and y0 � y0x . Therefore, by x — yx and x — y0x , we conclude
that yx � y0x and y0x � yx . The other case is analogous.

Thanks to Proposition 3.1, we can claim that a pair .x; y/ of x 2 X and y 2 Y is
a splitting pair, if x — y, for each y0 2 Y , if x — y0, then y0 � y and, for each
x0 2 X , if x0 — y, then x � x0.

Theorem 3.2 Let M be a bi-approximation model, and let .x; y/ be a splitting
pair. For every formula � 2 ƒ, M jj

x
HH � ” M 6jjHH

y
�, and equivalently

M jjHH
y
� ” M 6jjxHH �.

Proof ()). Assume M jjxHH �. Since .x; y/ is a splitting pair, we have x — y.

Then, this x is a witness to show that there exists x0 2 X such that M jjx0

HH � but
x0 — y. Hence, by Proposition 2.3, we conclude that M 6jjHH

y
�.

((). Suppose that M 6jjHH
y
�. By Proposition 2.3, there exists x0 2 X such that

M jjx0

HH � but x0 — y. Now, as .x; y/ is a splitting pair, for each x00 2 X , if x00 — y,

then x � x00. So we have x � x0. Since M jjx0

HH �, together with Proposition 2.2, we

complete this direction; that is, M jjxHH �.

Also, with the help of Theorem 3.2, we can prove the following lemma.

Lemma 3.3 Let M be a bi-approximation model, and let � and  be formulas.
For all splitters x 2 X and y 2 Y ,

1. M jjxHH � _  ” M jjxHH � or M jjxHH  ;
2. M jjHH

y
� ^  ” M jjHH

y
� or M jjHH

y
 .

Proof In both cases, the(-directions are trivial.
For the )-direction of item 1, we consider the contraposition. Suppose that

M 6jjxHH � and M 6jjxHH  . Since x is a splitter, there exists a splitting counterpart
yx 2 Y ; hence .x; yx/ forms a splitting pair. By Theorem 3.2, we obtain that
M jjHHH

yx
� and M jjHHH

yx
 , which means M jjHHH

yx
� _  . However, as x — yx ,

by Proposition 2.3, we conclude that M 6jjxHH � _  .
For the)-direction of item 2, we also consider the contraposition. Suppose that

M 6jjHH
y
� and M 6jjHH

y
 . Since y is a splitter, there exists a splitting counterpart

xy of y in X , so .xy ; y/ forms a splitting pair. By Theorem 3.2, we obtain that
M jjxy
HHH � ^  . On the other hand, as xy — y, by Proposition 2.3, we conclude that

M 6jjHH
y
� ^  .
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Next, by means of splitters, we characterize the distributivity on polarity frames.

Definition 3.4 (Distributive polarity frame) A polarity frame F D hX; Y;�i is
distributive if it satisfies

Splitting: for all x 2 X and y 2 Y , if x — y, there exists a splitting pair .xs; ys/
such that xs � x and y � ys .

Remark 3.5 The condition Splitting is a first-order sentence.

Theorem 3.6 The distributivity � ^ . _�/ Z) .� ^ /_ .� ^�/ is valid on any
distributive polarity frame.

Proof Let F D hX; Y;�i be a distributive polarity frame, and let V be an
arbitrary doppelgänger valuation on F. Assume hF; V i jjxHH � ^ . _ �/ and
hF; V i jjHH

y
.� ^  / _ .� ^ �/. So it suffices to show that x � y. We will prove it

by contradiction.
Suppose that x — y. Since F is distributive, by the splitting condition, there

exists a splitting pair .xs; ys/ such that xs � x and y � ys . By Proposition 2.2, we
have that hF; V i jjxs

HHH � ^ . _ �/; that is, hF; V i jjxs
HHH � and hF; V i jjxs

HHH  _ �.

In addition, as xs is a splitter, by Lemma 3.3, we obtain that hF; V i jjxs
HHH  or

hF; V i jjxs
HHH �. Hence, we conclude that hF; V i jjxs

HHH � ^  or hF; V i jjxs
HHH � ^ �.

On the other hand, by Proposition 2.2, we also have hF; V i jjHHH
ys

.� ^  / _

.� ^ �/, which means hF; V i jjHHH
ys
� ^  and hF; V i jjHHH

ys
� ^ �. So either way, that

is, either hF; V i jjxs
HHH � ^  or hF; V i jjxs

HHH � ^ � holds, by Proposition 2.3, xs � ys
must hold, which contradicts the fact that .xs; ys/ is a splitting pair. Therefore, we
conclude that x � y.

The dual representation of distributive lattices. We will also check the dual rep-
resentation of distributive lattices and distributive polarity frames.

Given a lattice L D hL;_;^i, a subset F of L is a filter if it is nonempty,
upward-closed, and down-directed. Ordered dually, a subset I of L is an ideal if
it is nonempty, downward-closed, and up-directed. We denote by F the set of fil-
ters and by I the set of ideals. Moreover, a filter F is prime if F ¤ L and, for all
a; b 2 L, a _ b 2 F implies a 2 F or b 2 F . An ideal I is prime if I ¤ L and, for
all a; b 2 L, a ^ b 2 I implies a 2 I or b 2 I .

Definition 3.7 (Dual polarity frame) Let L be a lattice. A triple LC D hF ; I;vi
is the dual polarity frame of L, where the binary relation v on F � I is defined by
F v I ” F \ I ¤ ;.

Now, we will show that, for every distributive lattice, the dual polarity frame is dis-
tributive (see Theorem 3.9). To prove it, we first recall the following lemma.

Lemma 3.8 Let L D hL;_;^i be a distributive lattice. For every prime filter F ,
the set-theoretical complement L nF is a prime ideal. Also, for every prime ideal I ,
the set-theoretical complement L n I is a prime filter.

Theorem 3.9 Let L D hL;_;^i be a distributive lattice. The dual polarity frame
LC D hF ; I;vi is distributive.
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Proof It is straightforward to show that LC is a polarity frame. So the only
nontrivial part is the splitting condition.

For arbitrary F 2 F and I 2 I, assume that F 6v I ; that is, F \ I D ;. Then,
by the prime filter (ideal) theorem, there exists a prime filter PF (or a prime ideal
PI ) such that F � PF but PF \ I D ; (I � PI but F \ PI D ;). Thanks
to Lemma 3.8, the set-theoretical complement L n PF (L n PI ) of the prime filter
PF (the prime ideal PI ) is a prime ideal (a prime filter). Now, we claim that the
pair .PF ; L n PF / (.L n PI ; PI /) is an appropriate splitting pair for F and I . It is
obvious that PF 6v L n PF (L n PI 6v PI ). Since F � PF (I � PI ), we have
PF v F (I v PI ). Furthermore, since PF \ I D ; (F \ PI D ;), we also have
I � L n PF (F � L n PI ) as well. Hence I v L n PF (L n PI v F ). Finally,
for every ideal J 2 I, if PF 6v J , then PF \ J D ;. So we obtain J � L n PF ;
that is, J v L n PF . Therefore, the splitting condition holds. Note that we can
also analogously prove that the pair .L n PI ; PI / is an appropriate splitting pair as
well.

Remark 3.10 The axiom of choice is essential to prove Theorem 3.9 for the prime
filter (ideal) theorem.

From distributive polarity frames, we can construct the dual algebras as the (gen-
eralized) Dedekind–MacNeille completion (see Section 2). Namely, for a distribu-
tive polarity frame F, the dual algebra of F, denoted by FC, is the (generalized)
Dedekind–MacNeille completion of F.

Theorem 3.11 For every distributive polarity frame F, the dual algebra FC is a
distributive lattice.

Proof The nontrivial part follows from Theorem 3.6 (see also [11, Theorem 5.3]).

4 Prime Skeletons

In the previous section, we saw that, on distributive polarity frames, splitters or split-
ting pairs play central roles. In other words, splitters and splitting pairs essentially
work to validate the distributivity on polarity frames. In this section, we will care-
fully investigate splitters on distributive polarity frames. To this end, hereinafter, we
take care only of nontrivial polarity frames, that is, polarity frames hX; Y;Bi with-
out B D X � Y . This allows us to build a consistent theory. Otherwise, we would
encounter a special situation: every trivial polarity frame is distributive by definition,
but there is no splitting pair (splitter) on it.

Let F D hX; Y;�i be a nontrivial distributive polarity frame. We letXs be the set
of all splitters in X , Ys be the set of all splitters in Y , and �s be the restriction of �
on Xs [Ys . Then, we call the triple Fs D hXs; Ys;�si the prime skeleton of F. Note
that, when we consider a trivial polarity frame, the prime skeleton is not a polarity
since Xs and Ys are empty.

Proposition 4.1 For every nontrivial distributive polarity frame F, the prime
skeleton Fs of F is a nontrivial distributive polarity frame as well.

Next, we compare distributive polarity frames with their prime skeletons via d-
morphisms. Let F D hX; Y;�i be a distributive polarity frame, and let Fs be the
prime skeleton of F. By the construction of the prime skeleton Fs , we easily no-
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tice that there are two natural embedding functions "X WXs ! X and "Y WYs ! Y ,
because Xs and Ys are subsets of X and Y , respectively. For these embedding func-
tions, we prove the following proposition.
Proposition 4.2 Let F D hX; Y;�i be a distributive polarity frame. Then the
pair h"X j"Y i of the natural embeddings "X WXs ! X and "Y WYs ! Y forms a
d-reflecting morphism from Fs to F; that is, h"X j"Y iWFs ! F is d-reflecting.
Proof We will show that the pair h"X j"Y i satisfies the conditions in Definition 2.7.

(Item 1). For arbitrary xs 2 Xs and ys 2 Ys , if "X .xs/ �s "Y .ys/, then xs � ys ,
because "X and "Y are the natural embeddings and �s is the restriction of � on
Xs [ Ys .

(Item 2). We prove this by contraposition. For arbitrary xs 2 Xs and y 2 Y ,
suppose that "X .xs/ — y; that is, xs — y. Since xs is a splitter, there exists a
splitting counterpart yx 2 Y of xs such that xs — yx and, for each y0 2 Y , if
xs — y

0, then y0 � yx . So we obtain y � yx . Moreover, since yx is also a splitter
(see Proposition 3.1), yx 2 Ys , which means y � "Y .yx/. However, by definition,
we have xs —s yx as well. Therefore, there exists yx 2 Ys such that y � "Y .yx/ but
xs —s yx .

(Item 3). We prove this by contraposition. For arbitrary x 2 X and ys 2 Ys ,
suppose that x — "Y .ys/; that is, x — ys . Since ys is a splitter, there exists a
splitting counterpart xy 2 X of ys such that xy — ys and, for each x0 2 X , if
x — ys , then xy � x0. Hence we have xy � x. By Proposition 3.1, xy is also a
splitter, so xy 2 Xs . Therefore "X .xy/ � x. However, as xy —s ys by definition,
there exists xy 2 Xs such that "X .xy/ � x but xy —s ys .

(Item 4). This is trivial, because "X and "Y are the natural embeddings and �s is
the restriction of � on Xs [ Ys .

(Item 5). We prove this by contraposition. Suppose that x — y for arbitrary
x 2 X and y 2 Y . Because F is distributive, there exists a splitting pair .xs; ys/
such that xs � x and y � ys . Thanks to Proposition 3.1, we know that xs 2 Xs and
ys 2 Ys; hence "X .xs/ � x and y � "Y .ys/. However, since xs — ys by definition,
we conclude that xs —s ys , which completes this clause.

Thanks to Proposition 4.2, with help of Theorem 2.10, we can show invariance of
validity between distributive polarity frames and the prime skeletons.
Theorem 4.3 Let F be a distributive polarity frame, and let Fs be the prime skele-
ton of F. For every sequent � Z)  ,

F jjHH � Z)  ” Fs jjHH � Z)  :

Finally, we also show a property of prime skeletons which relates somewhat to results
on RS-frames of distributive lattices (see [5]).
Theorem 4.4 Let F D hX; Y;�i be a nontrivial distributive polarity frame, and
let Fs D hXs; Ys;�si be the prime skeleton of F. Then the two preordered subsets
hXs;�si and hYs;�si of hXs [ Ys;�si are essentially isomorphic, namely, iso-
morphic up to �s-equivalence. Hence, the quotients of hXs;�si and hYs;�si with
respect to �s-equivalence are isomorphic.
Proof For each splitter xs 2 Xs , we let a splitting counterpart ys 2 Ys of xs be
the corresponding element. Then, thanks to Proposition 3.1, the sets Xs and Ys are
essentially bijective. This is because every splitter is a splitting counterpart of the
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splitting counterpart of the splitter. Also, for each splitter, the splitting counterpart is
unique up to �-equivalence. Therefore, it suffices to show that xs �s xt if and only
if ys � yt for all splitting pairs .xs; ys/ and .xt ; yt /.

()). We prove this by contradiction. Suppose that xs �s xt but ys —s yt . By
the definition of � on Y , there exists x 2 X such that x � ys but x — yt . Further, as
.xt ; yt / forms a splitting pair, we have that xt � x. By our assumption xs �s xt , we
also obtain xs � x. By the transitivity of� onX[Y , we conclude that xs � x � ys .
However, this contradicts the fact that .xs; ys/ forms a splitting pair.

((). We prove this by contradiction. Suppose that ys �s yt but xs —s xt . By the
definition of � on X , there exists y 2 Y such that xt � y but xs — y. Since .xs; ys/
forms a splitting pair, we obtain y � yt . Now, by the transitivity of � on X [ Y ,
we also obtain xt � y � yt , which contradicts the fact that .xt ; yt / forms a splitting
pair.

Therefore, hXs;�si and hYs;�si are essentially isomorphic.

5 The Distributivity on Bi-Approximation Semantics for Intuitionistic Logic

Intuitionistic logic is one of the well-studied distributive substructural logics, which
can derive (or possess) the distributivity � ^ . _ �/ Z) .� ^  / _ .� ^ �/

(see, e.g., Galatos, Jipsen, and Kowalski [4]). In this section, we will introduce
bi-approximation semantics for intuitionistic logic. On the framework, we study how
to validate the distributivity and discuss a connection to distributive polarity frames.

For formulas of substructural logic, we extend our formulas discussed so far with
three binary logical connectives fusion ı, residuals!, and , and two logical con-
stants truth t and false f . In substructural logic, a sequent is usually introduced as
a pair of a finite list of formulas �1; : : : ; �n and a possibly empty formula  , de-
noted by �1; : : : ; �n Z)  . However, since it is equivalent to a pair of two formulas
�1 ı � � � ı �n and  , that is, �1 ı � � � ı �n Z)  , we look at every sequent as a pair
of two formulas � and  , denoted by � Z)  , for consistency for the other sections.
To evaluate these additional logical connectives and constants, we expand polarity
frames to p-frames for substructural logic (see [11]).

Definition 5.1 (Polarity frame for substructural logic) A polarity frame for sub-
structural logic, a p-frame for short, is an octuple F D hX; Y;�; R;OX ; OY ; NX ;
NY i if hX; Y;�i is a polarity frame, R is a ternary relation on X � X � Y ; that is,
R � X � X � Y , OX is a nonempty subset of X , NX is a subset of X , OY and NY
are subsets of Y , and F satisfies

R-order: for all x; x0 2 X , x0 � x ” Rı.x; o; x0/ or Rı.o; x; x0/ for some
o 2 OX ;

R-identity: for each x 2 X , Rı.x; o2; x/ for some o2 2 OX and Rı.o1; x; x/
for some o1 2 OX ;

R-transitivity: for all x1; x2; x01; x02 2 X and y; y0 2 Y , if x01 � x1, x02 � x2,
y � y0 and Rı.x1; x2; y/, then R.x01; x02; y0/;

R-associativity: for all x1; x2; x3; x 2 X , Rı.x1; x0; x/ and Rı.x2; x3; x0/ for
some x0 2 X , if and only if Rı.x1; x2; x00/ and Rı.x00; x3; x/ for some
x00 2 X ;

O-isom: OX D ¹x 2 X j 8y 2 OY : x � yº and OY D ¹y 2 Y j 8x 2
OX : x � yº;
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N-isom: NX D ¹x 2 X j 8y 2 NY : x � yº and NY D ¹y 2 Y j 8x 2
NX : x � yº;

ı-tightness: for all x1; x2 2 X and y 2 Y , if, for every x 2 X , Rı.x1; x2; x/
implies x � y, then R.x1; x2; y/;

!-tightness: for all x1; x2 2 X and y 2 Y , if, for every y2 2 Y , R!.x1; y2; y/
implies x2 � y2, then R.x1; x2; y/;

 -tightness: for all x1; x2 2 X and y 2 Y , if, for all y1 2 Y , R .y1; x2; y/
implies x1 � y1, then R.x1; x2; y/;

where Rı.x1; x2; x/, R!.x1; y2; y/, and R .y1; x2; y/ are abbreviations of, for
every y 2 Y , R.x1; x2; y/ implies x � y, for every x2 2 X , R.x1; x2; y/ implies
x2 � y2, and for every x1 2 X , R.x1; x2; y/ implies x1 � y1, respectively.

Note that doppelgänger valuations are the same as those on polarity frames. Given a
bi-approximation model M D hF; V i, we evaluate the additional logical connectives
and constants as follows: for each x 2 X , each y 2 Y , and all formulas � and  ,

X-4: M jjxHH � ı  ” for each y0 2 Y , if M jjHH
y0
� ı  , then x � y0;

X-5: M jj
x
HH � !  ” for all x1 2 X and y0 2 Y , if M jj

x1
HHH � and

M jjHH
y0
 , then R.x1; x; y0/;

X-6: M jj
x
HH   � ” for all x2 2 X and y0 2 Y , if M jj

x2
HHH � and

M jjHH
y0
 , then R.x; x2; y0/;

X-7: M jjxHH t ” x 2 OX ;

X-8: M jjxHH f ” x 2 NX ;

Y-4: M jjHH
y
� ı  ” for all x1; x2 2 X , if M jjx1

HHH � and M jjx2
HHH  , then

R.x1; x2; y/;
Y-5: M jjHH

y
� !  ” for each x0 2 X , if M jjx0

HH � !  , then x0 � y;

Y-6: M jjHH
y
  � ” for each x0 2 X , if M jjx0

HH   �, then x0 � y;
Y-7: M jjHH

y
t ” y 2 OY ;

Y-8: M jjHH
y

f ” y 2 NY .

The fundamental properties for polarity frames in Section 2 are naturally extended
to those on p-frames as well. In particular, the basic substructural logic FL, named
after the full Lambek calculus (FL), is sound and complete with respect to the class of
p-frames. In the light of substructural logic, intuitionistic logic can be explicated as
a collection of derivable sequents on the sequent calculus FL extended by two types
of axioms: weakening p Z) t and f Z) p, and contraction p Z) p ı p. Hence we
may sometimes denote intuitionistic logic by FLwc , which means the set of derivable
sequents in FL extended by weakening and contraction.

In [14], we have shown that every substructural logic extended by sequents (ax-
ioms) which have consistent variable occurrence is complete with respect to a class
of first-order definable p-frames. In addition, the first-order sentences are algorith-
mically computable. In fact, since the weakening axioms and the contraction axiom
have consistent variable occurrence, we can calculate the first-order correspondents
as follows:
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Weakening: 8x 2 X: x 2 OX and 8y 2 Y: y 2 NY ,
Contraction: 8x 2 X: Rı.x; x; x/.

Therefore, intuitionistic logic is sound and complete with respect to the class of p-
frames satisfying the above first-order sentences. Hereinafter, we call p-frames satis-
fying the above first-order sentences p-frames for intuitionistic logic, or intp-frames
for short. Because the distributivity �^ . _�/ Z) .�^ /_ .�^�/ is derivable in
intuitionistic logic, each intp-frame must validate the distributivity. Now let us check
this fact. Note that, in the following argument, we fully investigate that fusion ı on
FLwc corresponds to conjunction ^ on the level of intp-frames.

Let F D hX; Y;�; R;OX ; OY ; NX ; NY i be an intp-frame, and let V be a
doppelgänger valuation on F. For arbitrary x 2 X and y 2 Y , suppose that
hF; V i jjxHH � ^ . _ �/ and hF; V i jjxHH .� ^  / _ .� ^ �/. By definition, we have

hF; V i jjxHH �, hF; V i jjxHH  _ �, hF; V i jjHH
y
� ^  , and hF; V i jjHH

y
� ^ �. Now we

claim the following:
hF; V i jjHH

y
� ^  ” hF; V i jjHH

y
� ı  :

()). For arbitrary x1; x2 2 X , assume that hF; V i jjx1
HHH � and hF; V i jjx2

HHH  . Let
x 2 X satisfying Rı.x1; x2; x/. Because of the weakening conditions, we have x1
in OX and x2 2 OX , which derives x � x1 and x � x2 by the R-order of Defini-
tion 5.1. Thanks to the hereditary Proposition 2.2, we also obtain that hF; V i jjxHH �

and hF; V i jjxHH  ; hence hF; V i jjxHH � ^  . By our assumption hF; V i jjHH
y
� ^  

and Proposition 2.3, we derive x � y. Finally, by the ı-tightness condition of Defi-
nition 5.1, we conclude R.x1; x2; y/, which means hF; V i jjHH

y
� ı  .

((). For any x 2 X , if hF; V i jjxHH � ^  , by definition we have hF; V i jjxHH � and

hF; V i jjxHH  . So by our assumption hF; V i jjHH
y
� ı  , we obtain that R.x; x; y/.

Moreover, as F satisfies the contraction condition, we also have Rı.x; x; x/. Hence,
by the definition of Rı, we get x � y, which concludes hF; V i jjHH

y
� ^  .

Analogously, we also have that hF; V i jjHH
y
� ^ � ” hF; V i jjHH

y
� ı �.

Furthermore, by [11, Theorem 4.4], we also obtain
1. hF; V i jjHH

y
� ^  ” for all x1 2 X and y2 2 Y , if hF; V i jjx1

HHH � and
R!.x1; y2; y/, then hF; V i jjHHH

y2

 ;

2. hF; V i jjHH
y
� ^ � ” for all x1 2 X and y2 2 Y , if hF; V i jjx1

HHH � and
R!.x1; y2; y/, then hF; V i jjHHH

y2

�.

Now let us come back to the original argument. We currently have hF; V i jjxHH �,

hF; V i jjxHH  _ �, hF; V i jjHH
y
� ^  , and hF; V i jjHH

y
� ^ �. To conclude the valid-

ity, it suffices to show that R.x; x; y/. This is because, on F, we have Rı.x; x; x/, so
if we have R.x; x; y/ we can conclude x � y because of the definition of Rı.

To prove R.x; x; y/, we use the!-tightness condition of Definition 5.1. For any
y0 2 Y , if R!.x; y0; y/ holds, as hF; V i jjxHH �, we obtain that hF; V i jjHH

y0
 and

hF; V i jjHH
y0
� by the above item 1 and item 2. Therefore, we have hF; V i jjHH

y0
 _ �.
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Now, since hF; V i jjHH
x
 _ �, we have x � y0 by Proposition 2.3. Furthermore, by

the!-tightness condition of Definition 5.1, we conclude R.x; x; y/. Therefore, the
distributivity is valid on any intp-frame.

Remark 5.2 The weakening conditions and the contraction condition are used to
prove that hF; V i jjHH

y
� ^  ” hF; V i jjHH

y
� ı  . Note that the tightness

conditions are essentially working to show the adjointness (residuation).

Comparison with distributive polarity frames As we saw above, to validate the dis-
tributivity on intp-frames, we have not, at least explicitly, used any condition such
as splitters or splitting pairs at all. Instead, we have manipulated the tightness con-
ditions and the adjointness to show the distributivity. So it is natural to ask how
intp-frames relate to distributive polarity frames and the splitting condition. Before
tackling this question, we first consider the ternary relation R on intp-frames.

Let F be an intp-frame. Here we claim that for all x1; x2 2 X and y 2 Y ,
R.x1; x2; y/ ” 8x 2 X:Œx � x1 and x � x2 H) x � y�: (1)

()). Assume R.x1; x2; y/. For any x 2 X , if x � x1 and x � x2, we obtain
that R.x; x; y/ by the R-transitivity condition of Definition 5.1. Since F satisfies
the contraction condition, we have that Rı.x; x; x/; that is, for each y0 2 Y , if
R.x; x; y0/, then x � y0. Hence, x � y.

((). By [11, Lemma 4.2], on p-frames, R.x1; x2; y/ is equivalent to the follow-
ing condition: for each x 2 X , if Rı.x1; x2; x/, then x � y. So we will show this
condition. Assume Rı.x1; x2; x/ for an arbitrary x 2 X . As F satisfies the weak-
ening conditions, x1 and x2 are in OX ; hence we have x � x1 and x � x2 by the
R-order condition of Definition 5.1. By our assumption, we conclude x � y, which
shows the equivalence in equation (1).

By the above equivalence, we can say that the auxiliary condition Rı.x1; x2; x/
is the same as x � x1 and x � x2. Furthermore, the above equivalence tells us that,
on intp-frames, the ternary relation R is reconstructed from the binary relation B (or
�).

Remark 5.3 It does not mean that every polarity frame is transferable to an intp-
frame. However, from some specific distributive polarity frames, we can reconstruct
intp-frames.

Let us look at an example of how to construct an intp-frame from a distributive
polarity frame. Let hX; Y;Bi be a polarity frame with X D ¹x1; x2; x3; x4; x5º,
Y D ¹y1; y2; y3º, and the binary relation B is given by Table 1. In Table 1, we let 1
and 0 represent “related” and “not related,” respectively. For example, we can learn
x1By1 but x1 6 By2 from the table.

Based on this binary relationB , we can obtain the posets hX;�i and hY;�i repre-
sented by the following Hasse diagrams in Figure 2. Now we induce a ternary relation
R by the above equivalence in equation (1). Table 2 shows the results. On the in-
duced ternary relation R, if we let OX D ¹x1; x2; x3; x4; x5º, OY D ;, NX D ¹x5º,
and NY D ¹y1; y2; y3º, they form a p-frame. Since this is a routine check, we can
safely leave the proof of this part for readers. Furthermore, we claim that the p-frame
hX; Y;�; R;OX ; OY ; NX ; NY i satisfies the splitting condition; hence the base polar-
ity hX; Y;�i is distributive. That is, for each pair .xi ; yj / of disconnected elements,
namely, xi — yj , we can find a splitting pair .xs; ys/ satisfying xs � xi and yj � ys .



Distributivity on Bi-Approximation Semantics 425

Table 1 The binary relation B

B y1 y2 y3

x1 1 0 0

x2 1 1 0

x3 0 0 1

x4 1 0 1

x5 1 1 1

hX;�i

x1 x3

x2 x4

x5

hY;�i

y1

y3

y2

Figure 2 The posets hX;�i and hY;�i.

Table 2 The induced ternary relation R

R y1 y2 y3

x1, x1 1 0 0

x1, x2 1 1 0

x1, x3 1 0 1

x1, x4 1 0 1

x1, x5 1 1 1

x2, x1 1 1 0

x2, x2 1 1 0

x2, x3 1 1 1

x2, x4 1 1 1

R y1 y2 y3

x2, x5 1 1 1

x3, x1 1 0 1

x3, x2 1 1 1

x3, x3 0 0 1

x3, x4 1 0 1

x3, x5 1 1 1

x4, x1 1 0 1

x4, x2 1 1 1

R y1 y2 y3

x4, x3 1 0 1

x4, x4 1 0 1

x4, x5 1 1 1

x5, x1 1 1 1

x5, x2 1 1 1

x5, x3 1 1 1

x5, x4 1 1 1

x5, x5 1 1 1
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On this p-frame, we note that there are three splitting pairs, that is, .x2; y3/, .x4; y2/,
and .x3; y1/. Then, for each disconnected pair, we have an appropriate splitting pair
as follows:

1. for x1 — y2, we have .x4; y2/ as a splitting pair (note that, in this case, we
can also take .x2; y3/ as a splitting pair);

2. for x1 — y3, we have .x4; y2/ as a splitting pair (note that, in this case, we
can also take .x2; y3/ as a splitting pair);

3. for x2 — y3, we have .x2; y3/ itself as a splitting pair;
4. for x3 — y1, we have .x3; y1/ itself as a splitting pair;
5. for x3 — y2, we have .x3; y1/ as a splitting pair;
6. for x4 — y2, we have .x4; y2/ itself as a splitting pair.

Therefore, this p-frame is distributive. Here we mention that, although one may feel
that it is too complicated to find an appropriate splitting pair for each disconnected
pair, there is a simple algorithm for finding an appropriate splitting pair, which is in
fact the main technique used to prove Theorem 5.4. Before proving Theorem 5.4, let
us look at the algorithm. For any disconnected pair xi — yj ,

1. take the set of all elements in Y which are disconnected to xi and are greater
than or equal to yj ;

2. choose a maximal element, say, ym, in the set;
3. collect all elements in X which are disconnected to ym and are less than or

equal to xi ;
4. take the minimum element, say, xm, in the set.

Then, we have obtained an appropriate splitting pair .xm; ym/ for the disconnected
pair xi — yj .

Theorem 5.4 Every p-frame for intuitionistic logic is distributive.

Proof It suffices to show that every intp-frame satisfies the splitting condition. Let
xi and yj be a disconnected pair; that is, xi — yj . Then, as in item 1 of the algorithm,
we take the following set Y.xi ;yj /:

Y.xi ;yj / WD ¹yk 2 Y j xi — yk and yj � ykº:
To use Zorn’s lemma, we will show that Y D .xi ; yj / is an inductive set. By our as-
sumption, that is, xi — yj , we have that yj 2 Y.xi ;yj /; hence Y.xi ;yj / is nonempty.
Note that each element yk in Y is represented by the subset of all elements of X
which are connected to yk . Also note that this representation is not always unique.
For example, in Table 1, y1, y2, and y3 are represented by ¹x1; x2; x4; x5º, ¹x2; x5º,
and ¹x3; x4; x5º, respectively. Actually, the order � on Y is nothing but the inclu-
sion relation of these subsets. Therefore, for each chain in Y.xi ;yj /, the supremum
is calculated as the union of these representing subsets of X . Moreover, for each
chain, the representing subsets do not contain xi by definition. As the union of every
chain in Y.xi ;yj / is in Y.xi ;yj /, the set Y.xi ;yj / is inductive. Thanks to the axiom of
choice, we can take a maximal element ym in Y.xi ;yj /. We also mention that, by the
definition of Y.xi ;yj /, we have that yj � ym.

Next, as in item 3 of the algorithm, we take the following set X.xi ;ym/:
X.xi ;ym/ WD ¹xk 2 X j xk — ym and xk � xiº:

Again, we claim that X.xi ;ym/ is an inductive set, to use Zorn’s lemma. We take
the same strategy. As ym 2 Y.xi ;yj /, we have xi 2 X.xi ;ym/. Hence, X.xi ;ym/
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is nonempty. As above, each element xk in X is representable by the subset of all
elements in Y which are connected to xk . Then, the order � on X is the reverse
inclusion � of these representing subsets of Y . For each chain in X.xi ;ym/, the
infimum (the supremum with respect to the inclusion relation) is computable as the
union of the representing subsets. Because each element in X.xi ;ym/ is disconnected
to ym, no representing subset contains ym. So X.xi ;ym/ is inductive. Therefore, by
the axiom of choice, we can take an infimum xm (a supremum with respect to the
inclusion order �).

Furthermore, we also want to state that this infimum xm is actually the mini-
mum element of X.xi ;ym/. For this purpose, we show that the set X.xi ;ym/ is down-
directed; namely, for arbitrary xk ; xl 2 X.xi ;ym/, there exists x 2 X such that
x � xk , x � xl , and x 2 X.xi ;ym/. We prove it by contradiction. That is, we
will derive a contradiction on the assumption that there exist xk ; xl 2 X.xi ;ym/ such
that, for any x, if x � xk and x � xl , then x … X.xi ;ym/; that is, x � ym.

Suppose that, for xk ; xl 2 X.xi ;ym/ and any x 2 X , if x � xk and x � xl , then
x � ym. Since F is an intp-frame, we obtain that R.xk ; xl ; ym/ by the equivalence
in equation (1).

Next, to obtain R.xk ; xi ; ym/, we consider the!-tightness condition of Defini-
tion 5.1 for xk , xi , and ym:

8y2 2 Y:
�
R!.xk ; y2; ym/ H) xi � y2

�
H) R.xk ; xi ; ym/: (2)

For any y2 2 Y , ifR!.xk ; y2; ym/, then xl � y2, because we have already obtained
R.xk ; xl ; ym/. By the definition of � on Y and the fact that xl 2 X.xi ;ym/, we have
that xl — ym; hence y2 — ym. Here, we want to show that ym � y2, namely, y2 is
strictly greater than ym, to state that xi � y2. For any x0 2 X , suppose that x0 � ym.
Now, we look at the ı-tightness condition of Definition 5.1 for xk , x0, and ym:

8x00 2 X:
�
Rı.xk ; x

0; x00/ H) x00 � ym
�
H) R.xk ; x

0; ym/: (3)

For any x00 2 X , if Rı.xk ; x0; x00/, since F satisfies the weakening conditions,
x00 � x0; hence x00 � ym by our assumption x0 � ym. Therefore, by the condi-
tion (3), we obtain R.xk ; x0; ym/. Furthermore, by our assumption R!.xk ; y2; ym/,
we also obtain that x0 � y2; hence ym � y2. So y2 is strictly greater than ym. Since
ym is a maximal element in Y.xi ;yj /, xi � y2 holds. Hence, by the condition (2),
R.xk ; xi ; ym/ as we claimed above.

Next, to obtain R.xi ; xi ; ym/, we think about the!-tightness condition of Defi-
nition 5.1 for xi , xi , and ym:

8y1 2 Y:
�
R .y1; xi ; ym/ H) xi � y1

�
H) R.xi ; xi ; ym/: (4)

For any yl 2 Y , if R .yl ; xi ; ym/, then xk � yl , since we already have
R.xk ; xi ; ym/. By the definition of � on Y and the fact that xk 2 X.xi ;ym/, we
have that xk — ym; hence yl — ym. Again, here we would like to show that
ym � yl , that is, that yl is strictly greater than ym. For any x0 2 X , suppose that
x0 � ym. Now, apply the ı-tightness condition of Definition 5.1 for x0, xi , and ym:

8x00 2 X:
�
Rı.x0; xi ; x

00/ H) x00 � ym
�
H) R.x0; xi ; ym/: (5)

For any x00 2 X , if Rı.x0; xi ; x00/, since F satisfies the weakening conditions, we
have x00 � x0; hence x00 � ym by our assumption x0 � ym. By the condition (5),
we obtain that R.x0; xi ; ym/. Moreover, by our assumption R .yl ; xi ; ym/, we also
have that x0 � yl . Then, we get ym � yl , which means that yl is strictly greater than
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ym. Since ym is a maximal element in Y.xi ;yj /, hence xi � yl holds. Therefore, by
the condition (4), we obtain R.xi ; xi ; ym/.

Here we have that Rı.xi ; xi ; xi /, because F satisfies the contraction condition.
We also have that R.xi ; xi ; ym/. Hence, we conclude that xi � ym. However, it
contradicts the fact that ym is a maximal element in Y.xi ;yj /. Therefore, X.xi ;ym/ is
down-directed. Note that the fact derives that the infimum xm in X.xi ;ym/ is actually
the least element in X.xi ;ym/. We also mention that xm � xi by definition.

Finally, we show that the pair .xm; ym/ is a splitting pair. Namely, xm — ym and
8x0 2 X:Œx0 — ym H) xm � x

0�. However, these follow straightforwardly from the
fact that xm is the minimum element in X.xi ;ym/.

Remark 5.5 There are three comments for the proof of Theorem 5.4.
1. The axiom of choice is essential to find a maximal element ym in Y.xi ;yj /

and the minimum element xm of X.xi ;ym/.
2. We manipulate all three tightness conditions (residuation) to prove that

X.xi ;ym/ is down-directed in general. However, as in the above example, for
p-frame for intuitionistic logic satisfying

R.x1; x2; y/ ” x1 � y or x2 � y;

we have a simpler way to show the down-directedness of X.xi ;ym/.
3. The algorithm to find splitting pairs is symmetric. That is, we can choose a

minimal element xm, first. After that, we can take the maximum element ym.

6 Conclusion

In the current paper, we have introduced special elements in polarity frames, named
splitters, to characterize the distributivity on bi-approximation semantics. As we saw
in Section 3, splitters play central roles to validate the distributivity. Plus, we have
also studied that, to obtain the dual representation between distributive lattices and
distributive polarity frames, the axiom of choice essentially works. By introducing
the prime skeletons, we have also learned how splitters work on distributive polarity
frames, and we have shown invariance of validity of sequents between distributive
polarity frames and the prime skeletons. On the other hand, by applying the Sahlqvist
theorem for substructural logic on bi-approximation semantics, we have also consid-
ered bi-approximation semantics for intuitionistic logic, which obviously validate
the distributive law, but which does not, at least explicitly, guarantee the existence of
splitting pairs. The interesting things are:

1. To prove that bi-approximation semantics for intuitionistic logic is based on
distributive polarity frames, the axiom of choice is needed.

2. Nevertheless, we can validate the distributive law on bi-approximation se-
mantics for intuitionistic logic without the axiom of choice but by manipulat-
ing the adjointness ^ `!.

As a natural consequence, we obtain interesting questions: is there any constructive
characterization of the distributivity depending neither on the axiom of choice nor
on the adjointness? And: is there any interesting connection between the axiom of
choice and the adjointness?

One may also question how the first-order definability for Kripke semantics of
distributive substructural logics relates to bi-approximation semantics of distributive
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substructural logics. But, we already have a possible answer for this question, and it
will appear in this author’s subsequent work.

Note

1. In case x D y for x 2 X and y 2 Y , xBy has to hold.
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